

Supporting Flexible Object Database Evolution with
Aspects

Awais Rashid, Nicholas Leidenfrost

Computing Department, Lancaster University, Lancaster LA1 4YR, UK
{awais | leidenfr}@comp.lancs.ac.uk

Abstract. Object database management systems (ODBMSs) typically offer
fixed approaches to evolve the schema of the database and adapt existing
instances accordingly. Applications, however, have very specialised evolution
requirements that can often not be met by the fixed approach offered by the
ODBMS. In this paper, we discuss how aspect-oriented programming (AOP)
has been employed in the AspOEv evolution framework, which supports
flexible adaptation and introduction of evolution mechanisms – for dynamic
evolution of the schema and adaptation of existing instances – governing an
object database. We argue that aspects support flexibility in the framework by
capturing crosscutting hot spots (customisation points in the framework) and
establishing their causality relationships with the custom evolution approaches.
Furthermore, aspects help in information hiding by screening the database
programmer from the complexity of the hot spots manipulated by custom
evolution mechanisms. They also make it possible to preserve architectural
constraints and specify custom version polymorphism policies.

1. Introduction

The structure of a database may not remain constant and may vary to a large extent as
demonstrated by the measurement of the frequency and extent of such changes [37].
Therefore, it comes as no surprise that the schema, i.e., the class hierarchy and class
definitions, governing the objects residing in an object database is often subject to
changes over the lifetime of the database. Consequently, a number of models have
been proposed to evolve the schema to maintain backward and forward compatibility
with applications (in existence before and after the changes respectively). These
models can be classified into four categories:
• Basic schema modification [3, 16], where the database has only one logical schema

to which all changes are applied. No change histories are maintained so the
approach only supports forward compatibility with applications.

• Schema versioning [22, 27], where a new version of the schema is derived upon
evolution hence, ensuring both forward and backward compatibility with
applications.

• Class versioning [24, 38], where the versioning of schema changes is carried out at
a fine, class-level granularity. Like schema versioning, the changes are both
forward and backward compatible.

• Hybrid approaches, which version partial, subjective views of the schema e.g., [1]
or superimpose one of the above three models on another e.g., basic schema
modification on class versioning as in [30, 35].

The schema evolution models need to be complemented by appropriate mechanisms
to adapt instances to ensure their compatibility with class definitions across schema
changes. For example, an object might be accessed by a class definition derived by
adding a member variable to the definition used to instantiate the object in the first
place hence, resulting in incompatibility between the expected and actual type of the
object. Instance adaptation approaches deal with such incompatibilities and can be
classified into simulation-based (e.g., [38]) and physical transformation approaches
(e.g., [24]). The former simply simulate compatibility between the expected and actual
type of the object while the latter physically convert the object to match the expected
type.
Traditionally, an ODBMS offers the database application developer/maintainer one
particular schema evolution approach coupled with a specific instance adaptation
mechanism. For example, CLOSQL [24] is a class versioning system employing
dynamic instance conversion as the instance adaptation mechanism; ORION [3]
employs basic schema modification and transformation functions; ENCORE [38] uses
class versioning and error handlers to simulate instance conversion.
It has been argued that such “fixed” functionality does not serve application needs
effectively [34]. Applications tend to have very specialised evolution requirements.
For one application, it might be inefficient to keep track of change histories, hence
making basic schema modification the ideal evolution approach. For another
application, maintenance of change histories and their granularity might be critical.
Similarly, in one case it might be sufficient that instance conversion is simulated
while in another scenario physical object conversion might be more desirable. The
requirements can be specialised to the extent that custom variations of existing
approaches might be needed.
Such flexibility is very difficult to achieve in conventional ODBMS designs for
several reasons:
1. The schema evolution and instance adaptation concerns are overlapping in nature

and are also intertwined with other elements of the ODBMS, e.g., the transaction
manager, the object access manager, type consistency checker and so on [29]. Any
customisation of the evolution concerns, therefore, results in a non-localised
impact posing significant risk to the consistency of the ODBMS and, consequently,
the applications it services.

2. Even if it is possible to expose the customisation points, such exposure poses a
huge intellectual barrier for the database application programmer/maintainer who
needs to understand the intricate workings of the ODBMS and its various
components in order to undertake any customisation. Furthermore, vendors are,
mostly, unwilling to expose the internal operation of their systems to avoid
unwanted interference from programmers and maintainers in order to preserve
architectural constraints.

3. Customisation of evolution mechanisms has implications for type consistency
checking as different schema evolution approaches might have different
perceptions of type equivalence, especially in the presence of different versions of
the same type or schema.

The AspOEv evolution framework, that we are developing, supports flexible
adaptation and introduction of schema evolution and instance adaptation mechanisms
in an ODBMS independently of each other and other concerns in the system. AOP [2,
14] has been employed in the framework to capture crosscutting hot spots
(customisation points in a framework [15]) and establish their causality relationships
with the custom evolution approaches. The pointcuts expose a new interface to the
underlying database environment to facilitate flexible tailoring of the schema
evolution and instance adaptation approaches. Furthermore, aspects are used to
support information hiding by screening the database programmer/maintainer from
the complexity of the hot spots manipulated by custom evolution mechanisms. They
also make it possible to preserve architectural constraints and specify custom version
polymorphism policies.
Section 2, in this paper, provides an overview of the AspOEv architecture and its
implementation. Section 3 discusses three key aspects supporting flexibility in the
framework namely, Type Consistency and Version Polymorphism, Evolution
Primitive Binding and Exception Handling. Section 4 shows the framework in
operation and how the aspects in section 3 facilitate customisation of the evolution
mechanisms. Section 5 discusses some related work while section 6 concludes the
paper and identifies directions for future work.

2. AspOEv Architecture

The architecture of the AspOEv framework is shown in Fig. 1. The framework has
been implemented in Java and AspectJ (v1.0) [2].

