
A compositional model for the formal
specification of user interface software

Panagiotis Markopoulos

Submitted for the degree of Doctor of Philosophy

March 1997

1

A compositional model for the formal specification of user
interface software

Panos Markopoulos

Submitted for the degree of Doctor of Philosophy, March 1997.

Queen Mary and Westfield College

University of London.

Abstract

This thesis investigates abstractions for modelling user interface software, discussing
their content and their formal representation. Specifically, it focuses on a class of
models, called formal interactor models, that incorporate some of the structure of the
user interface software. One such abstract model is put forward. This model is called
the Abstraction-Display-Controller (ADC) interactor model; its definition draws from
research into user interface architectures and from earlier approaches to the formal
specification of user interfaces.

The ADC formal interactor model is specified using a specification language called
LOTOS. Several small scale examples and a sizeable specification case study
demonstrate its use. A more rigorous discussion of the ADC model documents its
properties as a representation scheme. The ADC interactor is compositional, meaning
that as a concept and as a representation scheme it applies both to the user interface as a
whole and also to its components. This property is preserved when interactors are
combined to describe more complex entities or, conversely, when an interactor is
decomposed into smaller scale interactors. The compositionality property is formulated
in terms of some theorems which are proven. A discussion on the uses of the ADC
model shows that it provides a framework for integrating existing research results in the
verification of formally specified user interface software. Finally, the thesis proposes a
conceptual and formal framework for relating interface models to models of users’ task
knowledge capturing some intuitions underlying task based design approaches.

2

Acknowledgements

I wish to acknowledge the help of all my colleagues in the Department of Computer
Science at Queen Mary and Westfield College, who provided an active research
environment, practical support and advice. In particular, I would like to thank Peter
Johnson and Jon Rowson for their supervision.

I am grateful to Stephanie Wilson and John Samuel for all their work in proof reading
the thesis, but also for advising and encouraging me while I was working on it. Also, I
would like to thank Eamonn O’Neill for helping debug parts of the thesis.

Acknowledgement is also due to INRIA (France), to UPM (Madrid) and CNR (Pisa) for
providing the software tools which I have used in this research.

Finally, I owe a big thank you to my parents Dimitris and Christina for caring and for
supporting me morally and materially throughout my studies, and to my wife Annick
who endured the long build-up to the submission of the thesis and made it a happy time.

3

Contents

Abstract ... 1

Acknowledgements ... 2

Contents... 3

List of Figures ... 9

List of Tables... 11

Chapter 1

Introduction ... 12

1.1 Human Computer Interaction.. 12

1.2 Formal methods of software engineering.. 13

1.3 The application of formal methods to HCI ... 15

1.4 The thesis and the research method... 16

1.5 Overview of the thesis... 17

Chapter 2

User interface architectures... 20

2.1 Some basic terminology .. 20

2.2 Architectures of user-interface systems .. 21

2.3 A reference model for user interface architectures 22

2.4 Separation of interface and application... 23

2.5 Object-based architectures .. 24

2.5.1 The MVC architecture ... 25

2.5.2 The PAC architecture... 26

2.5.3 The composite object architecture ... 27

Contents

4

2.5.4 The ALV architecture .. 27

2.5.5 The Garnet UIMS... 29

2.6 Composition structures in object-based architectures................................... 29

2.7 Conclusions ... 31

Chapter 3

Interactors: the concept and its evolution.. 32

3.1 Specifications as a tool in the design of interactive systems......................... 32

3.2 Structure and abstraction level in the specification of interactive
systems .. 34

3.3 Dialogue specification notations ... 36

3.4 Using general purpose specification notations to specify interactive
systems. ... 37

3.5 Abstract Models .. 40

3.5.1 The state-display model ... 41

3.5.2 The PIE model ... 43

3.5.3 Interactive Processes.. 46

3.5.4 Agents .. 47

3.6 Interactor Models .. 48

3.6.1 The York interactor model... 49

3.6.2 The GKS input model and the Pisa interactor model....................... 51

3.7 A formal framework for modelling interface software 57

3.8 A brief introduction to LOTOS... 59

3.8.1 Action Prefix.. 60

3.8.2 Process definition... 60

3.8.3 Process Instantiation .. 61

3.8.4 Choice .. 61

3.8.5 Synchronisation and interleaving... 62

3.8.6 Enable... 63

3.8.7 Disable ... 63

3.8.8 Hide.. 64

3.8.9 Action specification in full LOTOS... 64

3.8.10 Interprocess communication in LOTOS .. 65

Contents

5

3.8.11 State parameters for processes ... 66

3.8.12 ACT-ONE data types... 67

3.8.13 Specification styles for LOTOS... 68

3.9 Conclusion... 70

Chapter 4

The ADC interactor model.. 72

4.1 Dimensions for the description of interactive components........................... 72

4.2 Overview of the ADC model... 75

4.3 Specification of the Abstraction-Display (AD) data type 76

4.4 The Abstraction Display Unit.. 79

4.5 The Constraints Component.. 80

4.6 A simple example: The specification of a scroll bar..................................... 82

4.7 The Controller Unit ... 85

4.8 The scrollable list example: composition of two interactors......................... 88

4.9 Some first comments on the ADC interactor model 91

4.10.1 Modelling interfaces as composition graphs.................................... 94

4.10.2 Compositionality of the ADC model ... 94

4.10 Summary ... 95

Chapter 5

A case study in the use of the ADC interactor .. 96

5.1 Motivation for the case study .. 96

5.2 Simple Player™: the subject of the case study ... 98

5.3 Some basic concepts of QuickTime™ .. 99

5.4 Interaction with Simple Player™.. 100

5.5 Scope of the specification.. 102

5.6 A summary of the specification process and its product............................... 102

5.6.1 Example: The specification of volume control............................... 106

5.7 The approach to specifying each interactor... 108

5.8 Improvements to the ADC Model... 109

5.8.1 Non data-carrying actions .. 110

5.8.2 Abstraction-Only, Display-Only and Controller Interactors............ 110

5.8.3 Logical connectives.. 111

Contents

6

5.8.4 Temporal Constraints... 113

5.9 Assessment of the study: lessons drawn and limitations............................... 116

5.10 Conclusions ... 118

Chapter 6

Synthesis, Decomposition, and Abstract Views.. 120

6.1 Rigorous definition of the ADC interactor.. 120

6.1.1 Topology of interactor gates .. 121

6.1.2 The set of possible interactions.. 123

6.1.3 The syntactic structure of ADC interactors...................................... 123

6.1.4 The AD data type specification.. 123

6.1.5 Elementary ADU.. 124

6.1.6 A well formed ADU... 125

6.1.7 The controller unit (CU)... 126

6.1.8 Conclusion ... 127

6.2 Synthesis.. 127

6.2.1 Synchronous Composition of Interactors... 128

6.2.2 Correctness of the synthesis transformation for synchronous
compositions .. 131

6.2.3 Correctness of the composition with [] (choice).............................. 135

6.2.4 Correctness of the composition with [> (disable) 137

6.2.5 Example ... 138

6.2.6 Discussion .. 142

6.3 Abstract Views of Interactors.. 143

6.4 Decomposition... 146

6.4.1 Decomposition of an elementary ADU.. 147

6.4.2 Decomposition of a well formed ADU.. 151

6.5 Parameterised behaviours.. 152

6.5.1 Synthesis and the SSRRA behaviours ... 153

6.5.2 Decomposition of the CU .. 154

6.6 Dialogue Modelling... 157

6.7 Conclusions ... 159

Contents

7

Chapter 7

Use of the ADC model .. 163

7.1 Predictability and observability properties.. 163

7.1.1 Example: Predictability of the scrolling list..................................... 170

7.1.2 Validity of predictability and observability formalisations 171

7.1.3 Verification of predictability and observability properties.............. 172

7.2 Dialogue analysis .. 173

7.2.1 Informal description of dialogue properties..................................... 174

7.2.2 Formal specification of dialogue properties 176

7.2.3 Constructive specification of properties with LOTOS 179

7.2.4 Conclusion ... 181

7.3 Top-down interface design and the ADC interactor model 182

7.4 Relating interactor specifications with a task model..................................... 189

7.4.1 Some elements of the TKS theory ... 190

7.4.2 Formal representation of the temporal structure of a task 191

7.4.3 Task based design and the property of task conformance 192

7.4.4 Relating task and interface representations...................................... 194

7.4.5 A formal definition of task conformance... 197

7.4.6 Example: Testing for task conformance. .. 201

7.4.7 Related work .. 204

7.4.8 Discussion .. 205

7.5 Conclusions ... 206

Chapter 8

Conclusions ... 209

8.1 Summary of the thesis ... 209

8.2 Discussion and Future Work ... 210

8.3 Contributions... 215

References ... 218

Appendix ... 234

A.1 Equivalence and pre-orders of processes .. 234

A.2 Graphical Composition Theorem for Parallel and Hiding Operators............ 236

Contents

8

A.3 Action Based Temporal Logic (ACTL) .. 238

A.4 LOTOS specifications for the decomposition example 240

9

List of Figures

Fig. 2.1 The Arch Reference Model 22

Fig. 2.2 The MVC Architecture 25

Fig. 2.3 The PAC architecture 26

Fig. 2.4 The TUBE architecture 27

Fig. 2.5 The ALV architecture 28

Fig. 2.6 Composition of objects in the Rendezvous architecture 28

Fig. 3.1 Classification of approaches to the formal specification of user interface
software 35

Fig. 3.2 Abstract models and the formality gap 40

Fig. 3.3 The PIE and red-PIE models 43

Fig. 3.4 The York interactor model 49

Fig. 3.5 Traces of events and the York interactor model 50

Fig. 3.6 Hierarchical Input Devices 51

Fig. 3.7 Black box view of the Pisa interactor. 53

Fig. 3.8 The detailed view of Pisa interactor model 54

Fig. 3.9 Modelling a scrollbar using the Pisa interactor model 55

Fig. 3.10 Use of LOTOS specification styles during the design process 69

Fig. 4.1 The ADU component 77

Fig. 4.2 Composition of the ADU and the CC 81

Fig. 4.3 The ADC interactor and its internal structure 85

Fig. 4.4 Diagrammatic representation of the ADC interactor 87

Fig. 4.5 A scrollable list as a composition of a list-window and a scrollbar 88

Fig. 4.6 Modelling the scrollable list as a composition of interactors 88

Fig. 4.7 A software architecture comparable to a monolithic ADC interactor 93

List of Figures

10

Fig. 5.1 The Quicktime architecture. 99

Fig. 5.2 A snapshot of Simple Player™ 100

Fig. 5.3 The scope of the case study 102

Fig. 5.4 The behaviour of the functional core for the case study 103

Fig. 5.5 The composition of interactors modelling Simple Player™ 104

Fig. 5.6 Abstraction-only, Display-only and Controller-only interactors 110

Fig. 6.1 The range of connection types of ADC interactors 129

Fig. 6.2 Types of connections which have been ruled out 130

Fig. 6.3 The synthesis applied to the synchronous composition 135

Fig. 6.4 The composition of three interactors of Simple Player™ 139

Fig. 6.5 Synthesis and the Partial Synchronisation of Abstract Views 144

Fig. 6.6 Synthesis and the Dynamic Composition of Abstract Views 145

Fig. 6.7 Dialogue of an Abstract View 158

Fig. 6.8 Components of ADC interactors 160

Fig. 6.9 The range of possible interactors and abstract views 160

Fig. 6.10 Overview of the synthesis transformation 161

Fig. 6.11 Overview of the decomposition transformation 161

Fig. 7.1 Tool support for the verification of dialogue properties 181

Fig. 7.2 Simple Player™ as an ADC interactor 185

Fig. 7.3 Application of the decomposition transformation 187

Fig. 7.4 The TKS model of user task knowledge 190

Fig. 7.5 Overview of task based design 193

Fig. 7.6 A framework for relating interactor to task specifications 195

Fig 7.7 Mapping between task and interface models 196

Fig. 7.8 The task of producing and invitation 202

Fig. 7.9 Modelling Word 5 and Word 6 with the ADC interactor model 203

11

List of Tables

Table 3.1 Some notation for describing an LTS 58

Table 3.2 LOTOS syntax and semantics 65

Table 3.3 Types of interaction between synchronised LOTOS processes 67

Table 5.1 Logical connectives, their structure and their visual representation 112

Table 6.1 Each row shows a combination of transitions and the condition put
on the label sets of the components and G, G1, G2 for it to be
possible for both DF and CF 132

Table 7.1 Expressions of predictability and observability properties 166

Table 7.2 The conjunction of the static and dynamic expressions of
predictability and observability properties 168

Table 7.3 Predictability of a sequence of user-input s 168

Table 7.4 A state-based scheme for the classification of dialogue properties 175

Table 7.5 The meaning of LOTOS operators in the context of task modelling 192

12

Chapter 1

Introduction

This chapter introduces the main themes of the thesis: Human-Computer Interaction,
Formal Methods in Software Engineering and, more specifically, the application of
Formal Methods to the design and development of user interface software. The user
interface is a component of the software and hardware implementing an interactive
system, which mediates between the computer and its human user. Methods and tools
are needed to support the engineering of user interfaces [15, 87] and Formal Methods are
discussed in this light. This chapter raises the central question: “What are the
appropriate abstractions for modelling and engineering user interface software?” The
thesis discusses properties of such abstractions and proposes an appropriate formal
model. This chapter concludes with an overview of the thesis.

1.1 Human Computer Interaction

Human-Computer Interaction (HCI) is a multi disciplinary field that concerns the use of
interactive computer systems by humans. Diverse scientific disciplines, such as
psychology, ergonomics and sociology, may help provide theories and models for the
explanation of the phenomena pertaining to the interaction of humans and computers.
Graphic and industrial design may help improve the presentation of interactive systems.
Computer science and engineering are necessary to build these systems.

The central problem for HCI is an engineering one, that of developing systems that will
satisfy the needs of their users. Arguably, the major portion of this engineering effort is
in developing the software for the user interface [139]. The user interface mediates
between two participants in interaction: a human operator and the computer hardware
and software that implement the interactive system. The development of the user
interface is inherently difficult [138]. Current practice in user interface design relies
largely upon the talent of individual designers and in this sense it may be considered as a
craft, if not an art [51]. Much is to be gained if the study of human-computer interaction

Chapter 1 Introduction

13

can provide guidance in terms of engineering principles, tools and methods specific to
the problem of designing and developing user interface software.

The research presented in this thesis adopts this software engineering view of HCI. This
should not suggest that the importance of the other contributing disciplines is not
recognised. On the contrary, it is a definitive aim of research in software engineering
methods in HCI to provide the practical means by which such bodies of knowledge may
feed into the development of computer systems. This thesis does not provide a theory of
what is a usable system or of how the productivity and the creativity of the user of a
system may be assisted. It is concerned with the development of theoretical models that
describe human-computer interfaces and the study of their use so that they assist the
engineering of user interfaces. In particular, it examines how a class of software
engineering methods, known as formal methods, can contribute to this task.

1.2 Formal methods of software engineering

Formal methods are mathematically based techniques used in system development.
They provide a framework for systematically specifying, developing, and analysing
systems. A formal method is associated with a formal specification language, which has
a formal syntax and a formal semantics, and is based upon a logical inference system
[190]. The latter is a way of characterising which objects in the semantic domain satisfy
a specification. It is important to maintain the distinction between the specification and
the object it describes. The term specificand [190] is used to refer to the latter. In this
thesis the specificand is the user interface software or some part of it. A specification is
a model of the specificand. In other words, the specification can be seen as a
representation from which predictions are derived regarding the object it represents.
Predictions may be made directly using the logical inference system that underlies the
formal method or indirectly via tool support that is based on this inference system.

Formal specifications are an attractive representation technique for the software engineer
because they are economical and they are unambiguous. They are economical because
they can abstract away from detail that is not relevant for the predictions they aim to
make [38]. By means of abstraction a formal specification describes a class of objects
that adhere to the same abstract description. There may be numerous abstractions of the
same specificand, e.g. in terms of rules pertaining to its behaviour, the timing of its
behaviour, or even stochastic aspects [176]. A specification may address various
abstraction levels, e.g. for graphical output they may concern pixels, windows, etc. A
formal specification is unambiguous because it has only one meaning: it should always
be clear whether a particular object of the semantic domain belongs to the class of
objects described by the specification. This is the main difference from informal
specifications which different readers may interpret differently or even the same person
might interpret in different ways at different times. Finally, a minimal requirement from
any formal specification is that it be consistent, in that no two contradictory statements
can be inferred from the specification.

Chapter 1 Introduction

14

But when is a formal specification a useful engineering tool? Clearly, the set of
predictions made with the formal method should be relevant to the task for which they
are used. To apply formal methods to a particular problem domain, the general
characteristics of the objects of this domain have to be captured in a generic model
[192]. The success of such a model depends on its potential to produce valid and useful
predictions about the problems of the particular domain. The validity of the model can
be refuted but it cannot be proved [38]. However, confidence that the model is an
appropriate representation for the objects of the problem domain that it represents
increases with each successful application of the model. The practical application of the
model also seems to be the only definitive testimony of how useful it may be. As
Gaudel [73] points out, a formal model tailored for a specific problem domain should
mask, as far as possible, the underlying mathematical concepts. This will make it more
accessible to the persons involved in the software development.

Another important issue in the application of formal methods is the need to structure
specifications in order to master their size and complexity. Finding an appropriate
structure for formal specifications is a key problem for scaling up the use of formal
methods to industrial scale problems [179]. Methods for structuring specifications are
dependent on the application area, so this thesis will examine such methods in the
context of specifying user interface software.

Another dimension for characterising a formal model is its expressive power, i.e. the
range of the objects in the represented world that are successfully described by the
model. The quality of the predictions made depends on the analytical power of the
model. In turn, this depends on the underlying specification language and its expressive
power. Usually, the weaker the expressive power, the stronger the analytical power will
be [38]. This suggests that special purpose models of interface software that have a
modest expressive power may be preferred over general abstractions or more powerful
formal models.

The specification is subject to several manipulations that are used in the development
process. These manipulations, or transformations, are essential tools in the development
of any system [38]. They must be guaranteed to be property-preserving. For example, a
specification may be broken down to smaller modules, it may be used to construct higher
level specifications, or it may be refined to a more detailed description of a behaviour
that satisfies it [158]. The specification may be used as the basis for testing an
implemented system or for verifying a system formally.

The real test for formal methods is the pragmatic issue of whether they aid system
development. The utility and the acceptance of a formal method depends on the
efficiency with which it is applied, how its use affects the quality of the software
produced, and the potential of scaling up its use to problems of realistic size. It is an old
and on-going debate whether or not formal methods benefit software development.
Some of the most controversial issues are discussed in [24, 80]. The role that formal
methods should play in software development is an issue of a strong debate even among
some of their most staunch supporters. The reader is referred to [166] for a discussion

Chapter 1 Introduction

15

on the role of formal methods, by some of their most outstanding proponents and
sceptics.

Currently no scientific assessment has been undertaken, concerning the impact formal
methods have on the processes and products of the computer industry [26, 74]. The state
of the technology in the area is changing constantly and a verdict on the benefits of
formal methods, in a particular problem domain, can only be ephemeral. It seems a
more pragmatic and fruitful research venture to try to understand the limitations of
current methods, with respect to a particular problem domain, and to investigate how
improvements can be achieved.

1.3 The application of formal methods to HCI

It is a widespread view in the software engineering community that formal methods are
not applicable in the development of user interfaces, e.g. [25]. However, the application
of formal methods to the study of HCI has a history of more than ten years. Formal
languages, i.e. languages with a formal syntax, have been adopted by HCI researchers as
notations to specify and communicate models of users, systems and interaction, e.g. [78,
86]. A strand of research closer to the traditions of software engineering has been
concerned with developing abstract models of interactive systems, which are used to
predict the usability consequences of design decisions. This has resulted in the generic
mathematical formulation of properties that are related to the usability of a specified
system [84, 85, 49]. The verification of interaction properties using formal models may
provide greater assurance of software usability earlier in the design process.

Research into abstract models of interactive systems can been criticised on, at least, two
accounts. One is the validity of the predictions, which is an empirical question [49, pp.
77]. Another is the difficulty of applying abstract models to the construction and
concrete detail which reflects how the system is actually built [49, pp. 336]. This thesis
focuses on a class of formal models that aim to improve on the latter account. These
models incorporate characteristics particular to the software architecture of user
interfaces, so they are referred to as formal architectural models. Numerous formal
architectural models have been proposed. Recently, the term interactor models has been
adopted to refer to them collectively, e.g. [54, 62, 150]. The term is given a concrete
definition in later chapters. Interactor models are very similar to their predecessors, the
abstract models of user interfaces. An argument put forward in this thesis is that their
evolution should reflect on developments in less formally defined models of the interface
software architecture.

Existing interactor models have diverse origins and are defined using various formal
specification languages. The diversity between formal interactor models can be traced
back to their different purposes, different formal frameworks, and different historical
origins. However, they demonstrate a strong convergence in their essential elements
[54]. At the very least, this convergence shows a consensus among researchers,
concerning the essential elements of interface software that should be captured by an

Chapter 1 Introduction

16

architectural model. This search for the ‘right abstraction’ is characteristic of research
into applying formal methods to the development of human computer interfaces.

1.4 The thesis and the research method

The thesis put forward is that the practical application of formal methods to the design
and development of user interface software can be assisted by a class of formal models
called interactor models. In particular, the thesis proposes an interactor model which is
called Abstraction-Display-Controller (ADC) after its main components. It is suggested
that this model is an appropriate abstraction for modelling user interface software
because it captures essential and general characteristics of user interface software and it
maintains a close relation to software architectures. As a formal model the ADC
interactor model is equipped with some properties that are essential for its use as a
design representation in the development and analysis of a user interface. Finally, it is
suggested that it provides a conceptual and formal framework for integrating diverse
approaches to modelling and analysing user interface software.

