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Summary. Isometry classes of linear codes can be expressed as orbits under the group action
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1. Introduction

The methods and results presented in this paper are interesting in the framework
of classification of discrete structures [10], [11]. Very often discrete structures can
be described as equivalence classes of certain objects. In such cases when these
equivalence classes can be expressed as orbits under a group G acting on a set X
— i.e. there is a mapping G ×X → X , (g, x) 7→ gx such that g1(g2x) = (g1g2)x
and 1x = x for all g1, g2 ∈ G, x ∈ X , where 1 is the unit element of G — then
there exist some combinatorial and algebraic methods for the classification of these
structures. We will apply these methods for the classification of linear codes.

Let n and k ≤ n be two positive integers. A linear (n, k)-code C over the
finite field GF (q), where q is the power of a prime p, is a k-dimensional subspace
of GF (q)n. The error correcting properties of C can be described by using the
minimum distance d(C) of C,

d(C) := min {d(c, c′) | c, c′ ∈ C, c 6= c′} ,

where d(c, c′) is the Hamming distance of the two code words, which is the number
of different coordinates of c and c′;

d(c, c′) = |{1 ≤ i ≤ n | ci 6= c′i}| .
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Applying a Maximum-Likelihood decoder , which decodes a received message into
one of the nearest code words in C with respect to the Hamming distance, it is
possible to correct at most b(d(C)− 1)/2c transmission errors and detect d(C)− 1
errors.

If there is a vector space isomorphism ι : C → C′ which preserves the Hamming
distance then C and C′ are called isometric. The isomorphism ι is called an
isometry between C and C′ as well. Isometric codes have the same structure with
respect to the Hamming metric, so they have the same error correcting properties,
and we collect them all to one isometry class . For that reason we are interested
rather in the classification of isometry classes of codes than in the classification
of all codes. Each isometry can be described as a permutation of the coordinates
together with a simultaneous multiplication in each coordinate with elements of
GF (q)∗ (cf. [9]). To be more precise, the group of all isometries can be described
as the wreath product GF (q)∗ o Sn of the multiplicative group GF (q)∗ and the
symmetric group Sn. Its underlying set is

{(ψ, π) | ψ ∈ GF (q)∗n, π ∈ Sn} ,

where GF (q)∗n is the set of all functions ψ:n := {1, . . . , n} → GF (q)∗, and the
multiplication is defined by

(ψ, π)(ψ′, π′) := (ψψ′π , ππ
′),

together with
ψψ′π(i) := ψ(i)ψ′π(i) := ψ(i)ψ′(π−1i).

Each element of this group can also be described as an n×n-matrix M over GF (q)
which has in each row and in each column exactly one entry different from zero.
The action of this monomial group on GF (q)n is given by

GF (q)∗ o Sn ×GF (q)n → GF (q)n

((ψ, π), v := (κ1, . . . , κn)) 7→ (ψ(1)κπ−1(1), . . . , ψ(n)κπ−1(n)),

or
(M,v) 7→ v ·M−1.

It induces a group action on U(n, k, q), the set of all k-dimensional subspaces of
GF (q)n. Usually it is more convenient to represent an (n, k)-code C by a generator
matrix Γ which is an n× k-matrix over GF (q), the rows of which form a basis of
the code C. Obviously each code has many different generator matrices; the set
of all generator matrices of C is the orbit1 GLk(q)(Γ) under the following action

1 The orbit G(x) of x ∈ X under the action of G is the set of all elements of X which can be
described as gx for g ∈ G, i.e. G(x) := {gx | g ∈ G}.
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of the general linear group GLk(q) on the set GF (q)n×kk of all n× k-matrices over
GF (q) of rank k.

GLk(q)×GF (q)n×kk → GF (q)n×kk : (A,Γ) 7→ A · Γ.

