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INTRODUCTION

Principles derived from an analysis of experimental literatures in vision, speech, cortical

development, and reinforcement learning, including attentional blocking and cognitive-emotional

interactions, led to the introduction of adaptive resonance as a theory of human cognitive

information processing (Grossberg, 1976).  The theory has evolved as a series of real-time neural

network models that perform unsupervised and supervised learning, pattern recognition, and

prediction (Duda, Hart, and Stork, 2001; Levine, 2000).  Models of unsupervised learning include

ART 1 (Carpenter and Grossberg, 1987) for binary input patterns and fuzzy ART (Carpenter,

Grossberg, and Rosen, 1991) for analog input patterns.  ARTMAP models (Carpenter et al., 1992)

combine two unsupervised modules to carry out supervised learning.  Many variations of the basic

supervised and unsupervised networks have since been adapted for technological applications and

biological analyses.

MATCH-BASED LEARNING, ERROR-BASED LEARNING, AND STABLE

FAST LEARNING

A central feature of all ART systems is a pattern matching process that compares an external

input with the internal memory of an active code. ART matching leads either to a resonant state,

which persists long enough to permit learning, or to a parallel memory search.  If the search ends at

an established code, the memory representation may either remain the same or incorporate new

information from matched portions of the current input.  If the search ends at a new code, the

memory representation learns the current input.  This match-based learning process is the

foundation of ART code stability.  Match-based learning allows memories to change only when

input from the external world is close enough to internal expectations, or when something

completely new occurs.  This feature makes ART systems well suited to problems that require on-

line learning of large and evolving databases.
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Match-based learning is complementary to error-based learning, which responds to a

mismatch by changing memories so as to reduce the difference between a target output and an

actual output, rather than by searching for a better match. Error-based learning is naturally suited to

problems such as adaptive control and the learning of sensory-motor maps, which require ongoing

adaptation to present statistics. Neural networks that employ error-based learning include

backpropagation and other multilayer perceptrons (MLPs) (Duda, Hart, and Stork, 2001; see

BACKPROPAGATION).

Many ART applications use fast learning, whereby adaptive weights converge to

equilibrium in response to each input pattern.  Fast learning enables a system to adapt quickly to

inputs that occur rarely but that may require immediate accurate recall.  Remembering details of an

exciting movie is a typical example of learning on one trial.  Fast learning creates memories that

depend upon the order of input presentation.  Many ART applications exploit this feature to

improve accuracy by voting across several trained networks, with voters providing a measure of

confidence in each prediction.

CODING, MATCHING, AND EXPECTATION

Figure 1 illustrates a typical ART search cycle.  To begin, an input pattern I  registers itself as

short-term memory activity pattern x  across a field of nodes F1 (Figure 1a).  Converging and

diverging pathways from F1 to a coding field F2 , each weighted by an adaptive long-term memory

trace, transform x  into a net signal vector T .  Internal competitive dynamics at F2  further transform

T , generating a compressed code y , or content-addressable memory.  With strong competition,

activation is concentrated at the F2  node that receives the maximal F F1 2→  signal; in this winner-

take-all (WTA) mode, only one code component remains positive (see WINNER-TAKE-ALL

NETWORKS).
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Figure 1.  An ART search cycle imposes a matching criterion, defined by a

dimensionless vigilance parameter ρ, on the degree of match between a bottom-up

input I and the top-down expectation V  previously learned by the F2  code y

chosen by I.

 

Before learning can change memories, ART treats the chosen code as a hypothesis, which it

tests by matching the top-down expectation of y  against the input that selected it (Figure 1b).

Parallel specific and nonspecific feedback from F2  implements matching as a real-time locally

defined network computation.  Nodes at F1 receive both learned excitatory signals and unlearned
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inhibitory signals from F2 . These complementary signals act to suppress those portions of the

pattern I of bottom-up inputs that are not matched by the pattern V  of top-down expectations.  The

residual activity x∗  represents a pattern of critical features in the current input with respect to the

chosen code y . If y  has never been active before, x x I∗ = = , and F1 registers a perfect match.

ATTENTION, SEARCH, RESONANCE AND LEARNING

If the matched pattern x∗  is close enough to the input I , then the memory trace of the active F2

code converges toward x∗ . The property of encoding an attentional focus of critical features is key

to code stability.  This learning strategy differentiates ART networks from MLPs, which typically

encode the current input, rather than a matched pattern, and hence employ slow learning across

many input trials to avoid catastrophic forgetting.

ART memory search begins when the network determines that the bottom-up input I  is too

novel, or unexpected, with respect to the active code to satisfy a matching criterion.  The search

process resets the F2  code y  before an erroneous association to x∗  can form (Figure 1c).  After

reset, medium-term memory within the F F1 2→  pathways (Carpenter and Grossberg, 1990) biases

the network against the previously chosen node, so that a new code y* may be chosen and tested

(Figure 1d).