Considering the multi disciplinary nature of HCI, this thesis is biased towards computer
science. This has its consequences for the nature of the research reported. The
requirements set for the ADC interactor model have emerged from a comparison of user
interface architectures and existing formal models. The formal method used for its
specification was adopted after assessing earlier research approaches in this field.
Formal methods differ with respect to their applicability for specifying user interface
software, the available tool support, and how widespread their use may be. The thesis
discusses the choice among the candidate formal methods and the trade-off between the
expressive power of the notation and the feasibility of manipulating and using the formal
specifications in practice.

An important consideration throughout is to facilitate the practical application of formal
methods as aids in the design and development of user interface software. The thesis
argues that for an interactor model to be useful as an engineering and conceptual tool it
should be possible to specify the user interface as a composition of interactors. The
compositions formed ought to be interactors themselves. This property, called the
compositionality of the model, is consistent with informal abstractions of user interface
software, and enables the recursive application of the model at various abstraction levels.
Conversely it should be possible to decompose interactors into smaller scale interactors.
Further, it should be possible to infer salient properties of a designed interface from its
specification. In the body of this thesis these propositions are discussed in a formal
framework and the ADC model is defined to support them.

The ADC model was tested with a reverse-engineered formal specification of a simple,
but real, multi media application. This case study prompted improvements to the model,
which are discussed. Further, the case study is testimony to the validity of the model.
Some of the engineering properties that were set as requirements for the model have
been proved as theorems. On the basis of these theorems, formal transformations of the

Chapter 1 Introduction

17

interactor specifications are defined. Where necessary an algorithmic solution to the
transformation problem is proposed. The analytical use of the model is discussed. The
ADC model provides a formal and conceptual framework that enables the integration of
earlier results regarding the specification and verification of usability related properties
of a user interface.

The contribution of the thesis is two-fold. From a computer science point of view it
shows the application of formal methods to a broad and interesting problem domain,
namely, the design and development of user interface software. Within this particular
problem domain, the ADC interactor model can help one to write and to understand
complex formal specifications. For example, the case study discussed is an interesting
problem simply from a specification point of view. The application was modelled to
such detail and complexity that the specification tested the limits of the tool support
used. The ADC model provides a framework for identifying and combining reusable
specification components for user interface software.

More importantly, a formal model, such as the ADC interactor, provides a bridge
between the world of the mathematical concepts of formal methods and the domain of
user interface software. As has been argued in section 1.3, this is a necessary
prerequisite for applying formal models to any application domain. A formal
architectural model like ADC fills the gap between more abstract models of interface
software and the architectural design of actual software. From an HCI point of view, the
thesis aspires to provide the interface designers or developers with a formal modelling
scheme appropriate for their tasks. The model embodies essential elements of interface
software architectures, it can help establish usability related properties and the
correctness of the interface software. Finally, it contributes towards a long-standing aim
of research in applying formal methods in HCI. This aim is to provide a representation
scheme that helps express and apply requirements derived from a human-centred study
of the work supported by the computer. This scheme, it is argued, is neutral with respect
to theories of human cognition and behaviour, but can provide the expressive means for
relating such theories to representations of user interface design.

1.5 Overview of the thesis

This chapter has posed a two-fold question that this thesis tries to answer: ‘What are the
right abstractions for modelling user interface software?’ and, ‘what is a suitable
representation scheme for them?’. In the body of this thesis, the ADC interactor model
is put forward as the appropriate answer to these questions, and its formal specification is
discussed. A substantial part of the thesis is concerned with documenting the properties
and demonstrating the use of this model. Chapters 2 and 3 prepare the ground for the
introduction of the ADC model, surveying two different streams of research. These
reflect the diverse influences on the development of the ADC interactor model.

The quest for the ‘right abstraction’ has much in common with the endeavours of
research into user interface software architectures. Chapter 2 reviews this research.

Chapter 1 Introduction

18

Software architectures are assessed in terms of the practical benefits they offer to the
user interface developer. The aim of this review is to identify, and in subsequent
chapters to inject into the formal model, some of the practical merits of software
architectures and some of their morphological characteristics. This approach should
make the model more relevant to the problems of the user interface designer and a more
useful engineering tool. The review of software architectures for user interfaces in
chapter 2 plays a bootstrapping role for the thesis. It summarises some standard
terminology and it defines user interface software, its role, scope, and ontology. It offers
an insight into the nature of the specificand, the user interface software, which is the first
step in the application of a formal method.

The second major influence on the development of the ADC interactor model is the
research tradition in formal methods in HCI. Chapter 3 presents a very selective view of
the developments in the field, in order to demonstrate the current trend towards
interactor models. It first discusses the ad hoc application of general purpose formal
specification languages to specify user interfaces. Then it discusses abstract models of
interaction. Abstract models are a class of models that afford expressions of properties
of interactive systems with minimal reference to their internal structure. These
properties capture design intuitions that pertain to the usability of an interactive system.
An important motivation throughout the development of the ADC model was to attain
formulations of these properties at a more concrete level of description. In chapter 3
those elements that make interactors a valid abstraction for interface software are
highlighted. Further, their qualities as engineering tools are discussed. The derived
requirements prompt the definition of the interactor model of the following chapter.
Finally, chapter 3 discusses LOTOS [100] which is the formal method adopted for the
specification of user interfaces in the thesis. This choice involves some conscious trade-
offs which are flagged.

Chapter 4 introduces the ADC interactor model, informally first by defining its
components and their properties, and then as a formal specification template in the
LOTOS language. Some simple examples are discussed. The ADC model is compared
briefly with other architectural models both formal and informal.

Chapter 5 presents the application of the ADC model to specify a multimedia application
for the Macintosh computer. The specification is quite large and, therefore, it represents
a real test for the modelling scheme and the tool support used. This case study resulted
in several developments to the ADC model which are summarised at the end of the
chapter.

Chapter 6 revolves around the theme of the compositionality of the ADC interactor
model. In this thesis, the term compositionality denotes the ability to compose instances
of a model to obtain a new instance of the model. Further, this instance of the model
should be used for further manipulations with minimal reference to its constituent parts
[38, 73]. Chapter 6 gives a rigorous definition of the requirement for compositionality.
In order to show that the ADC model does indeed posses this property, the model is
defined in a manner more rigorous than in chapter 4. This enables the definition of two

Chapter 1 Introduction

19

syntactical transformations of interface specifications: the synthesis and the
decomposition of ADC interactors. For the first, and, where possible, for the second, the
meaning of the specification is preserved up to the strongest possible level, that of strong
bisimulation equivalence [133]. The synthesis transformation has been presented partly
in [125] and an early discussion of the decomposition transformation has been outlined
in [126]. These concepts are discussed thoroughly with their theoretical foundation and
a reflection on their practical implications.

Chapter 7 discusses the use of the ADC model. Formulations of properties related to the
usability of a system previously expressed in terms of abstract models, are discussed in
the framework of the ADC model, updating an early discussion on the topic in [123].
The verification of properties of the dialogue supported by an interface is examined.
Dialogue pertains to the syntactic regularities of the temporal structure of the interaction
between human and computer. Its study has been a traditional concern for human
computer interface design notations, e.g. [77, 88]. On a practical note, chapter 7
discusses the automatic verification of user interface properties, reflecting on the
currently available tool support and its limitations in supporting the analytical use of the
ADC model. In the latter half of chapter 7 the discussion extends to some broader
topics. The use of the ADC model within a traditional top-down software engineering
approach is demonstrated and, also, its use in the context of a more psychologically
informed approach to design. Note that the historical origins of the ADC model have
been an attempt to support a ‘model based’ design of user interfaces with formal
specification techniques, see [187]. The ADC model is discussed in conjunction with a
formal representation of user tasks. This formalisation gives a novel insight into task
based design. Further chapter 7 proposes a framework that helps relate the formal
representations discussed in the thesis to more informal and practical techniques for the
design and evaluation of human computer interfaces.

The final chapter summarises the thesis, it provides an assessment of its contribution and
it discusses a series of emerging issues for future research.

20

Chapter 2

User interface architectures

This chapter defines an ontology and a terminology, regarding user interface software,
which is adopted in later chapters. As far as possible, the commonly accepted
definitions are used in the form that they result from international workshops and
reference models. Some definitions may seem contrived but they are necessary to
discuss concisely and unambiguously user interfaces in later chapters. The emphasis is
on defining the notion of an architecture and on presenting some of the most influential
proposals. The trends which are observed in the evolution of user interface architectures
influence the definition of the formal model in later chapters.

2.1 Some basic terminology

The terminology introduced in this section has been proposed by the IFIP working group
2.7 on user interface engineering [14, 181]. The term interactive system is taken to refer
to the whole system developed for end-users. Alternatively, the term application is used
instead with the same meaning. An interactive system is composed of two components,
the functional core and the user interface system.

An interactive system is associated with a particular problem domain, in which it is
intended to be used, e.g. controlling some automated process, writing documents, storing
and retrieving information, supporting communication, etc. The functional core (FC)
implements domain dependent concepts. The user interface system (UIS) implements
the interaction between a user and the functional core. The term user interface, or
simply interface, is interchangeable in this thesis with the term UIS.

There are a number of tools that may support the developer in building the user interface
system. They are characterised below in terms of their functionality.

• A collection of objects that implement user input and presentation of information
constitutes an interaction toolkit.

Chapter 2 User Interface Architectures

21

• An ensemble of tools and software for specifying, building, and evaluating the user
interface constitutes a user interface development environment (UIDE).

• A user interface development tool (UIDT) is a specialised tool that handles only
particular aspects of interface design.

• A user interface runtime system (UIRS) is the run-time environment that supports
the user interface.

• A user interface management system (UIMS) is the assemblage of UIDE, UIDT and
UIRS. For many authors, the term UIMS has a narrower definition, including the
UIRS and some UIDTs only.

A property of an interactive system is a feature describing some aspect of the system. It
may be used as a criterion for the evaluation of the system. However, a property is
neither good or bad; it partially defines a design space. For example, flexibility is a
property of an interactive system that supports many alternative ways of performing the
same task. A property becomes a requirement once its satisfaction is considered
significant for a design. A requirement which must be fully satisfied by the design
and/or the implementation of the system is a constraint. A principle is a set of
properties which should be satisfied by all designs or a major class of designs.

2.2 Architectures of user-interface systems

The term architecture is widely used in software engineering. It applies to all types
software systems. Examples of architectures are the viewing pipeline for computer
graphics, the decomposition of compilers to lexical analysers, parsers, code analysers
and code generators, etc. In this thesis, the term will be taken to refer to user-interface
systems unless otherwise qualified. The term is not used consistently in the literature so
a brief clarification is helpful.

An architecture of a system identifies its components and their inter-component
interfaces [37]. It is an abstraction of a set of concrete implementations. In many cases
a UIMS may enforce a particular architecture for a UIS. Otherwise it may be enforced
‘manually’ by programming. An abundance of architectures was reported in the 1980s
but their enumeration is not of interest in the present discussion. However, architectures
are important. They embody design knowledge pertaining to the structure of an
interactive system. An architecture should, ideally, ‘package’ this knowledge and enable
its re-use.

An architecture may define a particular configuration for the connection of software
components, e.g. they may be organised in a hierarchy, a pipeline, a graph, etc. It may
go further and define a particular way of composing or decomposing its elements, e.g.
top-down or bottom-up, in which case it affects the design strategy [37]. As
architectures become more concrete, they identify re-usable components and

Chapter 2 User Interface Architectures

22

mechanisms for the communication of data and control, e.g. constraint systems,
procedure calls, message passing, etc.

Architectural models are abstract representations of architectures. They are generic
templates which may be instantiated by concrete architectures. In many cases, this
instantiation process is totally informal and the architectural models are quite simply
heuristics or conceptual aids for the design of an architecture or directly for the design of
a user interface system. Such architectural models are sometimes called conceptual
software architectures.

2.3 A reference model for user interface architectures

A reference model is a conceptual architectural model, which is not intended to be used
generatively by its instantiation to a particular system, but only descriptively for
categorising the components of an interactive system and discussing its architecture [14].
A series of international workshops have attempted to define commonly accepted user
interface architectures. These were not always intended as reference models, but they
have had a bigger impact as such. The most influential has been the Seeheim workshop,
summarised in [77]. More recently the Arch model [14, 181] was proposed as a
modification of the Seeheim model. This thesis adopts the Arch model for reference
purposes.

The Arch model has five layers, shown schematically in figure 2.1. It is shaped and
named as an arch, to indicate that in most cases its two extremes are constraints upon the
design. The layers, or components, are defined below as in [14].

Figure 2.1. The Arch reference model: its components and data representations.
Arrows indicate data flow. The shaded arch illustrates the scope of the user interface
system.

Chapter 2 User Interface Architectures

23

• The functional core controls, manipulates, and retrieves domain data and performs
domain-related functions.

• The interaction toolkit implements the physical interaction with the end-user.

• The dialogue component is responsible for task-level sequencing, for the user and
for the portion of the functional core that depends upon the user, e.g. for providing
multiple view consistency, and for mapping back and forth between domain-
specific formalisms and user interface specific representations of data.

• The presentation component mediates between the dialogue and the interaction-
toolkit components. It provides the dialogue component with toolkit-independent
data representations.

• The functional core adaptor component mediates between the dialogue and the
functional core. It implements functionality necessary for the human operation of
the system that is not available in the functional core.

The Arch model identifies three types of data representations used in an interactive
system. Representations of the domain data, e.g. text for a word processing facility, are
assumed to be independent of the interface. Representations of the media used for input
and output, e.g. pixels, postscript, which are called interaction toolkit dependent
representations. There may also be intermediate user interface specific representations,
which are independent of the interaction toolkit, e.g. paragraph styles, column
information, etc. Data flows bi-directionally along the arch and is transformed from one
representation to another.

In different application domains, the emphasis may shift between the components of the
Arch. This is demonstrated by the Slinky model [181] which in essence is identical to
Arch. The Slinky model uses the analogy of a toy, called Slinky. The toy has a very
loose spring with many coils that can ‘walk’ down stairs by shifting its mass along its
arch-shape. The analogy indicates that any of the components of the Arch may
concentrate a larger portion of the functionality of the interactive system. The
functionality distribution changes depending upon the domain and the particular system
design. Slinky has been called a meta-model to differentiate it from the Arch model
[181]. Given the authors’ own definition of a reference model, mentioned previously,
this refinement to the Arch model is unnecessary and possibly misleading, as it is not the
purpose of a reference model to prescribe the boundaries of its components and the
allocation of functions to them.

2.4 Separation of interface and application

In the basic terminology, the user interface system and the functional core are defined as
distinct entities. This is a cornerstone assumption for most user interface architectures
[191], and the Arch model [14] has inherited it from its predecessor, the Seeheim model
[77]. From a software engineering point of view, separation may support the modularity

Chapter 2 User Interface Architectures

24

of interface software, multiple interfaces for one application and the consequent
customisation of the interface.

Not all software developers, or HCI researchers, agree on the utility of separation. In
fact, the desired degree of separation has been shown to depend on the design problem.
Opinions on its existence and utility are largely affected by the design process and
organisational factors [162]. Rosson et al. [162] distinguish several types of separation.
Separation may apply only at the level of the conceptual architecture, in which case it
may be called conceptual separation . Separation is enhanced when it carries through to
the development of the interface software and is enforced in the resulting
implementation architecture of the system. This latter form of separation has been called
architectural or implementational separation.

Implementational separation is supported by the functional core adaptor component
which explicitly specifies the communication between the UIS and the functional core.
The communication may be controlled internally by the functional core, externally by
the interface or the control might be shared [88]. With internal control, the functional
core calls interface procedures when it requires some input or output to be performed.
With external control, the UIS manages input and output and notifies the functional core
when necessary. Internal control makes it harder to implement multiple threads of
activity, as complex dialogue structures may need to be encoded in the functional core.
Most UIS architectures in the discussion that follows assume that control is external or
shared.

The diversity of approaches outlined suggests that a generic interface architecture should
not enforce a particular scheme for the separability of the user interface. Separability
should be supported where necessary and any scheme for communication control should
be within the range of the model. In terms of the Arch reference model, the extent of the
user interface system and the relative roles of the components vary with the context of
the application of an architectural model.

2.5 Object-based architectures

The Arch model, as well as its predecessor the Seeheim model, describe interface
components at a high level of abstraction. They do not detail the structure of these
components. The reference model is not intended to be used as a concrete architecture.
A layered implementation architecture, whose layers would correspond to the
components of the Arch model, would be inefficient. The main reason for this is that
semantic information of the functional core is needed frequently at the presentation
component, in particular for direct manipulation systems. This inflicts communication
overheads for a layered implementation.

This observation has led to the development of object based architectures. The idea
behind these is that the interface can be constructed as collection of objects [41]. The
interface objects exist in a homogeneous object space [41], i.e. interface objects do not

Chapter 2 User Interface Architectures

25

belong to layers managing different representations and offering a common function,
e.g. in accordance with the Arch reference model. Each object may transcend several of
the components of the reference model. An object-based architectural model explicates
the common structure of all objects and how objects are related to each other. This
concept has become popular because of its potential to support efficient feedback,
concurrency, distribution, multiple threads of input and modular development.

Some influential object-based approaches are discussed in the remainder of this chapter.
At times, these approaches use the terms ‘agents’ or ‘interactors’ to refer to the
abstraction units they deal with. The term ‘object’ is used here, as in object-oriented
software engineering, to describe an entity with some private state and processing ability
which is accessed by its environment only through a fixed ‘interface’. Some of the
approaches that are discussed in this thesis have used the term ‘agent’ [1, 39, 15] to
qualify the objects as active entities, as opposed to a passive manipulable information
store. They use the term ‘interactor’ to describe agents, or objects, that are displayed to
the user. When not referring to specific models and their own terminology, this thesis
distinguishes interactors as special cases of objects that have a display function and, in
general, support both input and output.

2.5.1 The MVC architecture

The model-view-controller (MVC) model [113] is one such object-based architectural
model. It is implemented in the Smalltalk-80 [75] object-oriented programming
environment as object classes. An interactive system is formed as a collection of objects
structured as MVC triads. The model implements the functionality of the application,
the view manages the graphical or textual output and the controller manages the user
input. The model corresponds to the functional core and functional core adaptor of the
Arch model, while the dialogue, presentation and interaction toolkit layers are encoded
in a view-controller pair. A single model may have many view-controller pairs as
‘dependents’, as shown in figure 2.2. A single monolithic model can be associated with
many dependent view-controller pairs [113]. The controller handles user input and
modifies its model via a method call. The model may receive input from any other
object in the system via a method call. When its value changes it notifies all its

Figure 2.2. The MVC architecture. A model and two view-controller
pairs.

Chapter 2 User Interface Architectures

26

dependants that it has changed, but it is up to them to update themselves accordingly.
The view and the controller are coded with a specific model in mind. The model is
coded without regard to its views and controllers. MVC supports the modular
construction of user interfaces and a consistent scheme for the communication of
information between its components. The application and the interface are collections of
objects, and MVC does not prescribe a particular structure for these collections.

2.5.2 The PAC architecture

The presentation-abstraction-control (PAC) model [39, 15] structures a UIS recursively
as a hierarchy of PAC triads, called agents in PAC parlance. The functional core
adaptor is implemented by the abstraction component of the triad. The presentation
component of the triad corresponds loosely to the presentation and interaction toolkit
components of the Arch reference model. The dialogue control is made explicit in the
controller component which manages the relationship between different PAC triads.
The controller may itself be a PAC hierarchy. As a conceptual architecture PAC favours
a modular decomposition of the user interface system and it provides more guidance
than the MVC model about how to form the interactive system as a composition of PAC
agents. Each PAC object is associated with its own abstraction which is only accessible
to others through its controller. This favours an explicit representation of the
communication between agents, contrary to the MVC model where different triads can
communicate through a shared model. The PAC architecture is not supported by any
UIMS. It does not provide a ‘library’ of basic re-usable components and it does not
prescribe a particular control and data propagation mechanism. However, it is assumed
that the controller components pass information up and down the composition hierarchy,
each time performing some transformation of this data.

Figure 2.3. The PAC model structures the interface system as a composition of PAC
agents, but does not define a particular communication and control mechanism.

Chapter 2 User Interface Architectures

27

2.5.3 The composite object architecture

The composite object architecture supported by the Tube UIMS [93, 94] is an interesting
example of a concrete architecture. It is similar to PAC in that the interface is built by
composing objects into a tree-like hierarchy. Each object specifies some presentation
and some dialogue control. An object is a lightweight process with some attributes
defining its state. Its dialogue is described in the event-response language inherited from
the Sassafras prototype UIMS [92]. Tube provides a basic set of primitives for building
interactors and a library of commonly used interactors. It also includes a library of
common attribute functions used to express constraints between object attributes. The
dialogue is explicitly composed by passing messages up and down the composition
hierarchy. Control is distributed among the interactive objects. The functional core
adaptor is defined by a set of variables shared between the interface and the functional
core. The communication control may thus be shared between the interface and the
application. Relationships between objects or between the functional core adaptor and
the presentation are encoded as constraints. Each interactive object may access the
functional core independently from its position in the hierarchy via the attributes shared
by the interface and the application.