For technical reasons, we will drop the condition on the rank of these matrices
Γ, and we will write them as functions from the set n to GF (q)k \ {0}, since it
is obvious that we can restrict our investigations to generator matrices having
no 0-columns. (A 0-column in a generator matrix causes that the corresponding
coordinate in all code words is 0, so this coordinate cannot carry any information.)
Finally we end up with the following group action describing the isometry classes
of linear (n, l)-codes for l ≤ k as orbits under the particular action

(GLk(q)×GF (q)∗ o Sn)× (GF (q)k \ {0})n → (GF (q)k \ {0})n

(A,Γ,M) 7→ A · Γ ·M−1.

This can be made more clear when applying Lehmann’s Lemma [13], [14] which
reduces the action of the wreath product GF (q)∗oSn on GF (q)k\{0} to an action of
Sn on the set of GF (q)∗-orbits on GF (q)k \{0}. Since each of these orbits collects
all nonzero vectors of a one-dimensional vector space of GF (q), each of these orbits
can be identified with an element of the projective geometry PGk−1(q).

In our final description the isometry classes of linear (n, l)-codes for l ≤ k
correspond to GLk(q) × Sn-orbits of functions Γ : n → PGk−1(q), where Sn
operates by permuting the coordinates, and GLk(q) acts by multiplication from
the left. Since GLk(q) acts on elements of PGk−1(q) we can consider this action
as an action of the projective linear group PGLk(q).

(PGLk(q)× Sn)× (PGk−1(q))n → (PGk−1(q))n (1)

After having described the isometry classes in a suitable way as orbits under
a group action, we were able to compute the number of these classes for many
parameters n, k and q using methods from Pólya theory (cf. [8], [5], [4], [6]). The
main point in all these calculations was the computation of the cycle index of the
action of PGLk(q) acting on PGk−1(q) (cf. [7]).

Some further efforts were done, for computing complete lists of representatives
of these isometry classes (cf. [1]). Even though we were applying a mixture of
algebraic and combinatorial algorithms together with very skilled programming
techniques this approach works only for small parameter values n, k and q. Soon
the size of the operating group together with the number of representatives to be
computed are getting too large. In such situations it is useful, helpful and makes
sense to apply probabilistic methods which allow the construction of linear codes
distributed over all isometry classes uniformly at random. This way we are able to
produce huge sets of representatives, to check hypotheses on them and afterwards
we can try to prove the valid ones.
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2. Random generation of linear codes

In this section we want to demonstrate how the Dixon–Wilf-algorithm can be used
in order to generate linear codes distributed over all isometry classes uniformly at
random. Actually this algorithm was first developed for the random generation of
unlabelled graphs (cf. [3]). Before describing it in all details for an arbitrary group
action we need some more notions: The stabilizer of x ∈ X under the action of a
group G is the subgroup

Gx := {g ∈ G | gx = x}

of G, whereas the set of fixed points of g ∈ G is the subset

Xg := {x ∈ X | gx = x}

of X . The set of all G-orbits in X will be denoted by

G\\X := {G(x) | x ∈ X} .

Theorem 1. The Dixon–Wilf-algorithm. Let G be a finite group acting on a
finite set X. Choose a conjugacy class C of G with the probability

p(C) :=
|C| · |Xg|
|G| · |G\\X | , for an arbitrary g ∈ C.

Pick any g ∈ C and determine at random a fixed point x of g. Then the probability
that x lies in a given orbit ω ∈ G\\X is equal to 1/ |G\\X |, i.e. it does not depend
on the special choice of ω. So the output of this algorithm is distributed uniformly
at random over all G-orbits on X.

Now we are in a position to apply this algorithm to the group action (1) de-
scribing the isometry classes of linear codes. The conjugacy classes of the oper-
ating group, which is a direct product of two groups, can be described as pairs
of the conjugacy classes of the two factors. So each conjugacy class C is a direct
product C = CP × CS of a conjugacy class CP in PGLk(q) and a conjugacy class
CS in Sn. Furthermore we will use Tnkq as an abbreviation for the cardinality
|PGLk(q)× Sn\\(PGk−1(q))n|. In other words Tnkq is the number of all isometry
classes of linear (n, l)-codes without 0-columns for l ≤ k.

