Young's Theorem

A very important and useful result in the calculus of functions of several variables is the following.

Theorem: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable on its domain of definition, $\mathbb{X} \subset \mathbb{R}$. Then on the interior of its domain, the $n \times n$ matrix of second-order partial derivatives is symmetric,

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}, \forall i, j=1, \ldots, n
$$

Proof: By holding the x_{k} 's fixed for all $k \neq i, j$ with i and j arbitrary, we can reduce the problem to the simple case of a function of two variables. Therefore, let $y=x_{i}, z=x_{j}$, and $g(y, z) \equiv f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{j-1}, z, x_{j+1}, \ldots, x_{n}\right)$. Note that continuity of the firstand second-order partial derivatives of f is equivalent to continuity of the first- and sec-ond-order partial derivatives of g. Now consider the quantity

$$
\begin{equation*}
h(\Delta y, \Delta z) \equiv[g(y+\Delta y, z+\Delta z)-g(y, z+\Delta z)]-[g(y+\Delta y, z)-g(y, z)] . \tag{1}
\end{equation*}
$$

There are three aspects of the function $h(\Delta y, \Delta z)$ that are important. First, we can interchange the middle two terms of $h(\Delta y, \Delta z)$ without affecting its value to get

$$
\begin{equation*}
h(\Delta y, \Delta z) \equiv[g(y+\Delta y, z+\Delta z)-g(y+\Delta y, z)]-[g(y, z+\Delta z)-g(y, z)] \tag{1’}
\end{equation*}
$$

Second, referring to the right-hand-side of (1), it is clear that for any $\Delta z, h(0, \Delta z) \equiv 0$. Similarly, referring to the right-hand-side of (1'), it is also clear that for any Δy, $h(\Delta y, 0) \equiv 0$. This means that the graph of $h(\Delta y, \Delta z)$ as a function of Δy (for fixed Δz)
begins at the origin, has base equal to Δy and height equal to $h(\Delta y, \Delta z)$, while the graph of $h(\Delta y, \Delta z)$ as a function of Δz (for fixed Δy) begins at the origin, has base equal to Δz and height equal to $h(\Delta y, \Delta z)$. Third, by the composite function theorem, the partial derivatives of $h(\Delta y, \Delta z)$ with respect to Δy and Δz are

$$
\begin{align*}
& \frac{\partial h(\Delta y, \Delta z)}{\partial \Delta y}=\left[\frac{\partial g(y+\Delta y, z+\Delta z)}{\partial y}-\frac{\partial g(y+\Delta y, z)}{\partial y}\right] \tag{2}\\
& \frac{\partial h(\Delta y, \Delta z)}{\partial \Delta z}=\left[\frac{\partial g(y+\Delta y, z+\Delta z)}{\partial z}-\frac{\partial g(y, z+\Delta z)}{\partial z}\right] . \tag{2’}
\end{align*}
$$

Finally, from (2) and (2'), the second-order cross-partial derivatives of $h(\Delta y, \Delta z)$ are

$$
\begin{align*}
& \frac{\partial^{2} h(\Delta y, \Delta z)}{\partial \Delta y \partial \Delta z}=\frac{\partial^{2} g(y+\Delta y, z+\Delta z)}{\partial y \partial z} \tag{3}\\
& \frac{\partial^{2} h(\Delta y, \Delta z)}{\partial \Delta z \partial \Delta y}=\frac{\partial^{2} g(y+\Delta y, z+\Delta z)}{\partial z \partial y} \tag{3'}
\end{align*}
$$

Therefore, by the mean value theorem, for any given Δz there is a $c \in[0, \Delta y]$ such that

$$
\begin{equation*}
h(\Delta y, \Delta z)=\frac{\partial h(c, \Delta z)}{\partial \Delta y} \cdot \Delta y=\left[\frac{\partial g(y+c, z+\Delta z)}{\partial y}-\frac{\partial g(y+c, z)}{\partial y}\right] \cdot \Delta y . \tag{4}
\end{equation*}
$$

Note that by the hypotheses of the theorem, the terms in square brackets on the right-hand-side of (4) are continuously differentiable and therefore satisfy the conditions required for a second application of the mean value theorem. Therefore, there is a $d \in[0, \Delta z]$ such that

$$
\begin{equation*}
h(\Delta y, \Delta z)=\frac{\partial^{2} g(y+c, z+d)}{\partial y \partial z} \cdot \Delta y \cdot \Delta z \tag{5}
\end{equation*}
$$

Next, note that the definition of $h(\Delta y, \Delta z)$ in (1) is "symmetrical" in y, z and in $\Delta y, \Delta z$, a fact that lead us to the equivalent expression for $h(\Delta y, \Delta z)$ given in ($\left.1^{\prime}\right)$. Therefore, using exactly the same arguments as above, but in the reverse sequence for Δy and Δz and applied to (1^{\prime}) rather than (1), we obtain

$$
\begin{equation*}
h(\Delta y, \Delta z)=\frac{\partial^{2} g(y+\tilde{c}, z+\tilde{d})}{\partial z \partial y} \cdot \Delta y \cdot \Delta z \tag{6}
\end{equation*}
$$

for some $\tilde{c} \in[0, \Delta y]$ and some $\tilde{d} \in[0, \Delta z]$. Equating the two expressions (5) and (6) for $h(\Delta y, \Delta z)$ and canceling Δy and Δz implies

$$
\begin{equation*}
\frac{\partial^{2} g(y+c, z+d)}{\partial y \partial z}=\frac{\partial^{2} g(y+\tilde{c}, z+\tilde{d})}{\partial z \partial y} \tag{7}
\end{equation*}
$$

As $\Delta y \rightarrow 0$ we have $c \rightarrow 0$ (since $0 \leq|c| \leq|\Delta y|)$ so that $y+c \rightarrow y \equiv x_{i}$, while as $\Delta z \rightarrow 0$ we have $d \rightarrow 0($ since $0 \leq|d| \leq|\Delta z|)$ and $z+d \rightarrow z \equiv x_{j}$. Similarly, as $\Delta y \rightarrow 0$ we have $\tilde{c} \rightarrow 0$ and $y+\tilde{c} \rightarrow y \equiv x_{i}$, while as $\Delta z \rightarrow 0$ we have $\tilde{d} \rightarrow 0$ and $z+\tilde{d} \rightarrow z \equiv x_{j}$. Continuity of both sides of (7) then implies that

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} g(y, z)}{\partial y \partial z}=\frac{\partial^{2} g(y, z)}{\partial z \partial y}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} . \tag{8}
\end{equation*}
$$

Q.E.D.

