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Abstract. Object database management systems (ODBMSs) typically offer 
fixed approaches to evolve the schema of the database and adapt existing 
instances accordingly. Applications, however, have very specialised evolution 
requirements that can often not be met by the fixed approach offered by the 
ODBMS. In this paper, we discuss how aspect-oriented programming (AOP) 
has been employed in the AspOEv evolution framework, which supports 
flexible adaptation and introduction of evolution mechanisms – for dynamic 
evolution of the schema and adaptation of existing instances – governing an 
object database. We argue that aspects support flexibility in the framework by 
capturing crosscutting hot spots (customisation points in the framework) and 
establishing their causality relationships with the custom evolution approaches. 
Furthermore, aspects help in information hiding by screening the database 
programmer from the complexity of the hot spots manipulated by custom 
evolution mechanisms. They also make it possible to preserve architectural 
constraints and specify custom version polymorphism policies. 

1. Introduction 

The structure of a database may not remain constant and may vary to a large extent as 
demonstrated by the measurement of the frequency and extent of such changes [37]. 
Therefore, it comes as no surprise that the schema, i.e., the class hierarchy and class 
definitions, governing the objects residing in an object database is often subject to 
changes over the lifetime of the database. Consequently, a number of models have 
been proposed to evolve the schema to maintain backward and forward compatibility 
with applications (in existence before and after the changes respectively). These 
models can be classified into four categories: 
• Basic schema modification [3, 16], where the database has only one logical schema 

to which all changes are applied. No change histories are maintained so the 
approach only supports forward compatibility with applications. 

• Schema versioning [22, 27], where a new version of the schema is derived upon 
evolution hence, ensuring both forward and backward compatibility with 
applications. 

• Class versioning [24, 38], where the versioning of schema changes is carried out at 
a fine, class-level granularity. Like schema versioning, the changes are both 
forward and backward compatible. 



 

 

• Hybrid approaches, which version partial, subjective views of the schema e.g., [1] 
or superimpose one of the above three models on another e.g., basic schema 
modification on class versioning as in [30, 35]. 

The schema evolution models need to be complemented by appropriate mechanisms 
to adapt instances to ensure their compatibility with class definitions across schema 
changes. For example, an object might be accessed by a class definition derived by 
adding a member variable to the definition used to instantiate the object in the first 
place hence, resulting in incompatibility between the expected and actual type of the 
object. Instance adaptation approaches deal with such incompatibilities and can be 
classified into simulation-based (e.g., [38]) and physical transformation approaches 
(e.g., [24]). The former simply simulate compatibility between the expected and actual 
type of the object while the latter physically convert the object to match the expected 
type. 
Traditionally, an ODBMS offers the database application developer/maintainer one 
particular schema evolution approach coupled with a specific instance adaptation 
mechanism. For example, CLOSQL [24] is a class versioning system employing 
dynamic instance conversion as the instance adaptation mechanism; ORION [3] 
employs basic schema modification and transformation functions; ENCORE [38] uses 
class versioning and error handlers to simulate instance conversion. 
It has been argued that such “fixed” functionality does not serve application needs 
effectively [34]. Applications tend to have very specialised evolution requirements. 
For one application, it might be inefficient to keep track of change histories, hence 
making basic schema modification the ideal evolution approach. For another 
application, maintenance of change histories and their granularity might be critical. 
Similarly, in one case it might be sufficient that instance conversion is simulated 
while in another scenario physical object conversion might be more desirable. The 
requirements can be specialised to the extent that custom variations of existing 
approaches might be needed. 
Such flexibility is very difficult to achieve in conventional ODBMS designs for 
several reasons: 
1. The schema evolution and instance adaptation concerns are overlapping in nature 

and are also intertwined with other elements of the ODBMS, e.g., the transaction 
manager, the object access manager, type consistency checker and so on [29]. Any 
customisation of the evolution concerns, therefore, results in a non-localised 
impact posing significant risk to the consistency of the ODBMS and, consequently, 
the applications it services. 

2. Even if it is possible to expose the customisation points, such exposure poses a 
huge intellectual barrier for the database application programmer/maintainer who 
needs to understand the intricate workings of the ODBMS and its various 
components in order to undertake any customisation. Furthermore, vendors are, 
mostly, unwilling to expose the internal operation of their systems to avoid 
unwanted interference from programmers and maintainers in order to preserve 
architectural constraints. 

3. Customisation of evolution mechanisms has implications for type consistency 
checking as different schema evolution approaches might have different 
perceptions of type equivalence, especially in the presence of different versions of 
the same type or schema. 



 

 

The AspOEv evolution framework, that we are developing, supports flexible 
adaptation and introduction of schema evolution and instance adaptation mechanisms 
in an ODBMS independently of each other and other concerns in the system. AOP [2, 
14] has been employed in the framework to capture crosscutting hot spots 
(customisation points in a framework [15]) and establish their causality relationships 
with the custom evolution approaches. The pointcuts expose a new interface to the 
underlying database environment to facilitate flexible tailoring of the schema 
evolution and instance adaptation approaches. Furthermore, aspects are used to 
support information hiding by screening the database programmer/maintainer from 
the complexity of the hot spots manipulated by custom evolution mechanisms. They 
also make it possible to preserve architectural constraints and specify custom version 
polymorphism policies. 
Section 2, in this paper, provides an overview of the AspOEv architecture and its 
implementation. Section 3 discusses three key aspects supporting flexibility in the 
framework namely, Type Consistency and Version Polymorphism, Evolution 
Primitive Binding and Exception Handling. Section 4 shows the framework in 
operation and how the aspects in section 3 facilitate customisation of the evolution 
mechanisms. Section 5 discusses some related work while section 6 concludes the 
paper and identifies directions for future work. 