The ART matching criterion is determined by a parameter ρ called vigilance, specifies the

minimum fraction of the input that must remain in the matched pattern in order for resonance to

occur.  Low vigilance allows broad generalization, coarse categories, and abstract memories.  High

vigilance leads to narrow generalization, fine categories, and detailed memories.  At maximal

vigilance, category learning reduces to exemplar learning. While vigilance is a free parameter in

unsupervised ART networks, in supervised networks vigilance becomes an internally controlled

variable which triggers search after rising in response to a predictive error.  Because vigilance then

varies across learning trials, the memories of a single ARTMAP system typically exhibit a range of
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degrees of refinement.  By varying vigilance, a single system can recognize both abstract categories,

such as faces and dogs, and individual examples of these categories.

Figure 2.  The general ARTMAP network for supervised learning includes two

ART modules. For classification tasks, the ARTb  module may be simplified.

SUPERVISED LEARNING AND PREDICTION

An ARTMAP system includes a pair of ART modules, ARTa  and ARTb  (Figure 2).  During

supervised learning, ARTa  receives a stream of patterns a n( ){ } and ARTb  receives a stream of

patterns b n( ){ } , where b n( )  is the correct prediction given a n( ).  An associative learning network

and a vigilance controller link these modules to make the ARTMAP system operate in real time,

creating the minimal number of ARTa  recognition categories, or hidden units, needed to meet

accuracy criteria.  A minimax learning rule enables ARTMAP to learn quickly, efficiently, and

accurately as it conjointly minimizes predictive error and maximizes code compression in an on-line

setting.  A baseline vigilance parameter ρa  sets the minimum matching criterion, with smaller ρa

allowing broader categories to form.  At the start of a training trial, ρ ρa a= .  A predictive failure at

ARTb  increases ρa  just enough to trigger a search, through a feedback control mechanism called

match tracking.  A newly active code focuses attention on a different cluster of input features, and
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checks whether these features are better able to predict the correct outcome.  Match tracking allows

ARTMAP to learn a prediction for a rare event embedded in a cloud of similar frequent events that

make a different prediction.

ARTMAP employs a preprocessing step called complement coding, which, by normalizing

input patterns, solves a potential category proliferation problem (Carpenter, Grossberg, and Rosen,

1991).  Complement coding doubles the number of input components, presenting to the network

both the original feature vector and its complement.  In neurobiological terms, complement coding

uses both on-cells and off-cells to represent an input pattern.  The corresponding on-cell portion of

a weight vector encodes features that are consistently present in category exemplars, while the off-

cell portion encodes features that are consistently absent.  Small weights in complementary portions

of a category representation encode as uninformative those features that are sometimes present and

sometimes absent.

Figure 3.  A distributed ART (dART) architecture retains the stability of WTA

ART networks but allows the F2  code to be distributed across arbitrarily many

nodes.
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Winner-take-all activation in ART networks supports stable coding but causes category

proliferation when noisy inputs are trained with fast learning.  In contrast, distributed McCulloch-

Pitts activation in MLPs promotes noise tolerance but causes catastrophic forgetting with fast

learning (see LOCALIZED VS. DISTRIBUTED REPRESENTATIONS).  Distributed ART

(dART) models are designed to bridge these two worlds:  distributed activation enhances noise

tolerance while new system dynamics retain the stable learning capabilities of winner-take-all ART

systems (Carpenter, 1997).  These networks automatically apportion learned changes according to

the degree of activation of each coding node, which permits fast as well as slow distributed learning

without catastrophic forgetting.

New learning laws and rules of synaptic transmission in the reconfigured dART network

(Figure 3) sidestep computational problems that occur when distributed coding is imposed on the

architecture of a traditional ART network (Figure 1). The critical design element that allows dART

to solve the catastrophic forgetting problem of fast distributed learning is the dynamic weight. This

quantity equals the rectified difference between coding node activation and an adaptive threshold,

thereby combining short-term and long-term memory in the network’s fundamental computational

unit.

Thresholds τij  in paths projecting directly from an input field F0 to a coding field F2 obey a

distributed instar (dInstar) learning law, which reduces to an instar law when coding is WTA.

Rather than adaptive gain, learning in the F F0 2→  paths resembles the redistribution of synaptic

efficacy (RSE) observed by Markram and Tsodyks (1996) at neocortical synapses.  In these

experiments, pairing enhances the strength, or efficacy, of synaptic transmission for low-frequency

test inputs; but fails to enhance, and can even depress, synaptic efficacy for high-frequency test

inputs.  In the dART learning system, RSE is precisely the computational dynamic needed to

support real-time stable distributed coding.

Thresholds τ ji  in paths projecting from the coding field F2 to a matching field F1 obey a

distributed outstar (dOutstar) law, which realizes a principle of atrophy due to disuse to learn the
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network’s expectations with respect to the distributed coding field activation pattern. As in WTA

ART systems, dART compares top-down expectation with the bottom-up input at the matching

field, and quickly searches for a new code if the match fails to meet the vigilance criterion.