InterpreterMeta-objects

Database
Manager

Object
Database

Vejal
Code

Schema Manager
…
…

Custom Strategy 1
…
…

Custom Strategy 2
…
…

Instance Adapter
…
…

Custom Strategy 1
…
…

Custom Strategy 2
…
…

Type Consistency
and Version

Polymorphism

Evolution
Primitive
Binding

Exception
Handling

Class Aspect Hot spot (join point) Operate on Invoke methods on

Base OO component Introduced into Component Communication

Legend

Fig. 1. Architecture of the AspOEv evolution framework

Since most approaches to schema evolution allow several different versions of a class
to exist (e.g., individual versions in class versioning or different definitions across
schema versions), these versions must be viewed as semantically equivalent and
interchangeable. However, most object-oriented (OO) programming languages do not

support type versioning. Therefore, the framework employs its own application
programming language, Vejal, an OO language with a versioned type system [19, 31].
Vejal has a two-level versioning identifier system (analogous to that used by the
popular free source code control system CVS [11]). C<1> indicates class version 1 of
class C while C<s=1> implies the class version of C that occurs in schema version 1.
In Vejal, one version of a class may be present in multiple schema versions. In order
to prevent unworkable schema versions being created, a new version of a class can
only be present in all the future schema versions in which it is still compatible with
the contracts of the other classes in the schema. Readers should note that, in the rest
of the paper, we use the term “type” to refer to both classes and their versions in
Vejal.
Traditionally, there has been a natural conflict between language type system
constraints and object database evolution approaches, especially those facilitating
dynamic evolution and adaptation of types and instances. This is because the
constraints of the language type system, which exist to improve safety, act to hinder
the required evolution. Consider an example evolution scenario where A and B are the
definitions of a particular class before and after the evolution respectively. After
evolution it may be desirable that all values of type A now have B as their type.
However, such an operation is considered potentially dangerous by the type system
(programs already bound to these values may rely on the assumption that they are of
type A) which prevents it. The existence of a language with a versioned type system
in our framework makes it possible to ensure that important typing constraints are
preserved while at the same time facilitating flexible evolution and adaptation of
types and instances.
The framework includes an interpreter for Vejal and, like most dynamic schema
evolution approaches, employs a meta-object layer to represent persistent data. The
existence of an interpreted language introduces some performance overhead – the
interoperability of type versions with potentially large differences requires a thorough
analysis based on context and structural equivalence where context includes the
evolution approach and the database schema employed by it – but affords us the
flexibility of customisation at a fine, program execution level granularity. As
discussed in [25], such performance-flexibility trade-offs have to be established during
framework design. To decrease the overhead of dynamic type checking, the
framework creates tables based on ‘rules’ defined by the evolution approach.
Evolution approaches define a boolean valued method, equals (Type, Type), which
evaluates the equivalence of two types. At startup, as well as after the change of
evolution strategies or execution of evolution primitives, type equivalencies are
computed from the database schema and stored in the schema manager for quick
runtime lookup. Each type is compared against other versions of the same type in the
schema, as well as the versions of types declared to be substitutable.
The framework also includes a database manager to support persistent storage and
manipulation of both user-level and meta-level objects in the underlying ODMG 3.0
compliant [7] object database. Currently the framework is being used to facilitate
customisable evolution in the commercially available Jasmine object-oriented
database [21]; we have implemented an ODMG 3.0 Java binding wrapper for the
Jasmine Java binding.

In order to enable the dynamic restructuring of data (e.g., changes to inheritance
relationships or class members), the object structure must be kept in the meta-object
layer. When coupled with the needs of an interpreted type-versioning language, we
are left with two collections of objects to represent the separate concerns of language
execution and object structure. The database manager component dealing with
database interaction also contains several areas of interest for schema evolution and
instance adaptation mechanisms. Therefore, behavioural and structural concerns
pertaining to evolution need to be detected and handled across the three components
(the interpreter, the meta-object layer and the database manager), which together
provide the base OO separation manipulated by three aspects: Type Consistency and
Version Polymorphism, Evolution Primitive Binding and Exception Handling. Note
that the three base OO components are completely oblivious of the schema evolution
and instance adaptation strategies to be plugged in.
The Type Consistency and Version Polymorphism aspect deals with the interpreter’s
view of typed versions, i.e., whether two different versions of the same class can be
considered to be of the same type. This has implications in instance adaptation, type
casting and polymorphism – since the class hierarchy can be manipulated at runtime,
one version of a type may be assignable to a base type, while another version may
not. Schema evolution approaches might also be interested in providing custom
version equivalence and substitutability semantics. The aspect, therefore, facilitates
customisation of versioned type equality semantics.
The operations used to modify the schema of the database are often referred to as
evolution primitives. These primitives range from modification of the class hierarchy,
e.g., introduction or removal of classes and modification of inheritance links, to
introduction, removal and modification of individual members of a class [3, 26, 35].
The Evolution Primitive Binding aspect monitors the addition and removal of types
and their versions from the database schema as well as modification of inheritance
links. Schema evolution strategies must decide at these points how to react to the new
or deprecated type or to changes in inheritance relationships. Obviously, the action
they take must be propagated to instances of the type – an introduced type may
become the new standard for the schema, forcing all existing instances to comply
before use, or a deprecated type may need all of its instances transferred to another
version. The aspect also traps the occurrence of changes to a class and its members.
The execution of operations performing such changes provides suitable hotspots for a
schema evolution strategy to predict and circumvent any negative impact they might
incur. They also allow an instance adaptation strategy to take a wide range of suitable
actions.
The Exception Handling aspect allows the application programmer to attempt to
preserve behavioural consistency when runtime exceptions are raised. These
exceptions may be the result of missing members or type mismatches and could be
rectified by handlers provided in custom strategies that have knowledge of the
application’s inner workings.
The three aspects direct all advice action to method invocations on the two abstract
strategy classes (as in the strategy pattern [18]): Schema Manager and Instance
Adapter, which are introduced, in the AspectJ sense, into the aspects (to facilitate
callbacks). Implementation of custom approaches requires overriding a subset of the
callback methods in these classes. This has a number of advantages: Firstly, the

application programmer/maintainer is shielded from the complexity of the hot spots in
the three base OO components hence, facilitating information hiding and avoiding
unwanted interference with those components. Secondly, the programmer/maintainer
can create custom strategies without knowledge of AOP and thirdly, strategies can be
switched without recompiling the framework. Note that the schema evolution and
instance adaptation strategies are independent of each other (cf. section 3.1) so the
developer/maintainer is free to choose any combination of strategies as long as they
are semantically compatible.