2. AspOEv Architecture 

The architecture of the AspOEv framework is shown in Fig. 1. The framework has 
been implemented in Java and AspectJ (v1.0) [2].  
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Fig. 1. Architecture of the AspOEv evolution framework 

Since most approaches to schema evolution allow several different versions of a class 
to exist (e.g., individual versions in class versioning or different definitions across 
schema versions), these versions must be viewed as semantically equivalent and 
interchangeable. However, most object-oriented (OO) programming languages do not 



 

 

support type versioning. Therefore, the framework employs its own application 
programming language, Vejal, an OO language with a versioned type system [19, 31]. 
Vejal has a two-level versioning identifier system (analogous to that used by the 
popular free source code control system CVS [11]). C<1> indicates class version 1 of 
class C while C<s=1> implies the class version of C that occurs in schema version 1. 
In Vejal, one version of a class may be present in multiple schema versions. In order 
to prevent unworkable schema versions being created, a new version of a class can 
only be present in all the future schema versions in which it is still compatible with 
the contracts of the other classes in the schema. Readers should note that, in the rest 
of the paper, we use the term “type” to refer to both classes and their versions in 
Vejal. 
Traditionally, there has been a natural conflict between language type system 
constraints and object database evolution approaches, especially those facilitating 
dynamic evolution and adaptation of types and instances. This is because the 
constraints of the language type system, which exist to improve safety, act to hinder 
the required evolution. Consider an example evolution scenario where A and B are the 
definitions of a particular class before and after the evolution respectively. After 
evolution it may be desirable that all values of type A now have B as their type. 
However, such an operation is considered potentially dangerous by the type system 
(programs already bound to these values may rely on the assumption that they are of 
type A) which prevents it. The existence of a language with a versioned type system 
in our framework makes it possible to ensure that important typing constraints are 
preserved while at the same time facilitating flexible evolution and adaptation of 
types and instances. 
The framework includes an interpreter for Vejal and, like most dynamic schema 
evolution approaches, employs a meta-object layer to represent persistent data. The 
existence of an interpreted language introduces some performance overhead – the 
interoperability of type versions with potentially large differences requires a thorough 
analysis based on context and structural equivalence where context includes the 
evolution approach and the database schema employed by it – but affords us the 
flexibility of customisation at a fine, program execution level granularity. As 
discussed in [25], such performance-flexibility trade-offs have to be established during 
framework design. To decrease the overhead of dynamic type checking, the 
framework creates tables based on ‘rules’ defined by the evolution approach. 
Evolution approaches define a boolean valued method, equals (Type, Type), which 
evaluates the equivalence of two types. At startup, as well as after the change of 
evolution strategies or execution of evolution primitives, type equivalencies are 
computed from the database schema and stored in the schema manager for quick 
runtime lookup. Each type is compared against other versions of the same type in the 
schema, as well as the versions of types declared to be substitutable. 
The framework also includes a database manager to support persistent storage and 
manipulation of both user-level and meta-level objects in the underlying ODMG 3.0 
compliant [7] object database. Currently the framework is being used to facilitate 
customisable evolution in the commercially available Jasmine object-oriented 
database [21]; we have implemented an ODMG 3.0 Java binding wrapper for the 
Jasmine Java binding. 



 

 

In order to enable the dynamic restructuring of data (e.g., changes to inheritance 
relationships or class members), the object structure must be kept in the meta-object 
layer.  When coupled with the needs of an interpreted type-versioning language, we 
are left with two collections of objects to represent the separate concerns of language 
execution and object structure.  The database manager component dealing with 
database interaction also contains several areas of interest for schema evolution and 
instance adaptation mechanisms. Therefore, behavioural and structural concerns 
pertaining to evolution need to be detected and handled across the three components 
(the interpreter, the meta-object layer and the database manager), which together 
provide the base OO separation manipulated by three aspects: Type Consistency and 
Version Polymorphism, Evolution Primitive Binding and Exception Handling. Note 
that the three base OO components are completely oblivious of the schema evolution 
and instance adaptation strategies to be plugged in. 
The Type Consistency and Version Polymorphism aspect deals with the interpreter’s 
view of typed versions, i.e., whether two different versions of the same class can be 
considered to be of the same type. This has implications in instance adaptation, type 
casting and polymorphism – since the class hierarchy can be manipulated at runtime, 
one version of a type may be assignable to a base type, while another version may 
not. Schema evolution approaches might also be interested in providing custom 
version equivalence and substitutability semantics. The aspect, therefore, facilitates 
customisation of versioned type equality semantics. 
The operations used to modify the schema of the database are often referred to as 
evolution primitives. These primitives range from modification of the class hierarchy, 
e.g., introduction or removal of classes and modification of inheritance links, to 
introduction, removal and modification of individual members of a class [3, 26, 35]. 
The Evolution Primitive Binding aspect monitors the addition and removal of types 
and their versions from the database schema as well as modification of inheritance 
links. Schema evolution strategies must decide at these points how to react to the new 
or deprecated type or to changes in inheritance relationships.  Obviously, the action 
they take must be propagated to instances of the type – an introduced type may 
become the new standard for the schema, forcing all existing instances to comply 
before use, or a deprecated type may need all of its instances transferred to another 
version. The aspect also traps the occurrence of changes to a class and its members. 
The execution of operations performing such changes provides suitable hotspots for a 
schema evolution strategy to predict and circumvent any negative impact they might 
incur. They also allow an instance adaptation strategy to take a wide range of suitable 
actions. 
The Exception Handling aspect allows the application programmer to attempt to 
preserve behavioural consistency when runtime exceptions are raised.  These 
exceptions may be the result of missing members or type mismatches and could be 
rectified by handlers provided in custom strategies that have knowledge of the 
application’s inner workings. 
The three aspects direct all advice action to method invocations on the two abstract 
strategy classes (as in the strategy pattern [18]): Schema Manager and Instance 
Adapter, which are introduced, in the AspectJ sense, into the aspects (to facilitate 
callbacks). Implementation of custom approaches requires overriding a subset of the 
callback methods in these classes. This has a number of advantages: Firstly, the 



