
Electroencephalography and clinical Neurophysiology, 1991, 78:71-79 71 
Elsevier Scientific Publishers Ireland, Ltd. 

EEG 89625 

A model-based detector of vertex waves and K complexes 
in sleep electroencephalogram 

A.C. Da Rosa a I .  Kemp b, T. Paiva c, F.H. Lopes da Silva d and H.A.C. Kamphuisen b 
a CAPS, IST, Technical University of Lisbon, Lisbon (Portugal), b KNF, Academic Hospital of Leiden, Leiden (The Netherlands), c LEEG, CEEM, 

Santa Maria Hospital, Lisbon (Portugal), and d Dept. of Experimental Zoology, Biological Center, University of Amsterdam, 
Amsterdam (The Netherlands) 

(Accepted for publication: 4 February 1990) 

Summary A model of sleep phasic events such as vertex waves, K complexes, delta waves and sleep spindles is proposed. It consists of 
feedback loops that are driven by white noise (simulating tonic delta and sigma activity) and by isolated random impulses, simulating vertex waves 
or K complexes, depending on the background tonic activity. 

A model-based method for the detection of sleep phasic events was implemented in a personal computer. Its performance was investigated using 
simulated and real whole-night EEG signals. The method was able to detect K complexes and vertex waves in a reliable way in spite of their 
variable shapes and in the presence of a variety of background activities. 

The detector appears to have superior performance to those so far reported in the literature. 
The performance of the detector was also compared to that of an electroencephalographer using normal sleep EEG records of 8 h duration from 

6 subjects. The performance was satisfactory both in terms of accuracy and reliability. The problem of detecting K complexes in stages 3 and 4 of 
sleep is discussed. 
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In  sleep studies vertex waves and K complexes are 
usually evaluated only in a qualitative way. Quanti ta t ive 
evaluation of  these phasic events has been rare (Bremer 
et al. 1970; Sheriff et al. 1977; Othmer  et al. 1980). It  is 
difficult to distinguish K complexes f rom delta waves. 
The usual ways of  defining vertex waves, delta waves 
and K complexes are as follows: 

Vertex waves consist of  triphasic sharp waves with 
50-200  msec duration,  localized over the precentral  
area and observed in stages 1 and 2 of  non-rapid  eye 
movement  ( N R E M )  sleep. According to the official 
definition (Chatr ian et al. 1983) these waves can occur  
spontaneously during sleep or in response to a sensory 
stimulus during sleep or  wakefulness. They may  be 
single or repetitive, and their ampli tude may  vary, but  
rarely exceeds 250 /~V. Delta waves consist of  mono-  
phasic or polyphasic  rhythms of  frequency below 4 Hz  
and ampli tude between 10 and 300/~V (Dutertree 1977). 
A K complex consists mos t . commonly  of  a large ampli- 
tude diphasic slow wave frequently associated with a 
sleep spindle. Its ampli tude is generally maximal  near 
the vertex. K complexes occur during sleep, apparent ly  
spontaneously or in response to sudden sensory stimuli. 

Correspondence to: Agostinho C. Da Rosa, CAPS - Complexo I do 
INIC, Instituto Superior Trcnico, Av. Rovisco Pais, 1096 Lisbon 
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They  are not  specific for any particular sensory modal-  
ity (Chatr ian et al. 1983). Nevertheless these definitions 
do not  provide a sufficiently clear basis for an auto- 
matic sleep analysis method  (Davis et al. 1939; Gas taut  
1953; R o t h  et al. 1956; Johnson  and Karpan  1968; 
Rechtschaffen and Kales 1968; Bremer et al. 1970; 
Kugler  1973; Sheriff et al. 1977; Othmer  et al. 1980; Pal 
et al. 1985; Declerck et al. 1987). 

We describe here how automat ic  analysis can be 
based on models that  simulate the generation of  these 
phenomena.  We also report  the per formance  of  such 
analysis. 

Model  

A model  of  delta waves, K complexes and vertex 
waves ( D K V  model)  should ideally be related to physio- 
logically meaningful  phenomena.  However,  the required 
precise physiological  knowledge is, as yet, not  available. 
Therefore  a general model  already used in the analysis 
of  sleep spindles and alpha rhythms was chosen (Kemp 
and Blom 1981; K e m p  1983, 1987; Kemp et al. 1985, 
1987). 