3. Aspects Supporting Flexibility

In this section, we discuss the three aspects introduced in section 2 in more detail. We
mainly focus on how the aspects support flexibility in the framework. Note that
though the aspects themselves do not change during customisation, nevertheless they
help modularise a complex, non-trivial set of crosscutting concerns, namely the
schema evolution and instance adaptation strategy to be employed by the underlying
ODBMS. In this case, the aspects and the strategy pattern jointly facilitate the flexible
customisation and adaptation of these strategies. As demonstrated in [33],
aspectisation requires that a coherent set of modules including classes and aspects
collaborate to modularise a crosscutting concern – such a view of AOP ensures that
aspectisation is not forced and in fact leads to a natural separation of concerns.
Therefore, the role of the three aspects in AspOEv is not out of sync with the
fundamental aims of aspect-oriented modularity. Furthermore, the design of the
framework and the causality relationships between the strategy classes and the other
components in the framework would have been very complex without the existence of
these aspects. They provide us with a clean, modular design of the framework hence
making the framework itself more maintainable and evolvable. They also facilitate
separation of the evolution model employed by the ODBMS from the actual
implementation of the schema in Vejal.

3.1 Type Consistency and Version Polymorphism Aspect

This aspect supports flexibility in the following three ways:
• It preserves clean design separation between the schema manager and the instance

adapter facilitating flexible, semantically compatible, combinations of custom
strategies for schema evolution and instance adaptation.

• It captures version discrepancies between the expected and actual type of an object,
i.e., between the version in use by the schema and the one to which the object is
bound respectively, and provides this information to the schema manager and
instance adapter for rectifying action.

• It facilitates the provision of custom version polymorphism policies, i.e., allowing
a custom schema manager to specify which type versions are assignable to each
other or are substitutable.

Although schema managers and instance adapters work together to achieve stable
schema evolution, they are separate concerns, and should not need to know about
each other. The instance adapter has the task of adapting an object from its actual type
to the schema manager’s expected type. From the viewpoint of the instance adapter, it
is simply adapting from one type version to another and, therefore, it does not need to
be aware of the evolution strategy being employed. The aspect preserves clean design
separation by acting as an intermediary between the two concerns. It queries the
schema manager for its expected version and passes the resulting information to the
instance adapter (cf. shaded code in Fig. 2). Consequently, the instance adapter
remains oblivious of the schema manager, yet gets the information it needs to perform
its task, while the schema manager receives a converted object of the version it
expects.
The code listing in Fig. 2 also shows a simple example of type version discrepancies
captured by the aspect and forwarded to the custom schema manager and instance
adapter being used. ODMG compliant object databases support binding specific
objects to unique names to act as root entry points into the database. These persistent
roots are retrieved using the lookup method. Since the method only returns a single
object, as opposed to other query methods that return collections of matches (and are
also monitored by the Type Consistency and Version Polymorphism aspect), it
provides a simple example of potential type mismatches in an executing program.
The advice in Fig. 2 captures the result of the lookup, queries the schema manager for
the type it expects to be returned, and then has the instance adapter perform the proper
conversion.

pointcut lookup(String name):

execution(DatabaseManager.lookup(String))
&& args(name);

Object around(String name): lookup(name) {

MetaObject result = (MetaObject)proceed(name);
Type resultType = result.getType();
Type expectedType =

schemaManager.getActiveType(resultType);
MetaObject conformed = result;
if (!resultType.equals(expectedType))

conformed =
instanceAdapter.retype(result, expectedType);

return conformed;

}

database.bind(new Foo<1.0>,
“myFoo”);

…
// sometime later
// in execution
Foo<2.0> aFoo =

database.lookup(“myFoo”);

 Fig. 2. Capturing version discrepancies and providing Fig. 3. Type mismatch at program
 independence of instance adapter and schema manager execution level (numbers in < >
 indicate version of Foo used)

Fig. 2 shows an example of type version discrepancies that can be captured at the
interface with the database. There are other types of discrepancies that occur at the
level of program execution. Consider a class versioning approach to schema evolution
when multiple versions of a type are allowed to exist in the execution environment. In

this case, the schema manager has no preference to any version1 and thus the
expectedType in Fig. 2 would be the same as the resultType. The code listing in
Fig. 3 shows an example of type mismatch at the program execution level. Since the
schema manager does not know or care about the version of object aFoo, this can
cause serious inconsistencies. Without the use of aspects woven over an interpreted
language, this mismatch would be very difficult to catch before an error occurred.
However, the type consistency aspect allows instance adapters to monitor assignment
in the executing program. Because schema managers will not always work with a
particular version of a type only, flexibility must exist to allow other ways of
detecting type mismatch.
The type consistency aspect supports flexible type interchangeability by wrapping
type comparison, equality and assignability methods, and allowing a custom evolution
strategy to specify how different versions of types are to be treated by the interpreter.
Since the evolution framework allows such changes as the addition and removal of
classes in the class hierarchy, one version of a type may lose the ability to be
assignable to other versions or vice versa. Moreover, one version may be more or
less equivalent to a second version, but drastically different from a third. With the
ability to evaluate type differences at runtime, the flexibility exists to create a
versioned polymorphic environment. In the absence of clear version polymorphism
semantics for the evolution approach being employed, there can be lots of potentially
unnecessary invocations of the instance adapter resulting in performance overhead.
Consider, for example, the scenarios in Fig. 4. Since Person<2.0> in Fig. 4(a) is
derived because of an additive change to Person<1.0>, instances of Person<2.0>
could be allowed to be substitutable wherever an instance of Person<1.0> is
expected. If a schema manager chooses to allow such substitutability, implicit
instance adaptation can be carried out (through version polymorphism) without
invoking the instance adapter to do an explicit transformation. This will reduce
performance overhead. However, in some cases, the application needs might dictate
the schema manager to disallow this substitutability and force an explicit
transformation through the instance adapter.
Another scenario where version polymorphism could be required is shown in Fig.
4(b). A schema manager (in response to application requirements) might allow
substitution of instances of B<2.0> and C<2.0> wherever an instance of A<1.0> is
required, on the grounds that the predecessors of B<2.0> and C<2.0> (B<1.0> and
C<1.0> respectively) inherit from A<1.0>. The schema manager might need to
evaluate the differences between A<2.0> and A<1.0>before allowing such
substitutability.
Equality testing in the Vejal interpreter is similar to that in Java in that it is centred on
an equals method defined in types. The typeEquality pointcut in the Type
Consistency and Version Polymorphism aspect (cf. Fig. 5) allows a custom strategy to
perform a number of tests, including looking for common base classes, hence
supporting version polymorphism. Custom version polymorphism is further facilitated
by the assignableFrom pointcut2 (cf. Fig. 5). The default implementation of the

1 This is in contrast with, for instance, schema versioning where each schema managed by the

schema manager specifies a clear expected version of a type.
2 The !cflow designator is required because the assignableFrom method is recursive.

method to which the related advice delegates, simply searches for the second type in
the first one’s supertypes. A custom strategy can alter assignability semantics by
overriding the default implementation and searching for a specific base type or
performing a more deep comparison of the two types, e.g., by searching the
supertypes of their predecessor versions.