Corollary 2. Let n and k ≤ n be positive integers. The following algorithm
computes generator matrices Γ of linear (n, l)-codes over GF (q) for l ≤ k uniformly
at random:

Choose a conjugacy class C of PGLk(q)× Sn with the probability

p(C) :=
|C| ·

∣∣∣(PGk−1(q))n(A,π)

∣∣∣
|Sn| · |PGLk(q)| · Tnkq

, for an arbitrary pair (A, π) ∈ C,
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where (PGk−1(q))n(A,π) is the set of all fixed points of (A, π) in (PGk−1(q))n, i.e.
the set of all functions Γ ∈ (PGk−1(q))n which fulfill A ·Γ = Γ ◦π. Then pick any
(A, π) ∈ C and generate a fixed point Γ of (A, π) uniformly at random.

In order to apply this algorithm we want to take a closer look at it. The order
of Sn is given by n!, the order of PGLk(q) equals [q]k/(q − 1) where [q]k is the
order of GLk(q) given by

[q]k = (qk − 1)(qk − q) · · · (qk − qk−1).

For the computation of Tnkq consult one of the articles [8], [5], [4], [6]. So we can
compute the denominator in p(C).

For computing the nominator we must know the conjugacy classes of Sn and
of PGLk(q). Each conjugacy class of Sn can be described by a cycle type λ of
length n. Such a cycle type λ is a sequence of nonnegative integers (λ1, . . . , λn)
such that

n∑
i=1

i · λi = n.

The conjugacy class of Sn corresponding to λ consists of all permutations of cycle
type λ. These are

n!∏
i i
λi · λi!

permutations.
In order to describe the conjugacy classes of PGLk(q) we first investigate the

conjugacy classes of GLk(q). Two projectivities in PGLk(q) given in form of
matrices A and B are conjugate in PGLk(q) if and only if there is a matrix
R ∈ GLk(q) and α ∈ GF (q)∗ such that R · B · R−1 = α · A. Whereas the
two matrices A and B are conjugate in GLk(q) if and only if there is a matrix
R ∈ GLk(q) such that R · B · R−1 = A. As a consequence each conjugacy class
in PGLk(q) splits into (at most q − 1) conjugacy classes in GLk(q). Let A be a
regular k × k-matrix over GF (q). The conjugacy class CP (A) of the projectivity
induced by A consists of all the matrices in the union

⋃
α∈GF (q)∗

CG(α ·A)

of conjugacy classes in GLk(q).
In [7] (but also in many text books on Algebra) the conjugacy classes in GLk(q)

are described by the Jacobi normal forms, which are block diagonal matrices of
blocks strongly related to monic polynomials.



Vol. 58 (1999) Random generation of linear codes 197

Let f =
∑d
i=0 κix

i, κd = 1 be a monic polynomial over GF (q), then the
companion matrix C(f) of f is given by

C(f) :=



0 0 . . . 0 0 −κ0
1 0 . . . 0 0 −κ1
0 1 . . . 0 0 −κ2
...

...
. . .

...
...

...
0 0 . . . 1 0 −κd−2
0 0 . . . 0 1 −κd−1

 .

For an integer r ≥ 1 the hypercompanion matrix H(fr) of fr is an rd× rd-matrix
given as a block matrix

H(fr) :=



C(f) 0 0 . . . 0 0
E1d C(f) 0 . . . 0 0

0 E1d C(f) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C(f) 0
0 0 0 . . . E1d C(f)




r-times,

where

E1d := (eij)1≤i,j≤d is given by eij =
{

1 if (i, j) = (1, d)
0 else.