The basic idea is that  E E G  phenomena  are generated 
by excitatory and inhibitory neuronal  populat ions  inter- 
acting by  means  of  feedback loops. Such models were 
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proposed by Freeman (1972a,b, 1975, 1979) for the 
rhythmic generators in the olfactory system of the rab- 
bit and cat and for the generation of the alpha rhythm 
in the thalamus by Lopes da Silva et al. (1973, 1974, 
1976) and generalized to the cortex by Van Rotterdam 
et al. (1982). The behavior of the alpha model was 
analyzed by Zetterberg et al. (1978) using a system 
theory approach. A simplified version of this model was 
successfully applied to the alpha attenuation latency 
measurement, to the sigma state detection and to the 
monitoring of sleep stages (Kemp et al. 1987). 

The extrapolation from alpha resonance to delta 
resonance is suggested by the works of Ba§ar (1980) and 
Rush et al. (1976, 1977). Ba§ar (1980) analyzed evoked 
responses during sleep by characterizing the spectral 
activities of the EEG before and after a stimulus. The 
conclusion from the point of view of systems theory is 
the existence of a striking similarity between the manner 
of occurrence of delta resonances during slow wave 
sleep and of alpha resonances. Corner (1984) proposed 
a neuronal model for delta wave generation, which also 
includes feedback loops. 

Averaged evoked potentials and K complexes in cats 
were studied using intracortical recordings by Karmos 
et al. (1986) and Jurko and Andy (1978). Both groups 
suggested that K complexes are generated by multiple 
thalamo-cortical feedback loops. Sensory evoked poten- 
tials increase in amplitude from wakefulness to sleep 
and show a transition from vertex waves during light 
sleep to K complexes and delta waves during deep 
sleep. These 3 types of event have similar power spectral 
densities and spatial distributions, with a maximum 
over the vertex (Davis et al. 1939; Brazier 1949; 
Yasoshima et al. 1984; Ujszaszi and Halasz 1988). 
Therefore, we assume that vertex waves and K com- 
plexes may be considered as transient, and delta waves 
as stationary responses of neuronal networks of the type 

Tun Rhg~l~e ( Delta and Sigma) Feedback Model 

n = ~hlte noise s = oi~ .a  loop s lgoal  l(n = s i s . a  loop gain 

Imp = Inpulses d = de l ta  loop s ignal  l(d = del ta  loop gain 
~nl = vo + lap seeg = scalp ee9 ceeg = c o r t i c a l  eeg 

l"ig. 1. K complex, vertex wave and the two rhythm feedback models 
for NREM sleep EEG. The figure shows the simplified structure of 
the model, with only two rhythm generators (delta and sigma feed- 
back loops) and a propagation effect filter. The model assumes that 
the noise input is the excitation of the tonic activity and the impulses 
elicit vertex waves or K complexes depending on the delta loop gain 

in the vicinity of the impulses. 

~ndel-based K-e~plex Detecter 

:;co9 

MLE: delta.window : 5 sec Cbl-square: degree of freedom : 15 

sigma uindau = 4 ~ec prab of enter : .flflilt; 

mean .indow : 2 ~ee Bages Likelihood Ratio Test:  

variance uindt~ : 2 ~ee cfla--clt=B ctfl=cBi:l P(H0]=.9966 

Fig. 2. Model-based K complex detector. The detector is the inverse 
of the model which gives an estimate of the noise and impulse input 
with the aid of a maximum likelihood estimator of the loop gains. The 
non-stationarities in the input process are detected using a combina- 
tion of chi-square and Bayes likelihood ratio tests. The filter char- 

acteristics of the detector are the same as for the model in Fig. 1. 

described above, the basic characteristics of which de- 
pend on the frequency response of the network. 