DISCUSSION:  APPLICATIONS, RULES, AND BIOLOGICAL

SUBSTRATES

ART and dART systems are part of a growing family of self-organizing network models that

feature attentional feedback and stable code learning.  Areas of technological application include

industrial design and manufacturing, the control of mobile robots, face recognition, remote sensing

land cover classification, target recognition, medical diagnosis, electrocardiogram analysis, signature

verification, tool failure monitoring, chemical analysis, circuit design, protein/DNA analysis, 3-D

visual object recognition, musical analysis, and seismic, sonar, and radar recognition (e.g., Caudell et

al., 1994; Fay et al., 2001; Griffith and Todd, 1999).  A book by Serrano-Gotarredona, Linares-

Barranco, and Andreou (1998) discusses the implementation of ART systems as VLSI microchips.

Applications exploit the ability of ART systems to learn to classify large databases in a stable

fashion, to calibrate confidence in a classification, and to focus attention upon those featural

groupings that the system deems to be important based upon experience.  ART memories also

translate to a transparent set of IF-THEN rules which characterize the decision-making process and

which may be used for feature selection.

ART principles have further helped explain parametric behavioral and brain data in the areas

of visual perception, object recognition, auditory source identification, variable-rate speech and word

recognition, and adaptive sensory-motor control (e.g., Levine, 2000; Page, 2000).  One area of

recent progress concerns how the neocortex is organized into layers, clarifying how ART design

principles are found in neocortical circuits (see LAMINAR CORTICAL ARCHITECTURE IN

VISUAL PERCEPTION).
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Pollen (1999) resolves various past and current views of cortical function by placing them in

a framework he calls adaptive resonance theories. This unifying perspective postulates resonant

feedback loops as the substrate of phenomenal experience.  Adaptive resonance offers a core

module for the representation of hypothesized processes underlying learning, attention, search,

recognition, and prediction.  At the model’s field of coding neurons, the continuous stream of

information pauses for a moment, holding a fixed activation pattern long enough for memories to

change.  Intrafield competitive loops fixing the moment are broken by active reset, which flexibly

segments the flow of experience according to the demands of perception and environmental

feedback.  As Pollen (pp. 15-16) suggests:  “it may be the consensus of neuronal activity across

ascending and descending pathways linking multiple cortical areas that in anatomical sequence

subserves phenomenal visual experience and object recognition and that may underlie the normal

unity of conscious experience.”



Gail A. Carpenter, Stephen Grossberg: Adaptive Resonance Theory 11

REFERENCES

Carpenter, G.A., 1997, Distributed learning, recognition, and prediction by ART and ARTMAP

neural networks, Neural Networks, 10:1473-1494.

Carpenter, G.A. and Grossberg, S., 1987, A massively parallel architecture for a self-organizing

neural pattern recognition machine, Computer Vision, Graphics, and Image Processing, 37:54-115.

Carpenter, G.A. and Grossberg, S., 1990, ART 3: Hierarchical search using chemical transmitters in

self–organizing pattern recognition architectures, Neural Networks, 3:129-152.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B., 1992, Fuzzy

ARTMAP: A neural network architecture for incremental supervised learning of analog

multidimensional maps, IEEE Transactions on Neural Networks, 3:698-713.

Carpenter, G.A., Grossberg, S., and Rosen, D.B., 1991, Fuzzy ART: Fast stable learning and

categorization of analog patterns by an adaptive resonance system, Neural Networks, 4:759-771.

Caudell, T.P., Smith, S.D.G., Escobedo, R., and Anderson, M., 1994, NIRS: Large scale ART–1

neural architectures for engineering design retrieval, Neural Networks, 7:1339-1350.

* Duda, R.O., Hart, P.E., and Stork, D.G., 2001, Pattern Classification, Second Edition, New York:

John Wiley, Section 10.11.2.



Gail A. Carpenter, Stephen Grossberg: Adaptive Resonance Theory 12

Fay, D.A., Verly, J.G., Braun, M.I., Frost, C., Racamato, J.P., and Waxman, A.M., 2001, Fusion of

multi-sensor passive and active 3D imagery, in Proceedings of SPIE Vol. 4363 Enhanced and

Synthetic Vision.

Griffith, N., and Todd, P.M. (Editors), 1999, Musical Networks:  Parallel Distributed Perception

and Performance, Cambridge, Massachusetts: MIT Press.

Grossberg, S., 1976, Adaptive pattern classification and universal recoding, I: Parallel development

and coding of neural feature detectors & II: Feedback, expectation, olfaction, and illusions,

Biological Cybernetics, 23:121-134 & 187-202.

* Levine, D.S., 2000, Introduction to Neural and Cognitive Modeling, Mahwah, New Jersey:

Lawrence Erlbaum Associates, Chapter 6.

Markram, H., and Tsodyks, M., 1996, Redistribution of synaptic efficacy between neocortical

pyramidal neurons, Nature, 382:807-810.

Page, M., 2000, Connectionist modelling in psychology:  a localist manifesto, Behavioral and Brain

Sciences, 23:443-512.

Pollen, D.A., 1999, On the neural correlates of visual perception, Cerebral Cortex, 9:4-19.

Serrano-Gotarredona, T., Linares-Barranco, B., and Andreou, A.G., 1998, Adaptive Resonance

Theory Microchips: Circuit Design Techniques, Boston: Kluwer Academic Publishers.