A complete list of all Jacobi normal forms, i.e. a complete set of representatives of
the conjugacy classes in GLk(q) can be computed in the following way:

Theorem 3. Let {f1, . . . , ftk} be the set of all monic irreducible polynomials over
GF (q) of degree deg(fi) ≤ k which are different from the polynomial f = x.
Compute all solutions γ = (γ1, . . . , γtk) of

tk∑
i=1

γi · deg(fi) = k.

For each solution γ determine all possible combinations λ = (λ(1), . . . , λ(tk)) of
cycle types λ(i) of length γi. From each choice of λ we compute a normal form

Nλ := diag (D(f1, λ
(1)), . . . , D(ftk , λ

(tk))), (2)

which is a block diagonal matrix of blocks of the form

D(fi, λ(i)) := diag (C(fi), . . . , C(fi)︸ ︷︷ ︸
λ

(i)
1 -times

,H(f2
i ), . . . ,H(f2

i )︸ ︷︷ ︸
λ

(i)
2 -times

, . . . ,H(fγii ), . . . ,H(fγii )︸ ︷︷ ︸
λ

(i)
γi

-times

).
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For computing the size of a conjugacy class we can use the following method
by Kung (cf. [12]):

Theorem 4. Let f be a monic irreducible polynomial of degree d over GF (q), and
let λ be a cycle type of length γ. For 1 ≤ i ≤ γ determine numbers mi by

mi :=
i∑

j=1

j · λj +
γ∑

j=i+1

i · λj .

Then the size of the centralizer of D(f, λ) in GLd·γ(q) is given by

b(d, λ) :=
γ∏
i=1

λi∏
j=1

(qd·mi − qd·(mi−j)).

This formula proves that the size of the centralizer of D(f, λ) depends only
on the degree d and on the cycle type λ, but not on the special choice of the
irreducible polynomial.

The number of matrices in the conjugacy class of the normal form in (2) is
given by

|CG(Nλ)| = [q]k∏tk
i=1 b(deg(fi), λ(i))

.

In order to write down explicitly the Jacobi normal forms in GLk(q) it is
necessary to know all the monic irreducible polynomials over GF (q) of degree d ≤
k. For certain parameters there are complete lists of these polynomials available.
Moreover it is possible to compute irreducible polynomials from so called Lyndon
words which will be described now. Any given total order of the elements in GF (q)
can be used for defining a lexicographic order on GF (q)d. The cyclic group Cd of
order d generated by π := (1, 2, . . . , d) acts on GF (q)d by a cyclic shift,

v := (κ1, . . . , κd)
π7→ π(v) := (κd, κ1, . . . , κd−1).

A vector v ∈ GF (q)d is called acyclic if its orbit Cd(v) consists of d pairwise
different vectors. An acyclic vector v is a Lyndon word if and only if it is the
smallest vector in the orbit Cd(v).

Let σ : GF (qd) → GF (qd) be the Frobenius automorphism τ 7→ σ(τ) := τq.
There exist elements β ∈ GF (qd) such that the set{

β, σ(β), . . . , σd−1(β)
}

is a basis of GF (qd) over GF (q), which is called a normal basis of GF (qd). Then
each element τ of GF (qd) can uniquely be written as

τ =
d∑
i=1

κi · βi, βi := σi−1(β), κi ∈ GF (q),
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and we can identify τ with its coefficient vector (κ1, . . . , κd). Applying the Frobe-
nius automorphism to τ is the same as applying the cyclic shift π to its coefficient
vector.

A monic irreducible polynomial f of degree d over GF (q) has d different roots
in GF (qd). It is the minimal polynomial of each of its roots over GF (q). If
τ ∈ GF (qd) is a root of f then all the other roots, which are called conjugates of
τ , are obtained by applying the Frobenius automorphism to τ , i.e. the set of roots
is given by {

σi(τ) | 0 ≤ i ≤ d− 1
}
.