2.5.4 The ALV architecture

The Abstraction-Link-View (ALV) architecture, of Hill et al. [95], is a follow-up to
Tube, which is also very similar to the PAC architecture. For example, their abstraction
components have the same designated role which corresponds to the functional core of
the Arch reference model. The view component of ALV is similar to the presentation of
PAC, and the link of ALV is similar to the controller of PAC. An important difference
between them is that ALV is not simply a conceptual architecture, but has been
implemented in the Rendezvous UIMS.

Figure 2.4. The TUBE composite object architecture. Tube does not
support a modular decomposition for the abstraction component.

Chapter 2 User Interface Architectures

28

ALV focuses on multi-user interfaces for which the separation of the functional core and
the user interface system is very important. ALV supports the separation of the
Abstraction and the Views, by storing in each View all the information it needs from the
Abstraction. The Abstraction holds data that is shared between the multiple users of the
system. This means that there is a significant redundancy amongst Views and between
each View and the Abstraction. The common information is kept consistent by the link
component which is a bundle of constraints, whose purpose is to connect each view with
the abstraction. Multiple views may be linked to the same abstraction (figure 2.5) and
multiple abstractions may be accessed by the same view.

In the Rendezvous UIMS an interactive system is constructed by the composition of
objects. Distinct composition hierarchies (trees) are defined for the abstraction and the
view objects. The two are not isomorphic. The view hierarchy is usually more complex
than the abstraction hierarchy and it closely resembles the containment hierarchy of the
displayed objects. Links maintain consistency between the values held in the objects
and maintain constraints between the tree structures (figure 2.6). The links may also be
organised in a tree structure themselves.

Rendezvous is an object oriented system. The interface developer composes existing
classes, using the same language that is used to build interfaces. Programmers who use
the Rendezvous system, see no difference between building user interfaces and building
user interface components. Both are assembled from simpler interface components and

Figure 2.5. Abstraction-Link-View architecture (adapted from [95]). A view may be
linked to more than one abstraction and vice versa.

Figure 2.6. Composition of interactive objects in ALV. Abstraction and view objects
are composed, and links are drawn across the two composition hierarchies.

Chapter 2 User Interface Architectures

29

the complete interface is a large complex interface component.

Rendezvous supports a declarative graphics system which handles screen updates and
object selection and an event model which handles the queueing and the distribution of
events. User input and reactions to user input are modelled by events. The
communication between the abstraction and the view is specified as constraints between
them and is supported by a constraint satisfaction system. All inter-object
communication is supported by the constraints, and does not have to be described
explicitly. This can be contrasted with the MVC architecture, where each View-
Controller pair has to notify its model of changes and each model has to keep a list of its
dependents. Thus, ALV is more modular than MVC.

2.5.5 The Garnet UIMS

Another UIMS that incorporates a constraint satisfaction mechanism is Garnet [136,
137]. Garnet emphasised the visual aspects of the interface for a single user
environment. Similar to the Rendezvous environment, it contains an object system, a
constraint system, a graphical system and a mechanism for input handling. Constraints
may apply to attributes of objects that are displayed, or to objects belonging to the
functional core. GARNET does not enforce an architectural separation between the
functional core and the user interface system.

In Garnet, a few types of interactors are described through highly parameterised look-
independent descriptions. Actual interaction objects are implemented through the
instantiation of the parameters. However, it is hard to define new types of interactors
[137]. All interactors have the same underlying state machine, and different dialogues
are obtained by instantiating the state transitions. Myers et al. [137] suggest an analogy
between the Garnet architecture and the MVC model. Application objects are analogous
to the model, graphical objects correspond to the view and interactors correspond to the
controller of MVC [113]. Garnet interactors differ from MVC objects or PAC agents,
since they do not encapsulate their abstraction state or their displayed state. The
interesting aspect of Garnet is how parameterisation is sufficiently powerful to express
all graphical interaction. In subsequent chapters, when a formal architecture is
discussed, a similar parameterisation will be adopted for certain behaviours. That
parameterised description corresponds loosely to the state machine that underlies Garnet
interactors.

2.6 Composition structures in object-based architectures

The object-based architectures share the view that the user interface system is
constructed by a collection of objects. These objects, referred to as interactors below,
consist in a structure of dedicated lower level components whose purpose corresponds
closely to the components of the Arch reference model. The idea of a homogeneous
object space [41], mentioned in section 2.4, is not always realised in these models as, in

Chapter 2 User Interface Architectures

30

most cases, the components of an interactor are factored into distinguishable collections
that resemble a layered model. For example, in the ALV architecture, all abstractions
are grouped together into a composition hierarchy and the same happens with the view
components.

In some cases, e.g. in the Garnet UIMS, the scope of interactors is limited to the
interaction toolkit and the presentation components of Arch. In most cases they model
parts of the dialogue and the functional core adaptor components of the Arch model, as
in ALV, PAC, and MVC. For MVC, PAC, and ALV, the functional core is distributed
in the ‘abstraction’ or ‘model’ component of the interactors. Also, the presentation
component of Arch is distributed in the presentation components for each interactor.
Clearly, a single interactor may extend over all the components of the Arch model.
Conversely, it is also obvious that the whole of an interface may be conceptualised as a
single interactor, although it would be hard to implement it as one. Such a description
would be very abstract and unstructured but may be refined by decomposition to a
configuration of communicating interactors. Defining the composition of interactors
that form the interface is the essence of the design activity. The architectures presented
focused mostly on the opposite direction, i.e. the composition of interactors to form the
interface architecture.

Common to all the object-based architectures is that the interactor may read and write
two forms of data. One is particular to its abstraction and one is particular to its
presentation. In one way or the other, the interactor maps changes of its presentation to
some modifications of its abstraction, and vice versa. Finally, the interactor encodes
some sequencing constraints on the order in which it will interact with its environment.
These may be defined implicitly, as in MVC, or explicitly, as in PAC and TUBE.

The architectures discussed here differ in the way the objects are composed. In PAC and
TUBE interactors are composed into a hierarchical structure. In PAC the controller
component maintains the links to other ‘nodes’ in the hierarchy. In the composite object
architecture of Tube, communication channels of the dialogue control components
implement this hierarchical structure. In TUBE, the presentation and functional core
adaptor components are described by a single set of attributes. The attribute set is
structured in a composition hierarchy that reflects the geometrical containment of the
objects on the screen. This hierarchy is mapped to the communication mechanism. In
ALV the composition hierarchy for views is a containment hierarchy that is independent
from the dialogue control. In MVC and Garnet the abstractions of individual interactors
form part of a single monolithic description of the state, although this can be avoided in
MVC. In PAC and ALV the descriptions of abstractions are kept distinct. In ALV the
abstractions may themselves form their own composition hierarchy, and it is the job of
the link component to maintain the consistency with the corresponding presentation
composition hierarchy. PAC and Tube adopt a single hierarchy for the composition of
interactors. ALV may support multiple composition hierarchies which may also be re-
configured dynamically.

Chapter 2 User Interface Architectures

31

2.7 Conclusions

Software architectures for interactive systems take many forms. A starting point for
most of the architectures discussed is to distinguish the functional core from the user
interface system. Most architectures separate the two as far as possible, either in layers
or as object-components in an object based model. The separation may be
implementational or purely conceptual but in both cases it defines the scope of the
interface design problem. Therefore, user interface software will be modelled as an
entity that supports the communication between the user and the functional core.

Object-based architectures are the most promising approach in modelling interactive
systems. Object-based architectures are not monolithic and sequential. They model the
interface software as a composition of co-operating objects. These models are highly
modular and support concurrency and distribution. This has several advantages
concerning iterative design, support for distributed applications and support for multi-
thread dialogues. As will be seen in the following chapters, this affects the choice of the
abstractions used for the formal specification of user interfaces, which are also required
to be modular.

The conceptual distinctions described by the Arch reference model for interactive
system architectures, filter through to the components of object based architectures. The
various models discussed define the roles of their components differently and differ also
in the way these are put together to compose the interface. Clearly, the ability to
compose user interface representations by composing component specifications is an
essential requirement for the formal modelling scheme.

All the models discussed in this chapter were introduced by their authors informally or
through a UIMS architecture. In subsequent parts of this thesis, the formal specification
of user interface software is discussed. It will not be attempted to model formally any
particular architecture of those discussed in this chapter. A formal model should be
more general and abstract than any concrete architecture (e.g. ALV). By definition, the
formal model is more precise than a conceptual model (e.g. PAC) and so it is debatable
whether a formal interpretation of a conceptual architecture describes the same concept.
It is clear though that the architectures discussed in this chapter draw some lines along
which the formal interactor model will be defined. The examination of software
architectures in this chapter suggests that the formal specification also needs to be object
based if it will be at all relevant to the software it models. Similarities are also sought in
the internal structure of the interactor objects and in the way they are ‘glued’ together to
construct the composite formal specification of the user interface.

32

Chapter 3

Interactors: the concept and its evolution

This chapter reviews research into the application of formal methods to the study of
Human-Computer Interaction. The review provides the context for introducing the
interactor model of chapter 4, and records some lessons learnt from previous research
approaches which have been instrumental in its development. The case is made for
formal architectural models of user interface software, collectively referred to as
interactor models. Current research in this area is reviewed and comparisons are drawn
across the different models. The discussion identifies those elements which make an
interactor model a valid abstraction of interface software and a useful engineering tool
for the specification of user interfaces. Finally, the formal framework in which
interaction is modelled in the remainder of this thesis is described and the LOTOS
formal specification language is introduced briefly.

3.1 Specifications as a tool in the design of interactive systems

As mentioned in chapter 1, individual formal methods may differ in their syntax, the
entities they model, the underlying inference systems, their intended role within the
software development process, etc. [38, 190]. However, they all share a commitment to
abstraction. Abstraction, it is suggested, should give rise to generic device independent
components described with minimal detail [172]. Traditionally, the envisaged role of a
formal method is to describe the essence of a system function, without premature
commitment to implementation considerations [84]. By the use of sound engineering
principles and rigorous reasoning, usable and effective systems may be designed.
Formal software development is seen as an almost mechanical process of refinement or
transformation. This view of software development has been repeatedly challenged
within the human-computer interaction research community, for the following reasons:

• A statement of principles, entities or relations is a product of design activity just as
much as the user interface software itself. The abstract formal specification may

Chapter 3 Interactors: the concept and its evolution

33

equally well suffer from errors, prejudice, misinterpretations or influences from the
notation they are expressed in [172].

• The details omitted by the abstraction activity may be crucial for the success of the
user interface. Carrol [34] has argued that a representation of a design needs to
incorporate all aspects of a design and in ‘infinite detail’. The interface may itself
be the only valid and usable codification of its design.

Took [172] suggests that design should be specification-centred as opposed to
specification-driven. Duke and Harrison [57] characterise the role of the specification as
integrative: it brings together contributions originating from different perspectives and
allows the developer to check their consistency and possibly to identify issues which
require further consideration. However, they also point out some limitations. Usability
claims cannot be made within a formal system alone; the use of formal properties in
rigorous software development does not guarantee that the result will be a usable system.
Claims about usability must be validated by means other than formal verification.
Further, they experienced difficulty in trying to communicate formal specifications to
designers not accustomed to formal methods.

The arguments above show that a formal method is not a panacea for the engineering of
interfaces. Considering the current state of the art in the area, it seems more appropriate
that rather than trying to shape the design process, research needs to investigate where
and how formal specifications of user interfaces can be shown to provide tangible
benefits [87]. This argument is consistent with currently accepted views as to the role of
formal methods in software development in general. Holloway and Butler [97] suggest
that formal methods researchers should not attempt to dictate new methods and
processes for software development but should attempt to find how their methods and
tools may help within currently established practice. It is becoming increasingly
accepted that formal methods are a supplementary and not a replacement technology for
software development [26].

The argument above suggests that formal methods can be useful for user interface design
but with the following qualifiers:

• The design of an interactive system should not be driven by the specification but
may use it as a means of representing designs and assessing decisions.

• The choice of the formal specification can enable the designers to articulate their
decisions at the ‘right’ abstraction level. A formal specification notation is good for
a specific job and for a well defined scope of the problem domain. Not all design
decisions but, in fact, just a few may be based on the formal specification.
Accordingly, the scope for the representation techniques investigated in this thesis is
only the user interface system as defined in chapter 2.

• Formality requires tool support, for example to ensure syntactic correctness and
semantic consistency. The validation of the specification may be aided by assessing

Chapter 3 Interactors: the concept and its evolution

34

the plausibility of the inferences drawn from the specification or by inspection of a
simulation for executable specifications.

A specification may address various levels of abstraction and a high-level prototyping
language may look no less abstract. What distinguishes the formal specification is the
mathematical definition of its semantics and the underlying inference system associated
with them. Ideally, the specification should make it possible to verify or to assert
properties of the system which it is not possible, or more costly, to observe in an
implementation. In doing so, it may aid the designer to investigate or to prescribe
qualities of a design. It is not always necessary that an implementation should be
constructed by the refinement of the specification.

In the thesis this limited use of formal specifications is adopted. The thesis investigates
them as potentially useful tools for the design of user interfaces. It does not propose a
model for the design activity. Also following the above arguments, it does not propose
to localise design decisions at a particular level of abstraction, recognising that design
takes place at many abstraction levels and throughout the development.

3.2 Structure and abstraction level in the specification of interactive
systems

For the sake of presenting and discussing the various approaches to the specification of
interactive systems, two dimensions that characterise them are introduced. These are the
level of abstraction adopted and the degree of structure used in the specification.

A high abstraction level refers to general properties of interactive systems with as little
commitment as possible to a specific representation or problem. The lowest level of
abstraction corresponds to a fully functional implementation of a particular system.

The degree of structure adopted is a reflection of the specificity of a model. A general
purpose specification or programming language has a low level of structure. Some
structure is introduced by adopting personalised techniques or stylistic conventions. In
an attempt to standardise these techniques, specification styles have been introduced
[180], (they are discussed more extensively later in this chapter). The consistent use of
these specification styles helps teams of specifiers work together and provides a
conceptual aid for the specifier. At the other extreme, an object-oriented system [131]
has a very high degree of structure, capturing generalisations of objects into classes and
similarities between classes into an inheritance hierarchy.

The classification along these two dimensions, illustrated in figure 3.1, helps present
some of the most influential works in this research area. Structure and abstraction level
correspond to the two axes of the Cartesian plane. Different schemes for the formal
representation of user interface software correspond to areas on the plane, indicated
accordingly. There is no strict boundary between the areas indicated, as there can be
many similarities between neighbouring approaches. The mapping to the Cartesian

Chapter 3 Interactors: the concept and its evolution

35

plane is suggestive of the role of interactor models and their relation to other approaches.
Arguably, structure and abstraction levels are not orthogonal dimensions, since the
introduction of structure can represent some implementation bias. To an extent this is
correct, but as the exposition below shows it is possible to provide highly abstract
structured descriptions which provide no hint as to the way the software will be
implemented, e.g. the Agent and Interactive Processes models discussed later in this
chapter.

Low levels of abstraction correspond to concrete implementation languages and
implementation architectures. Layered and object-based software architectures are
characterised by a high structure and, where object orientation is supported in such a
model, the structure is maximised. As more structure is introduced in a representation,
whether that be formal or not, the description moves closer to an architecture or an
implementation.

Interactors are more abstract than the object-based architectures of chapter 2. Both are
highly structured. The similarity in structure is not coincidental. Historically, both
interactor models and object-based implementation architectures for interactive systems
were proposed to model modern graphical and multi-modal interfaces for which the less
structured models had been found to be unwieldy. Figure 3.1 probably overplays the
role of interactor models, assigning a large area to them, simply to make the point that
they may be used with varying degrees of structure and at different levels of abstraction.
As the detailed exposition of the following sections will show, it is not easy, nor is it
accurate, to draw a line that distinguishes interactor models from abstract interaction

Figure 3.1. Mapping formal specification techniques to dimensions of
abstraction and structure

Chapter 3 Interactors: the concept and its evolution

36

models. In part, interactors have developed out of research in abstract interaction
models.

3.3 Dialogue specification notations

Traditionally UIMS research has focused on the description of the dialogue component
of the user interface. This emphasis was a consequence of the nature of the early user
interface systems which supported mostly command language interaction. The
emergence of object-based architectural models for user interface systems has blurred
the distinction of what is and what is not dialogue. However, as the brief overview of
some of these systems has shown, many UIMSs propose a particular formalism for the
description of the dialogue. In the context of an implementation architecture the
dialogue specification notations are special purpose programming languages. This
section examines those which have also been associated with a formally defined
semantics to serve an analytical use.

An early comparison of three dialogue models is presented in Green [78]. Green
compares the expressive power of state transition networks, context free grammars, and
a simple event based model. The event based model that he uses adopts more
programming language constructs than the other two notations. It is shown to be more
expressive than the other two, which are found to be more or less equivalent to each
other. Comparisons between the expressive power of various specification notations are
informative results and for most specification languages there will be some information
already available in the literature, e.g. [82]. However, such comparisons are possibly
misleading. Green points out, that the effectiveness and the ease with which the
notations are used are perhaps more appropriate measures for their assessment. These
attributes are hard to gauge, as they depend on the context of application, the purpose of
using the notations and the persons who use them.

State transition networks (STN) were one of the first notations to be used for the
specification of interactive dialogues, e.g. [182]. They are relatively simple and widely
understood by computer scientists. STNs come with several variations of expressive
power, e.g. recursive transition networks, or augmented transition networks (ATN), e.g.
[103]. An STN is a simple network with labelled nodes and arcs indicating states and
transitions between them, while an ATN may include indications of the display, a
description of the state by a set of variables, conditional transitions, etc. Jacob [103]
uses small-size ATNs to specify individual interactive objects. Their composition is not
formally modelled, but implemented as a co-routine structure, whereby individual ATNs
communicate via procedure calls.

The main limitation attributed to STNs is that the expression of multiple threads of
dialogue may lead to a combinatorial explosion of the number of states. For this reason,
other diagrammatic notations more appropriate for handling concurrency have been
proposed. The most prominent are Statecharts [81, 183] which introduce the notion of

Chapter 3 Interactors: the concept and its evolution

37

‘parallel’ states and Petri-Nets which are particularly appropriate for representing
concurrency [17, 144].

Grammars were originally very popular for specifying text based interaction. They have
similar expressive power to STNs and are equally well documented and understood by
programmers. Grammars focus on the representation of user actions and they provide
very concise descriptions of input sequences. They are not as good at representing
concurrency and do not support an explicit representation of state. Studies like that of
Green [78] have pointed out the weaknesses of using grammars for modelling graphical
interaction, so their use tends to be rather scarce recently. An interesting approach
reported recently, called DIGIS [42, 43], combines regular expressions, which are a
simple form of grammar, with an event based process algebra. The result is a hybrid
notation which capitalises on the familiarity of programmers with grammars and has
sufficient expressive power to specify and program graphical interaction.

Production systems are a textual event-based notation which has been used successfully
in modelling direct manipulation dialogues [142]. The specification is made up of a list
of rules which specify a condition under which they fire and actions to be taken when
they do. The actions may refer to user activity, internal communication among interface
components or output events addressed to the user. Production systems are good for
modelling interleaved but not sequential activities. The Tube and Rendezvous UIMSs,
discussed in chapter 2, use the Event-Response Language which is a special case of a
production system. Production systems have had limited use as a specification notation
[143]. Recently, Abowd et al. [3] have proposed their use as a front-end notation to a
state transition network, which would allow the expression and verification of usability
related properties.

This review of dialogue notations is not detailed and does not favour a particular
formalism. Dialogue specification notations are well understood and the debate which
surrounded them in the early days of UIMS research has concretised in some
understanding as to the trade-offs made with each. In general, event-based models are
more appropriate both at the specification and the implementation level. As this brief
overview has shown, event models may be accommodated in a variety of formalisms,
visual and textual. The target area of interest, personal taste and existing tool support
may justify a particular problem-specific choice. More relevant to this thesis is the
choice of an event model, whether it supports interleaving or true concurrency, whether
it supports a model of time, etc. These options are discussed more extensively in the
remainder of this chapter.

3.4 Using general purpose specification notations to specify interactive
systems.

Early approaches to the specification of user interfaces used general purpose
specification languages. For example, Sufrin [168] used Z for the specification of a text
editor and a similar specification was written by Ehrig and Mahr in an algebraic

Chapter 3 Interactors: the concept and its evolution

38

framework using ACT-ONE [61]. Chi [35] reports the use of four different algebraic
notations for the specification of a simple calculator. Several approaches using logic for
the formal specification of user interfaces have been reported, e.g. [91, 105, and 159].

The contribution of such work is mainly as model-specifications for researchers and
practitioners. The specifications provide examples as to the choice of appropriate
abstractions but the lessons learnt are more or less confined to the scope of the example,
e.g. text editing. Such case studies aimed to test the hypothesis that formal methods of
specification may be usefully applied to interface development. Because of their limited
scope and academic nature, they do not on their own validate this hypothesis which still
remains an open research question. These case studies also aimed to assess the
appropriateness of a particular specification notation for the specification of interactive
systems. For example, the experiment of Chi included the comparison of algebraic
notations with Z to specify a pocket calculator interface. It revealed how it can be cum-
bersome to use formal notations to specify interfaces but also argued that there are some
gains, for example, speedier implementation after the specification, early evaluation and
insight into design drawbacks, etc.

There are a number of problems in using notations such as Z or VDM to describe user
interface designs. They do not lend themselves easily to specifying the flow of control
in a user interface, or the syntactic regularities which characterise the observable to the
user behaviour of a system. The dialogue notations, discussed in the previous paragraph,
are particularly appropriate for this purpose. As was pointed out, the specification of
human computer dialogue is better served by event-based notations. For this reason
event based formalisms have been increasingly adopted for the specification of user
interfaces, e.g. CSP [96], Statecharts [81], etc. Unfortunately, while these notations are
useful for dialogue design, the formal specification of user interfaces often requires the
description of functionality for which they are not particularly well suited.