 

 

application programmer/maintainer is shielded from the complexity of the hot spots in 
the three base OO components hence, facilitating information hiding and avoiding 
unwanted interference with those components. Secondly, the programmer/maintainer 
can create custom strategies without knowledge of AOP and thirdly, strategies can be 
switched without recompiling the framework. Note that the schema evolution and 
instance adaptation strategies are independent of each other (cf. section 3.1) so the 
developer/maintainer is free to choose any combination of strategies as long as they 
are semantically compatible. 

3. Aspects Supporting Flexibility 

In this section, we discuss the three aspects introduced in section 2 in more detail. We 
mainly focus on how the aspects support flexibility in the framework. Note that 
though the aspects themselves do not change during customisation, nevertheless they 
help modularise a complex, non-trivial set of crosscutting concerns, namely the 
schema evolution and instance adaptation strategy to be employed by the underlying 
ODBMS. In this case, the aspects and the strategy pattern jointly facilitate the flexible 
customisation and adaptation of these strategies.  As demonstrated in [33], 
aspectisation requires that a coherent set of modules including classes and aspects 
collaborate to modularise a crosscutting concern – such a view of AOP ensures that 
aspectisation is not forced and in fact leads to a natural separation of concerns. 
Therefore, the role of the three aspects in AspOEv is not out of sync with the 
fundamental aims of aspect-oriented modularity. Furthermore, the design of the 
framework and the causality relationships between the strategy classes and the other 
components in the framework would have been very complex without the existence of 
these aspects. They provide us with a clean, modular design of the framework hence 
making the framework itself more maintainable and evolvable. They also facilitate 
separation of the evolution model employed by the ODBMS from the actual 
implementation of the schema in Vejal.  

3.1 Type Consistency and Version Polymorphism Aspect 

This aspect supports flexibility in the following three ways: 
• It preserves clean design separation between the schema manager and the instance 

adapter facilitating flexible, semantically compatible, combinations of custom 
strategies for schema evolution and instance adaptation. 

• It captures version discrepancies between the expected and actual type of an object, 
i.e., between the version in use by the schema and the one to which the object is 
bound respectively, and provides this information to the schema manager and 
instance adapter for rectifying action. 

• It facilitates the provision of custom version polymorphism policies, i.e., allowing 
a custom schema manager to specify which type versions are assignable to each 
other or are substitutable. 



 

 

Although schema managers and instance adapters work together to achieve stable 
schema evolution, they are separate concerns, and should not need to know about 
each other. The instance adapter has the task of adapting an object from its actual type 
to the schema manager’s expected type. From the viewpoint of the instance adapter, it 
is simply adapting from one type version to another and, therefore, it does not need to 
be aware of the evolution strategy being employed. The aspect preserves clean design 
separation by acting as an intermediary between the two concerns. It queries the 
schema manager for its expected version and passes the resulting information to the 
instance adapter (cf. shaded code in Fig. 2). Consequently, the instance adapter 
remains oblivious of the schema manager, yet gets the information it needs to perform 
its task, while the schema manager receives a converted object of the version it 
expects. 
The code listing in Fig. 2 also shows a simple example of type version discrepancies 
captured by the aspect and forwarded to the custom schema manager and instance 
adapter being used. ODMG compliant object databases support binding specific 
objects to unique names to act as root entry points into the database. These persistent 
roots are retrieved using the lookup method. Since the method only returns a single 
object, as opposed to other query methods that return collections of matches (and are 
also monitored by the Type Consistency and Version Polymorphism aspect), it 
provides a simple example of potential type mismatches in an executing program.  
The advice in Fig. 2 captures the result of the lookup, queries the schema manager for 
the type it expects to be returned, and then has the instance adapter perform the proper 
conversion. 

 
pointcut lookup(String name): 

execution(DatabaseManager.lookup(String)) 
&& args(name);

Object around(String name): lookup(name) {

MetaObject result = (MetaObject)proceed(name);
Type resultType = result.getType();
Type expectedType = 

schemaManager.getActiveType(resultType);
MetaObject conformed = result;
if (!resultType.equals(expectedType)) 

conformed = 
instanceAdapter.retype(result, expectedType);

return conformed;

}

database.bind(new Foo<1.0>,
“myFoo”);

…
// sometime later 
// in execution
Foo<2.0> aFoo = 

database.lookup(“myFoo”);

 
   Fig. 2. Capturing version discrepancies and providing         Fig. 3. Type mismatch at program  
   independence of instance adapter and schema manager        execution level (numbers in < >  
                                                                                                   indicate version of Foo used) 

Fig. 2 shows an example of type version discrepancies that can be captured at the 
interface with the database. There are other types of discrepancies that occur at the 
level of program execution. Consider a class versioning approach to schema evolution 
when multiple versions of a type are allowed to exist in the execution environment. In 



 