Person<1.0>
name: String

Person<2.0>
name: String
age: Integer

Version set
of class Person

B<1.0>……

B<2.0>……

C<1.0>……

C<2.0>

A<1.0>
……

A<2.0>……

……

Version set
of class A

Version set
of class C

Version
set of
class B

(a) (b)
Inheritance relationshipClass version definition

Version derivation relationship Version set

Legend

Fig. 4. Potential scenarios involving version polymorphism

Note that in class versioning approaches to schema evolution, the execution
environment can, potentially, have instances of several versions of a type to manage.
Therefore, the schema manager does not necessarily have a default expected type that
an instance adapter can convert to when the instance is returned from a database
query. Therefore, different type versions could potentially be used interchangeably,
without instance adaptation (because of version polymorphism), until a conversion is
forced by an incompatible combination or assignment of versions.

pointcut typeEquality(Type one, Type two):
execution(Type.equals(Object))
&& args(two)
&& this(one);

pointcut assignableFrom(Type one, Type two):
execution(Type.assignableFrom(Type))
&& args(two)
&& this(one)
&& !cflow(Type.assignableFrom(..));

Fig. 5. Pointcuts facilitating custom type version polymorphism

3.2 Evolution Primitive Binding Aspect

The execution of evolution primitives, which carry out the schema changes, is of key
interest to custom schema managers. Different schema evolution strategies respond to

execution of the primitives differently. For instance, schema versioning results in
creation of a new schema version upon each change. Class versioning, on the other
hand, leads to newer versions of the modified classes. Context versioning [1] only
creates newer versions of the partial subjective views in which the modified class
participates. Other approaches, e.g., [6], group primitive evolution operations into
high-level primitives.
At the same time, each evolution strategy responds to individual evolution primitives
differently. For instance, in the class versioning approach proposed in [35], addition,
removal or modification of a class member results in creation of a new version of the
class. However, if the class version being modified forms a non-leaf node in the
hierarchy graph, new versions of all the sub-classes are transitively derived. If a class
or class version forming a non-leaf node is removed or repositioned then stubs are
introduced to maintain consistency of sub-classes of the removed or repositioned
class.
Execution of evolution primitives also has implications for instance adaptation which
would almost inevitably be required. Each particular instance adaptation approach
will respond to evolution in its own fashion. This variability in the nature of evolution
and adaptation approaches, and even in the handling of individual primitives by a
particular strategy, makes it essential to allow custom strategies to react to the
execution of the primitives in their specialised fashion. The Evolution Primitive
Binding aspect facilitates this flexibility.
As an example of evolution primitive binding captured (and passed on to custom
strategies) by the aspect, let us consider the case of removing a type from the class
hierarchy in an object database. This would raise the need to reclassify (or remove
altogether) any existing instances of the type. If the removed type has subtypes, there
are further implications in terms of structural and behavioural consistency of their
definitions and instances. Furthermore, different evolution strategies would handle
type removal differently. For instance, class versioning approaches might only
remove a single version of the class while schema versioning and schema
modification strategies would, most probably, remove the class altogether from the
resulting schema definition. Fig. 6 shows the pointcut, trapping the execution of the
type removal primitive, and its associated advice informing the schema manager and
instance adapter of this change (note that the two strategies are decoupled and can
independently pursue appropriate action in response). By providing a schema
evolution strategy with pertinent information at the time of type removal, it can
reclassify instances of the removed type appropriately with respect to the schema to
avoid information loss. Depending on the evolution strategy being employed, a
schema manager could retype existing instances of the removed type to an appropriate
base type or retype them to the most similar type version. In either case, the instance
adaptation strategy can use the provided information and loaded meta-classes in the
interpreter to forward the deprecated type to its replacement.
Note that addition of a new type into the class hierarchy can have similar implications
depending on the evolution strategy being employed, i.e., whether subtypes and their
existing instances automatically gain functionality provided by the new superclass or
new versions of each subtype are required. Similarly, any conflicts between inherited
and locally defined members and inheritance paths (Vejal supports multiple
inheritance) would need to be resolved in line with preferences of the custom

evolution strategy. The aspect captures execution of type addition and other type
hierarchy manipulation primitives in a fashion similar to type removal.
For another example of evolution primitive binding, let us consider the modification
of class members. The simple evolution scenario shown in Fig. 7 involves renaming
one of the class members: surname to lastname. This will result in a behavioural
consistency problem as existing references to the renamed member will become
invalid. By capturing the state of the member before and after the change, the aspect
makes it possible for instance adapters to take corrective action, e.g., by forwarding
references. Other class modification primitives are captured and handled in a similar
fashion.

pointcut removeType(Type removed):
execution(DatabaseManager+.removeType(Type))

&& args(removed);

before(Type removed): removeType(removed) {
schemaManager.removeType(removed);
Type reclassify =

schemaManager.getReassignedType(removed);
instanceAdapter.reclassifyType(removed,

reclassify);
}

class Person<1.0> {

String firstname,
surname;

}
(a)

class Person<2.0> {

String firstname,
lastname;

}
(b)

 Fig. 6. Pointcut and advice pertaining Fig. 7. Evolution scenario:
 to type removal renaming a member
 (a) before evolution
 (b) after evolution

pointcut fieldChanged(Metaclass versionOne,
Metaclass versionTwo,
MetaField oldField,
MetaField newField):

execution(MetaClass+.changeField(
MetaClass,
MetaField,
MetaField))

&& args(versionOne,
oldField,
newField)

&& target(versionTwo);

Object around(Metaclass versionOne,
Metaclass versionTwo,
MetaField oldField,
MetaField newField):

fieldChanged(versionOne,
versionTwo,
oldField,
newField) {

/* Should create bridge if non-existent,
otherwise retrieve from transient memory. */
VersionBridge bridge =

instanceAdapter.getVersionBridge(versionOne,
versionTwo);

bridge.mapFields(oldField, newField);
}

Fig. 8. Pointcut and advice pertaining to version bridges

The aspect also facilitates optimisation of repeated adaptations required in response to
an evolution primitive execution. Once again, consider the simple scenario of
renaming a member from Fig. 7. While this seems like a simple enough change,
references to this member by the handle surname could exist in a number of different
places – more so than one could hope to catch and change at the moment of primitive
execution. By capturing hot spots in the meta-object layer, the aspect can create a
version bridge that is aware that the reference to the member surname in Person<1.0>
should map to lastname in Person<2.0>. The pointcut and associated around advice
corresponding to version bridges is shown in Fig. 8.
Note that a version bridge in the framework is a piece of meta-data that mimics more
than one meta-class at once. A type instance can be safely reclassified to reflect its
ability to fulfill the requirements of another version, while still maintaining its own
type identity. Version bridges know about the meta-classes for both versions, and can
thereby easily perform tasks such as forwarding. Obviously, with several existing
types, version bridges could quickly become tedious and time consuming for the
application programmer/maintainer to generate manually. Therefore, the use of the
Evolution Primitive Binding aspect to dynamically create and retype instances in
accordance with a general strategy saves a non-trivial amount of work.