This argument has led to the suggestion that interactive systems need to be described by
hybrid specification languages that combine an event-based element for the description
of behaviour and an algebraic or model-based component for the description of
functionality. Marshall [129] describes a hybrid technique which uses a diagrammatic
notation based on Harel’s Statecharts [81] to describe the flow of control at the user-
interface, and VDM to specify the operations of the system. The formalism was not
shown to cope well with parallelism and the resulting specifications were not well
structured, in that the state specification was monolithic and made reading the specified
sequences of interactions very hard [1].

A hybrid specification language called SPI (Specifying and Prototyping Interaction)
which is particularly relevant to this thesis is summarised by Alexander in [8]. CSP is
used to describe the dialogue structure for the interface in terms of the sequencing,
synchronisation or interleaving of event occurrences. The CSP elements are extended
with a specification of the semantics of each event which simulates the event occurrence
in simple prototyping environment. To specify the semantics of each event Alexander
has experimented with two languages, the C programming language and the me-too

Chapter 3 Interactors: the concept and its evolution

39

functional programming language. A consistent specification technique is supported
which consists in representing each interaction object on the screen as a CSP process.
The display is specified (statically) as the parallel composition of the processes
corresponding to the objects it contains. SPI demonstrated the potential of CSP for the
formal specification and analysis of dialogues. However, the approach is semi-formal as
there is no mechanism to ensure that the event semantics, specified in the C language or
me-too language, are consistent with the CSP process specification. Clearly the use of a
hybrid specification language like LOTOS could overcome this problem although with
the loss of the prototyping facility. From a formal specification point of view, SPI
demonstrates a style in structuring the specifications which is used also in the
specification of logical input devices and of interactors discussed in later sections of this
chapter.

As a prototyping language SPI is very similar to Squeak, by Cardelli and Pike [33].
Squeak is a programming language specially designed for programming user interface
components. It combines constructs of CSP and the C programming language. It
demonstrates how logical concurrency facilitates the programming of user interfaces.

The work of Marshall and Alexander indicate that interface specification is better served
by hybrid notations. Since then considerable advances have been made with the
development of hybrid specification languages and the development of tool support.
Hybrid specification languages were developed to address the perceived need for a
language that captures both the event based nature of the behaviour and the semantics of
the operations triggered by these events. There is much to be gained if existing and
widely disseminated general-purpose notations are used. In particular, gains can be
expected from well developed theoretical results, published case studies, a wide
community of users, and tool support.

In recognition of the value of hybrid specification languages, LOTOS [18, 100] is
adopted in this thesis. This follows an early experimentation with CSP [96], reported in
[121]. LOTOS is an international standard [100], with rich tool support and a wide
community of users. The required specificity for the domain is attained by defining
structures appropriate for the specification of user interfaces, rather than defining a new
specification language or extending the semantics of the LOTOS language itself. To
help in reading the thesis, LOTOS is introduced briefly in section 3.8.

The next two sections overview research that has attempted to define appropriate generic
abstractions for the description of user interfaces. This research has not been concerned
so much with developing notations, although the necessity for hybrid specification
notations persists when the abstractions are proposed as tools for interface design
representation. The abstractions discussed have become increasingly concrete over time,
and throughout their history they have been expressed in a variety of formal frameworks.

Chapter 3 Interactors: the concept and its evolution

40

3.5 Abstract Models

Abstract models of interactive systems emerged from research into the concept of
generative user engineering principles (GUEPS) proposed by Thimbleby [170]. These
principles were called generic to indicate their applicability in a wide range of systems.
GUEPS were to be given both a formal and an informal description and they were
intended to be used generatively, i.e. as design constraints. Examples of such principles
are that it should be possible to predict the effects of commands, that the display should
let the user observe the internal state of the system, etc. Bornat and Thimbleby [21]
report an informal application of such principles in the design of a display editor called
ded. Abstract system models of interactive systems, (for short abstract models), were
developed in an effort to formalise GUEPS in a manner general to interaction and not to
a specific interactive system [86]. Dix [49] suggests that abstract models could help
bridge the gap between the informal domain of user requirements and the formal domain
in which some requirements have been formally specified (see figure 3.2).

Abstract models are essentially meta-models, i.e. higher level abstractions, which can be
specified formally in whatever specification notation is used within a design project.
Dix and Harrison [49, 84] use general set theory for their description rather than any
particular specification notation. When principles are expressed using the abstract
models, any commitment to a particular implementation technique or system architecture
is avoided [84].

Figure 3.2. Abstract interaction models can help bridge the ‘formality
gap’ between informal requirements and design specifications (adapted
from [49])

Chapter 3 Interactors: the concept and its evolution

41

3.5.1 The state-display model

A family of models falls under this title. They describe interactive behaviour in terms of
the relation between the internal workings of a system and how these are reflected on the
display. These two distinct views of a system are modelled as two separate systems or
layers. Usability related properties can be conceptualised and formalised as properties
pertaining to the relationship of these two layers. This two-layer approach can be
extended to multiple layers, e.g. physical system, digital control system, system
metaphor [83].

The internal system layer is modelled by a set of states S, an initial state s0, and a set of
commands which transform states C⊆S→S. The commands refer to the inner
functionality of the system, without concern about how this functionality is invoked by
the user, or what visible effects it gives rise to. For example, a text editor has commands
to edit a document, to insert characters, to move a cursor, etc. The display layer is
described in a similar fashion to the internal state layer, by a set of display states D and
the operations on displays O⊆D→D. The display layer may have commands to move
the cursor, scroll a window, insert characters, etc., although these commands pertain to
the displayed representation of the text rather than its internal representation.

An example of a usability related property which can be formalised with this model is
the visibility of the system. It concerns the ability to associate what is displayed with
what is actually happening in the inner system. Visibility is formalised as the
conformance between the state and the display layers [86]. The states of the two layers
are related by relation render r⊆S×D. The operations on states and displays are related
by relation compatible co⊆C×O which defines pairs of compatible operations for the two
layers. The two layers are conformant if for any <c,o>∈co and <s,d>∈r it is the case
that <c(s),o(d)>∈r. For any pair of elements which are related by r the images of the
two, obtained by compatible operations, are also related by r. In other words, it requires
that the state and the display are mirror images of each other and that the compatible
operations upon them, with respect to relation co, have compatible effects, with respect
to relation r.

This state-display conformance property is too strong to be a design constraint, as it is
not usually possible for the display to reflect all the information in the state. Several
refinements to this simple state-display model have been proposed, which aim to make it
weaker and therefore more practical. One solution investigated in [160, 161] was to use
some sort of filter, to focus on those components of the state and the display which are
relevant for a particular task. A task t can be associated with a projection on the state
attrs(t):S→St and the display attrd(t):D→Dt Visibility is defined relative to a task t using
relation v(t)⊆(attrs(t)S×attrd(t)D) and relation co(t)⊆(C(t)×O(t)). A formal model for the
definition of these projection functions, called templates, was defined in Roast et al.
[160]. Templates are an attempt to bridge the gap between formal interaction modelling
and the results of a task analysis. This research, reported extensively in [159], aimed at
providing a framework for the integration of psychological analysis and formal
interaction modelling.

Chapter 3 Interactors: the concept and its evolution

42

Another way to weaken the requirement of state-display conformance is to think of the
display as an approximation of the state, defined as a mapping v:S→D. This
approximation preserves a partial order between states, i.e. the view mapping should be
monotone with respect to partial orders defined over states and over displays. Rather
than relating the instantaneous display to the state, Harrison and Dix [84] suggested that
the state can be uncovered as a series of distinct views which combined reveal the
underlying state. The relationship between state and display should be expressed in
terms of a mapping v+: S→D which they call panoramic view (or the observable effect in
the context of the PIE model [49]). Harrison and Dix [84] have proposed a construction
of the mapping v+ in terms of the repeated application of the simple view mapping on
successive states. They define a system to be observable when the entire state is visible
through the panoramic view and when the panoramic view contains an unambiguous
representation of the component of the state which is relevant to the task of the end-user.
A command is called visible if it modifies visible data only and produces results which
are visible through the panoramic view.

Another abstract principle which can be expressed in terms of the simple state-display
model is the predictability of a system. A system is predictable if it is possible to tell
what available commands will do on the basis of what is currently perceivable [86]. A
system is called predictable if for a pair of state (s,s') ∈S such that r(s)=r(s') it is the case
that f(c(s)) =f(c(s')) for any c∈C, where f is a function that extracts some features from
the state. If f is the identity function then a strong definition of predictability is obtained
where a view determines the effect of commands on the state. Different choices for
function f may give rise to various expressions of predictability. Variants of this concept
have been proposed for the more structure system models examined later in this chapter.

Abstract models help formalise essential intuitions regarding interactive systems. For
example, the notion of a panoramic view describes an essential property of interactive
systems, i.e. that while not the whole state is displayed the user can reveal it by
interaction. A close examination of the formalisations above shows that several
assumptions are made regarding the user. The definition of visibility is founded on the
idea that the user constructs mentally the panoramic view from the individual views
displayed. The definition of predictability may also be taken to assume that the user will
notice infinitesimal changes to the display. Similar assumptions are associated with
most formalisations of interaction properties found in the literature. The first
opportunity is taken here to point out that caution should be exercised as to the assumed
psychological validity of the expressions and to the feasibility of their realisation as
properties of an implementation.

The next question concerning the thesis is the validity of the state-display model as an
abstraction of modern user interface systems. Recall that the inner functionality of the
system was described by a set of commands. In [84] the inner system is assumed to
receive these stimuli through, e.g. some function ‘parse’ which interprets user actions as
commands independently of the display state and a function ‘run’ which collapses
sequences of commands to single state transitions. This structure does not reflect
accurately the nature of direct manipulation and this is revealed in the formalisation of

Chapter 3 Interactors: the concept and its evolution

43

temporal directness by
Harrison and Dix [84]. This
property, attributed to
direct manipulation
interfaces, requires the
temporal ordering of
physical inputs to reflect the
ordering of command
invocations. Harrison and
Dix point out the example of
character insertion and deletion in a line editor: there is no mapping from input
sequences to commands as the effect of the input is dependent on the display state. This
dependency is not captured by the state-display model, which does not portray how the
interpretation of graphical input depends on the contents of the display. As Took [174]
has argued, the formal model should capture the syntactic dependency of input and
output. It is hard to model interaction when commands are interpreted on the basis of the
input history only.

The state-display model is a framework for the definition and articulation of properties
of the use of interactive systems. It is not intended to be used constructively in the
development of interactive systems and it is difficult to do so because of its lack of
structure. A constructive application of the state-display model has been reported [106],
where a temporal logic is used to specify safety and liveness requirements at a very high
level of abstraction. This specification is refined to an executable prototype by
specifying the behaviour of a graphical interface. The designer is offered a logic
programming language to specify interaction but no structure or guidance as to how best
to do so. The limitations of the state-display model as a design tool have prompted
research into more constructive models, namely the Agent model of Abowd [1] and the
interactors of Duke and Harrison [55] discussed in later sections of this chapter.

3.5.2 The PIE model

The PIE model adopts a ‘surface philosophy’ for the description of the interactive system
(see [49] chapter 1), i.e. it does not delve into the internal workings of a system. An
interactive system is seen as a ‘black box’ to which input is given and of which output
may be observed. The model relates user programs P, which are sequences of
commands, to the effects E they might have, via an interpretation function I:P→E, (see
figure 3.3). The effects may refer to the display, the entire information managed by the
interactive system, etc. Properties of interaction can be expressed abstractly in terms of
constraints on these components, without referring to any internal representation of the
system. An important result that comes out of this attempt at a behavioural specification
of a user interface, in terms of the function I, is that it is always possible to describe the
PIE model in terms of a state-based description which is no less abstract than the
functional description. Therefore, state based and behavioural representations can be
used interchangeably according to the context (see [49, chapter 2]).

Figure 3.3. Illustrations of the PIE and the red-PIE
models.

Chapter 3 Interactors: the concept and its evolution

44

The PIE model affords concise definitions of concepts such as the predictability of the
system, reachability properties, undoing commands, etc. The PIE model has been
extended to the red-PIE model to discuss the relationship between the display (that
which the user sees) and the result (that which the user wants to achieve through
interacting with the system). The red-PIE model includes the definition of two mappings
from the effect space to the result and the display (see figure 3.3). These may be
interpreted respectively as the portion of the system state which is interesting for the user
and the part of it which is displayed. The properties that are described in terms of the
red-PIE model concern mostly the observability of an interface, i.e. what can be inferred
about the result from the display.

Observability properties pertain to whether information is present on the interface or
possible to reveal. They do not relate to the user’s competence, i.e. how easy it is for the
user to examine this information and they do not give rise to performance predictions.
Similar limitations apply to the predictability expressions. Dix [49] proposes three
approaches to overcome these limitations of abstract principles:

• Informal reasoning can be used that can draw from other disciplines, e.g.
psychological analysis.

• Richer models may be produced. The increased structure in the model captures more
of the notion of ease of use. Dix himself takes this approach, and this has led to
more detailed and refined expressions of the principles, but has not improved their
validity, [49].

• Richer models may be produced which incorporate some aspects of user modelling.
Examples are the approach of Roast [159] and at a more concrete level the ‘syndetic’
modelling of Faconti and Duke [63], discussed later in this chapter. The hardest
problem in these cases is that some aspects of the user model have to be formalised.

Further to the description of abstract principles, the PIE model provides a general
framework for the discussion of a range of issues like temporal behaviour, non
determinism, interference between different windows on multi-window systems, etc.
The most definitive and comprehensive treatment of the PIE model can be found in [49],
which incorporates and integrates earlier publications on the subject.

By construction, PIE models the interaction of a single user and a single machine. It
does not cope well with multiple input streams which may be the case with
contemporary multi-modal systems. [49] discusses several ways for modelling direct
manipulation systems. Interaction is seen as display-mediated, i.e. the system is
described in two layers with one PIE describing the display and another PIE describing
the inner system.

The PIE model has exercised significant influence on later formal models of interactive
systems. Because it is so abstract, it is not sufficient to be used as a basis for the design
of interactive systems. However, the models that follow it can be thought of as
instantiations of the PIE model in a particular formal framework, that each emphasise

Chapter 3 Interactors: the concept and its evolution

45

some aspects of interaction. Looking back at figure 3.1, it is now easy to explain why it
is difficult to draw a line between abstract models and architectural models. The PIE
model serves its aim to provide a framework for describing interaction properties.
However, as pointed out in [1, 54], it does not model explicitly the meaning of individual
operations, it gives an unstructured description of the interface. The need arises for a
constructive notation that will allow the description of the user interface as a
composition of formally specified autonomous units.

Using the PIE model amounts to extending and specialising it on a problem by problem
basis. Modifications of the model may sacrifice its simplicity for extra expressive
power. One possible constructive use of the model is in terms of a layered design of an
interactive system, where the ‘outer’ layers represent the physical interaction and the
‘inner’ levels represent the functional core.

Runciman [165] proposed a functional implementation of the PIE model and defined
program transformations that help develop prototypes of the interactive system.
However, the functional specification of an interactive system can be quite cumbersome.
Runciman already notes how the validity of the specifications depends crucially on the
evaluation strategy used for their interpretation (‘lazy evaluation’ in [165]). Took [174]
pursues this point further. He argues that functional specifications are inherently
inappropriate for specifying graphical interaction. One of their fundamental
characteristics is what is called the Church-Rosser property: the interpretation of a
functional program may proceed in any order. Any interleaving of input and output is
semantically acceptable for a functional specification of an interactive system.
Functional specifications do not support any notion of intermediate results unless a
restriction is put on the evaluation order. This is not a problem in representing and
manipulating mathematical properties of the end-result of some computation, but is
totally unacceptable for specifying an interactive system where the user is interested in a
possibly open-ended sequence of intermediate results. The same reason underlies the
inability to formally specify in a functional language that a particular output may only
occur after some input, i.e. what could be called an output trigger operation.

Took [174] raises one more objection to functional specification of the PIE model. PIE
models the user input as an argument and the output as the result of an interpretation
function. The semantics of this function encode the dependency of input on output. Dix
in [49, chapter 6] discusses the specification of direct manipulation systems and points
out how it is difficult to build into the interpretation function the ‘knowledge’ of the
display at any moment in interaction. It is easier to encode the dependency of input on
output syntactically, so Took proposes an algebraic formalisation of PIE which models
input and output as operands of an interpretation operation. A similar approach is taken
in the next chapter. The relationship of input and output and the interpretation of input
are modelled algebraically. Contrary to Took, the synchronisation of input and output is
modelled by a process algebraic specification.

Chapter 3 Interactors: the concept and its evolution

46

3.5.3 Interactive Processes

The interactive processes model, proposed by Sufrin and He in [169], is an interpretation
of the red-PIE abstract model in the framework of state-based processes. Crudely, these
may be described as processes whose events correspond to transitions within a state-
space. The state-space and the transitions are specified using a model-oriented
specification technique, Z in this case. An event occurrence is constrained by the
conditions associated with a transition, but also, by predicates upon the traces of events
of the process. An Interactive Process is driven by the user who is assumed to be ready
to issue a command at any instant. On the contrary the system will only participate in a
command when it is ready for it. An Interactive Process is also associated with view and
result mappings similar to those of the red-PIE model. Subsets of the ‘show’ commands
have the effect of displaying the view to the user or yielding a result.

Some properties of interactive systems, originally introduced as expressions of GUEPS
in the context of the abstract models, have been formalised in the framework of
Interactive Processes [169]. They are described in terms of relationships between
histories of commands. Two command sequences are called result equivalent if they
cause the same set of results. They are view equivalent if they cause the same set of
views. If two equivalent command sequences can be extended indefinitely without
becoming inequivalent then they are called indistinguishable. An example of an
observability property expressed in these terms is visual consistency: a system is
(strongly) visually consistent if its view indistinguishable command sequences are result
indistinguishable. Sufrin and He [169] propose this last expression as a formalisation of
the slogan ‘what you see is what you get’. They proposed a host of similar expressions
to describe GUEPS related properties, like predictability, honesty, trustworthiness, etc.

The Interactive Processes model was documented in [169] by a set of small examples, in
which all the commands determine the result and have an immediately visible effect, i.e.
they all belong to the set of ‘show’ commands. They referred to command line
interfaces and, as with the PIE model, there are reservations as to how this model could
be applied to direct manipulation interfaces. In this kind of interface, the interpretation
of user commands depends on the display context. In the Interactive Processes
specification there is no separate representation for the display context. If the display
affects the interpretation of user commands, the dependence is ‘distributed’ in the
semantics for the state-transitions. As mentioned already, in direct manipulation the
dependence is syntactic [174] and it is easier and more economical to model it as such.
The Interactive Processes model has a powerful mechanism for the specification of the
dynamic behaviour of the process. This combines predicates upon traces with the state-
based constraints on individual event occurrences. Complex behaviours can be defined
constructively by means of a set of operators that construct sets of traces as in the CSP
specification language [96].

The Interactive Processes model is useful as a formal framework for expressing abstract
design decisions, but it is not so practical for the specification of interfaces. The
monolithic description of the state is unstructured and may contain irrelevant detail, as

Chapter 3 Interactors: the concept and its evolution

47

far as a particular task is concerned, and this may make it quite cumbersome as a design
notation. Sufrin and He [169] point out that the proof of some of the interaction
properties can be very complex for non-trivial systems.

3.5.4 Agents

Abowd [1] proposed a development of the Interactive Processes of Sufrin and He to a
constructive model which aspired to be a usable design tool. Abowd adopted a
structured description of the state as a mapping of attributes to values. Similar to the
red-PIE model and the Interactive Processes model, Agents distinguish between the
result and the display. While Interactive Processes describe the output as a stream of
display events Agents capture the persistent nature of the display in terms of attributes
and their values.

An Agent specification consists of three components. The internal specification
describes the state and the operations on the state. The communication component maps
events which constitute the externally observable behaviour of the Agent to the
operations upon its internal state. The external component specifies the set of traces of
events which are legal behaviours for the Agent. The roles of the internal and the
external components overlap and this hampers the effectiveness of the model. A
particular event sequence which may be specified in the external component, i.e. it is one
of the possible traces of events specified, may be ruled out by the pre- and post-
conditions related to the operations which are effected by these events on the internal
component. This makes it a likely possibility that unsatisfiable specifications are written
inadvertently. The flexibility of the Agent language, which allows the partial
specification of event ordering in any of the two components, may be counter-
productive.

Abowd defines two types of composition operators. The interleaved composition of
Agents joins their state spaces, while a synchronised composition models the
communication between two Agents. The purpose of these operators is to help build
complex specifications from lower level ones, although their use seems to be quite
involved. Abowd defined a design notation by which the Agent is specified by filling in
various slots which describe its attributes, their types, their initial values, as well as a
constructive definition of its traces using a subset of the CSP process algebra.

Abowd proposed expressions of GUEPS related properties following the approach of
Sufrin and He [169] discussed above. Similar to the model of Sufrin and He, it is
difficult to apply the Agent model in practice for anything but trivial examples and the
contribution is mostly theoretical. On a methodological note it is not clear how to decide
what should be modelled as an Agent. In the example applications of the Agent model,
operations are bundled together not because of their correspondence to a particular
interactive object, but rather to reflect similarities in their definition. It seems difficult to
generalise from the examples of [1] to a general understanding or method for structuring
the interface specification.