Fig. 1 shows the general structure of the model. It 
consists of 2 feedback loops, with a bandpass filter and 
a variable gain. Each bandpass filter represents the 
resonance behavior of the neuronal network for a 
specific frequency band (e.g., delta and sigma). The gain 
simulates the general effects of the inhibitory and exci- 
tatory action on the feedback loops. The gain can also 
be interpreted as the level of synchrony within the 
neuronal network. The noise input (wn) represents the 
ongoing background neuronal external activity. The 
pulse input (imp) represents the phasic activity afferent 
to the neuronal network which is responsible for evok- 
ing vertex waves and K complexes. 

A lowpass filter represents the effect of the volume 
conductor from the cortex to the scalp (Pfurtscheller 
and Cooper 1975). 

Detector 

The detector corresponds to the model working in 
the inverse way. By means of the detector, the input 
signal (wni) can be estimated from the scalp EEG. The 
block diagram of the detection process is shown in Fig. 
2. 

At the second summing point ($2) in the model (Fig. 
1) we have the following relationship: 

wni = wn + imp 

wni = cEEG - (Kd. d) - (Ks- s) (1) 

By passing the scalp EEG (sEEG) through the in- 
verse volume conductor filter L -1, the cortical EEG 
(cEEG) is obtained. The delta and sigma loop signals (d 
and s) result from filtering cEEG by the corresponding 
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bandpass filters. Taking into consideration that imp is a 
rare and short event, in a first approach its influence 
can be neglected; it is also assumed that wni is a 
stationary white gaussian process during the observa- 
tion period. The gains (Ks and Kd) are estimated using 
the maximum likelihood (ML) approach as follows: 

The joint probability of a sequence of N samples of 
an independent gaussian process with the mean ~t (zero) 
and variance o (known) is given by 

1 { ( w n i -  ~)2 
p(wni)  = -  e x p -  2,n.a 2 - 202 j (2) 

p (wni l  . . . . .  wniN)  = p(wni l )p(wni2)  ... p (wn iN)  (2a) 

Substituting equation (1) and equation (2) in (2a) 
and taking the two partial derivatives in relation to Kd 
and Ks of this new equation and equating the deriva- 
tives to zero, the ML estimators are ob ta inedby  resolv- 
ing the set of two equations. The symbol ( ) denotes 
estimates. 

^ s u m ( d - c E E G )  • sum(s ,  s) - sum(d ,  s) .  sum(s ,  cEEG)  
Kd = [sum(s .  s) .  sum(d ,  d) - sum(s ,  d)- s u m ( s . d ) ]  (3a) 

^ s u m ( s - c E E G )  • sum(d ,  d) - sum(d ,  s) .  sum(d ,  cEEG)  
Ks = [sum(s .  s) .  sum(d ,  d) - s u m ( s - d ) ,  sum(s ,  d)] (3b) 

sum(x ,  y) = x l .  yl  + x2. y2 + ... + xN.  yN (3c) 

In the case where the assumption of zero mean 
(/~ = 0) does not hold the corresponding ML estimators 
change slightly. In the expressions of the gains estima- 
tors (3a, 3b) all the sum(x, y) terms must be changed to 
nsum(x- y) given by expression (3d). 

nsum(x ,  y) = sum(x ,  y) - [ sum(x) .  s u m ( y ) ] / N  (3d) 

The estimation errors of the gains decrease with the 
increase of the number of observations used in the 
estimator (estimation window). But the increase of the 
window also affects negatively the capability of the 
estimates to track fast changes. The optimal estimation 
windows have to be established experimentally using an 
independent learning set as described in detail in Rosa 
(1989). 

The optimal values for the windows were obtained 
from the learning set, consisting of 2 h of normal night 
sleep record (stages 2 and 4 NREM). These values are 
used in all detections and are indicated in Fig. 2. 

The extraction of the unknown pulses (imp) from 
wni may be accomplished in different ways. A possibil- 
ity is to use a matched filter detector but this is not 
feasible since the mean duration of the impulses can be 
estimated only roughly and their amplitude is unknown. 
Another possibility is to consider the impulses as devia- 
tions from gaussianity of the input process, and to 
detect them by means of a chi-square test (Lopes da 
Silva and Mars 1987). To apply the chi-square test, the 
normalized sum of a set of squared wni must be com- 
pared to a threshold. A deviation of gaussianity is 
decided whenever the threshold is surpassed. The 
threshold depends on the significance level desired. The 

power of the test depends on the number of observa- 
tions in the set (degree of freedom) which has to be 
adapted to the average duration of the deviations from 
gaussianity. 