 

this case, the schema manager has no preference to any version1 and thus the 
expectedType in Fig. 2 would be the same as the resultType.  The code listing in 
Fig. 3 shows an example of type mismatch at the program execution level. Since the 
schema manager does not know or care about the version of object aFoo, this can 
cause serious inconsistencies.  Without the use of aspects woven over an interpreted 
language, this mismatch would be very difficult to catch before an error occurred.  
However, the type consistency aspect allows instance adapters to monitor assignment 
in the executing program.  Because schema managers will not always work with a 
particular version of a type only, flexibility must exist to allow other ways of 
detecting type mismatch. 
The type consistency aspect supports flexible type interchangeability by wrapping 
type comparison, equality and assignability methods, and allowing a custom evolution 
strategy to specify how different versions of types are to be treated by the interpreter.  
Since the evolution framework allows such changes as the addition and removal of 
classes in the class hierarchy, one version of a type may lose the ability to be 
assignable to other versions or vice versa.   Moreover, one version may be more or 
less equivalent to a second version, but drastically different from a third. With the 
ability to evaluate type differences at runtime, the flexibility exists to create a 
versioned polymorphic environment. In the absence of clear version polymorphism 
semantics for the evolution approach being employed, there can be lots of potentially 
unnecessary invocations of the instance adapter resulting in performance overhead. 
Consider, for example, the scenarios in Fig. 4. Since Person<2.0> in Fig. 4(a) is 
derived because of an additive change to Person<1.0>, instances of Person<2.0> 
could be allowed to be substitutable wherever an instance of Person<1.0> is 
expected. If a schema manager chooses to allow such substitutability, implicit 
instance adaptation can be carried out (through version polymorphism) without 
invoking the instance adapter to do an explicit transformation. This will reduce 
performance overhead. However, in some cases, the application needs might dictate 
the schema manager to disallow this substitutability and force an explicit 
transformation through the instance adapter.  
Another scenario where version polymorphism could be required is shown in Fig. 
4(b). A schema manager (in response to application requirements) might allow 
substitution of instances of B<2.0> and C<2.0> wherever an instance of A<1.0> is 
required, on the grounds that the predecessors of B<2.0> and C<2.0> (B<1.0> and 
C<1.0> respectively) inherit from A<1.0>. The schema manager might need to 
evaluate the differences between A<2.0> and A<1.0>before allowing such 
substitutability. 
Equality testing in the Vejal interpreter is similar to that in Java in that it is centred on 
an equals method defined in types. The typeEquality pointcut in the Type 
Consistency and Version Polymorphism aspect (cf. Fig. 5) allows a custom strategy to 
perform a number of tests, including looking for common base classes, hence 
supporting version polymorphism. Custom version polymorphism is further facilitated 
by the assignableFrom pointcut2 (cf. Fig. 5). The default implementation of the 

                                                           
1 This is in contrast with, for instance, schema versioning where each schema managed by the 

schema manager specifies a clear expected version of a type. 
2 The !cflow designator is required because the assignableFrom method is recursive. 



 

 

method to which the related advice delegates, simply searches for the second type in 
the first one’s supertypes. A custom strategy can alter assignability semantics by 
overriding the default implementation and searching for a specific base type or 
performing a more deep comparison of the two types, e.g., by searching the 
supertypes of their predecessor versions. 
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Fig. 4. Potential scenarios involving version polymorphism 

Note that in class versioning approaches to schema evolution, the execution 
environment can, potentially, have instances of several versions of a type to manage.  
Therefore, the schema manager does not necessarily have a default expected type that 
an instance adapter can convert to when the instance is returned from a database 
query. Therefore, different type versions could potentially be used interchangeably, 
without instance adaptation (because of version polymorphism), until a conversion is 
forced by an incompatible combination or assignment of versions. 

pointcut typeEquality(Type one, Type two):
execution(Type.equals(Object))
&& args(two)
&& this(one);

pointcut assignableFrom(Type one, Type two): 
execution(Type.assignableFrom(Type)) 
&& args(two) 
&& this(one) 
&& !cflow(Type.assignableFrom(..));  

Fig. 5. Pointcuts facilitating custom type version polymorphism 

3.2 Evolution Primitive Binding Aspect 

The execution of evolution primitives, which carry out the schema changes, is of key 
interest to custom schema managers. Different schema evolution strategies respond to 



 

 

execution of the primitives differently. For instance, schema versioning results in 
creation of a new schema version upon each change. Class versioning, on the other 
hand, leads to newer versions of the modified classes. Context versioning [1] only 
creates newer versions of the partial subjective views in which the modified class 
participates. Other approaches, e.g., [6], group primitive evolution operations into 
high-level primitives.  
At the same time, each evolution strategy responds to individual evolution primitives 
differently. For instance, in the class versioning approach proposed in [35], addition, 
removal or modification of a class member results in creation of a new version of the 
class. However, if the class version being modified forms a non-leaf node in the 
hierarchy graph, new versions of all the sub-classes are transitively derived. If a class 
or class version forming a non-leaf node is removed or repositioned then stubs are 
introduced to maintain consistency of sub-classes of the removed or repositioned 
class.  
Execution of evolution primitives also has implications for instance adaptation which 
would almost inevitably be required. Each particular instance adaptation approach 
will respond to evolution in its own fashion. This variability in the nature of evolution 
and adaptation approaches, and even in the handling of individual primitives by a 
particular strategy, makes it essential to allow custom strategies to react to the 
execution of the primitives in their specialised fashion. The Evolution Primitive 
Binding aspect facilitates this flexibility. 
As an example of evolution primitive binding captured (and passed on to custom 
strategies) by the aspect, let us consider the case of removing a type from the class 
hierarchy in an object database. This would raise the need to reclassify (or remove 
altogether) any existing instances of the type. If the removed type has subtypes, there 
are further implications in terms of structural and behavioural consistency of their 
definitions and instances. Furthermore, different evolution strategies would handle 
type removal differently. For instance, class versioning approaches might only 
remove a single version of the class while schema versioning and schema 
modification strategies would, most probably, remove the class altogether from the 
resulting schema definition. Fig. 6 shows the pointcut, trapping the execution of the 
type removal primitive, and its associated advice informing the schema manager and 
instance adapter of this change (note that the two strategies are decoupled and can 
independently pursue appropriate action in response). By providing a schema 
evolution strategy with pertinent information at the time of type removal, it can 
reclassify instances of the removed type appropriately with respect to the schema to 
avoid information loss. Depending on the evolution strategy being employed, a 
schema manager could retype existing instances of the removed type to an appropriate 
base type or retype them to the most similar type version. In either case, the instance 
adaptation strategy can use the provided information and loaded meta-classes in the 
interpreter to forward the deprecated type to its replacement. 
Note that addition of a new type into the class hierarchy can have similar implications 
depending on the evolution strategy being employed, i.e., whether subtypes and their 
existing instances automatically gain functionality provided by the new superclass or 
new versions of each subtype are required. Similarly, any conflicts between inherited 
and locally defined members and inheritance paths (Vejal supports multiple 
inheritance) would need to be resolved in line with preferences of the custom 