Chapter 3 Interactors: the concept and its evolution

48

The Agent model is an attempt to develop a compositional abstraction for interactive
objects, which is oriented towards a constructive use. It is a move towards architecture
oriented models, as it incorporates some structure to the state and display
representations. Properties of interactive systems which were defined abstractly with the
red-PIE model and the Interactive Processes model can be related to more concrete
system specifications. Like the SPI specification environment of Alexander [8], Agents
advocate the usefulness of hybrid notations whose components can address the diverse
requirements of specifying interactive systems.

3.6 Interactor Models

This section reviews a group of formal models of interactive systems collectively
referred to as interactor models. They are more concrete than the models discussed so
far, in that they introduce more structure to the specification by describing an interactive
system as a composition of independent entities. Interactors are unitary abstractions
used in the description of interactive systems. They can be thought of as software-
architectural abstractions similar to objects in object-oriented programming. Definitions
vary with their intended use. Faconti [62] defines an interactor as:

‘...an entity of an interactive system capable of reacting to external
stimuli; it is capable of both input and output by translating data from a
higher level of abstraction to a lower level of abstraction and vice versa.’

Faconti considers the interactor as a conceptualisation of a software component serving
the communication between a user and an application. Interactors manage some data,
and levels of abstraction characterise this data. An interactor bridges two levels of
abstraction of the data that is communicated by the interactors. The user interface is
assumed to be a layered composition of such interactors, which mediates between the
user and the functional core.

Duke and Harrison [55] define an interactor as

‘...a component in the description of an interactive system that
encapsulates a state, the events that manipulate the state and the means by
which the state is made perceivable to the user of the system.’

The difference between the two definitions, refers to whether the whole interactive
system is modelled or just the user interface system. The distinction is not inherent in
the model. It pertains to the question of separation of user interface system and
functional core, which was discussed in chapter 2, and it embodies a choice for the scope
of the interaction design problem.

The term interactor has been used also to refer to implementation constructs, e.g. for the
input model of the GARNET user interface development environment [136, 137]. This
thesis is concerned with formal abstractions of the architectural constructs discussed in
chapter 2 and the term is used in this narrower sense below.

Chapter 3 Interactors: the concept and its evolution

49

The above two definitions correspond to two interactor models, or rather, two families of
interactor models. For brevity they are referred to as the York and the Pisa models
pertaining to the institution from which they originate. The border between abstract
models and interactor models is blurred, partly because they can both be applied at
different levels of abstraction. In fact an early version of the York model [55] is only a
slight variation of the interactive processes of Sufrin and He. The aim of the York
approach has been to formalise abstract properties of interaction and to experiment with
expressions of these properties in variations of their interactor model. They do not aim
to provide a notation for the specification of user interfaces, as they recognise that other
specification languages than Z would be better suited for the representation of the
concepts they deal with [55, 59]. On the contrary, the Agents model of section 3.5
aspired to develop a design notation too. In short, the interactive processes and the
Agents models could both be classified as interactor models. They are discussed
separately, mainly for historical reasons, as the term ‘interactor’ has been associated with
the work discussed in this section.

3.6.1 The York interactor model

In [55], Duke and Harrison propose an interactor model that is a slight variation of the
interactive processes of Sufrin and He. They explore the link between the general
concept of an object in the object-oriented programming sense and the interactor. The
interactor is distinguished from a generic object by the introduction of a rendering
function ρ. This provides the environment with a representation of the interactor’s
internal state (figure 3.4). A formal model of an object as a state-based process is
proposed and it is shown how interactors can be seen as a composition of two such
objects, where the state of one object describes the display of the interactor and the
second describes its inner state. The use of the model in realistic-scale applications is
reported in [57, 58].

A small set of composition operators were defined in [55]. They correspond to process
algebraic operators like synchronisation, hiding and renaming. An interesting aspect of
[55] is their attempt to define a theory of the composition of interactors and, in
particular, the composition of their state specifications. However, the meaning and the
validity of these compositions is not very clear and subsequent publications have not
progressed this work any further. Although the composition operators are quite distinct
to those discussed in the context of the Agent model [1], they also attempt to describe
formally the composition of interface objects.

Figure 3.4. Illustration of the York state-based interactor model (adapted from [55]).

Chapter 3 Interactors: the concept and its evolution

50

In [59], Duke and Harrison depart from the use of state-based processes and use a purely
event-based abstraction. Instead of the notion of a trace which is founded on a total
ordering over events, they represent the observable interactive behaviours by partially
ordered sets of (instantaneous) events, called posets. An interactor is modelled as a
prefix-closed set of posets that characterise the interactions between a user and a system.
This model allows for true concurrency in the occurrence of events as opposed to the
interleaved concurrency of other interactor models. True concurrency is useful in
modelling multi-modal interaction. Another interesting feature of the model is that it
allows for the refinement of the event specifications, by mapping an action specification
in one poset to a poset. An interactor specification can be studied at increasing levels of
detail, related by the refinement relation.

To discuss expression of interaction properties of the GUEPS genre, it is essential to
represent the concept of system states and renderings. This later version of the York
interactor model is purely event-based so there is no explicit representation of state or
rendering. Instead subsets of the action set of the interactor are considered to represent a
state or a rendering. The result and view mappings of the state-display model are now
defined as a projection of a set of states through a poset of the interactor. The
comparison of the internal and the external behaviours of an interactive system can now
be defined as relations between posets and it is straight forward to make a classification
of interaction properties, similar to the one originally proposed by Sufrin and He [169].
A very similar approach was taken independently in [123] and is discussed extensively
in section 7.1, so a detailed discussion on the specification of interaction properties is
deferred.

The York interactor model continues the tradition of the PIE model that models
interfaces by relating input sequences to their effects through an interpretation function.
This is illustrated in figure 3.5. A circle represents some observed behaviour of system,
expressed as an ordered set of events. The double-line arrows represent projections that
relate a trace to the internal state and the display of a system. Traces may be related by a
prefix ordering (single lines in figure 3.5). The York interactor model, like the host of
abstract models that preceded it, does not cater well for modelling direct manipulation.
As with the PIE model from which it originates largely, it is very much uni-directional
and fails to explicate how the interpretation of the input depends on the current contents
of the display.

Figure 3.5. The York interactor relates traces of events to their effects on its state. The
display is a projection on this state (adapted from [54]).

Chapter 3 Interactors: the concept and its evolution

51

Recent developments to the state-based version of the York model have introduced the
decoration of interactor specifications to indicate the modality of the presentation (e.g.
[60] outlines the specification of a flight information system where speech and gesture
modalities are combined). These decorations are based upon a theory of presentations,
outlined in [56], which aims to describe with precision user perceivable structures of a
system’s presentation. This extension of interactor specification paves the way for the
syndetic modelling of interactive systems [63]. Syndetic modelling is a specification
technique which allows the description of both the device and the cognitive resources
required in interaction to be captured in a single representation. The predictions of the
cognitive activity are based upon a model of user cognition [11, 13]. Interactor
specifications are combined with a formal model of user behaviour, within a unified
framework. The interactor specifications are written mostly in a hybrid notation that
uses VDM or Z for the description of the state components and modal action logic for
the description of the temporal behaviour of the interactor.

3.6.2 The GKS input model and the Pisa interactor model

The Pisa model emphasises the nature of an interactor as a communication component
that supports some part of the bi-directional data flow between user and application. The
origins of this approach can be found in attempts to formalise the graphical input model
of GKS (graphical kernel system). In [52], CSP is used to model logical input devices
(LIDS). A logical input device (LID) is an abstraction of a physical input device which
describes the manipulation of a specific input data type by a graphics system. This use
of CSP for the specification of interaction differs from Squeak [33] or SPI [8] in that it
supports a standard architectural structure for the description of graphical interaction.
This structure allows a consistent specification technique to be applied for all LIDs and
specifications to be created by simple modifications of a set of templates. An interesting
suggestion made by Duce et al. in [52] is that if a similar approach would apply to

Figure 3.6. (a) Hierarchical composition of LIDs as in [53] and
(b) the recursive composition of clusters of [66]. An LID may
have many input gates (lines at the bottom side) and a single
output gate (lines at the top). Blobs indicate synchronisation of
all connected processes.

Chapter 3 Interactors: the concept and its evolution

52

modelling the output pipeline for graphics, this would enable the description of the
interaction between input and output. Observing that the structure used to describe
logical input devices could be used to describe input devices at any level of abstraction, a
generalisation of the original model was proposed in [53]. The specification of complex
input devices could now be achieved out of the hierarchical composition of logical input
devices, where one device may provide input to another at a higher level of abstraction.

A first attempt towards a symmetric treatment of input and output, with the aim of
formally specifying interactive graphics programs, was reported by Faconti and Paternó
in [65], who introduced the term interactor in the context of the formal specification of
input/output objects. They used an extension of Hoare’s CSP, called ECSP which
allowed for the dynamic allocation of statically defined communication channels. Each
has an input part that builds up the input value (the measure in GKS parlance) and an
output part that stores the corresponding pictures and provides feedback.

The formal specifications of the GKS input model of [53, 65 and 66] identified
limitations of the informal description of GKS that still persisted well into a decade in its
development. Paternó and Faconti proposed improvements to the input model and
specified them in the formal specification language LOTOS [66]. They introduced the
notion of a cluster, which is recursively defined as an LID or a composition of clusters
and a parent LID (see figure 3.6). The three operating modes of the GKS input model
were specified in a synchroniser process that controls the communication between the
children-clusters and the parent. The controller component defined in chapter 4 and
more abstractly in chapter 6 is a generalisation of these synchronisers. The specification
in LOTOS of an LID in [66] was developed in an effort to improve the GKS reference
model. The work that followed it, and that is referred to in this thesis as the ‘Pisa
interactor model’, addressed the more general problem of specifying user interface
software.

The user interface system is thought of as a collection of communicating entities, the
interactors, that operate concurrently. At any instance the interface may be described as
a composition of interactors into a graph that describes the flow of data between them.
A Pisa interactor mediates between two data-abstraction levels, raising the level of
abstraction of user input and refining the output descriptions it receives. Paternó and
Faconti [150] call them transformation abstraction levels, adopting the five abstraction
levels distinguished by the Computer Graphics Reference Model. It has to be pointed
out though that this is not inherent to the interactor model. User interface software is not
usually structured in these five layers and since they do not impact the definition of the
interactor they are ignored in the discussion that follows.

As with the York model, various versions of the model have been published that differ
slightly. It is rewarding to have a closer look at two versions of the interactor
specification: an extensional (black box) view which abstracts away from the internal
structure and the data operations and an intensional (white box) view which proposes a
particular internal organisation. Historically the white box view predates the black box

Chapter 3 Interactors: the concept and its evolution

53

view and inherits much from the formalisation in LOTOS of the GKS input model. For
the purposes of comprehensibility they are presented in the reverse order.

Extensional Description of the Pisa Interactor

The interactor mediates between two layers of abstraction. The lower level is called the
user side and the higher level is called the application side (see figure 3.7). The
interactor may receive input from the user side on gate ir or from the application side on
gate or. The interactor accumulates this input, although this is not actually described in
the basic LOTOS specification of [54] and uses its current value to update the output
data. Output can occur over gate os towards the user and gate is towards the application.
The interactor will construct internally the value that it will output in either direction.
The output-send os and the input-send is are triggered by an event on the corresponding
trigger gate.

In basic LOTOS the interactor specification would be simply (adapted from [54]):

process interactor [ir, it, is, or, ot , os] : noexit :=
or; interactor [ir, it, is, or, ot , os]

[] ot; os; interactor [ir, it, is, or, ot , os]
[] ir; interactor [ir, it, is, or, ot , os]
[] it; is; interactor [ir, it, is, or, ot , os]
endproc

Intensional Description of the Pisa Interactor

The intensional description of the Pisa interactor [150] provides more information as to
how it may be built. Its structure follows from its origin as an abstraction of input
devices for the GKS model. The interactor is formed by the synchronous composition of
four processes (figure 3.8):

Figure 3.7. Black box view of the Pisa interactor.

Chapter 3 Interactors: the concept and its evolution

54

• The collection maintains an abstract representation of the external appearance of the
interactor.

• The feedback maintains the graphic primitives, i.e. a lower level and more detailed
description of the output state. This also captures the intermediate output which
results, e.g. as a feedback to user input.

• The measure accumulates and interprets input from the user and produces input data
of a higher level of abstraction (n+1).

• The control delivers the produced data to other interactors or the application itself.

In the general case an interactor has an input and an output behaviour. An interactor that
only has a collection and a feedback process, is an output-only interactor. One that does
not have a collection component is an input-only interactor, although its feedback
process may provide some simple echo to the user.

The data operations of the interactor are described by two data types: the collection
which is a higher level description of the data and the picture which is a lower level
description of how this data is displayed. These data types are defined individually for
each interactor. Generally three operations are applied to a collection :

• interpret. This operation is applied to the input received from the application side to
update the collection.

• trav_meas. This operation is applied to the collection and the result is sent to the
measure process.

Figure 3.8. ‘White box’ structure of the Pisa interactor (adapted from
[150]).

Chapter 3 Interactors: the concept and its evolution

55

• trav_feed. This operation is applied to the collection and the result is sent to the
feedback process.

The data type picture defines in general an operation pick that interprets input data from
the user side to detect primitives which will be highlighted by the application of
operation highlight on the picture primitive. An operation meas defines the function that
the interactor applies to the input data. The formal specification of the Pisa interactor is
outside the scope of this presentation. The reader who wishes to draw comparisons with
the ADC interactor model presented in the next chapter is referred to [150] for an
extensive description of the Pisa interactor model. Note, that the two versions of the
model described here are not observationally equivalent (appendix A.1) , so the two
versions of the Pisa interactor are better thought of as two distinct formalisations of the
interactor concept.

The internal structure of the Pisa interactor model and the definition of the data types are
inherited from GKS. In the context of the present thesis, where there is no commitment
to a particular implementation architecture, there is no need to support this internal
structure for the interactor. Interface descriptions can be couched in these terms but not
necessarily so. In chapter 4, an extensional description reminiscent of the black box
view of the Pisa interactor is adopted and extended. Also more meaningful abstractions
for the data handling function of the interactor are discussed that borrow from the ideas
of the York interactor model.

To specify an entire UIS, using the intensional version of the Pisa interactor, the system
is first represented as a group of interactors. The behaviour of each interactor is standard
up to the renaming of the gates by instantiation. The specification of the interactor boils
down to the specification of the collection and the picture data types. The interface is

Figure 3.9. Modelling a scrollbar with the Pisa interactor (adapted from
[150]).

Chapter 3 Interactors: the concept and its evolution

56

formed by a communication graph whose nodes are the interactors and whose edges
represent communication between them. For example, the interaction with a scrollbar is
modelled as the graph of figure 3.9. Note that the graph does not have to be strictly
hierarchical as was the case in figure 3.6.

The Pisa model potentially facilitates the task of specifying a graphical interface. It
provides a conceptual framework for the specifier, but also reduces the task of
specification to defining the data types managed by each class of interactors and to the
composition of the interactors. The temporal behaviour of each interactor follows
directly from the general template. The composition is better described in a
diagrammatic form as was argued in [64]. The specification of interfaces in LOTOS is
supported by software tools. Standard model checking tools for LOTOS specifications
were used in [152,153] to verify properties of user interface specifications expressed in a
type of temporal logic. This work is discussed more extensively in chapter 7.

Clearly a design notation for user interaction should not be confined to the behaviours
defined within the GKS input model. With this purpose in mind, an intensional
description of pre-defined behaviours is a drawback of the model. The internal structure
of the model seems excessive for the task of interface design which views interactors as
unitary abstractions. It further complicates the definition of the data types with
operations that model data transformations for the purposes of communication internal to
the interactor. Arguably, simpler specifications will result if only operations on data
observable to the environment of the interactor are modelled.

Concerning the composition of interactors, it is clear that to define different modes of
operation or to define the communication constraints between interactors, it is necessary
to add components like the ‘synchronisers’ of figure 3.6. For example, consider the
cursor and the scrollbar receiving input from the mouse. Do they receive the mouse
position at the same time? Should the mouse position be sent to one or the other? Should
it be sent to both but independently without them having to synchronise? This suggests
first that the connections between interactors have to be studied themselves.

A refinement of the Pisa model has been used as the basis of a user interface toolkit for
the implementation of user interfaces [154]. This is interesting on its own right as an
approach to constructing a user interface development aid. It puts emphasis on the
semantic operation of the objects from which the user interface is constructed and not
just their presentation. Interactors were categorised on the basis of the type of data they
send to the application and whether or not they need to communicate to the application
to perform their operation. Interactors provide a conceptual framework that structures
the design space. An important contribution of the construction of the toolset is that it
validates interactors as an abstraction for user interface software.

The Pisa interactor model has been put to several uses as an aid in interface design. For
example, [152, 153 and 155] report reverse engineering case studies of its use. These
case studies demonstrate an approach to the analytical evaluation of an interactive
system with relation to a task specification.

Chapter 3 Interactors: the concept and its evolution

57

 A more abstract study of the use of interactors by Paternó [149], concentrated on the
role of interactors in supporting the data flow between a user and an application. The
interface software is modelled independently of any notation as a data flow graph whose
nodes are interactors. Static checks of the correctness and the validity of the graph stem
from the observation that such data communication is directed and typed. For example,
an interface graph can be checked to verify that the data sent from one interactor and
received by another are consistent. This can be checked along paths starting from an
interactor the user interacts with directly and reaching one which provides input directly
to the application. This more abstract version of the Pisa interactor is compositional
[149], i.e. a composition of interactors is also an interactor. Unfortunately, this only
applies to this abstract level of description. The concrete specifications of the model do
not have this property. This point is particularly interesting for the thesis. The interactor
model proposed in the next chapter is argued to have this compositionality property as
well as providing a practical scheme for the specification of user interfaces as well.

The lessons learnt from the study of the Pisa model are summarised below.

• Interactors are communication entities that interpret and forward data either on the
user side or on the application side.

• Interactors are formally specified by instantiating a syntactic template in the LOTOS
language. The specification of a user interface reduces to the definition of the data
types managed by the interactor and to the composition of interactor specifications.

• Interactors may be used as the basis of a user interface design tool and as a
conceptual framework for user interface design.

• The interactor model can be used analytically, e.g. by a static data flow analysis of
the composition graph or analysis of its dynamic properties with temporal logic.

3.7 A formal framework for modelling interface software

The review of the approaches to specifying and implementing interactive systems,
presented in this and the previous chapter, suggests the salience of events as a concept
for modelling interaction. Also evident in this research is the need to have a component
of the notation that is particularly suited for the specification of the functionality rather
than the behaviour of the interface. Rather than developing a purpose-specific hybrid
specification notation, it is wiser to adopt an existing and mature formalism, with a wide
user base, a well understood and documented theory and tool support. Accordingly, as
mentioned in section 3.1, the LOTOS formal specification language [100, 178] has been
adopted for the research presented in this thesis.

The underlying semantic model for LOTOS specifications is an abstract relational model
called Labelled Transition Systems (LTS). This model underlies many formalisms for
the specification of concurrent systems. It is discussed briefly in order to draw attention
to the trade-offs it incurs in describing interaction. LTS are discussed rather than

Chapter 3 Interactors: the concept and its evolution

58

LOTOS, since they provide the underlying semantic model that determines the
expressive and analytical power of the specification language. In other words, the
formal specifications of the following chapters could be written or analysed using other
formalisms with the same underlying semantic model, as for example Estelle [177].
However, choosing LOTOS as a specification language influences the manner, and ease,
with which such systems are specified and the way that architectural concepts are
represented.

In the framework of LTS, a system, the user interface in this case, is described using the
notions of a global state and indivisible actions that cause state transitions. Each
component of the user interface can itself be associated with a corresponding LTS. The
class of LTS studied in this thesis can model systems controllable through interactions
with their environment, which are therefore considered to be externally observable, and
also internal or hidden actions, which cannot be observed or influenced by an external
agent.

Definition. Labelled Transition Systems.

A labelled transition system is a tuple (Q, A,
µ → , q

0
), where Q is a countable set of

states, A is a countable set of elementary actions,
µ → is a set of binary relations on Q

indexed by µ∈A∪{τ}, representing transitions between states, and q
0
 is the initial state.

�

A relation α → , with α∈A, describes the execution of an elementary action a. If q
1
,

q
2
∈Q, then q

1
α → q

2
, indicates that when the system is in state q

1
 it can perform an

action α and reach state q
2
. The symbol τ is used to denote a hidden action that effects a

‘silent’ transition q
1

τ → q
2
. Table 3.1 summarises some notation which is used in this

thesis. It introduces notation for abstracting away from hidden actions and for
representing sequences of actions prescribed by the LTS. The most important concepts
described by this notation are the set of traces Tr(q) of a labelled transition system and

Notation Meaning

 q
µ1..µ n → r ∃q1...q n ∈Q|q µ1 → q1

µ 2 → q2 →...→ qn −1
µ n → r

 q ⇒ε r
 q ≡ r ∨ ∃n ≥ 1|q τ n

 → r

 q ⇒µ r ∃q1,q2 ∈Q|q ⇒ ε q1
µ → q2 ⇒ε r

 q ⇒µ1..µ n r ∃q1..q n−1 ∈Q|q ⇒µ1 q1 ⇒µ2 ...⇒µ n−1 qn−1 ⇒µ n r

 q / ⇒ µ1..µ n
 / ∃ r ∈Q|q ⇒µ1..µ n r

out(q) {µ∈ A|∃r ∈Q •q ⇒µ r}

Tr(q) {σ ∈A∗ | ∃r ∈Q •q ⇒σ r}

Π(q) {< q1,q2 ,...q n >|q1,q2 ,...∈Q ∧ q µ1 → q1
µ 2 → ... µ n → qn }

Table 3.1. Some notation for describing an LTS.