Then the minimal polynomial f of τ (and of each of its conjugates) over GF (q) is
given by

f =
d−1∏
i=0

(x− σi(τ)).

Using a normal basis of GF (qd) the coefficient vector of τ (and so the coefficient
vector of each root of f) must be an acyclic vector.

The other way round, if τ ∈ GF (qd) has an acyclic coefficient vector with
respect to a normal basis over GF (q), then the minimal polynomial over GF (q)
of τ is a monic irreducible polynomial of degree d.

Since each monic irreducible polynomial of degree d overGF (q) occurs as a min-
imal polynomial of certain elements of GF (qd), we only have to find all elements
with an acyclic coefficient vector for determining all irreducible polynomials of
degree d over GF (q). The Frobenius automorphism collects d conjugate elements,
which are the roots of the same irreducible polynomial over GF (q), and which cor-
respond to one Cd-orbit on the set of acyclic coefficient vectors. So we described
a one to one correspondence between the set of all Lyndon words of length d over
GF (q) and the set of all monic irreducible polynomials of degree d over GF (q).

In order to find the set of all conjugacy classes in PGLk(q) we have to determine
which conjugacy classes inGLk(q) must be merged in order to get a conjugacy class
in PGLk(q). So for each normal form Nλ (cf. (2)) and each α ∈ GF (q)∗ we must
determine the normal-form of α · Nλ. For doing this it is enough to determine
the normal forms of α · C(f) and α · H(fr) of monic irreducible polynomials
f =

∑d
i=0 κix

i. It is easy to deduce that these normal forms are given by the
companion or hypercompanion matrices C(fα) and H(frα) of the polynomial

fα :=
d∑
i=0

αd−iκix
i,

which is again a monic and irreducible polynomial of degree d over GF (q). It is
irreducible since the roots of fα are of the form α · τ , where τ is a root of f , so
the roots of fα form a set of d conjugates in GF (qd).
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n k Snk2 d2 1 2 3 4 5 6 7 8 9

15 5 62812 7 5.5 31.4 29.6 29.3 4.1 0.1 > 0
16 5 160106 8 3.9 24.1 26.8 34.7 9.8 0.7 > 0 > 0
17 5 401824 8 2.8 18.2 22.8 36.6 16.9 2.7 0.01 > 0
18 5 992033 8 1.9 13.8 18.7 35.0 23.7 6.8 0.1 > 0
19 5 2.406329 8 1.3 10.0 15.0 31.6 27.9 13.1 1.0 0.02
20 5 5.730955 9 1.0 7.4 11.7 27.2 29.4 19.9 3.4 1.1 .

15 6 350097 6 7.0 42.7 33.2 16.7 0.3 > 0
16 6 1.413251 6 4.4 32.1 33.4 27.9 2.1 0.01
17 6 5.708158 7 2.7 23.1 29.7 36.7 7.5 0.2 > 0
18 6 22.903161 8 1.8 16.1 24.4 40.2 16.5 1.0 > 0 .
19 6 90.699398 8 1.0 11.0 18.6 38.7 26.2 4.4 0.02 .
20 6 352.749035 8 0.7 7.4 13.7 33.6 33.2 11.1 0.3 > 0

15 7 901491 5 9.6 57.7 28.0 4.67 > 0
16 7 5.985278 6 5.9 44.8 36.0 13.2 0.07 .
17 7 41.175203 6 3.4 31.9 36.9 26.7 1.1 > 0
18 7 287.813284 7 2.0 21.6 32.2 38.4 5.8 0.02 .
19 7 2009.864185 8 1.1 13.9 25.2 43.6 15.7 0.4 . .
20 7 13848.061942 8 0.7 8.8 18.2 41.6 27.9 2.8 .