 

 

evolution strategy. The aspect captures execution of type addition and other type 
hierarchy manipulation primitives in a fashion similar to type removal. 
For another example of evolution primitive binding, let us consider the modification 
of class members. The simple evolution scenario shown in Fig. 7 involves renaming 
one of the class members: surname to lastname. This will result in a behavioural 
consistency problem as existing references to the renamed member will become 
invalid. By capturing the state of the member before and after the change, the aspect 
makes it possible for instance adapters to take corrective action, e.g., by forwarding 
references. Other class modification primitives are captured and handled in a similar 
fashion. 
 

pointcut removeType(Type removed): 
execution(DatabaseManager+.removeType(Type)) 

&& args(removed);

before(Type removed): removeType(removed) {
schemaManager.removeType(removed);
Type reclassify = 

schemaManager.getReassignedType(removed);
instanceAdapter.reclassifyType(removed, 

reclassify);
}

class Person<1.0> {

String firstname, 
surname;

}
(a)

class Person<2.0> {

String firstname,
lastname;

}
(b)  

    Fig. 6. Pointcut and advice pertaining                                   Fig. 7. Evolution scenario: 
    to type removal                                                                      renaming a member  
                                                                                                   (a) before evolution  
                                                                                                   (b) after evolution 

pointcut fieldChanged(Metaclass versionOne, 
Metaclass versionTwo,
MetaField oldField, 
MetaField newField):

execution(MetaClass+.changeField(
MetaClass,
MetaField,
MetaField)) 

&& args(versionOne,
oldField,
newField)

&& target(versionTwo);

Object around(Metaclass versionOne, 
Metaclass versionTwo,
MetaField oldField,
MetaField newField): 

fieldChanged(versionOne,
versionTwo,
oldField,
newField) {

/* Should create bridge if non-existent,
otherwise retrieve from transient memory. */
VersionBridge bridge = 

instanceAdapter.getVersionBridge(versionOne,
versionTwo);

bridge.mapFields(oldField, newField);
}  

Fig. 8. Pointcut and advice pertaining to version bridges 



 

 

The aspect also facilitates optimisation of repeated adaptations required in response to 
an evolution primitive execution. Once again, consider the simple scenario of 
renaming a member from Fig. 7. While this seems like a simple enough change, 
references to this member by the handle surname could exist in a number of different 
places – more so than one could hope to catch and change at the moment of primitive 
execution. By capturing hot spots in the meta-object layer, the aspect can create a 
version bridge that is aware that the reference to the member surname in Person<1.0> 
should map to lastname in Person<2.0>. The pointcut and associated around advice 
corresponding to version bridges is shown in Fig. 8. 
Note that a version bridge in the framework is a piece of meta-data that mimics more 
than one meta-class at once. A type instance can be safely reclassified to reflect its 
ability to fulfill the requirements of another version, while still maintaining its own 
type identity. Version bridges know about the meta-classes for both versions, and can 
thereby easily perform tasks such as forwarding. Obviously, with several existing 
types, version bridges could quickly become tedious and time consuming for the 
application programmer/maintainer to generate manually. Therefore, the use of the 
Evolution Primitive Binding aspect to dynamically create and retype instances in 
accordance with a general strategy saves a non-trivial amount of work. 

3.3 Exception Handling Aspect 

Since exceptions are a means of attracting attention to abnormal or incorrect 
circumstances in program execution, they offer a natural mechanism for a framework 
designed to preserve consistency during object database evolution in a flexible 
fashion. In fact, some approaches to instance adaptation, e.g., [36, 38], rely entirely on 
handling exceptions raised in response to type mismatches to take rectifying action – 
rigidity affords no other opportunities to capture mismatches. Such approaches, that 
completely rely on exception handling for instance adaptation, therefore, need to 
know about a variety of events such as type mismatch, name mismatch and missing, 
extraneous or incorrect data members and parameters, etc.  
While exception handling is by no means a new territory for AOP and AspectJ, the 
ability to handle exceptions thrown from an interpreter, over which custom evolution 
strategies have some control, provides additional flexibility. There could arise 
situations under which even the most well adapted strategy would fail without 
exception handling. Furthermore, if approaches for schema evolution or instance 
adaptation change, the new approaches may not have had the opportunity to handle 
changes that occurred before the switch. The new schema managers and instance 
adapters cannot rely on their respective previous strategies to inform them of all the 
changes that might have occurred.  By carrying information pertinent to the context of 
the mismatch, specialised exceptions give instance adaptation strategies a final chance 
to preserve behavioural consistency. Two examples of such exceptions and the 
information they carry are shown in Fig. 9. Note that, as discussed in sections 3.1 and 
3.2, the AspOEv framework offers other opportunities to detect and handle situations 
requiring instance adaptation.  



