YOUNG'S THEOREM

A very important and useful result in the calculus of functions of several variables is the following.

Theorem: Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable on its domain of definition, $\mathbb{X} \subset \mathbb{R}$. Then on the interior of its domain, the n×n matrix of second-order partial derivatives is symmetric,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}, \quad \forall \quad i, j = 1, \dots, n.$$

Proof: By holding the x_k 's fixed for all $k \neq i, j$ with *i* and *j* arbitrary, we can reduce the problem to the simple case of a function of two variables. Therefore, let $y = x_i$, $z = x_j$, and $g(y, z) \equiv f(x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_{j-1}, z, x_{j+1}, ..., x_n)$. Note that continuity of the first-and second-order partial derivatives of *f* is equivalent to continuity of the first- and second-order partial derivatives of *g*. Now consider the quantity

(1)
$$h(\Delta y, \Delta z) \equiv \left[g(y + \Delta y, z + \Delta z) - g(y, z + \Delta z)\right] - \left[g(y + \Delta y, z) - g(y, z)\right].$$

There are three aspects of the function $h(\Delta y, \Delta z)$ that are important. First, we can interchange the middle two terms of $h(\Delta y, \Delta z)$ without affecting its value to get

(1')
$$h(\Delta y, \Delta z) \equiv \left[g(y + \Delta y, z + \Delta z) - g(y + \Delta y, z)\right] - \left[g(y, z + \Delta z) - g(y, z)\right].$$

Second, referring to the right-hand-side of (1), it is clear that for any Δz , $h(0, \Delta z) \equiv 0$. Similarly, referring to the right-hand-side of (1'), it is also clear that for any Δy , $h(\Delta y, 0) \equiv 0$. This means that the graph of $h(\Delta y, \Delta z)$ as a function of Δy (for fixed Δz) **ARE Math Review**

Notes

Page 2

begins at the origin, has base equal to Δy and height equal to $h(\Delta y, \Delta z)$, while the graph of $h(\Delta y, \Delta z)$ as a function of Δz (for fixed Δy) begins at the origin, has base equal to Δz and height equal to $h(\Delta y, \Delta z)$. Third, by the composite function theorem, the partial derivatives of $h(\Delta y, \Delta z)$ with respect to Δy and Δz are

(2)
$$\frac{\partial h(\Delta y, \Delta z)}{\partial \Delta y} = \left[\frac{\partial g(y + \Delta y, z + \Delta z)}{\partial y} - \frac{\partial g(y + \Delta y, z)}{\partial y}\right]$$

(2')
$$\frac{\partial h(\Delta y, \Delta z)}{\partial \Delta z} = \left[\frac{\partial g(y + \Delta y, z + \Delta z)}{\partial z} - \frac{\partial g(y, z + \Delta z)}{\partial z}\right]$$

Finally, from (2) and (2'), the second-order cross-partial derivatives of $h(\Delta y, \Delta z)$ are

(3)
$$\frac{\partial^2 h(\Delta y, \Delta z)}{\partial \Delta y \partial \Delta z} = \frac{\partial^2 g(y + \Delta y, z + \Delta z)}{\partial y \partial z},$$

(3')
$$\frac{\partial^2 h(\Delta y, \Delta z)}{\partial \Delta z \partial \Delta y} = \frac{\partial^2 g(y + \Delta y, z + \Delta z)}{\partial z \partial y}$$

Therefore, by the mean value theorem, for any given Δz there is a $c \in [0, \Delta y]$ such that

(4)
$$h(\Delta y, \Delta z) = \frac{\partial h(c, \Delta z)}{\partial \Delta y} \cdot \Delta y = \left[\frac{\partial g(y+c, z+\Delta z)}{\partial y} - \frac{\partial g(y+c, z)}{\partial y}\right] \cdot \Delta y.$$

Note that by the hypotheses of the theorem, the terms in square brackets on the righthand-side of (4) are continuously differentiable and therefore satisfy the conditions required for a second application of the mean value theorem. Therefore, there is a $d \in [0, \Delta z]$ such that

(5)
$$h(\Delta y, \Delta z) = \frac{\partial^2 g(y+c, z+d)}{\partial y \partial z} \cdot \Delta y \cdot \Delta z$$

ARE Math Review

Notes

Next, note that the definition of $h(\Delta y, \Delta z)$ in (1) is "symmetrical" in y, z and in $\Delta y, \Delta z$, a fact that lead us to the equivalent expression for $h(\Delta y, \Delta z)$ given in (1'). Therefore, using exactly the same arguments as above, but in the reverse sequence for Δy and Δz and applied to (1') rather than (1), we obtain

(6)
$$h(\Delta y, \Delta z) = \frac{\partial^2 g(y + \tilde{c}, z + \tilde{d})}{\partial z \partial y} \cdot \Delta y \cdot \Delta z$$

for some $\tilde{c} \in [0, \Delta y]$ and some $\tilde{d} \in [0, \Delta z]$. Equating the two expressions (5) and (6) for $h(\Delta y, \Delta z)$ and canceling Δy and Δz implies

(7)
$$\frac{\partial^2 g(y+c,z+d)}{\partial y \partial z} = \frac{\partial^2 g(y+\tilde{c},z+\tilde{d})}{\partial z \partial y}$$

As $\Delta y \to 0$ we have $c \to 0$ (since $0 \le |c| \le |\Delta y|$) so that $y + c \to y \equiv x_i$, while as $\Delta z \to 0$ we have $d \to 0$ (since $0 \le |d| \le |\Delta z|$) and $z + d \to z \equiv x_j$. Similarly, as $\Delta y \to 0$ we have $\tilde{c} \to 0$ and $y + \tilde{c} \to y \equiv x_i$, while as $\Delta z \to 0$ we have $\tilde{d} \to 0$ and $z + \tilde{d} \to z \equiv x_j$. Continuity of both sides of (7) then implies that

(8)
$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 g(y,z)}{\partial y \partial z} = \frac{\partial^2 g(y,z)}{\partial z \partial y} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$
 Q.E.D.