The occurrence of a sudden change of the mean 
value of the process may indicate the existence of an 
impulse at the input. The occurrence of such a change 
in the mean value is detected by using a Bayes likeli- 
hood ratio test (Whalen 1971). In this test the normal- 
ized estimated mean of the input for each epoch is 
compared to a threshold. The latter depends on the 
probability of occurrence of the impulses and the cost 
factors of true and false detections. The estimation 
window, like the chi-square test, depends on the average 
duration of the change in mean values. Taking into 
account the duration of the phasic events, and by trial 
and error in the simulations, the average duration of the 
change in the mean around 150 msec was established. 

In the development of the likelihood ratio test two 
possibilities were considered: according to hypothesis 
H1 the input process wni is the noise wn and a superim- 
posed constant value m and according to H0 the value 
of m is zero: 

H0 : wni = wn 

H l : w n i  = w n + m  

The likelihood ratio (lr) is given by the ratio of the 
probability density (pl)  of H1 conditioned to the mean 
value m and the probability density (p0) of H0 condi- 
tioned to a zero mean value: 

lr = p l ( w n i  [m) 
p0(wni I 0) (4) 

By substituting (2a) in (4) and taking the logarithms 
(In) of both sides gives: 

ln(lr)  = (N  ./t 2 ) / 2 . 0 2  (4a) 

This ratio is compared to a threshold (L0) which 
depends on a risk criterion. The minimum risk in the 
Bayes criterion (Whalen 1971) is given by 

P(H0)-  [ c l 0 -  c00] 
L0 [1 - P(H0)]  • [ c 0 1 - 8 1 ]  (5) 

where P(H0) is the a priori probability of hypothesis 
H0. The cost decisions are indicated as follows: cOO and 
c l l  are the true negative and positive cost decisions, 
and c01 and c10 are the false negative and positive cost 
decisions respectively. 

Since the interest is to minimize either the false 
positives or the false negatives, both c01 and cl0 are set 
to 1, and disregarding the true positives and true nega- 
tives, both cOO and c l l  are set to 0. The value of 
P(H1) = 1 - P (H0) is related to the ratio of the impulse 
duration and the mean time between impulses (inverse 
of phasic events density). In the visual classification of 
the normal subjects, a global mean phasic events den- 
sity of 1.3/rain was found, corresponding to a value of 
0.9966 for P(H0). The degree of freedom of the chi- 
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square test is 15; it corresponds to the estimated dura- 
tion of the change in the mean of 150 msec (15 samples 
of 10 msec interval). In order to achieve a low level of 
error, the level of confidence chosen was 0.9995. 

If ln(lr) is smaller than ln(L0) one decides for H0, 
otherwise H1 is accepted. 

Fast activities like spindles, beta and EMG artifacts 
can be expected to induce a large number of false 
positives when using the chi-square method. Slow activi- 
ties, such as a short burst of delta rhythm or eye 
movement artifacts and electrode movements are ex- 
pected to cause problems with the likelihood ratio test, 
because in these cases the means are not zero. The 
combined use of the two tests gives a better perfor- 
mance because the sets of false positives of the two 
methods do not overlap. 

The estimation windows of the mean and variance of 
the input noise process reflect the amount of back- 
ground activity of the same duration. Both windows 
were set to 2 sec because, according to the first crite- 
rion, the observer manually compared the amplitude of 
the phasic event to the preceding 1 or 2 sec of back- 
ground activity. The estimation windows used for the 
sigma and delta gains were tuned to the characteristics 
of these rhythmic activities. In preliminary trials, using 
a learning set, it was found that the performance of the 
detector was not very sensitive to changes of the window 
length in the range from 2 to 8 sec; thus intermediate 
values were chosen: 4 sec for the sigma window and 5 
sec for the delta window. The threshold levels should 
correspond with visual scoring amplitude threshold 
criteria. The adjustment of these thresholds was neces- 
sarily a trade-off between false positives and false nega- 
tives. The final choice was a result of a trial and error 
procedure. 