 

 

Fig. 10 shows a pointcut and its associated around advice from the Exception 
Handling aspect intercepting such a type mismatch exception and deferring it to the 
instance adapter and schema manager for rectifying action. 
 

pointcut typeMismatch(MetaObject found,
Type required):

call(TypeMismatchException.new(MetaObject,
Type))

&& args (found, required);

Object around(MetaObject found, Type required):
typeMismatch (found, required) {
try {

proceed(found, required);
} 
catch (TypeMismatchException tme) {

instanceAdapter.retype(found, required);
schemaManager.typeMismatch(tme);

}
}

throw new 
TypeMismatchException(

<Type> expected,
<Type> actual);

throw new 
NoSuchFieldException(

<FieldReference> field,
<Type> owner);

 

    Fig. 9. Examples of information     Fig. 10. An exception handling pointcut and associated 
    provided by exceptions advice        with callbacks to instance adapter and schema manager 

Since the exceptions are raised by consistency issues at runtime, they are unexpected 
by the program. Therefore, no handling code, aside from that of the custom strategy 
on which the Exception Handling aspect calls back, is in place. As these exceptions 
are raised in an interpreted environment, adapters have the opportunity to make 
changes and retry the failed operation. Execution could effectively be paused, or even 
taken back a step. Furthermore, due to the nature of the meta-data provided to 
exception handlers, it is possible to determine the types of changes that have resulted 
in the inconsistency in question.  Members such as meta-fields and meta-methods all 
have unique identifiers, so it is possible to determine that a member has been 
renamed, as opposed to it seeming as if a removal and subsequent addition occurred. 

4. The Framework in Operation 

In this section we discuss how two significantly different evolution strategies namely, 
class versioning and basic schema modification can be implemented using the 
framework. Before providing an insight into the implementation of the two strategies, 
it is important to highlight the callback methods available in the abstract Schema 
Manager class as both evolution strategies would extend this class and override the 
callbacks of relevance to them. The Schema Manager class is shown in Fig. 11. The 
callback methods are categorised into general callbacks, evolution primitive binding 
callbacks, version polymorphism callbacks and exception handling callbacks. Here 
we briefly summarise the role of the general callbacks as the roles of the other three 
sets are self-explanatory: 
 



 

 

getActiveType(aVersion: Type): Type
getReassignedType(deprecated: Type): Type
getSchemaExtent( ): SchemaExtent
getVersionSet(type: Type): Collection
reclassifyType(deprecated: Type): Type

addType(newType: Type): void
removeType(removed: Type): void
...

equals(one: Type, two: Type): boolean
assignableFrom(one: Type, 

two: Type): boolean

typeMismatch(instance: MetaObject, 
expected: Type): void

...

Schema ManagerSchema ManagerSchema ManagerSchema Manager

...

General callbacks

Evolution primitive
binding callbacks

Version polymorphism
callbacks

Exception handling
callbacks

 

Fig. 11. Callbacks in the abstract Schema Manager strategy class 

• getActiveType: returns the active type version (expected type), corresponding to 
the argument type version, in use by the schema. 

• getReassignedType: a simple accessor method to obtain, from the type map in the 
schema manager, a reference to the type to which instances of a deprecated type 
have been reassigned. 

• getSchemaExtent: to get the set of all classes in a schema or schema version. 
• getVersionSet: to get the set of all versions of a class. Note that if a class 

versioning approach is being used, the getSchemaExtent method will use this 
method to obtain and return a set of all the version sets of all the classes in the 
schema. 

• reclassifyType: encapsulates the algorithm to identify and specify the reassigned 
type for instances of a deprecated type. 

4.1 Implementation of Custom Evolution Approaches 

Let us first consider the implementation of class versioning using the framework. We 
will refer to this as Class Versioning Schema Manager (CVSM).  
Class versioning approaches are unique in their ability to permit several versions of a 
type to exist in a schema and execution environment hence, facilitating active type 
consistency. For example, looking at the advice code in Fig. 2 in the context of a class 
versioning approach, the CVSM will need to override getActiveType to simply 
return the argument type. This is because a class versioning schema manager has to 
manage multiple versions of a class and hence, does not specify a single expected 
version of the class. The CVSM will also need to override the other general callbacks 
especially the getVersionSet method as it will be employed by the getSchemaExtent 
method to obtain the set of all types in the schema. 
The CVSM will most certainly have to override the evolution primitive binding 
callbacks to provide its own custom response to execution of the various primitives. 
This is facilitated by the Evolution Primitive Binding aspect. A detailed discussion of 



 

 