3.3 Exception Handling Aspect

Since exceptions are a means of attracting attention to abnormal or incorrect
circumstances in program execution, they offer a natural mechanism for a framework
designed to preserve consistency during object database evolution in a flexible
fashion. In fact, some approaches to instance adaptation, e.g., [36, 38], rely entirely on
handling exceptions raised in response to type mismatches to take rectifying action –
rigidity affords no other opportunities to capture mismatches. Such approaches, that
completely rely on exception handling for instance adaptation, therefore, need to
know about a variety of events such as type mismatch, name mismatch and missing,
extraneous or incorrect data members and parameters, etc.
While exception handling is by no means a new territory for AOP and AspectJ, the
ability to handle exceptions thrown from an interpreter, over which custom evolution
strategies have some control, provides additional flexibility. There could arise
situations under which even the most well adapted strategy would fail without
exception handling. Furthermore, if approaches for schema evolution or instance
adaptation change, the new approaches may not have had the opportunity to handle
changes that occurred before the switch. The new schema managers and instance
adapters cannot rely on their respective previous strategies to inform them of all the
changes that might have occurred. By carrying information pertinent to the context of
the mismatch, specialised exceptions give instance adaptation strategies a final chance
to preserve behavioural consistency. Two examples of such exceptions and the
information they carry are shown in Fig. 9. Note that, as discussed in sections 3.1 and
3.2, the AspOEv framework offers other opportunities to detect and handle situations
requiring instance adaptation.

Fig. 10 shows a pointcut and its associated around advice from the Exception
Handling aspect intercepting such a type mismatch exception and deferring it to the
instance adapter and schema manager for rectifying action.

pointcut typeMismatch(MetaObject found,
Type required):

call(TypeMismatchException.new(MetaObject,
Type))

&& args (found, required);

Object around(MetaObject found, Type required):
typeMismatch (found, required) {
try {

proceed(found, required);
}
catch (TypeMismatchException tme) {

instanceAdapter.retype(found, required);
schemaManager.typeMismatch(tme);

}
}

throw new
TypeMismatchException(

<Type> expected,
<Type> actual);

throw new
NoSuchFieldException(

<FieldReference> field,
<Type> owner);

 Fig. 9. Examples of information Fig. 10. An exception handling pointcut and associated
 provided by exceptions advice with callbacks to instance adapter and schema manager

Since the exceptions are raised by consistency issues at runtime, they are unexpected
by the program. Therefore, no handling code, aside from that of the custom strategy
on which the Exception Handling aspect calls back, is in place. As these exceptions
are raised in an interpreted environment, adapters have the opportunity to make
changes and retry the failed operation. Execution could effectively be paused, or even
taken back a step. Furthermore, due to the nature of the meta-data provided to
exception handlers, it is possible to determine the types of changes that have resulted
in the inconsistency in question. Members such as meta-fields and meta-methods all
have unique identifiers, so it is possible to determine that a member has been
renamed, as opposed to it seeming as if a removal and subsequent addition occurred.

4. The Framework in Operation

In this section we discuss how two significantly different evolution strategies namely,
class versioning and basic schema modification can be implemented using the
framework. Before providing an insight into the implementation of the two strategies,
it is important to highlight the callback methods available in the abstract Schema
Manager class as both evolution strategies would extend this class and override the
callbacks of relevance to them. The Schema Manager class is shown in Fig. 11. The
callback methods are categorised into general callbacks, evolution primitive binding
callbacks, version polymorphism callbacks and exception handling callbacks. Here
we briefly summarise the role of the general callbacks as the roles of the other three
sets are self-explanatory:

getActiveType(aVersion: Type): Type
getReassignedType(deprecated: Type): Type
getSchemaExtent(): SchemaExtent
getVersionSet(type: Type): Collection
reclassifyType(deprecated: Type): Type

addType(newType: Type): void
removeType(removed: Type): void
...

equals(one: Type, two: Type): boolean
assignableFrom(one: Type,

two: Type): boolean

typeMismatch(instance: MetaObject,
expected: Type): void

...

Schema ManagerSchema ManagerSchema ManagerSchema Manager

...

General callbacks

Evolution primitive
binding callbacks

Version polymorphism
callbacks

Exception handling
callbacks

Fig. 11. Callbacks in the abstract Schema Manager strategy class

• getActiveType: returns the active type version (expected type), corresponding to
the argument type version, in use by the schema.

• getReassignedType: a simple accessor method to obtain, from the type map in the
schema manager, a reference to the type to which instances of a deprecated type
have been reassigned.

• getSchemaExtent: to get the set of all classes in a schema or schema version.
• getVersionSet: to get the set of all versions of a class. Note that if a class

versioning approach is being used, the getSchemaExtent method will use this
method to obtain and return a set of all the version sets of all the classes in the
schema.

• reclassifyType: encapsulates the algorithm to identify and specify the reassigned
type for instances of a deprecated type.