Simulations 

The behavior of the model is evaluated using simu- 
lated signals. 

The depth of slow wave sleep (SWS) was simulated 
by adjusting the amount and the amplitude of the delta 
waves. This was controlled by the value of the corre- 
sponding feedback loop gain. The same procedure was 
used for the sigma rhythm. Vertex waves and K com- 
plexes were simulated by applying impulses at the input 
of the model, using different delta loop gains. 

The model was simulated digitally by using a per- 
sonal computer. The bilinear filters in the feedback 
loops were of second order with center frequencies at 2 
Hz and bandwidth ( - 3  dB) of 3.5 Hz for the delta 
rhythm and at 14 Hz and bandwidth of 6 Hz for the 
sigma rhythm. The low pass first-order filter had a 
cut-off at 2 Hz. The noise was generated by transform- 

ing a pseudorandom binary sequence with uniform den- 
sity into a gaussian distribution. 

Simulations were done in the following way: the 
background activity was simulated using the estimated 
delta and sigma' loop gains calculated from the sleep 
EEG of a normal subject (8 h); simulated K complexes 
were obtained by superimposing random impulses on 
the noise input at a mean frequency of 2.4/min. This 
frequency is arbitrary and it is the average of values 
reported by several authors (Halasz 1985; Gaillard 
1987). 

Comparison of the performance between the detector 
and the independent visual scorer was done by using 
the two simulated EEG records with different squared 
impulse amplitude to noise variance ratios (A/N) .  

Subjects 

Six adult normal subjects, with ages between 21 and 
26, 5 females and 1 male, spent 3 nights at the labora- 
tory (1 for adaptation and 2 for recording) in a 
soundproof and temperature controlled room. Only the 
third night was scored. 

Polygraphic recording consisted of 9 channels of 
EEG with linked ears as reference, filtered by analog 
filters with 0.3 sec time constant and 30 Hz cut-off 
frequency, 1 submental EMG channel, 1 channel of 
EOG from the outer canthi of both eyes, plethysmogra- 
phy of the index finger, respiration from nostrils and 
mouth thermistors and ECG. The EEG signals were 
digitized at 100 Hz; the other channels at different 
sub-sampling frequencies; all channels were stored on 
digital cartridge tape. Continuous paper recording was 
also used. 

The records were scored visually in digitized and 
analog form using Rechtschaffen and Kales (1968) 
criteria. 

K complexes and vertex waves were scored in one 
EEG channel C4-A1, using the criteria of Paiva and 
Rosa (1989) adapted from Declerck (1987): non-sta- 
tionary event; peak-to-peak amplitude twice that of the 
background activity measured peak to peak within the 
preceding 1 sec in stages 1 or 2 and 2 sec in stages 3 or 
4; bi- or triphasic morphology with asymmetrical slopes; 
duration between 500 and 3000 msec; isolated or in 
pairs. 

The detector, with the same set of estimation windows 
and threshold levels used for the simulated signals, was 
applied to the real signals (C4-A1). 

During paradoxical (REM) sleep, waking and arousal 
periods the detections were not considered. The detec- 
tor is only sensitive to the transient part of the longer 
non-stationarities since it adapts quickly to the new 
characteristics of the EEG; that is, to the first segment 
of an arousal, a movement or an awakening period. 
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Results 

The dependence of the simulated delta activity on 
the delta feedback loop gain has been examined. For  
simplicity and in order to eliminate the influence of 
other loops, only the delta frequency band feedback 
loop was considered. Fig. 3 shows that larger gains 
provoke greater amounts of low frequency activity as 
expected. Superficial SWS stages (1 and 2) were simu- 
lated using gains below 0.5 while deeper SWS stages (3 
and 4) were simulated using gains between 0.5 and 1. 

The possibility for the model to generate phasic 
events in response to pulse inputs has been investigated. 

Xd=B, 1 

Ka=9.3 I(l:B H[B,3) 

M:2.6 ]d:3.5 

Xd.:8.5 [ 49pv 

I J I ~ C ;  

kd=8.? 