evolution primitive implementation during class versioning is beyond the scope of 
this paper. A number of such implementations exist. Interested readers are referred to 
[5, 24, 35, 38].  
A class versioning implementation also has the responsibility of managing the 
assignment and accessibility of many versions of a type at the level of the executing 
program. To ensure consistency at these points, the corresponding instance adapter 
would be invoked (cf. section 3.1). However, with the flexibility provided by the 
Type Consistency and Version Polymorphism aspect, the CVSM has the option of 
overriding the version polymorphism callbacks to stipulate semantics for type 
equality, assignability and version polymorphism within the executing interpreter, 
thus preventing unnecessary instance adaptation.   
The CVSM may also override the exception handling callbacks (afforded by the 
Exception Handling aspect) to capture any inconsistencies in type version equivalence 
or instance adaptation not captured by the version polymorphism callbacks or the 
instance adapter. 
Let us now consider the implementation of the basic schema modification strategy. 
We will refer to this as Basic Schema Modification Manager (BSMM). The BSMM 
must first define a working schema, listing all types that will be used (usually the 
most recent versions of a class), and must override the getActiveType callback to 
return the correct type defined by the schema.  Though this might seem trivial at first 
glance, this is a vital callback for the BSMM as it facilitates maintenance of 
consistency of objects by comparing them with the expected types of the schema 
before they enter execution. 
The BSMM must also define how it will deal with the various evolution primitives 
through the evolution primitive binding callbacks. Interested readers are referred to [3, 
16] for a discussion of potential behaviour of basic schema modification primitives 
that could be implemented by the BSMM, as a detailed discussion is beyond the scope 
of this paper. 
Like the CVSM, the BSMM could specify handlers for any mismatches not captured 
by other callbacks. However, it will, most likely, not utilise the version polymorphism 
callbacks as these mainly facilitate an informed evaluation of the need for instance 
adaptation in an environment with multiple versions.  Since the BSMM exercises 
strict control in the form of having the most recent version of a type in the schema, 
these callbacks would be of little interest to it. 
Note that so far we have not discussed customisation of the instance adapter to suit 
the CVSM and the BSMM. Though one might think that instance adapters for these 
two approaches would not be compatible, this is not the case. If an instance adapter is 
designed to respond to instance adaptation needs at both the program execution level 
and at the interface with the database, it will certainly service the needs of both. It will 
serve the BSMM effectively as most of the instance adaptation for this would occur at 
the interface with the database. This is because a BSMM dictates that the persistent 
instance retrieved from the database is compliant with the expected type in the 
schema before it is loaded into the execution environment. Therefore, the instance 
adapter will adapt the instance to comply with the expected type upon retrieval. 
Conversely, the instance adapter would not be invoked for the CVSM when query 
results are received from the database as the need for adaptation is postponed till an 
actual collision occurs (recall that the CVSM has no default expected type version for 



 

 

a class). Here the ability to monitor join points at program execution level comes into 
play. Note that this orthogonality of instance adaptation and schema evolution 
concerns is afforded by the Type Consistency and Version Polymorphism aspect (cf. 
Section 3.1). 

4.2 Handling Structural Consistency Issues 

Let us consider the problems arising if an evolution approach prior to customisation 
may have remapped instances of a type (such as a removed type) to one of its base 
classes. If the new approach employs the (previously removed) type in its schema, it 
would want to return the remapped instances to their original type. Also, in the event 
that data from two different schemas are merged, several types from one schema may 
have been remapped to their equivalent type in the second schema. The new schema 
manager will need to know about these type equivalencies in order to continue to 
serve applications employing the merged data. The framework facilitates the handling 
of these situations by providing communication between the current and former 
schema managers when a switch occurs (cf. Fig. 12). The SchemaExtent object is a 
collection of types utilised by a schema manager (its schema) as well as relationships 
between types, such as remapped (deprecated) and substitutable (semantically or 
structurally equivalent) types. The new approach can either immediately convert these 
types, or convert them lazily. AspOEv facilitates lazy conversion in this case by 
providing functionality for automatically “enriching” type specific queries with 
remapped and substitutable types. Objects that have been remapped by another 
schema, however, must be differentiated from any existing instances of the type they 
are remapped to. Therefore, in AspOEv, each object has two stored types, the current 
type and the declaration type. While schemas may classify an object as many 
different types during its lifetime, the object’s declaration type never changes. 
Remapped objects can be identified as such by their declaration types. 

4.3 Handling Behavioural Consistency Issues 

Database evolution primitives can break behavioural consistency by altering types or 
members that are referenced elsewhere in the program space. The persistent storage of 
Vejal programs as AbstractSyntaxTree elements in AspOEv facilitates querying for 
instances of programming components, such as field references, variable declarations, 
or method invocations in dependent types. This enables the framework to present the 
programmer with detailed information about where problems might occur. Moreover, 
this level of granularity in Vejal meta-data allows the framework to create new 
versions of dependent classes to automatically comply with some changes. If, for 
example, a member is renamed, the framework can detect and change any field 
references or method invocations in dependent classes (cf. Fig. 13). 
Of course, changes such as renaming are seldom completely free of semantic 
implications, and any generated versions must be verified by the programmer before 
being put into effect. 



 

 

SchemaExtent oldSchema = 
oldSchemaManager.getSchema();

schemaManager.transitionFrom(oldSchema);

// Start a transaction
QueryCursor ageAccesses = 

FieldReference.where(“fieldName == \”surname\””);
while (ageAccesses.moreElement( )) {

FieldReference reference = 
(FieldReference)ageAccesses.nextElement( );

reference.setFieldName(“lastName”); }
// Commit transaction  

Fig. 12. Communication between              Fig. 13. Querying and altering program elements 
old and new schema managers 