4.1 Implementation of Custom Evolution Approaches

Let us first consider the implementation of class versioning using the framework. We
will refer to this as Class Versioning Schema Manager (CVSM).
Class versioning approaches are unique in their ability to permit several versions of a
type to exist in a schema and execution environment hence, facilitating active type
consistency. For example, looking at the advice code in Fig. 2 in the context of a class
versioning approach, the CVSM will need to override getActiveType to simply
return the argument type. This is because a class versioning schema manager has to
manage multiple versions of a class and hence, does not specify a single expected
version of the class. The CVSM will also need to override the other general callbacks
especially the getVersionSet method as it will be employed by the getSchemaExtent
method to obtain the set of all types in the schema.
The CVSM will most certainly have to override the evolution primitive binding
callbacks to provide its own custom response to execution of the various primitives.
This is facilitated by the Evolution Primitive Binding aspect. A detailed discussion of

evolution primitive implementation during class versioning is beyond the scope of
this paper. A number of such implementations exist. Interested readers are referred to
[5, 24, 35, 38].
A class versioning implementation also has the responsibility of managing the
assignment and accessibility of many versions of a type at the level of the executing
program. To ensure consistency at these points, the corresponding instance adapter
would be invoked (cf. section 3.1). However, with the flexibility provided by the
Type Consistency and Version Polymorphism aspect, the CVSM has the option of
overriding the version polymorphism callbacks to stipulate semantics for type
equality, assignability and version polymorphism within the executing interpreter,
thus preventing unnecessary instance adaptation.
The CVSM may also override the exception handling callbacks (afforded by the
Exception Handling aspect) to capture any inconsistencies in type version equivalence
or instance adaptation not captured by the version polymorphism callbacks or the
instance adapter.
Let us now consider the implementation of the basic schema modification strategy.
We will refer to this as Basic Schema Modification Manager (BSMM). The BSMM
must first define a working schema, listing all types that will be used (usually the
most recent versions of a class), and must override the getActiveType callback to
return the correct type defined by the schema. Though this might seem trivial at first
glance, this is a vital callback for the BSMM as it facilitates maintenance of
consistency of objects by comparing them with the expected types of the schema
before they enter execution.
The BSMM must also define how it will deal with the various evolution primitives
through the evolution primitive binding callbacks. Interested readers are referred to [3,
16] for a discussion of potential behaviour of basic schema modification primitives
that could be implemented by the BSMM, as a detailed discussion is beyond the scope
of this paper.
Like the CVSM, the BSMM could specify handlers for any mismatches not captured
by other callbacks. However, it will, most likely, not utilise the version polymorphism
callbacks as these mainly facilitate an informed evaluation of the need for instance
adaptation in an environment with multiple versions. Since the BSMM exercises
strict control in the form of having the most recent version of a type in the schema,
these callbacks would be of little interest to it.
Note that so far we have not discussed customisation of the instance adapter to suit
the CVSM and the BSMM. Though one might think that instance adapters for these
two approaches would not be compatible, this is not the case. If an instance adapter is
designed to respond to instance adaptation needs at both the program execution level
and at the interface with the database, it will certainly service the needs of both. It will
serve the BSMM effectively as most of the instance adaptation for this would occur at
the interface with the database. This is because a BSMM dictates that the persistent
instance retrieved from the database is compliant with the expected type in the
schema before it is loaded into the execution environment. Therefore, the instance
adapter will adapt the instance to comply with the expected type upon retrieval.
Conversely, the instance adapter would not be invoked for the CVSM when query
results are received from the database as the need for adaptation is postponed till an
actual collision occurs (recall that the CVSM has no default expected type version for

a class). Here the ability to monitor join points at program execution level comes into
play. Note that this orthogonality of instance adaptation and schema evolution
concerns is afforded by the Type Consistency and Version Polymorphism aspect (cf.
Section 3.1).

4.2 Handling Structural Consistency Issues

Let us consider the problems arising if an evolution approach prior to customisation
may have remapped instances of a type (such as a removed type) to one of its base
classes. If the new approach employs the (previously removed) type in its schema, it
would want to return the remapped instances to their original type. Also, in the event
that data from two different schemas are merged, several types from one schema may
have been remapped to their equivalent type in the second schema. The new schema
manager will need to know about these type equivalencies in order to continue to
serve applications employing the merged data. The framework facilitates the handling
of these situations by providing communication between the current and former
schema managers when a switch occurs (cf. Fig. 12). The SchemaExtent object is a
collection of types utilised by a schema manager (its schema) as well as relationships
between types, such as remapped (deprecated) and substitutable (semantically or
structurally equivalent) types. The new approach can either immediately convert these
types, or convert them lazily. AspOEv facilitates lazy conversion in this case by
providing functionality for automatically “enriching” type specific queries with
remapped and substitutable types. Objects that have been remapped by another
schema, however, must be differentiated from any existing instances of the type they
are remapped to. Therefore, in AspOEv, each object has two stored types, the current
type and the declaration type. While schemas may classify an object as many
different types during its lifetime, the object’s declaration type never changes.
Remapped objects can be identified as such by their declaration types.

4.3 Handling Behavioural Consistency Issues

Database evolution primitives can break behavioural consistency by altering types or
members that are referenced elsewhere in the program space. The persistent storage of
Vejal programs as AbstractSyntaxTree elements in AspOEv facilitates querying for
instances of programming components, such as field references, variable declarations,
or method invocations in dependent types. This enables the framework to present the
programmer with detailed information about where problems might occur. Moreover,
this level of granularity in Vejal meta-data allows the framework to create new
versions of dependent classes to automatically comply with some changes. If, for
example, a member is renamed, the framework can detect and change any field
references or method invocations in dependent classes (cf. Fig. 13).
Of course, changes such as renaming are seldom completely free of semantic
implications, and any generated versions must be verified by the programmer before
being put into effect.

SchemaExtent oldSchema =
oldSchemaManager.getSchema();

schemaManager.transitionFrom(oldSchema);

// Start a transaction
QueryCursor ageAccesses =

FieldReference.where(“fieldName == \”surname\””);
while (ageAccesses.moreElement()) {

FieldReference reference =
(FieldReference)ageAccesses.nextElement();

reference.setFieldName(“lastName”); }
// Commit transaction

Fig. 12. Communication between Fig. 13. Querying and altering program elements
old and new schema managers