15 8 957357 4 14.8 71.3 13.6 0.3
16 8 10.174566 5 8.8 61.2 27.3 2.7 .
17 8 119.235347 6 5.0 46.3 38.1 10.5 > 0 .
18 8 1482.297912 6 2.8 31.6 40.1 24.9 0.5 .
19 8 18884.450721 7 1.5 20.3 34.6 39.3 4.2 > 0 .
20 8 240477.821389 8 0.8 12.6 26.1 46.5 13.9 0.1 . .

15 9 428260 4 23.9 73.4 2.6 > 0
16 9 6.592538 4 14.6 74.5 10.8 0.1
17 9 123.424635 5 8.2 64.1 26.1 1.5 .
18 9 2647.026212 6 4.5 47.8 39.5 8.2 > 0 .
19 9 61154.777955 6 2.4 32.1 42.7 22.5 0.2 .
20 9 1.453217.697135 7 0.8 12.6 26.1 46.5 13.9 0.1 > 0 .

15 10 94177 4 36.5 63.4 0.1 .
16 10 1.778699 4 24.0 74.5 1.5 > 0
17 10 46.354490 4 8.2 64.2 26.1 1.5
18 10 1564.547344 4 8.0 66.8 24.4 0.8
19 10 62319.506255 5 4.3 49.8 40.0 5.9 > 0
20 10 2.702716.939976 6 2.3 33.0 45.2 19.4 > 0 .

Table 1. Distribution (in %) of the minimum distance of binary linear (n, k)-codes

From each conjugacy class in PGLk(q) we can choose a representative in form
of a matrix, since we know the Jacobi normal-forms, from which we can compute
a permutation representation on PGk−1(q).

Coming back to the description of the algorithm we finally have to investigate
the set of all functions f ∈ Y X which fulfill ρ ◦ f ◦π−1 = f for given permutations
π of X and ρ of Y . This set of fixed points Y X(ρ,π) can be described in the following
way: Choose from each cycle of length ` in the cycle decomposition of π one
element x; this element must be mapped by f onto an element y which lies in a
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cycle of length dividing ` in the cycle decomposition of ρ. By f ◦ πi(x) = ρi ◦ f(x)
the function f is defined on the whole cycle of x. When λ = λ(π) denotes the
cycle type of the permutation π, i.e. there are λi cycles of length i in the cycle
decomposition of π, then ∣∣∣Y X(ρ,π)

∣∣∣ =
|X|∏
i=1

∣∣Yρi ∣∣λi ,
where Yρi is the set of all fixed points of ρi in Y .

This finishes the description of the algorithm for the random generation of
linear codes. It was implemented in the computer algebra system SYMMETRICA
[15] for the generation of linear codes over prime fields, i.e. for q is a prime. In
order to minimize the amount of work before the algorithm actually starts to
generate codes it is useful to start the generation at once after having computed
the information on the first conjugacy class, and evaluate further conjugacy classes
and their probabilities only if required. This means we have to compute p(Ci) only
if the random number (lying in [0, 1[) determining which conjugacy class to choose
exceeds

∑i−1
j=1 p(Cj).

Finally we want to present some results about the distribution of the minimum
distance among binary linear codes of given parameters n and k which were gener-
ated uniformly at random using the algorithm above. For each pair of parameters
(n, k) we were computing the minimum distance of 500000 codes of length n and
dimension ≤ k. The results are collected in Table 1. Snk2 indicates the number of
isometry classes of linear (n, k)-codes overGF (2) without 0-columns. Furthermore
d2 = d2(n, k) stands for the maximal value that occurs as the minimum distance
of linear (n, k)-codes over GF (2). Tables of dq(n, k) can be found in [2]. In the
right half of Table 1 for each d ≤ d2(n, k) the percentage of codes with minimum
distance d is indicated. We can deduce that in general the percentage of codes
with maximal minimum distance is very small. In some cases indicated with “.”
in Table 1 there was even no code with parameters (n, k, d) produced after having
generated 500000 codes.
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