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Abstract - A soft-decision decoding algorithm for Reed- 
Solomon codes was recently proposed in [2]. This algorithm 
converts probabilities observed at the channel output into 
algebraic interpolation conditions, specified in terms of 
a multiplicity matrix M. Koetter-Vardy [2] show that the 
probability of decoding failure is given by h { S M  5 A ( M ) } ,  
where SM is a random variable and A ( M )  is a known func- 
tion of M .  They then compute the multiplicity matrix M 
that maximizes the e q e c t e d  value of SM. Here, we attempt 
to directly minimize the overall probability of decoding fail- 
ure PT{SM < A ( M ) } .  First, we recast this optimization 
problem into a geometrical framework. Using this frame- 
work, we derive a simple modification to the KV algorithm 
which results in a provably better multiplicity assignment. 
Alternatively, we approximate the distribution of SM by a 
Gaussian distribution, and develop an iterative algorithm 
to minimize P r { s M  5 A ( M ) }  under this approximation. 
This leads to coding gains of about 0.20dB for RS codes 
of length 255 and up to 0.75dB for RS codes of length 15, 
as compared to the Koetter-Vardy algorithm. 

I. INTRODUCTION 
A breakthrough in algebraic coding theory was achieved 
by Sudan and Guruswami-Sudan [I], who developed a list- 
decoding algorithm for Reed-Solomon codes based on alge- 
braic interpolation and factorization techniques. This was 
later extended to a soft-decision decoding algorithm for RS 
codes by Koetter and Vardy [2]. The soft-decoding algorithm 
of [Z] converts probabilities observed at  the channel output 
into algebraic interpolation conditions, specified in terms of 
a multiplicity matrix M .  It is shown in [2] that the proba- 
bility of decoding failure is given by Pr{SM 5 A ( M ) } ,  where 
SM is a random variable whose distribution depends on M 
and on the channel observations, while A(M) is a known func- 
tion of M .  Koetter-Vardy [2] derive an efficient multiplicity 
assignment scheme that maximizes the mean of SM for a fixed 
A ( M ) ,  and show that this approach is optimal as the length 
n of the Reed-Solomon code becomes large. 
, However, for each fixed n, maximizing the mean of SM 

may be suboptimal. Our goal herein is t o  devise multiplicity 
assignment schemes that directly minimize the probability 
Pr{SM 5 A(M)} of decoding failure. To this end, we first 
recast the problem into a geometrical framework. We then 
prove that the optimal multiplicity assignment must lie on 
a tangent from a certain point to a certain sphere in Rq”. 
Using this result, we derive a simple modification to the KV 
algorithm [2] which leads to a provably better multiplicity 
assignment. Alternatively, we approximate the distribution 
of SM by a Gaussian distribution, and then show how to 
minimize Pr{SM 5 A ( M ) }  directly under this approximation. 

Let us think of the q x n  multiplicity matrix M as a point in the 
Euclidean space V = RQ”. Note that A ( M )  depends on M 
only through its cost C ( M )  = l/z E:=, Cy=, mi,j (mi,j+l). 
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We prove that the set of all points M E V with a given cost 
C ( M )  = C is a sphere of radius T-: = 2C + f centered about 
the point E V .  We call it the cost sphere. 
Let A denote the constant value of A(M) for all points M that 
lie on the cost sphere. Our key result is the following theorem. 

Theorem 1. A multiplicity matrix M that minimizes the 
probability of decoding failure Pr{SM 5 A(M)} lies on a tan- 
gentfiom t h e p o i n t E = ( e , $ ,  . . . ,$) EV tothecostsphere. 

Generally, the KV multiplicity matrix M K V ,  that maximizes 
the mean of S M ,  does not lie on a tangent from 5 to the cost 
sphere. We identify a specific path in RQ” that moves MKV 
to the desired tangent, while decreasing the probability of de- 
coding failure at  each step. The performance of the resulting 
multiplicity assignment scheme is shown in Figure 1. 
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111. GAUSSIAN APPROXIMATION 
As shown in [2], the random variable SM is a sum of n inde- 
pendent random variables. Therefore, the distribution of SM 
is well approximated by the Gaussian distribution for large n. 
Given M ,  the mean ~ ( S M )  and the variance ~ ( S M )  of SM 
can be easily computed from the channel observations. Thus, 
under the Gaussian approximation, our god is to minimize 
WSM I A ( W 1  Q((A(M) - P ( S M ) ) / ~ S M ) )  , where Q(.) 
is the Gaussian tail-function. Using Lagrange multipliers, we 
show that this is equivalent to solving a system of qn nonlinear 
equations. We then develop a fast iterative method to solve 
this system of equations. We also derive an approximate an- 
alytic solution, whose performance essentially coincides with 
that of exact Lagrange optimization. The resulting coding 
gain for the (255,239) RS code is about 0.17dB, while for 
short RS codes, the gain is about 0.75 dB (see Figure 1). 
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Figure 1. Soft-decoding of (15, l l )  RS code on AWGN 
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