Fig. 3. Simulation of slow wave sleep (SWS). The figure shows 
simulated examples of SW sleep EEGs of 15 sec duration. The SWS 

depth is controlled by the delta loop gain Kd  of the model. 

k~I:.3 

ld=.~ 

ki ~ 2.hi 

~ZSO ms ~ZO0 ms H30O I~s imp 
Fig. 4. Simulation of K complexes. The figure shows simulation 
examples, when square impulses of 200 msec and 300 msec duration 
are added to the noise input of the single loop model. The squared 
amplitude of the impulse to the noise variance ratios ( A / N )  are 12 
and 15 dB. For the same impulse the response changes from mono- 

phasic to polyphasic with the increase of the delta gain. 
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Xd=8,3 lira=. E~ 

Kd:B.5 Xs:.56 

Impulses of ZSfl ms duration and of amplitude kl Imp 

~i0ma gain (l~z) 

Fig. 5. Simulation of spindles and K complexes, The figure shows 
simulation examples, when impulses of 200 msec duration and A / N  
ratio of 6 dB are added to the noise input of the 2-loop feedback 
model. A pair of constant delta and changing sigma gains is used for 

each trace. 

Fig. 4 shows simulations with varying gains and con- 
stant input pulses. Different types of input pulses were 
tried. The response of the model to a single volley, 
represented in a simplified form by a square wave input 
pulse of 100 msec duration, simulated either mono- 
phasic vertex waves or biphasic or polyphasic K com- 
plexes. It depended mainly on the ongoing background 
activity which was related to the delta feedback loop 
gain and also to the ratio of the pulse amplitude and 
duration. 

The model with two feedback loops was used in the 
simulations. The inclusion of the sigma loop not only 
allowed the simulation of sleep spindles but also added 
more variability to the simulated sleep EEG signals. 
Fig. 5 demonstrates the occurrence of simulated sleep 
spindles, either isolated or associated with K complexes. 
A realistic simulation of burst-like sleep spindles of 
variable duration was achieved by modulating the sigma 
loop gain with square wave forms. 

The performance of the automatic detector and of 
the visual scorer applied to simulated K complexes has 
been analyzed. Table I shows the results of visual scor- 
ing and automatic detection using as reference the 
known impulses. In both simulations the detector per- 
formed better than the visual scorer. The performance 
of visual scoring and automatic detection decreased 
with decreasing A/N ratios. In the lower part of Table 
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TABLE I 

Both tables show the visual scoring and automatic detection perfor- 
mance to simulated signals. In the upper part the reference is the 
known added pulses. The detector performs slightly better than visual 
scoring. Both visual and automatic detection deteriorates with de- 
creasing A / N  ratio. In the lower part of the table the visual score is 
used as reference. It is curious to find that the performance of the 
detector is very similar to that obtained in the case of real signals. 

Simulation a Simulation B 
( A / N  = - 8.75 dB) ( A / N  = - 10.51 dB) 

T M F T / R  F / R  T M F T / R  F / R  
(%) (%) (%) (%) 

Detect. 1070 81 48 92.9 4.2 836 315 48 72.3 4.2 
Visual 938 213 31 81.5 2.7 790 361 25 68.6 2.1 

Detect. 902 67 216 93.0 22.2 641 174 243 78.6 29.8 

T = true positive; F = false positive; M = false negative. 

I, the visual scorer was used as reference; for simulation 
B the performance of the detector is similar to the 
results obtained from normal sleep signals (Table II). 
Fig. 6 shows examples of typical situations. 

The performance of the detector was analyzed by 
applying it to the night sleep records of 6 normal 
subjects. Table II shows the performance for 6 normal 
subjects, using as reference the visual scores obtained by 
an experienced electroencephalographer. The global true 
detection rate for all sleep stages was 89%, varying 
between 83 and 92%, and the number of false positives 
was 49%, ranging between 32 and 157%. For K com- 
plexes in stages 1 and 2 the true detection rate was 94%, 
ranging between 87 and 97%, whereas the false detec- 
tion rate was 13%, varying between 7 and 23%. Fig. 7 
shows the true detection (T), false positive (F) and false 
negative (M) rates in percentages, using as reference the 
visual score (R = T + M). The upper part shows K 
complex detection performances in percentages in stages 
1 and 2, where the contribution of the K complex for 
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True.Missed 