5. Related Work 

The SADES object database evolution system [30, 35, 36] employs a declarative aspect 
language to support customisation of the instance adaptation mechanism. Two 
instance adaptation strategies, error handlers (a simulation-based approach) [38] and 
update/backdate methods (a physical transformation approach) [24], have been 
successfully implemented using the aspect language [36]. Though the work on 
customisable evolution in AspOEv has been inspired by SADES, there are some 
marked differences between the two systems. SADES uses aspects to directly plug-in 
the instance adaptation code into the system. Consequently, the complexity of the 
instance adaptation hot spots has to be exposed to the developer/maintainer and, at the 
same time, there is a risk of unwanted interference with the ODBMS from the aspect 
code. This is in contrast with the framework discussed in this paper as the 
developer/maintainer is shielded from the complexity of the hot spots. Furthermore, 
the inner workings of the ODBMS do not have to be exposed hence, facilitating 
preservation of architectural constraints by avoiding unwanted interference. SADES 
supports customisation of the instance adaptation approach only – the schema 
evolution strategy is fixed. It does not support version polymorphism either. 
An earlier version of AspOEv [28, 29, 31] also facilitated customisation of both 
schema evolution and instance adaptation mechanisms. However, like SADES, 
aspects were employed to specify and directly plug-in the strategies into the system. 
Also, version polymorphism was not supported. 
The composition of aspects in a persistent environment is treated in [32], which 
discusses various issues pertaining to weaving of aspects which are persistent in 
nature. Though the three AspOEv aspects discussed here are also operating in a 
persistent environment, they are not persistent in nature. They, however, do have to 
account for the fact that the pointcuts they employ span both transient and persistent 
spaces in the underlying database environment. 
The GOODS object-oriented database system [23] employs a meta-object protocol to 
support customisation of its transaction model and related concerns such as locking 
and caching. Custom approaches can be implemented by refining existing meta-
objects through inheritance. Customisation of the schema evolution and instance 
adaptation strategies is not supported. Furthermore, though customisation of the 
transaction model, locking and cache management is supported, the three concerns are 
not untangled. Consequently, customisation of one of the three concerns has an 
impact on the others. 



 

 

Component database systems, e.g., [13, 20] offer special customisation points, similar 
to hot spots in OO frameworks, to allow custom components to be incorporated into 
the database system. However, customisation in these systems is limited to 
introduction of user-defined types, functions, triggers, constraints, indexing 
mechanisms and predicates, etc. In contrast our framework facilitates customisation 
or complete swapping of fundamental ODBMS components encapsulating the schema 
evolution and instance adaptation mechanisms. Our work, therefore, bears a closer 
relationship with DBMS componentisation approaches such as [4, 8]. However, 
unlike these works which focus on architectures to build component database 
systems, the focus of our framework is to provide customisable evolution in existing 
object database systems without rearchitecting them. 
The use of aspects in our framework also bears a relationship with the work on active 
database management systems [12]. These systems employ event-condition-action 
(ECA) rules to support active monitoring and enforcement of constraints (and 
execution of any associated behaviour). If a simple or composite event that a rule 
responds to is fired, the specified condition is evaluated and subsequently the action is 
executed provided the condition evaluates to true. Aspects in our framework are 
similar in that they monitor the hot spots in the three base OO components and, upon 
detection of an event of interest, invoke the callback methods in the strategy classes. 
In some instances, the aspects evaluate some conditions before invoking the 
callbacks, e.g., comparing the expected and actual type (cf. Fig. 2) before invoking 
the instance adapter. This similarity between the use of aspects in the framework and 
active databases does not come as a surprise as already work has been undertaken to 
demonstrate the relationship between the two concepts [9]. 
[17] discusses the need for application-specific database systems and proposes the use 
of domain-specific programming languages with embedded, domain-specific database 
systems for the purpose. Our approach is similar in that it supports application-
specific customisation of evolution concerns and employs its own database 
programming language, Vejal, with a versioned type system to facilitate capturing of 
behavioural concerns at program execution level. However, the customisation is 
carried out through a general-purpose OO programming language, i.e., Java, and is 
facilitated by a general-purpose AOP language, i.e., AspectJ. Furthermore, our 
framework is motivated by the need to modularise crosscutting evolution concerns. 
The work presented in this paper also bears a relationship with the notion of aspect-
oriented frameworks, e.g., [10]. However, unlike [10], which describes a general AOP 
framework, AspOEv is specific to the domain of object database evolution. 

6. Conclusion and Future Work 

This paper has discussed the use of aspects to support flexibility in an object database 
evolution framework. Aspects are employed to capture points of interest in three base 
OO components and to forward information from these points to custom schema 
evolution and instance adaptation strategies by invoking callback methods. This way 
aspects establish the causality relationships between the points in the base OO 
components and the evolution concerns interested in manipulating the behaviour at 
those points. However, these relationships are established without exposing the 



 

 

complexity of the customisation points hence, promoting information hiding. The 
benefits of this are twofold. Firstly, the programmer/maintainer does not need to 
understand the details of the ODBMS design to implement a custom evolution 
concern. Secondly, the ODBMS is shielded from unwanted interference from the 
custom concerns hence, ensuring that architectural constraints are preserved and 
integrity is not compromised. This is significant as quite often AOP attracts criticism 
because aspects break encapsulation. In this instance, however, aspects are being 
employed to preserve encapsulation and information hiding. 
Another key feature of aspects in the framework is the provision of support for 
version polymorphism. To the best of our knowledge, substitutability and 
assignability in a type-versioning environment has not been explored to date let alone 
application-specific customisation of such semantics. This flexibility would not have 
been possible without the use of aspects to establish the required causality 
relationships. 
The use of aspects coupled with the strategy pattern makes it possible to swap schema 
evolution and instance adaptation strategies in the framework without recompilation. 
This implies that over the lifetime of an application one can choose to employ a 
different strategy in response to changing requirements. In our future work, we aim to 
focus on facilitating communication between old and new strategies to ensure that the 
new strategy can utilise information from changes by the previous one if needed. We 
are also developing a mechanism whereby the possible set of pointcuts to be captured 
by the three aspects is provided as a set of bindings and the aspects generated from 
these bindings. This ensures that if some pointcuts are needed for a specific 
customisation and are not already included in the aspects, they can be introduced 
without significant effort. Another important area of future interest is exploring the 
introduction of new, application-specific, evolution primitives by exploiting the 
flexibility afforded by the three aspects and the bindings. We also aim to carry out 
further case studies to test drive the customisability of the framework.  
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