Chapter 3 Interactors: the concept and its evolution

59

the set of actions out(q) which may follow a state q∈Q. Also, an interesting concept is
that of a ‘path’ which is a finite or infinite sequence q1

,q
2
,... of states accessible from a

state q. The set of paths from a state q is denoted as Π(q). A path is maximal if it is
infinite or if it is finite and its final state has no successor state.

LTS already embody some choices for describing interface software adopted for this
thesis. For example, only a single action can take place at any time. There is no concept
of overlapping actions, of a duration of actions or of true concurrency in their
occurrence. Activities are modelled as ordered sets of sequences of actions. With LTS
‘parallel’ activities are in fact logically interleaved. For the purposes of specifying
interface software, it is not clear how useful it is to model true concurrency, or to
associate temporal information with actions. It is noted that some of the recent
developments of the York interactor model, e.g. [58, 59], have been associated with true
concurrent models or modal logics that overcome these limitations of LTSs. Further, a
recent report on the Pisa interactor model examined the use of a temporal extension of
LOTOS [132].

Adopting LTS as a model for the specification of user interfaces implies that interactive
objects, such as those discussed in chapter 2, are thought of as logically concurrent
entities. This notion has been identified early on by researchers, as was discussed in the
context of object based architectures in chapter 2, and special purpose languages for
specifying and programming interaction dialogues, in the beginning of this chapter. In
comparison to simpler models like finite state machines, an LTS affords the comparison
of systems with respect to the options offered at each step during interaction, rather than
the complete sequences of actions that may follow the initial state, before terminating.
In this sense, LTS are a more appropriate model for interface software.

The notion of comparing LTS is quite complex. There are many different equivalences
between LTS, and it is an ongoing debate which of these notions is most appropriate or
‘natural’. This thesis does not attempt to resolve this question. An interesting debate
about such notions can be found in [4, 45, 47 and 133] and many others. This debate
becomes more relevant to the thesis when user-oriented properties of interface software
are discussed in chapter 7. In chapters 6 and 7 comparisons are made between LOTOS
behaviour expressions regarding their meaning. These comparisons always pertain to
the underlying LTSs. The concepts that are used for these comparisons and the
corresponding definitions of equivalences between LTS, are discussed in appendix A.1
at the end of the thesis.

With LTS interaction is represented by the occurrence of actions. The description could
apply to any abstraction level, which could range from the superficially abstract, where
one action could be ‘interact’, to the most detailed, and possibly contrived, study of
events at a physical and perceptual level, ‘lift finger’, ‘press’, ‘hear the click of the
mouse’, etc. Such descriptions may themselves be of interest: e.g. to specify physical
interaction devices [5], to classify them [31] or to provide an account of some activity of
a very large scale, e.g. [104].

Chapter 3 Interactors: the concept and its evolution

60

3.8 A brief introduction to LOTOS

This section introduces some basic concepts of LOTOS which are used in the following
chapters. It is not a self-contained tutorial. The reader is referred to [157] for a tutorial
of LOTOS aimed at practitioners and to [116] where LOTOS is introduced via simple
examples. A more theoretically oriented introduction is that of Bolognesi and Brinksma
[18]. This section aims to explain the notation so as to facilitate the reading of the thesis.
First, a subset of LOTOS, called Basic-LOTOS, is introduced. Basic LOTOS is a
process algebra whose actions do not involve data exchanges. An action in this process
algebra is denoted by a simple identifier. Full LOTOS extends this process algebra with
constructs for the specification of data, operations on the data, and means for
communicating data among processes.

3.8.1 Action prefix

LOTOS describes the temporal ordering of action occurrences, for which the term
interaction and event will also be used. The action prefix operator, written as a semi-
colon, expresses the sequential composition of actions. Thus, the expression a;P denotes
a behaviour where, after interaction a the subsequent behaviour is described by P.

The simplest behaviour expressions are built into the language and concern termination.
Behaviour stop denotes inaction, i.e. a behaviour that offers no action, while exit denotes
a successful termination of a process. For example, an interface that can perform action
interact and then terminate successfully will be described by the behaviour expression:

interact; exit

3.8.2 Process definition

LOTOS specifications are structured in process definitions. The syntax for defining a
process interface with the behaviour described above is as follows:

process interface[interact] : exit :=
interact; exit

endproc

In this section, keywords are underlined in the examples. This practice is not continued
for the specification segments of the later chapters. On the first line, the set of gates of
the process is listed between square brackets. Gates are an architectural concept of
LOTOS. Actions are ‘observed’ on the gates of the process. In basic LOTOS there is no
difference between an action and a gate identifier; this distinction is relevant in full
LOTOS where an action occurrence involves the communication of data over a gate. In
the header of this process definition, the keyword exit denotes that the process should
terminate successfully. This, in LOTOS terminology, is the functionality of the process
which can be either exit or noexit. Functionality noexit means that the process eventually
stops or may never terminate, e.g. because of recursion.

Chapter 3 Interactors: the concept and its evolution

61

3.8.3 Process instantiation

A behaviour expression may involve a process instantiation. In the process instantiation
the formal gate identifiers are renamed by the actual gate parameters. For example, the
process instantiation

interface [graphicalInteraction]

describes the behaviour

graphicalInteraction; exit

Process instantiation is useful in defining recursive processes. An interface that does not
terminate after a single interaction will be described as:

process interfaceForEver[interact]: noexit :=
interact; interfaceForEver[interact]

endproc

Note, how the functionality is now noexit. In chapter 4 interactors are defined as non
terminating processes unless special constructs are added to specify the interruption of
such recursive behaviours.

3.8.4 Choice

Process instantiations may be composed to construct more complex behaviour
expressions. LOTOS provides a set of process composition operators. The action prefix
operator has been introduced already. Alternative behaviours may be associated with the
choice operator, denoted as []. Consider for example a user who will either think or
interact. This behaviour is modelled by a LOTOS process as follows:

process user [interact, think] : exit :=
think; exit

[] interact; exit
endproc

The choice operator could, of course, relate any two behaviour expressions. For
example it could be that a system offers two different modalities for interaction,
graphical interaction and speech interaction. Using the process interface, this ‘multi-
modal’ system could be described by the behaviour expression:

interface [graphicalInteraction]
[] interface [speechInteraction]

LOTOS supports a generalisation of the choice construct. One form of this generalised
choice which is used extensively in the thesis, is used below to describe the same ‘multi-
modal’ system.

choice g in [graphicalInteraction, speechInteraction]
[] interface[g]

Chapter 3 Interactors: the concept and its evolution

62

This construct is useful for expressing a choice among many instances of a process. For
each instance of the process, the formal gate g is actualised with an element of the gate
list associated with the generalised choice construct.

3.8.5 Synchronisation and interleaving

The most commonly used operator, in this thesis, is the synchronous composition
operator. The process interface defined above, may synchronise with other processes on
its gate interact. Consider for example a user modelled as follows:

process user [interact, think]: exit :=
think; interact; exit

endproc

Here, the user is modelled as a process that may engage in an action think, then interact
and terminate successfully. From these impoverished descriptions of an interface and a
user, a simplistic model of interaction may be obtained as the synchronous composition
of two process instantiations. This is denoted using the synchronous composition
operator |[...]| as follows:

process interaction[graphicalInteraction, think]:exit :=
user[graphicalInteraction, think]

|[graphicalInteraction]|
interface[graphicalInteraction]

endproc

The two processes synchronise over the gates listed between the square brackets. The
two processes specify independent behaviours that have to synchronise, to rendezvous,
on the occurrence of an action on the synchronisation gate, i.e. graphicalInteraction in
this example. The synchronisation of the two processes above describes the behaviour:

think; graphicalInteraction; exit

In the above case, the two processes synchronise on all their common gates. A
shorthand for the special case where the two processes synchronise on the union of their
gates is to omit the gate set between the vertical bars. This is called full synchronisation.
A rather problematic interaction could be modelled by the full synchronisation of a user
and an interface:

user[graphicalInteraction, think]
|| interface[graphicalInteraction]

This behaviour expression is equivalent to a deadlock (stop) as the process interface can
not match an interaction with the user on gate think.

To specify two processes operating concurrently, but which do not synchronise on any of
their gates, the interleaving operator ||| can be used. For example the combined
behaviour of two users described by the same process, but having different thoughts

Chapter 3 Interactors: the concept and its evolution

63

thinkA and thinkB and interacting independently with the same graphical interface could
be written as:

user[graphicalInteraction, thinkA]
||| user[graphicalInteraction, thinkB]

Their respective thoughts and interactions are not constrained by each other. However,
the users might find themselves constrained by having only one interface to work on:

(user[graphicalInteraction, thinkA]
||| user[graphicalInteraction, thinkB])
|| interface[graphicalInteraction]

This behaviour expression could be written using the choice operator as follows:

thinkA; (graphicalInteraction; thinkB; stop [] thinkB; graphicalnteraction; stop)
[] thinkB; (graphicalInteraction; thinkA; stop [] thinkA; graphicalnteraction; stop)

This equivalence between behaviour expressions that use the choice operator and others
using one of the parallel operators, i.e. synchronisation, interleaving and full
synchronisation, is an instance of the expansion theorem [133]. This theorem captures
the essence of what is called an interleaving semantics. The parallel execution of two
actions a and b is defined as a choice where either a is followed by b or vice versa. It
turns out that any LOTOS behaviour expression can be written as a choice between
behaviour expressions, each prefixed by a single action. This structure is called the
action prefix form. Essentially the action prefix form describes the behaviour of a
system as a choice between all the possible behaviours that exist for this system.

3.8.6 Enable

When users A and B work in succession, rather than in parallel, their combined
behaviour can be described using the enable operator of LOTOS, denoted by >>, as
follows:

user[graphicalInteraction, thinkA] >> user[graphicalInteraction, thinkB]

This expression specifies the following sequence of actions

thinkA; graphicalInteraction; δ; think; B; graphicalInteraction; exit

The enable operator requires that its left operand terminates successfully. This
successful termination is signified in the action sequence by the hidden action δ, which is
not a LOTOS construct but results from the termination with an exit.

3.8.7 Disable

To describe a disruptive user B that may at any time interrupt user A, the disable
construct will be used. The disable operator is denoted as [>. Consider the behaviour
expression:

Chapter 3 Interactors: the concept and its evolution

64

userA[graphicalInteraction, thinkA]
[> userB[graphicalInteraction, thinkB]

The brief behaviour of user A may be observed in its totality, in which case the whole
behaviour expression terminates. However, at any point during the interaction of A, B
might interfere. Using the action prefix notation this would now be written as:

thinkA; graphicalInteraction; exit
[] thinkA; graphicalInteraction; thinkB; graphicalInteraction; exit
[] thinkA; thinkB; graphicalInteraction; exit
[] thinkB; graphicalInteraction; exit

Each ‘leg’ of this behaviour expression describes a particular ‘point’ at which B
interrupts the behaviour of A.

3.8.8 Hide

The system behaviour may not always be possible to observe externally. This is
specified by designating actions to be ‘hidden’ from the environment of the process,
using the operator hide. For example, the thoughts of a user are normally not observed
externally. A more accurate description of how the user appears to the observer would
be:

hide think in user[graphicalInteraction, think]

To the environment, the user’s thought action is a hidden, and therefore silent, action.
LOTOS uses the letter i to denote non-deterministic hidden interactions, where their
(hidden) occurrence is explicitly specified. Note, that i is different to a hidden success
action δ which is not explicitly specified in LOTOS. Using i the last behaviour
expression can be written as

i; graphicalInteraction

The internal event i is not observable by the environment. It can occur spontaneously
without the participation of the environment.

Hide concludes the introduction to basic LOTOS. In table 3.2 the syntax and operational
semantics of basic LOTOS are summarised. The semantics are defined by inference
rules regarding the transitions specified. Using these rules a basic LOTOS process can
be interpreted as a LTS. Both i and δ are modelled by a τ transition in the underlying
LTS interpretation.

3.8.9 Action specification in full LOTOS

An action specification in full LOTOS, apart from a gate identifier, includes a list of
attributes, which specify the data that is exchanged with the action. LOTOS allows for
many data exchanges to occur on a single action. An attribute may be a value
declaration or a variable declaration. In the examples that follow, it is assumed that

Chapter 3 Interactors: the concept and its evolution

65

entities such as natural numbers, points, and colours have been defined. Thus 0,1,2,...
will be natural numbers, (0,0) will be a point, red will be a colour, etc. These data types
may be defined using the ACT-ONE component of LOTOS discussed later. For the
moment their definitions are not so important.

A value declaration has the form !E where E is an ACT-ONE expression that describes a
data value. For example !0, !(0+1) !red and !(red+white) could be value declarations.
Assuming some sensible definitions for the operator +, these could specify the actions
g!0, g!1, g!red and g!pink respectively.

A variable declaration has the form ?x:t where x is a name of a variable and t is its sort
identifier. For example, g?x:nat specifies any of the actions g!0, g!1, etc., and g?colour
could be g!red, g!blue, etc. Action specifications may be associated with a selection
predicate restricting the range of values specified by a value expression. For example,
g:x?nat [x<3], specifies any of the actions g!1, g!2.

Name Syntax Axioms and Inference Rules

inaction stop

successful
termination

exit exit δ → stop

action prefix g;B g;B
g → B

choice B1[]B2

if B1
α → ′ B 1 then B1[]B2

α → ′ B 1

if B2
α → ′ B 2 then B1[]B2

α → ′ B 2

enabling B1>>B2

if B1
α → ′ B 1, α ≠ δ then B1 >> B2

α → ′ B 1 >> B2

if B1
δ → stop then B1 >> B2

i → B2

disabling B1[>B2

if B1
α → ′ B 1, α ≠ δ then B1[> B2

α → ′ B 1[> B2

if B1
δ → ′ B 1 then B1[> B2

δ → ′ B 1

if B2
α → ′ B 2 then B1[> B2

α → ′ B 2

hiding hide G in B

if B α → ′ B , α ∈G then hide G in B i → hide G in ′ B

if B α → ′ B , α ∉G then hide G in B α → hide G in ′ B

renaming B[H] if B
α → B then B[H]

H(α) → ′ B [H]

parallel
composition

B1|[G]|B2

if B1
α → ′ B 1, α ∉G ∪{δ} then B1|[G]|B2

α → ′ B 1|[G]|B2

if B2
α → ′ B 2 , α ∉G ∪{δ} then B1|[G]|B2

α → B1|[G]| ′ B 2

if B1
α → ′ B 1, B2

α → ′ B 2 , α ∈G ∪{δ} then B1|[G]|B2
α → ′ B 1|[G]| ′ B 2

process
instantiation

P if P:= B, B α → ′ B then P α → ′ B

Table 3.2. LOTOS syntax and semantics (adapted from [28]).

Chapter 3 Interactors: the concept and its evolution

66

3.8.10 Interprocess communication in LOTOS

A set of values may be communicated from one process to another when the lists of
attributes associated with their respective action specification agree on a single tuple of
values. Consider the processes user and interface discussed in the previous section. A
contrived description of the user would be that the user thinks of aThought and
subsequently points at the middle of the screen. The interface reads a point on its gate
interact.

process user[interact, think] : exit :=
think!:aThought; interact!middleOfTheScreen; exit

endproc

process interface[interact] : exit :=
interact?x:aPoint; exit

endproc

The behaviour expression below will specify the input of a point, namely the middle of
the screen.

user[graphicalInteraction, think]
|[graphicalInteraction]|

interface[graphicalInteraction]

In fact, this last behaviour expression could be written as:

think!aThought; graphicalInteraction!middleOfTheScreen; exit

3.8.11 State parameters for processes

A process may be associated with some local state parameters. These are declared
between parentheses after the list of gates. Returning for a moment to the recursive
process interfaceForEver, let its state consist of a single point. The process definition
would be:

process interfaceForEver[interact](x:aPoint) : noexit :=
interact?y:aPoint; interfaceForEver[interact](y)

endproc

Such a process, when synchronising with the user, as in the previous paragraph, will
instantiate itself recursively as:

interfaceForEver[interact](middleOfTheScreen)

This specification of interaction describes an infinite repetition of the following sequence
of interactions:

think!aThought; graphicalInteraction!middleOfTheScreen

Table 3.3 is adapted from [18]. It lists the possible interactions between two processes A
and B that synchronise over a gate g.

Chapter 3 Interactors: the concept and its evolution

67

3.8.12 ACT-ONE data types

ACT-ONE specifications are structured into type definitions. These group together
descriptions of the sets of the data values, called sorts, the operations upon them, and the
properties of these operations defined in an equational framework. A data type will
include a set of equations which specify which expressions are considered equal. There
are no data types built into the language. However, some standard libraries of abstract
data types are part of the LOTOS standard [100]. These provide definitions of the most
commonly used data types, e.g. Boolean, Naturals, Sets, etc.

The data type point below uses most of the constructs of ACT-ONE that are used in the
specifications of this thesis.

1 type point2D is NaturalNumber
2 sorts aPoint
3 opns
4 middleOfTheScreen: -> aPoint
5 mkPoint:Nat,Nat -> aPoint
6 xcoord: aPoint -> Nat
7 ycoord: aPoint -> Nat
8 setX: aPoint, Nat -> aPoint
9 setY: aPoint, Nat -> aPoint
10 eqns
11 forall p:aPoint, n,m:Nat
12 ofsort Nat
13 xcoord(middleOfTheScreen)=0;
14 ycoord(middleOfTheScreen)=0;
15 xcoord(mkPoint(n,m))=n;
16 ycoord(mkPoint(n,m))=m;
17 xcoord(setX(p,m))=m;
18 ycoord(setY(p,m))=m;
19 xcoord(setY(p,m))=xcoord(p);
20 ycoord(setX(p,m))=ycoord(p);
21 endtype

In line 1 of this specification the data type point2D is designated to extend the data type
NaturalNumber. Extension of a data type with new sorts, operations and equations is a
very simple way of reusing existing data types. Instead of re-using only one data type,

process A process B synchronisation
condition

type of
interaction

effect

g!E1 g!E2 value(E1)=
value(E2)

value matching synchronisation

g!E g?x:t value(E) is of
sort t

value passing after synchronisation
x = value(E)

g?x:t g?y:u t=u value
generation

after synchronisation
x=y=v where v is
some value of sort t

Table 3.3. Types of interaction between synchronised LOTOS processes.

Chapter 3 Interactors: the concept and its evolution

68

further data types could be listed after NaturalNumber. In this case these data types
would be combined. Other ways of data type re-use, i.e. renaming, parameterisation and
actualisation, are discussed in ACT-ONE tutorials, e.g. [44, 61].

In line 2, the sorts of the data type are listed. This data type has only one sort (aPoint)
apart from those of data type NaturalNumber. Lines 4 to 9 define the syntax of
operations, i.e. their arity and the sorts of data involved. Operation middleOfTheScreen
is an example of how constants are defined as operations without arguments. Line 6 and
7 define two inquiry operators. Applied to an expression of type point they return a
natural number which is one of its coordinates. Operation mkPoint is a constructor
operator, which builds up a complex value from simpler ones. setX and setY are
examples of transformer operators, which modify the coordinates of a point. The sorts
and the operations of a data type define its signature, i.e. its syntax. Usually a subset of
the constructor and transformer operators is sufficient to generate all the possible terms
which follow this syntax. The remaining constructors and transformers may be rewritten
as expressions which involve only this subset of operators.

The equations define equalities between expressions which, in the example, correspond
to the properties of the two dimensional points. For example the middle of the screen
has coordinates (0,0), which makes it a strange screen but an easier one to specify. Note
how in this data type inquiry operators are applied to all constructor and transformer
expressions. This helps write sufficiently complete specifications of the data types [115].
Equations should be written for each application of an inquiry operator to all the
constructors and transformers which generate the terms of the data type. In the examples
of chapter 4, completeness of this kind is not a predominant concern. However, in
practical situations, striving for complete data types is commendable.

This exposition has been very economical. It introduces only a few simple elements of
the language used in the thesis. A tutorial directed at practitioners who wish to use
ACT-ONE as it is supported by LOTOS can be found in [157]. An extensive
introduction to algebraic specifications using the ACT-ONE language can be found in
[61] and a brief overview in [44].

3.8.13 Specification styles for LOTOS

In the opening of this chapter it was stressed how it is necessary to structure
specifications in order to manage their size and complexity. This is a general
requirement for using formal specifications [73]. In section 3.4 an example of a
structuring for CSP specifications by Alexander was discussed. This section reviews
some results from research in the use of LOTOS for the formal specification of
international standards. Researchers in this area faced the problem of making their
specifications easy to understand by a wide audience and used by large teams of
developers. Their response was to develop a set of standard specification techniques or
styles.

Chapter 3 Interactors: the concept and its evolution

69

A specification style is an approach to structure specifications in a given specification
language. It is a conceptual guide for the specifier that determines the kind of concepts
used to describe a system, e.g. constraints, states and transition between states, objects,
etc., and their relationship to language constructs. Different specification styles are
appropriate for different purposes in the process of designing some software. Instead of
selecting a specification style on the grounds of personal preferences and aversions, it is
advisable that authors and readers of specifications be confronted with a standard set of
styles [180]. A standard specification style, or set of styles, enhances the homogeneity
of a specification. Arguably, this encourages the development of implementation
conventions and fosters faster implementations.