True,True 
• t a g e  2 

SOpU I, 
N I t see ~ H 

True,rlissed 

surge 3 

True,True False,True He9 

- -  ~ I Boc 

TPIIF~,TPII~ 

Fig. 6. Automatic  and visual detection of simulated signals. The figure 
shows typical situations. The first symbol of  the detection pair refers 
to the automatic detector and the second to the visual scorer. The 
reference is the known added impulse. Most of the misses in visual 
scoring are caused by vertex waves in stage 1 and K complexes in 

stage 4. 

stage classification is more important; the true detection 
percentages are in most cases over 90% and the false 
positives are in most cases below 20%. The lower part of 

TABLE II 

Performance of automatic detection of real EEG signals. Individual and group values are presented. The true positive to reference percentage 
( T / R )  is 94% for K complexes in stage 2 and 89% for vertex waves and K complexes in all SWS stages. The false positive to reference percentage 
( F / R )  is 13% for K complexes in stage 2 and 49% for vertex waves and K complexes in all SWS stages. 

K-compl. stage 2 Vertex and K compl, all K compl, stage 2 (%) All events (%) 

T M F T M F T / R  F / R  T / R  F / R  

APBS 26 4 6 94 18 176 86.7 20.0 83.9 157.1 
CJCT * 151 14 38 293 52 135 91,1 23.0 84.9 39.1 
ATPD 237 13 44 695 76 384 94.8 17.6 90.1 49.8 
M H A D  323 23 28 769 158 349 93,3 8.1 82.9 37.6 
MJAD 466 26 71 978 82 662 94,7 14.4 92.3 62.2 
MHAB 341 12 24 698 68 247 96.6 6.8 91.1 32.2 

Total 1544 92 211 3527 454 1953 94.3 12.9 88,6 49.0 

T = true detection; F = false positive; M = false negative; R = reference (T + M). 
* Only 5 h of recording. 
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Fig. 7. Performance of the automatic detector. The upper part of the 
figure shows the performance of the detector in detecting K com- 
plexes in stages 1 and 2. The individual rates are homogeneous across 
the normal subjects analyzed. The detection performance for vertex 
waves and K complexes in all SW sleep stages for all subjects is also 
homogeneous except for the false detection rate, which increases with 

the depth of the sleep stage. 

smooth changes in the delta feedback loop gains. The 
transient (phasic) K complexes and vertex waves are 
described by pulses added to the input of the model. 
The sudden changes of the sigma feedback loop gain 
simulate sleep spindles. 

From the simulation results one may conclude that 
the two phasic events, K complexes and vertex waves, 
are basically the same phenomenon. The different mor- 
phologies depend on the state of one parameter, the 
delta gain, closely associated with the NREM sleep 
stages. The noise input causes the simulated phasic 
events to have variable shapes even when the gains are 
kept constant. This corresponds closely to what can be 
seen in the real EEG. Accordingly, one can state that 
vertex waves and K complexes belong to the same 
family of low frequency phasic events. Impulses (or 
micro-arousals) occurring during low levels of tonic 
activity result more probably in vertex waves, while K 
complexes are more likely to appear during moderate 
levels of tonic activity. 

Using simulated signals it was shown that the detec- 
tion performance level depends on the SIN ratio; the 
automatic true detections were 72 and 93%; false posi- 
tives were both 4% for the two cases investigated (rec- 
ords A and B) respectively. Visual scoring of the same 
records yielded slightly lower accuracy of detection, 69 
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the figure shows the detector performance for vertex 
waves and K complexes in stages 2, 3 and 4. The true 
detection and false negative percentages were homoge- 
neous in all 3 stages, but the false detection percentage 
increased with deepening of the SWS. Fig. 8 shows 
examples of typical situations in stages 2 and 4. The 
false positives were found mainly (about 90%) in stages 
3 and 4. 