5. Related Work

The SADES object database evolution system [30, 35, 36] employs a declarative aspect
language to support customisation of the instance adaptation mechanism. Two
instance adaptation strategies, error handlers (a simulation-based approach) [38] and
update/backdate methods (a physical transformation approach) [24], have been
successfully implemented using the aspect language [36]. Though the work on
customisable evolution in AspOEv has been inspired by SADES, there are some
marked differences between the two systems. SADES uses aspects to directly plug-in
the instance adaptation code into the system. Consequently, the complexity of the
instance adaptation hot spots has to be exposed to the developer/maintainer and, at the
same time, there is a risk of unwanted interference with the ODBMS from the aspect
code. This is in contrast with the framework discussed in this paper as the
developer/maintainer is shielded from the complexity of the hot spots. Furthermore,
the inner workings of the ODBMS do not have to be exposed hence, facilitating
preservation of architectural constraints by avoiding unwanted interference. SADES
supports customisation of the instance adaptation approach only – the schema
evolution strategy is fixed. It does not support version polymorphism either.
An earlier version of AspOEv [28, 29, 31] also facilitated customisation of both
schema evolution and instance adaptation mechanisms. However, like SADES,
aspects were employed to specify and directly plug-in the strategies into the system.
Also, version polymorphism was not supported.
The composition of aspects in a persistent environment is treated in [32], which
discusses various issues pertaining to weaving of aspects which are persistent in
nature. Though the three AspOEv aspects discussed here are also operating in a
persistent environment, they are not persistent in nature. They, however, do have to
account for the fact that the pointcuts they employ span both transient and persistent
spaces in the underlying database environment.
The GOODS object-oriented database system [23] employs a meta-object protocol to
support customisation of its transaction model and related concerns such as locking
and caching. Custom approaches can be implemented by refining existing meta-
objects through inheritance. Customisation of the schema evolution and instance
adaptation strategies is not supported. Furthermore, though customisation of the
transaction model, locking and cache management is supported, the three concerns are
not untangled. Consequently, customisation of one of the three concerns has an
impact on the others.

Component database systems, e.g., [13, 20] offer special customisation points, similar
to hot spots in OO frameworks, to allow custom components to be incorporated into
the database system. However, customisation in these systems is limited to
introduction of user-defined types, functions, triggers, constraints, indexing
mechanisms and predicates, etc. In contrast our framework facilitates customisation
or complete swapping of fundamental ODBMS components encapsulating the schema
evolution and instance adaptation mechanisms. Our work, therefore, bears a closer
relationship with DBMS componentisation approaches such as [4, 8]. However,
unlike these works which focus on architectures to build component database
systems, the focus of our framework is to provide customisable evolution in existing
object database systems without rearchitecting them.
The use of aspects in our framework also bears a relationship with the work on active
database management systems [12]. These systems employ event-condition-action
(ECA) rules to support active monitoring and enforcement of constraints (and
execution of any associated behaviour). If a simple or composite event that a rule
responds to is fired, the specified condition is evaluated and subsequently the action is
executed provided the condition evaluates to true. Aspects in our framework are
similar in that they monitor the hot spots in the three base OO components and, upon
detection of an event of interest, invoke the callback methods in the strategy classes.
In some instances, the aspects evaluate some conditions before invoking the
callbacks, e.g., comparing the expected and actual type (cf. Fig. 2) before invoking
the instance adapter. This similarity between the use of aspects in the framework and
active databases does not come as a surprise as already work has been undertaken to
demonstrate the relationship between the two concepts [9].
[17] discusses the need for application-specific database systems and proposes the use
of domain-specific programming languages with embedded, domain-specific database
systems for the purpose. Our approach is similar in that it supports application-
specific customisation of evolution concerns and employs its own database
programming language, Vejal, with a versioned type system to facilitate capturing of
behavioural concerns at program execution level. However, the customisation is
carried out through a general-purpose OO programming language, i.e., Java, and is
facilitated by a general-purpose AOP language, i.e., AspectJ. Furthermore, our
framework is motivated by the need to modularise crosscutting evolution concerns.
The work presented in this paper also bears a relationship with the notion of aspect-
oriented frameworks, e.g., [10]. However, unlike [10], which describes a general AOP
framework, AspOEv is specific to the domain of object database evolution.

6. Conclusion and Future Work

This paper has discussed the use of aspects to support flexibility in an object database
evolution framework. Aspects are employed to capture points of interest in three base
OO components and to forward information from these points to custom schema
evolution and instance adaptation strategies by invoking callback methods. This way
aspects establish the causality relationships between the points in the base OO
components and the evolution concerns interested in manipulating the behaviour at
those points. However, these relationships are established without exposing the

complexity of the customisation points hence, promoting information hiding. The
benefits of this are twofold. Firstly, the programmer/maintainer does not need to
understand the details of the ODBMS design to implement a custom evolution
concern. Secondly, the ODBMS is shielded from unwanted interference from the
custom concerns hence, ensuring that architectural constraints are preserved and
integrity is not compromised. This is significant as quite often AOP attracts criticism
because aspects break encapsulation. In this instance, however, aspects are being
employed to preserve encapsulation and information hiding.
Another key feature of aspects in the framework is the provision of support for
version polymorphism. To the best of our knowledge, substitutability and
assignability in a type-versioning environment has not been explored to date let alone
application-specific customisation of such semantics. This flexibility would not have
been possible without the use of aspects to establish the required causality
relationships.
The use of aspects coupled with the strategy pattern makes it possible to swap schema
evolution and instance adaptation strategies in the framework without recompilation.
This implies that over the lifetime of an application one can choose to employ a
different strategy in response to changing requirements. In our future work, we aim to
focus on facilitating communication between old and new strategies to ensure that the
new strategy can utilise information from changes by the previous one if needed. We
are also developing a mechanism whereby the possible set of pointcuts to be captured
by the three aspects is provided as a set of bindings and the aspects generated from
these bindings. This ensures that if some pointcuts are needed for a specific
customisation and are not already included in the aspects, they can be introduced
without significant effort. Another important area of future interest is exploring the
introduction of new, application-specific, evolution primitives by exploiting the
flexibility afforded by the three aspects and the bindings. We also aim to carry out
further case studies to test drive the customisability of the framework.

Acknowledgements
This work is supported by UK Engineering and Physical Science Research Council (EPSRC)
Grant: AspOEv (GR/R08612), 2000-2004. The Jasmine system is provided by Computer
Associates under an academic partnership agreement with Lancaster University. The authors
wish to thank Robin Green for implementation of the previous version of AspOEv.

References
[1] J. Andany, M. Leonard, and C. Palisser, "Management of Schema Evolution in Databases", Proc.