Figure 3.10 illustrates how specification styles, listed at the right side of the figure, may
serve different purposes. The purpose of a specification in this context, refers to what it
aims to describe. An intensional description supports the specification of the
architecture of a system. An extensional description is a more abstract description that
specifies what the system does without reference to its internal structure. The four
specification styles shown in figure 3.10 are defined in terms of how they structure the
specification, what they try to describe and what language constructs they use.

• The monolithic style models the system behaviour as alternative sequences of
observable interactions in branching time. It prohibits the use of parallel operators.

• A constraint oriented specification models externally observable actions of a
system. Their temporal ordering is defined by a conjunction of different constraints.
No hiding may be used.

• A state oriented specification will be more or less like a state transition network
specified in LOTOS. No parallel operators are used.

Figure 3.10. Formal software development as a transition
between specification styles in LOTOS (adapted from
[180]). Arrows indicate transformations of the
specification.

Chapter 3 Interactors: the concept and its evolution

70

• The resource oriented style models both internal and external interactions. The
system is modelled as a set of resources (objects) which are interconnected through
gates. All operators are allowed.

The specification styles introduced can be thought of as a conceptual aid for writing
specifications. Provided that the reader of a specification recognises it, a particular
specification style should help understand the specification. LOTOS is a constructive
language, in that it helps build up specifications from smaller scale modules. The
constraint oriented style makes it also possible to write specifications very abstractly,
practically in terms of declarative assertions about the behaviour of the system specified
[176]. In practice a mix of specification styles is required. Choosing what part of the
system functionality to specify in the behavioural component of LOTOS and what in
terms of the data typing component is also a question of specification style. A relevant
discussion can be found in [76] where it is argued that the process algebra can help
overcome the difficulty of specifying exceptions and error conditions in an equational
language like ACT-ONE. A formal model for interface software, like the interactor
model discussed in chapter 4, can be seen as a guide to the specifier as to the appropriate
mix of specification styles. In addition, the interactor model provides a mapping of
interface architecture concepts to mathematical concepts particular to the LOTOS
specification language. Vissers [179] calls this mapping an architectural semantics.

3.9 Conclusion

This chapter started with a discussion on the role of formal specifications in the
development of user interface software, concluding that they have a potential to help
user interface development, without though replacing current methods and practices. It
then reviewed some influential research works in the formal specification of user
interfaces. Over approximately the last fifteen years that this survey has spanned, there
has been a considerable change to the research directions in the area. Partly, this reflects
the lessons learnt early on and, partly, the developments in user interface technology.
Early attempts at the specification of user interfaces, discussed in section 3.3, were
directly related to research in UIMSs and their aim was to find executable notations that
would serve for the succinct representation of dialogues. Interaction was very much
language based, so original approaches used relevant formalisms. Later on, event based
notations were identified as the most appropriate means of specifying these dialogues.
These event based notations are hybrid, in the sense that they link an event specification
with some specification of data and of operations on the data.

The most significant examples of formal specifications of user interfaces, discussed in
section 3.4, aimed to demonstrate and assess the potential benefits of a formal method.
Such experiences prompted the development of special purpose specification languages
for the domain of user interfaces. Similar to dialogue notations, they seem to focus on
the specification of events and their effects, regardless of the formal framework adopted.
This can also be observed in the specification of abstract models, discussed in section

Chapter 3 Interactors: the concept and its evolution

71

3.5, and their evolution to interactor models. With only a few exceptions the interactors
are specified using hybrid specification techniques. The thesis has adopted a hybrid
formal specification language called LOTOS for the specification of user interface
software. Section 3.7 discussed the notion of events supported by LOTOS and section
3.8 introduced briefly the LOTOS language.

Formal models of user interface software have gradually introduced more structure in
specifications. This structure is embodied in the definition of formal models of
interactive objects called interactors. The interactor concept, as defined in section 3.6,
has evolved from an attempt to specify interactive systems abstractly and formally, and
also, from research concerned with the formal description of the architecture of graphical
interactive software. The introduction of more structure in the formal models is
reminiscent of the development of object based architectures for user interface software.
This analogy was underlined in section 3.2, where formal specification techniques were
characterised with respect to their abstractness and their structure.

The survey narrowed down to the presentation of two families of interactor models, in
section 3.7, which are referred to as the York and the Pisa interactor models. Apart from
the fact that they are defined in different formal frameworks, they describe very similar
abstractions. By now, there is some testimony to the validity of these models and to
their potential, as the various citations have shown. The discussion has appraised the
two models, and their various versions, trying to draw lessons from them.

The York interactor model seems more abstract and better suited for analytical use.
Properties of interaction can be formally expressed in terms of the relationship between
abstractions of the state and the display for a particular interactor and the sequence of
events that leads up to these states. One of the limitations of the York interactor model
noted in this chapter was its limited malleability as a design notation. In chapter 7, the
thesis examines how properties of interaction may be expressed within a more
constructive framework that facilitates the specification of user interfaces.

On the contrary the Pisa interactor model provides a framework for the specification of
interfaces that may reduce the specification effort and has the potential to be scaled up.
Various uses of the model in the design cycle were cited and they will be discussed more
in subsequent chapters. It was noted how the Pisa interactor model could be simplified
by abstracting away from a particular implementation architecture that it has inherited
from the GKS input model. This point is revisited in the next chapter.

Attention was drawn to how the models presented approach the issue of the composition
of interactor specifications. In most models interactors, or agents, or logical input
devices are composed to form more complex specifications. In the state based
specification of interactors it was quite challenging to model the semantics of the
composition. The process algebraic approaches seem to offer advantages in this respect,
although much of the structure that makes interactors meaningful as an abstraction and
as a design tool is quickly lost in a composition expression. This problem is discussed
extensively in later chapters.

74

Chapter 4

The ADC interactor model

This chapter introduces the ADC interactor model and presents its formal specification
as a LOTOS process. First, a few elementary interactive components are discussed
illustrating the requirements from the ADC model as a representation scheme,
independently of its formal specification. This reflects the aspiration that the model is
not only an aid for writing formal specifications in LOTOS. Rather, it provides a
conceptual framework for thinking about user interfaces and their components, which
captures essential aspects of their nature. However, the model was developed in LOTOS
so it is strongly influenced by the features of the language, e.g. multi-way
synchronisation, support for specifying both data handling and event ordering. The
exposition below extends that of [123] where the model was originally introduced and
incorporates some of the later changes to the model. An example specification of a
scrollable list is presented. This example illustrates the use of the model and motivates
the theoretical arguments of later chapters.

4.1 Dimensions for the description of interactive components

Some simple examples of hardware and software components are discussed briefly. The
examples do not aim to provide an accurate description of these devices, but rather, to
illustrate the essential dimensions for describing user interface software and its
components. These dimensions are mapped onto the components of the interactor model
introduced in the following sections.

The first example concerns old fashioned tape recorders of the 1970s and early 1980s.
Most have an array of mechanical buttons which can be thought of as the interface of the
apparatus. To play a tape the user has to push down a simple mechanical button with the
indication ‘Play’ printed on it or next to it. Normally, this starts playing the tape. If the
tape has finished or no tape has been inserted, then the button remains pressed,
indicating the command last issued by the user, but the tape recorder plays nothing. The
button serves to issue a command to the system and to show its own status to the user.

Chapter 4 The ADC interactor model

75

Playing the tape can be interrupted with the ‘Stop’ button. In most models, this can not
remain in the pressed position and only has an effect when the ‘Play’ button has been
pushed before. In some models the ‘Stop’ button ejects the tape if ‘Play’ has not been
pressed. This behaviour indicates that the history of the commands issued to the tape
recorder is important in interpreting further commands. The user is assisted in predicting
the effect of a command by observing the state of the buttons. Also, the user is
physically not able to press the ‘Play’ button twice. These are examples of dialogue
constraints enforced by the design of the artefact.

Later models that became popular in the mid-1980s introduced a panel of touch sensitive
buttons to control such appliances. A drawback of these buttons from the users’ point of
view is that they do not show their state: they cannot remain pressed. To compensate for
this, Light-Emitting-Diode (LED) indicators have been added to the buttons. When a
‘Play’ button is pressed, conventionally a green arrow pointing to the right lights up
giving feedback to the user. This LED-equipped button informs the user about the state
of the button and also about the state of the apparatus. A green light means that the tape
is actually playing. When the apparatus is playing the user can push the ‘Play’ button
again although this action will have no effect.

In later electronic appliances like compact-disc players, the push buttons lost their green
LED lights. A separate LED display was added instead, which provides much more
information to the user about the application: it does not just indicate that it is playing,
but also, which track and how far in the track play-back has reached. In such appliances
the dialogue for the ‘Play’ button has been modified. It can be used to restart play from
the beginning of the current track, allowing the user to issue the play command many
times successively.

The ‘Play’ and ‘Stop’ buttons, the LED display, and the speakers of the apparatus can be
thought of as its interface. They exhibit some of the dimensions adopted to describe
interfaces using the ADC interactor model:

• An interactor is used to input commands to the application.

• An interactor is used to output information from the application to the user.

• The interactor is characterised by its own state, part of which it may show to the
user directly or through other interactors. The state of the interactor is modified
both by user input and by changes to the state of the application.

• The state of the application and the state of the interactor itself may determine what
input the user is allowed to issue.

• The user may be prohibited from certain actions because of previous interactions.
Similarly user commands may be interpreted differently depending on the previous
events.

The last two points are very similar. Whether or not a command is available and how a
command will be interpreted may be considered to depend on either the previous history

Chapter 4 The ADC interactor model

76

of interactions or the state of the interactor. This observation merits an explanation
before making some last remarks about consumer electronics. The term ‘state’ is widely
used in HCI and it is mostly considered self explanatory. However, it is important to
remember that what is considered state and what not is a property of the representation
scheme used and not of the specificand, i.e. the interface described. The choice of what
to represent as state and what as events is influenced by the purpose and the style of the
representation. The duality between models of interaction using histories of events or as
a state-based model has already been discussed in the context of the PIE model (chapter
3), following the argument of Dix [49]. Comparisons between specification notations
which use different formal frameworks, as for example the comparison between a model
based specification, and an event based model reported in [144], or styles of
specification [179, 180 and 76] can be seen as instances of the same issue.

This issue is also relevant to the last of the tape recorder components that will be
discussed. The volume control has largely remained the same throughout the
development of tape recorders, even up to its on-screen equivalent on today’s multi-
media applications (an example of such a component is specified in chapter 5). In the
latter case, the user operates an on screen representation of a potentiometer to alter the
value of the volume setting. This value ranges between zero and some maximum value.
A potentiometer is different from the push buttons which issue a simple command
without a value. In this case, the interface builds up some value which it sends to the
application. So one more point is added to the list above:

• The interactor builds up some data which it sends to the application.

Alternatively, changing the volume may be modelled as a choice of events, that
correspond to discrete values of the volume. Indeed, some of the older volume controls
have discrete steps for the setting of their potentiometer. Again it is a choice for the
modeller whether to think of the volume as a value that is being built up by the interface
and sent to the application, or as the occurrence of one event out of a finite set. The
latter may seem contrived, but it may seem equally contrived to model the ‘Play’ button
as sending a value ‘play’ to the application. In other words, the data held by the
interactor and the events that describe its interactions with the environment are not
inherently orthogonal attributes of the specificand. The interactor model should not
impose to the designer a scheme for how to model these attributes of the specificand but
should provide the appropriate dimensions for their description.

Something that cannot be inferred from the observation of such elementary devices, or
even of command-line interfaces, is how user actions are sometimes interpreted on the
basis of the display. This issue was raised in section 3.5 as a limitation of functional
representations of the PIE model. This argument has been extensively discussed in [174]
where the inadequacy of simple functional models for describing direct manipulation
was discussed. It is added to the list of requirements for modelling interactors:

• Input by the user may be interpreted on the basis of the display content.

Chapter 4 The ADC interactor model

77

In summary, the user interface can be described as an entity which supports the
communication between a user and a functional core. The interface can be described in
terms of its interactions with the user and the functional core, their purpose and by their
effect on two data representations. One data representation pertains to the display of the
interface. The second data representation partly determines how the interface is used as
a store of data to be conveyed to the functional core. This will be called the abstraction.
The specification of the temporal ordering of the interactions, is called the controller
component of the interface.

The requirements listed are not particular to a formal specification of a user interface,
although the formal specification scheme presented in the next section takes them into
account. In section 5.7 such an ‘external’ view of the interactor as a communication
entity provides a conceptual guide for writing the formal specifications of user interface
software.

4.2 Overview of the ADC model

The ADC (Abstraction - Display - Controller) interactor model distinguishes three
orthogonal aspects of the interactor, which are described in distinct modules:

• The data held by the interactor and the operations upon the data.

• The link between actions that describe the interactor behaviour and their effect on
the data. This is described in the Abstraction and Display Unit (ADU).

• The temporal ordering of the behaviour of the interactor. This is described in a
process without any local state parameters called the Controller Unit (CU).

An ADC interactor holds two kinds of data. These are distinguished by whether they are
displayed or not. The abstraction is the information managed by the interactor that is
not displayed. The display is information displayed either directly or indirectly through
other interactors. Each interactor specification uses an ACT-ONE abstract data type, the
abstraction-display data type (AD), which describes these data components. A generic
template for the definition of this data type is described in the next section.

The Abstraction and Display Unit (ADU) is a LOTOS process. The abstraction and the
display are its local state parameters. The ADU may interact with its environment
through its gates. It is only through such interactions that the environment may read or
modify the values of the abstraction and the display. Characteristically, the ADU is
neutral with respect to the temporal ordering of its interactions. At all times it is ready to
interact with its environment at all its gates.

The temporal ordering of these interactions is determined by the Controller Unit (CU)
which ‘controls’ all the gates of the ADU. The CU does not store any data received or
constructed by the interactor, and it does not apply any operations to such data. Rather,
it only specifies the ordering of interactions on its gates. Its ‘dialogue state’ refers to

Chapter 4 The ADC interactor model

78

which actions it is ready to offer at any moment and what future interactions this may
give rise to. This is quite a distinct notion than the state of the ADU, which is
sufficiently described by the values of its local variables. Some standard behaviours are
built in the ADC interactor structure. These behaviours have the effect of starting,
suspending, resuming, restarting and aborting the operation of the interactor. For short
these standard behaviours and the corresponding gates through which they are effected
are collectively referred to as SSRRA behaviours (respectively gates). The specification
of the relevant behaviours requires only the instantiation of the respective gate
identifiers.

Interactors can communicate with other interactors and possibly with the user or the
application. The interface may be modelled as a graph whose nodes are the interactors
and whose edges correspond to connections between them. Connections are modelled as
the synchronisation of two or more interactors over a pair of gates. Interactors may also
be connected to agents representing the application and the user. Interactions on the
connected gates may involve communication of data, which is directed, or simple
‘control’ events that have no direction. In an extreme case, but not an unlikely one, the
whole interface can be modelled as a single interactor. Indeed, whenever the interface is
studied as a whole it will be most useful to model it as a single interactor. One of the
motivations of the model, that will be discussed quite thoroughly in chapter 6, is the
ability to alternate between different views of the interface as a graph of interactors or as
a single interactor. This is an important characteristic of the ADC formal interactor
model. The model is applicable for both the parts and the whole of the interface. In both
cases, the model concerns an arbitrary level of abstraction which is determined by the
granularity of the actions discussed.

A gate of the interactor groups interactions with a similar purpose. Interactions on the
same gate of the interactor have a common ‘role’, i.e. to support input or output of data,
or simple synchronisation, to cause the application of predetermined operations on the
data representations managed by the interactor. The gates are themselves grouped into
three ‘sides’: the abstraction side, the display side, and the controller side of the
interactor. If the whole of the interface is modelled as a single interactor, then its
abstraction side pertains to interactions with the application and its display side concerns
the graphical interaction with the user.

To make a gradual and more comprehensible presentation of the ADC model, a
simplified version that does not incorporate the SSRRA behaviours is presented first. In
this version the description of the CU reduces to one of its components the Constraints
Component (CC). There is much merit to the use of such a simple model as it exhibits
most of the properties installed in the ADC model and it is clearly simpler.

4.3 Specification of the Abstraction-Display (AD) data type

The gates of the ADU support communication into or out of the interactor. In figure 4.1,
they are shown as thick grey arrows. These gates are assigned either to the abstraction

Chapter 4 The ADC interactor model

79

side or the display side of the
interactor. In figure 4.1 the
ADU is represented by a
rectangle. The top side of this
rectangle corresponds to the
abstraction side and the bottom
side of the rectangle to the
display side of the ADU. The ADU
may:

• Receive data from the display
side via gate dinp.

• Output its display status
from the display side via
gate dout.

• Receive data from the
abstraction side from gate
ainp.

• Output non-display data to other interactors via gate aout.

Interactions on these gates modify the local state of the interactor consisting in the
abstraction and the display. The ADU applies the following operations on these state
components:

• The operation input computes the abstraction by interpreting data which is input
from the display side of the interactor, with respect to the current display and the
current abstraction of the interactor.

• The operation echo computes the display by interpreting data which is input from
the display side of the interactor, with respect to the current display and the current
abstraction of the interactor.

• The operation result interprets the current abstraction and produces data which is
communicated to the application or to other interactors. There may be various
result operations, in which case each value is offered on a different aout gate. In
some cases this operation can be the identity operation when the value of the
abstraction is sent to other interactors as it is.

• The operation render updates the display with respect to data received from the
abstraction side. It allows the application and other interactors to modify the
graphical appearance of the interactor or to visualise, through the interactor, data
they send to it.

• The ADU applies operation receive to update the abstraction with respect to data
received from the abstraction side.

Figure 4.1. The ADU process, its gates and
state parameters.

Chapter 4 The ADC interactor model

80

The asymmetry in the handling of the abstraction and the display reflects their different
roles in the ADC model. While different ‘clients’ of the interactor may require a
different interpretation of its abstraction, computed through operation result, this is not
the case for the display. As will be shown when the ADU specification is discussed and
as is indicated in figure 4.1, the ADU outputs its display state without further
interpretation/transformation.

The operations listed above are specified in an ACT-ONE data type ad with which the
interactor is associated. Its signature is as follows:

type ad is
sorts

abs, disp, dInpData, aInpData, aOutData
opns

input: dInpData, disp,abs -> abs
echo: dInpData, disp, abs -> disp
render: disp, aInpData -> disp
receive: abs, aInpData -> abs
result: abs -> aOutData

endtype

The sorts abs and disp describe the state parameters, dInpData describes input arriving at
the display side (gate dinp), aInpData describes input arriving at the abstraction side
(gate ainp), and aOutData describes data which is sent to the ‘clients’ of the interactor.
An abstract data type associated with a particular interactor will have custom identifiers
for its sorts and operations. The signature will be amended with equations that make the
specification a more meaningful specification of the interactor. In later examples it will
be shown how the data type ad is defined for some example interactor components.
Such a specification may extend domain specific data types that model the semantics of
the problem domain.

The distinction between the display side and the abstraction side of an interactor is a
conceptual aid for specifying an ADC interactor. When both the display state and the
abstraction state are used to interpret received input, this is considered to be arriving at
the display side. This corresponds to user input that the interactor needs to de-reference
with respect to the current display. In practice, this is the only difference between input
arriving to one side or the other. Choosing which side an interactor gate belongs to does
not depend on what it connects to, but rather, on how the information received is meant
to be interpreted. This distinction of the sides of the interactor is slightly different but
not necessarily inconsistent to the distinction of a user and an application side used by
the Pisa model, which was discussed in chapter 3. Indeed, when considering the whole
of the interface as a single interactor the two views coincide.

This section has presented some syntax, i.e. the signature of the data type ad. Clearly, it
is the structure of this signature that matters and not the names of the sorts or the
operations. In reality, what this signature defines for all ADC interactors is a
classification of the data it manages and the operations upon the data. It is not necessary
to specify an operation called input, echo, etc., in all data types associated with the
interactors. However, there is a commitment that all operations will have the purpose

Chapter 4 The ADC interactor model

81

and syntax of the operations defined here. This defines a consistent specification style
for the data types associated with all ADC interactors.

4.4 The Abstraction Display Unit

The main purpose of the ADU is to relate action occurrences to operations of the data
type ad. The ADU is a process which has some local parameters describing its state.
The process definition for the ADU is quite simple. Its behaviour is a choice between
action prefix expressions. There is one such expression for each gate of the ADU. An
action specification prefixes the recursive instantiation of ADU with the designated
operations applied to its state parameters.

process ADU[dinp, dout, ainp, aout](a:abs, dc,ds:disp):noexit:=
dinp?x:dInpData; ADU[...](input(x,ds,a), echo(x,ds,a), ds) []
dout!dc; ADU[...](a, dc, dc) []
ainp?x:aInpData; ADU[...](receive(a,x), render(dc,x), ds) []
aout!result(a); ADU[...](a, dc, ds)

endproc

There are two local variables holding values of type disp. The parameter ds holds the
current state of the display, i.e. the last value output on the display from gate dout. The
parameter dc is the computed display which the interactor will output on the next
interaction on gate dout. The ADU does not necessarily output its most recently
calculated display, so parameter ds is necessary to maintain a separate record of the
value of the display that is used to interpret all arriving user input.

An interaction on gate dinp will cause the process to instantiate itself recursively,
changing its local state parameters. The abstraction is set to the value produced by
operation input and the computed display is set to the value produced by echo. An
interaction on dout will output the computed display status and the process is called
recursively with the current display set to the value of the computed display. An input
from the abstraction side, on gate ainp, will set the value of the abstraction status to the
value computed by operation receive and the computed display to the value computed by
render. An output on the abstraction side, on gate aout, of a value computed by the
interpretation operation result will have no effect on the state parameters of the ADU.