Discussion and conclusions 

According to this simple model the description of 
sleep EEG activity may be reduced to a combination of 
3 parameters. The slowly varying statistics of the back- 
ground (tonic) slow wave activity are characterized by 
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Fig. 8. Automat ic  detection of real EEG signals. The figure shows 
examples of typical situations of V wave false negatives (vertex waves 
missed) and K complex true detections (true), false positives (false) 

and false negatives (missed) in stages 2 and 4. 
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and 82%, and the false positives were similar, 2% and 
3%. These results demonstrated the validity of the 
model; most of the simulated events were recognized as 
real and gave some confidence in the model-based de- 
tector. The simulated signals, albeit artificial, provided 
a precise and objective reference for the pulse inputs 
(imp). 

In real sleep signals from normal subjects, the num- 
ber of detections in which automatic and visual scoring 
agreed reached levels of 94% and 89% for K complexes 
in stages 1 and 2 and for vertex waves and K complexes 
in all NREM stages respectively. The average number 
of false positives was 13% for K complexes in stages 1 
and 2 and 49% for all events. As shown in Fig. 7 the 
false positive rate increased with the depth of the SWS, 
90% of the false detections being found in stages 3 and 
4. These figures are not surprising, because in stages 3 
and 4 it is very difficult to distinguish visually the 
phasic events due to large amplitude delta activity, part 
of which, at least, can be detected as K complexes by 
the automatic detector. 

Three automatic K complex detectors were previ- 
ously reported in the literature. Bremer et al. (1970) 
described a deterministic wave form detector imple- 
mented in hardware. The agreement between the auto- 
matic detection and two scorers was 63% and a large 
number of false positives, especially in stages 3 and 4, 
was reported. Sheriff et al. (1977) presented a detector 
based on matched filters designed from a template wave 
form which was tested using a small sample. The maxi- 
mum number of K complexes scored was 142 by the 
automatic detection and the true detection and false 
positive percentages were 67 and 154% respectively for 
one of the scorers and 85 and 52% for the second scorer. 
Othmer et al. (1980) reported a detector based on the 
slopes and peak amplitudes of the delta waves. The 
data presented in these papers are not in a suitable form 
for direct comparison. 

A difficulty in performance comparison of human 
scorers and automatic detectors is the lack of con- 
sistency of the former. In the case of K complexes, 
Bremer et al. (1970) found an agreement between two 
scorers of only 50 and 57% and Sheriff et al. (1977) 
found still lower values, 32 and 61%. This means that 
the reference set is poorly defined. For this reason we 
restricted our comparison to one electroencephalogra- 
pher only; however, the performance of the automatic 
detector can be changed easily to suit other EEGers by 
changing its parameters. An essential advantage of the 
automatic method is that such a change is always car- 
ried out in an explicit and quantitative way, so that the 
results are always reproducible. 

It was shown that the detector using a model-based 
approach is able to detect quite accurately K complexes 
and vertex waves in stages 1 and 2 NREM and can 
achieve the goal of substituting for visual scoring in 

these stages. However, for stages 3 and 4, the level of 
true detections was preserved, but because of the large 
number of false positives the detector can only be used 
as a guide for visual selection, thereby reducing drasti- 
cally the visual detection effort. In future studies the 
performance may be improved further by using the a 
posteriori knowledge of the statistical properties of the 
estimated gains and of the input pulse; another step will 
be the inclusion of theta and alpha rhythm loops in the 
model, in order to prevent their recognition as non- 
stationarities. 

The parameters of the feedback loop filters can be 
tuned to any individual sleep EEG, but the results 
showed that in the normal population studied the detec- 
tor is robust for inter-individual variations and tuning 
was not needed. 

A further improvement may be achieved by adopting 
a self-adaptive estimation scheme for the feedback loop 
gains, where the windows are sensitive to the respective 
activity. In this way the problem of obtaining a satisfac- 
tory compromise between accuracy of estimation and 
tracking speeds may be optimized. 

It is expected that technological improvement of the 
detector, advances in the understanding of the physio- 
logical functions and more experience in detecting and 
scoring K complexes in a variety of EEG sleep records 
may contribute to better performances, especially dur- 
ing the deeper slow wave sleep stages. 

We thank Prof. Nunes LeitSo for his helpful discussions and 
orientations given to this work, and Dr. A.C. Declerck and Prof. P. 
Halasz for the introduction to the problem of K complexes. 
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