VLDB Conf., 1991, Morgan Kaufmann, pp. 161-170.
[2] AspectJ Team, "AspectJ Project", http://www.eclipse.org/aspectj/, 2004.
[3] J. Banerjee, H.-T. Chou, J. F. Garza, W. Kim, D. Woelk, and N. Ballou, "Data Model Issues for

Object-Oriented Applications", ACM Transactions on Office Inf. Systems, 5(1), pp. 3-26, 1987.
[4] D. S. Batory, "Concepts for a Database System Compiler", Seventh ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, 1988, ACM, pp. 184-192.
[5] A. Bjornerstedt and C. Hulten, "Version Control in an Object-Oriented Architecture", in Object-

Oriented Concepts, Databases, and Applications, W. Kim, Lochovsky, F. H., Ed., 1989, pp. 451-485.
[6] P. Breche, F. Ferrandina, and M. Kuklok, "Simulation of Schema Change using Views", Proc. DEXA

Conf., 1995, Springer-Verlag, LNCS 978, pp. 247-258.
[7] R. G. G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russel, O. Schadow, T. Stenienda,

and F. Velez, The Object Data Standard: ODMG 3.0: Morgan Kaufmann, 2000.

[8] S. Chaudhuri and G. Weikum, "Rethinking Database System Architecture: Towards a Self-tuning
RISC-style Database System", Proc. VLDB Conf., 2000, Morgan Kaufmann, pp. 1-10.

[9] M. Cilia, M. Haupt, M. Mezini, and A. Buchmann, "The Convergence of AOP and Active Databases:
Towards Reactive Middleware", Proc. GPCE, 2003, Springer-Verlag, LNCS 2830, pp.169-188.

[10] C. Constantinides, A. Bader, T. Elrad, M. Fayad, and P. Netinant, "Designing an Aspect-Oriented
Framework in an Object-Oriented Environment", ACM Computing Surveys, 32(1), 2000.

[11] CVS, "Concurrent Versions System", http://www.cvshome.org/, 2003.
[12] K. R. Dittrich, S. Gatziu, and A. Geppert, "The Active Database Management System Manifesto",

2nd Workshop on Rules in Databases, 1995, Springer-Verlag, LNCS 985, pp. 3-20.
[13] K. R. Dittrich and A. Geppert, Component Database Systems: Morgan Kaufmann, 2000.
[14] T. Elrad, R. Filman, and A. Bader (eds.), "Theme Section on Aspect-Oriented Programming",

Communications of the ACM, 44(10), 2001.
[15] M. E. Fayad and D. C. Schmidt, "Object-Oriented Application Frameworks", Communications of the

ACM, 40(10), pp. 32-38, 1997.
[16] F. Ferrandina, T. Meyer, R. Zicari, and G. Ferran, "Schema and Database Evolution in the O2 Object

Database System", Proc. VLDB Conf., 1995, Morgan Kaufmann, pp. 170-181.
[17] K. Fisher, C. Goodall, K. Högstedt, and A. Rogers, "An Application-Specific Database", 8th Int'l

Workshop on Database Programming Languages, 2002, Springer-Verlag, LNCS 2397, pp. 213-227.
[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns - Elements of Reusable Object-

Oriented Software: Addison Wesley, 1995.
[19] R. Green and A. Rashid, "An Aspect-Oriented Framework for Schema Evolution in Object-Oriented

Databases", AOSD 2002 Workshop on Aspects, Components & Patterns for Infrastructure Software.
[20] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh, "Extensible Query Processing in

Starburst", Proc. SIGMOD Conf., 1989, ACM, pp. 377-388.
[21] Jasmine, The Jasmine Documentation, 1996-1998 ed: Computer Associates International, Inc. &

Fujitsu Limited, 1996.
[22] W. Kim and H.-T. Chou, "Versions of Schema for Object-Oriented Databases", Proc. VLDB Conf.,

1988, Morgan Kaufmann, pp. 148-159.
[23] Knizhnik, K.A., "Generic Object-Oriented Database System",

http://www.ispras.ru/~knizhnik/goods/readme.htm, 2003.
[24] S. Monk and I. Sommerville, "Schema Evolution in OODBs Using Class Versioning", ACM

SIGMOD Record, 22(3), pp. 16-22, 1993.
[25] D. Parsons, A. Rashid, A. Speck, and A. Telea, "A 'Framework' for Object Oriented Frameworks

Design", Proc. TOOLS Europe, 1999, IEEE Computer Society Press, pp. 141-151.
[26] R. J. Peters and M. T. Ozsu, "An Axiomatic Model of Dynamic Schema Evolution in Objectbase

Systems", ACM Transactions on Database Systems, 22(1), pp. 75-114, 1997.
[27] Y.-G. Ra and E. A. Rundensteiner, "A Transparent Schema-Evolution System Based on Object-

Oriented View Technology", IEEE Trans. Knowledge and Data Engg., 9(4), pp. 600-624, 1997.
[28] A. Rashid, Aspect-Oriented Database Systems: Springer-Verlag, 2003.
[29] A. Rashid, "Aspect-Oriented Programming for Database Systems", in Aspect-Oriented Software

Development (To Appear), M. Aksit, S. Clarke, T. Elrad, and R. Filman, Eds.: Addison-Wesley, 2004.
[30] A. Rashid, "A Database Evolution Approach for Object-Oriented Databases", IEEE International

Conference on Software Maintenance (ICSM), 2001, IEEE Computer Society Press, pp. 561-564.
[31] A. Rashid, "A Framework for Customisable Schema Evolution in Object-Oriented Databases",

International Data Engineering and Applications Symposium (IDEAS), 2003, IEEE, pp. 342-346.
[32] A. Rashid, "Weaving Aspects in a Persistent Environment", ACM SIGPLAN Notices, 37(2), pp. 36-

44, 2002.
[33] A. Rashid and R. Chitchyan, "Persistence as an Aspect", 2nd International Conference on Aspect-

Oriented Software Development, 2003, ACM, pp. 120-129.
[34] A. Rashid and P. Sawyer, "Aspect-Orientation and Database Systems: An Effective Customisation

Approach", IEE Proceedings - Software, 148(5), pp. 156-164, 2001.
[35] A. Rashid and P. Sawyer, "A Database Evolution Taxonomy for Object-Oriented Databases", Journal

of Software Maintenance - Practice and Experience (To Appear), 2004.
[36] A. Rashid, P. Sawyer, and E. Pulvermueller, "A Flexible Approach for Instance Adaptation during

Class Versioning", ECOOP 2000 Symp. Objects and Databases, 2000, LNCS 1944, pp. 101-113.
[37] D. Sjoberg, "Quantifying Schema Evolution", Information and Software Technology, 35(1), pp. 35-

44, 1993.
[38] A. H. Skarra and S. B. Zdonik, "The Management of Changing Types in an Object-Oriented

Database", Proc. OOPSLA Conf., 1986, ACM, pp. 483-495.