The role of the two display variables requires some explanation. Consider for example
two consecutive input events, on gate dinp, that are not separated by an output event, on
gate dout, between them. The second input is interpreted with respect to the same
display state as the first. This is the value of the local state component ds. Suppose the
two dinp events are followed by an output event dout. This causes the recursive
instantiation of the ADU where the formal parameter ds is set to the last value of the dc
parameter.

It is worth noting that the gates of the ADU are typed according to their purpose. In
figure 4.2, it can be seen that on the display side input gates may receive data of sort
dInpData and output gates will offer data of sort disp. On the application side input

Chapter 4 The ADC interactor model

82

gates may receive data of sort aInpData and output gates may offer data of sort
aOutData.

The description so far shows that the ADU implements a mapping from the gates of
ADU to the operations of data type ad. This mapping is standard for all ADC
interactors. It is not the only plausible mapping that can be used for the same purpose
and it is not argued that it is necessarily the best. The mapping was shaped on the basis
of its intuitive appeal and it was refined through the practical application of the model.
Of more significance is that this mapping is standardised for all interactors. Provided it
does not unduly restrict the expressiveness and malleability of the representation
scheme, then the specifier-user of the ADC model is relieved of the task of relating the
dynamic component of the specification to the data typing component. The ADU
specification follows mechanically from a definition of the data type ad, and a
characterisation of what is the role of each gate of the interactor, e.g. input on the display
side, output from the abstraction side, etc.

4.5 The Constraints Component

As mentioned above the ADU does not specify a temporal ordering on its behaviour.
This is the purpose of another process, called the Constraints Component (CC). The CC
constrains the behaviour of the ADU to exhibit a certain pattern by synchronising on all
its gates. By definition, the gate set of the CC includes all the gates of the ADU, plus
some more which may be useful in describing dialogue constraints, e.g. synchronisation
with other interactors, triggers, etc. For the sake of the presentation assume there is one
such gate d that stands for a set of gates Gdialogue of the same purpose. These gates belong
to the alphabet of process CC but not to the alphabet of process ADU. Dialogue (or
control) gates are assigned to the controller side of the interactor, represented in the
illustrations by the sides of representation of the interactor. The composition of the
ADU with the simple CC component is shown in figure 4.2. A simple model of the
ADC interactor can be obtained as the synchronous composition of the ADU and the CC
over all the gates of the ADU, which from now on will be called the set of input and
output gates Gio.

Chapter 4 The ADC interactor model

83

process ADC[d, dinp, dout, ainp, aout] (A:abs, D:disp):noexit :=
ADU[dinp, dout, ainp, aout](A, D, D)

|[dinp, dout, ainp, aout]|
CC[d, dinp, dout, ainp, aout]

endproc

The CC is a simplified form of the CU which is defined in section 4.7. There the CC is
defined as a component of the CU. The CU will be defined as a parameterised structure
that provides the SSRRA behaviours as well. Below is an example of a CC that forces
an echo after each input event and sets no other constraint:

process CC[d, dinp, dout, ainp, aout] : noexit :=
ainp?X:aInpData; dout?X:disp; CC[d, dinp, dout, ainp, aout] []
aout?X:aOutData; CC[d, dinp, dout, ainp, aout] []
dout?X:disp; CC[d, dinp, dout, ainp, aout] []
dinp?X:dInpData; dout?X:disp; CC[d, dinp, dout, ainp, aout] []
d; CC[d, dinp, dout, ainp, aout]

endproc

Actions on the gates of Gio = {dinp, dout, ainp, aout} are typed, in accordance to the
ADU. However, the CC does not apply any selection on the values offered and does not
record this information in some local state parameter. Other than the typing information
on its gates, which is necessary for the synchronisation with the ADU, the CC ignores
the data values associated with events.

As a second example, consider that there is an input trigger (it) and an output trigger
event (ot). Their purpose is equivalent to those of the Pisa interactor model discussed in

Figure 4.2 Composition of the ADU and the constraints component CC.

Chapter 4 The ADC interactor model

84

section 3.6. The input trigger should cause an event on gate aout and the output trigger
event should cause an event on dout.

process CC[it, ot, dinp, dout, ainp, aout]:noexit :=
ainp?X:aInpData; CC[it, ot, dinp, dout, ainp, aout] []
it; aout?X:aOutData; CC[it, ot, dinp, dout, ainp, aout] []
ot; dout?X:disp; CC[it, ot, dinp, dout, ainp, aout] []
dinp?X:dInpData; CC[it, ot, dinp, dout, ainp, aout]

endproc

This example demonstrates the versatility of using the constraint oriented style to specify
the interactor behaviour. Here, the black box version of the Pisa interactor model,
specified in basic LOTOS in [54], has been specified in the CC component. The
synchronisation of CC with the ADU specifies the interactor in full LOTOS. Any
alternative behaviour can be specified in the CC. Further constraints can be added
incrementally by parallel composition. In contrast, consider the white box version of the
Pisa interactor model [150], which is specified as a composition of resources. It may not
always be possible to specify and modify its behaviour by applying constraints
externally. Instead it may be necessary to modify the specification of the resources
comprising the interactor.

The example above, illustrates also how the use of the model is generalised. The gate
identifiers used in the LOTOS definitions are place holders for gate sets of similar
purpose. In this case the gate d in the definition of the CC component corresponds to a
gate set Gdialogue= {it, ot}.

4.6 A simple example: The specification of a scroll bar

The specification of interactor scr modelling a simple scroll bar is presented, starting
from its corresponding data type scr_ad. The specification of scr_ad combines the
specifications of scrBar and BoundedVal. Data type scrBar describes the visible
representation of a scroll bar. BoundedVal represents the abstract notion of a bounded
value which the scroll bar manipulates. An operation input pertains to the mapping of a
point to an integer value linking the two data types. Only the syntax for this operation is
defined. There are two operations render. Respectively, they describe the resizing of
the scroll bar and the visualisation of a bound value. Operation receive substitutes the
abstraction with a new bound value input to the interactor. Operation result returns the
integer value of the abstraction.

type scr_ad is scrBar, boundedVal
opns

input: pnt, scrollbar, boundValue -> boundValue
echo: pnt, scrollbar, boundValue -> scrollbar
render: scrollbar, boundValue -> scrollbar
render: scrollbar, rct -> scrollbar
receive: boundValue, boundValue -> boundValue
receive: boundValue, rct -> boundValue
result: boundValue -> Int

Chapter 4 The ADC interactor model

85

initBV: -> boundValue
initSB: -> scrollbar

eqns
forall r:rct, p:pnt, sb: scrollbar, bv1,bv2: boundValue
ofsort boundValue

receive(bv1, bv2) = bv2;
receive(bv1, r)=bv1;

ofsort scrollbar
echo(p,sb,bv1) = changePnt(sb, p);
render(sb, r) = changeRect(sb, r);
render(sb, input(p,sb, bv1))=changePnt(sb,p);

ofsort Int
result(receive(bv1, bv2))=val(bv2);

endtype

The data types BoundedVal and scrBar do not follow the syntactic conventions defined
by the signature of type ad. For the sake of a complete presentation, their specification
is included below. BoundedVal supports three inquiry operations that return integer
values for the upper and lower bounds and the value that ranges between them. Three
transformer operations are defined to set this value.

type BoundedVal is Integer
sorts

boundValue
opns

lo, val, hi: boundValue -> Int
setVal: boundValue, Int -> boundValue
incr, decr: boundValue -> boundValue

eqns
forall b:boundValue, n: Int

ofsort Int
val(setVal(b, n)) = n;
val(incr(setVal(b,n))) = s(n);
lo(setVal(b,n)) = lo(b);
hi(setVal(b,n))= hi(b);

ofsort bool
lo(b) le val(b) = true;
val(b) le hi(b) = true;

ofsort boundValue
incr(b) = s(val(b));
decr(b) = p(val(b));

endtype

A simple and abstract model of a scroll bar is characterised by two graphical entities: a
rectangle and a point. The data type Graphics which models such basic graphical
entities is extended in the definition of scrBar, but it is not necessary to describe it
below. The operations on a scroll bar may change or return the value of the rectangle
and the point.

type scrBar is Graphics
sorts

scrollbar
opns

mkscrollBar: rct, pnt -> scrollbar

Chapter 4 The ADC interactor model

86

changePnt : scrollbar, pnt -> scrollbar
changeRect: scrollbar, rct -> scrollbar
rect: scrollbar-> rct
point: scrollbar-> pnt

eqns
forall p:pnt, r:rct, sb:scrollbar

ofsort rct
rect(mkscrollBar(r,p)) = r;
rect(changeRect(sb,r)) = r;
rect(changePnt(sb,p))=rect(sb);

ofsort pnt
point(mkscrollBar(r,p)) = p;
point(changeRect(sb, r)) = point(sb);
point(changePnt(sb,p))=p;

endtype

The data types scrBar and BoundedVal are not sufficiently complete and they lack detail.
However, this is not necessary in order to exemplify the specification of the scrollbar
interactor and would introduce unnecessary clutter. The specification of the entities
displayed, like scrBar above, may use a standard model of the display at a uniform level
of abstraction for all interactors. The specification data type for the abstraction like
BoundedVal in the last example may be used to specify the domain semantics. Such
specifications could be refined to increasing levels of detail without changing the
interactor specification. These issues are discussed in a later chapter. This brief
discussion aims simply to draw the attention of the reader to the fact that the interactor
specifications do not provide a complete model of the system nor a model of the display.
This is consistent with the scope of the model, which is only the user interface system
portion of the interactive system (see the Arch reference model of chapter 2). The
interactor-specific data types may link to such specifications if a complete model of the
interactive system is desired.

The ADU for the scrollbar scrADU is obtained from the general process definition ADU,
by simple substitution of the gate identifiers and the operations from the data type
scr_ad.

process scrADU[dinp, dout, ainp, aout](a: boundValue, dc, ds: scrollbar) : noexit :=
aout!result(a); scrADU[dinp, dout, ainp, aout](a, dc, ds) []
dout!dc; scrADU[dinp, dout, ainp, aout](a, dc, dc) []
ainp?x:rct; scrADU[dinp, dout, ainp, aout](receive(a,x),render(dc,x), ds) []
ainp?x:boundValue; scrADU[dinp, dout, ainp, aout](receive(a,x), render(dc,x), ds)[]
dinp?x:pnt; scrADU[dinp, dout, ainp, aout](input(x,ds,a), echo(x,ds,a), ds)

endproc

The interactor scr describing the scrollbar can be obtained with the synchronous
composition with a process scrCC which, in this case, enforces immediate feedback for
all input from both the display and the abstraction sides:

process scr[dinp, dout, ainp, aout] (A:boundValue, D:scrollbar):noexit :=
scrADU[dinp, dout, ainp, aout](A, D, D)

|[dinp, dout, ainp, aout]|
scrCC[dinp, dout, ainp, aout]

endproc

Chapter 4 The ADC interactor model

87

process scrCC[dinp, dout, ainp, aout] : noexit :=
ainp?X:rct; dout?X:scrollbar; scrCC[dinp, dout, ainp, aout] []
ainp?X:boundValue; dout?X:scrollbar; scrCC[dinp, dout, ainp, aout] []
aout?X:Int; scrCC[dinp, dout, ainp, aout] []
dout?X:scrollbar; scrCC[dinp, dout, ainp, aout] []
dinp?X:pnt; dout?X:scrollbar; scrCC[dinp, dout, ainp, aout]

endproc

4.7 The Controller Unit

A slightly more complicated version of the ADC interactor model is introduced in this
section. The ADC interactor is formed by the parallel composition of two processes, the
ADU and the CU as follows:

process ADC[start, suspend, resume, restart, abort, d, dinp, dout, ainp, aout] (A:abs, D:disp):noexit :=
ADU[dinp, dout, ainp, aout](A, D, D)

|[dinp, dout, ainp, aout]|
CU[start, suspend, resume, restart, abort, d, dinp, dout, ainp, aout]

endproc

The CU constrains the temporal behaviour of the ADU just like the CC in the previous
section. It also specifies behaviours found commonly across user interface objects.
These behaviours are effected by action occurrences on corresponding gates.

Figure 4.3. The internal structure of the ADC interactor.

Chapter 4 The ADC interactor model

88

Collectively they are referred to as SSRRA behaviours (respectively gates) and they are
defined as follows:

• The operation of the interactor starts with an action start.

• The operation is suspended with an action suspend.

• The operation is resumed with an action resume.

• At any point during interaction the operation can be restarted with an action restart
after which the temporal behaviour of the interactor is the same that follows a start
action.

• At any point the operation of the interactor can be stopped with an abort action.

A comment is warranted before the formal definition of the CU. There is a limit to the
use of parameterisation and it is questionable whether the interactor model benefits from
the introduction of these new features. Supporting such behaviours should be beneficial
to the specifier who uses the model: they are very common for user interface
components and their specification is not trivial. The set of SSRRA behaviours that are
supported in the definition of the CU was chosen after the GARNET user interface
management system [136, 137]. All GARNET interactors support the same
parameterised state machine whose behaviour is very similar to the SSRRA behaviours.
The GARNET state machine provides a feasible and viable proposal for the
parameterisation of user interface behaviours. Practical experience with using the ADC
model may eventually corroborate this choice or lead to changes to it. In fact, the CU
definition below already incorporates modifications to the original model of [123], that
stem from experience of the case study reported in chapter 5.

The general structure of the CU is shown in the process definitions below.

process CU[start, suspend, resume, restart, abort, d, dinp, dout, ainp, aout] : noexit :=
start; RUN [suspend, resume, restart, abort, d, dinp, dout, ainp, aout]

where

process RUN[suspend, resume, restart, abort, d, dinp, dout, ainp, aout] : noexit :=
(CC[d, dinp, dout, ainp, aout] |[d, dinp, dout, ainp, aout]|

SU_RE[suspend, resume, d, dinp, dout, ainp, aout])
[> INTERRUPT[suspend, resume, restart, abort, d, dinp, dout, ainp, aout]
endproc

process CC[d, dinp, dout, ainp, aout] : noexit :=
ainp?X:aInpData; CC[d, dinp, dout, ainp, aout] []
aout?X:aOutData; CC[d, dinp, dout, ainp, aout] []
dout?X:disp; CC[d, dinp, dout, ainp, aout] []
dinp?X:dInpData; CC[d, dinp, dout, ainp, aout] []
d; CC[d, dinp, dout, ainp, aout]

endproc
process SU_RE[suspend, resume, dinp, d, dout, ainp, aout]: noexit :=

ANYORDER[d, dinp, dout, ainp, aout]
[> suspend; resume; SU_RE[suspend, resume, d, dinp, dout, ainp, aout]
endproc

Chapter 4 The ADC interactor model

89

process ANYORDER[d,
dinp, dout, ainp, aout] : noexit
:=

ainp?X:aInpData; ANYORDER[d, dinp, dout, ainp, aout] []
aout?X:aOutData; ANYORDER[d, dinp, dout, ainp, aout] []
dout?X:disp; ANYORDER[d, dinp, dout, ainp, aout] []
dinp?X:dInpData; ANYORDER[d, dinp, dout, ainp, aout] []
d; ANYORDER[d, dinp, dout, ainp, aout]

endproc

process INTERRUPT[suspend, resume, restart, abort, dinp, d, dout, ainp, aout]: noexit :=
restart; RUN[suspend, resume, restart, abort, d, dinp, dout, ainp, aout]

[] abort; stop
endproc
endproc

Process CC above is rather contrived. It induces a clockwise (on figure 4.3) ordering of
events on the gates of the ADU. This CC is included simply as a place holder for more
meaningful specifications. Process SU_RE describes the suspension behaviour of the
interactor: it halts with the suspend action and resumes where it was with a resume; the
rest of the time it allows any order of action occurrences on the gates in Gdialogue∪ Gio. A
restart action has the effect of restarting the constraints process, so that the local
dialogue returns to its initial state, i.e. the one that follows a start action. An action
abort terminates the operation of the interactor and the process exits.

Figure 4.3 illustrates the interactor as a barrel shape. The top and bottom arches of the
barrel-shape are dedicated to the abstraction and display side of the interactor
respectively. The vertical sides are called the controller sides of the interactor, and they
are dedicated to gates of the CU which are not also gates of the ADU. Gates of the
interactor are marked by incoming arrows for input gates, outward arrows for output
gates, and lines for simple synchronisation gates. Figure 4.3 shows substantial detail that
is omitted when the interactor is used as a unit for building higher level structures. The
two components of the ADC, the ADU and the CU, and their connections do not need to
be shown and the interactor is more economically represented as in figure 4.4.

Figure 4.4. Convention for the representation of
ADC interactors.

Chapter 4 The ADC interactor model

90

4.8 The scrollable list example: composition of two interactors

The specification of an idealised and simplified scrollable list is presented. It does not
describe an interactor specific to any particular interface system. The list may contain
various items, e.g. icons, strings, etc. This is not specified in the example, although
figure 4.5 illustrates a list of text fields. The list is observed through a window whose
contents depend on the window size and the position of the window relative to the
displayed list. For example, the position may be defined by the index of the first list
element displayed. The user may scroll up and down the list by using a scrollbar.

The scrollable list is defined as the composition of a scrollbar interactor, called scr, and
an interactor modelling the interactive list, named interactor lst. Interactions start,
suspend, resume, restart, and abort together, since they support the same interaction task,
so the interactors synchronise on the SSRRA gates of the CU. The specification of
interactor scr has been described in section 4.6. Here, it is only necessary to discuss
interactor lst and their combined operation. The only change introduced with this
example is that the constraints component s_CC of interactor scr is embedded within a
controller unit s_CU as discussed in section 4.7.

The scrollbar receives input from the user as a cursor position and interprets this input

Figure 4.5. A scrollable list as a composition of a list-window and a scrollbar.

Figure 4.6. The composition of the two interactors.

Chapter 4 The ADC interactor model

91

producing an integer value. The integer value is passed via the gate s_aout of the
scrollbar interactor as an input to the gate l_dinp of the list. The list interprets the integer
value to produce a new starting position for the window, thus achieving the effect of
scrolling. The configuration of the composed interactors is illustrated in figure 4.6. The
lines and arrows connecting the two interactors represent their synchronisation on the
corresponding gates.

The data type ad for the list interactor is ls_ad defined as follows:

type ls_ad is lstElements, scrList
opns

input: pnt, scrLst, lstel -> lstel
echo: pnt, scrLst, lstel -> scrLst
input: Int, scrLst, lstel -> lstel
echo: Int, scrLst, lstel -> scrLst
render: scrLst, lstel -> scrLst
receive: lstel, lstel-> lstel
result: lstel -> el
initLst: -> lstel
initScrLst: -> scrLst

eqns
forall m: Int, p:pnt, s:scrLst, w,wold,wnew:lstel
ofsort lstel

input(p, s, w) = sel(w,pick(s,p));
input(m, s, w) = setstart(w,m);
receive(wold, wnew) = wnew;

ofsort scrLst
echo(p, s, w) = changeLne(s, pick(s,p));
render(render(s, wold), wnew) = render(s,wnew);

ofsort el
result(w)=which(w);

endtype

The data type ls_ad combines the type lstElements, which models a list of elements, and
scrList, which models the window display for the list. Its signature derives by
substitution from the general definition of ad. The sort of the abstraction parameter is
lstel and the sort of the display parameters of the interactor is scrLst. lstElements defines
an enquiry operator which(lstel) that returns the selected element of the list. scrList is
associated with operation pick(scrLst,pnt) which returns an index of the displayed
window (i.e. a line or icon number) given a cursor position pnt. An element selection for
lstElements can be set by sel(lstel, Int) . Finally, the position of the window with respect
to the list, is set by operation setstart(lstel, Int) which uses the data sent from the scroll
bar.

type lstElements is Integer
sorts

lstel, el
opns

sel: lstel, Int -> lstel
setstart: lstel, Int -> lstel
which: lstel -> el
wnstart: lstel -> Int

eqns

Chapter 4 The ADC interactor model

92

forall W:lstel, N,M:Int
ofsort Int

wnstart(setstart(W, N)) = N;
wnstart(sel(W, N)) = wnstart(W);

ofsort lstel
sel(sel(W,N),M)=sel(W, M);
sel(setstart(W, N), M)=sel(W,M);

ofsort el
which(setstart(W, M)) = which(W);

endtype

type scrList is Integer, Graphics
sorts

scrLst
opns

mkscrLst: rct, Int -> scrLst
changeLne: scrLst, Int -> scrLst
changeRect: scrLst, rct -> scrLst
pick: scrLst, pnt -> Int
rect: scrLst -> rct
line: scrLst -> Int

eqns
forall l:Int, r:rct, sl:scrLst, p:pnt

ofsort rct
rect(mkscrLst(r,l)) = r;
rect(changeRect(sl,r)) = r;
rect(changeLne(sl,l))=rect(sl);

ofsort Int
line(mkscrLst(r,l)) = l;
line(changeRect(sl, r)) = line(sl);
line(changeLne(sl,l))=l;
pick(changeLne(sl, l), p)=pick(sl,p);

endtype

The ADU for the list is l_adu. Once more its definition follows mechanically from the
general form of ADU.

process l_adu[dinp, dout, ainp, aout](a: lstel, dc, ds: scrLst) : noexit :=
aout!result(a); l_adu[dinp, dout, ainp, aout](a, dc, ds) []
dout!dc; l_adu[dinp, dout, ainp, aout](a, dc, dc) []
ainp?x:lstel; l_adu[dinp, dout, ainp, aout](receive(a,x), render(dc,x), ds) []
dinp?x:pnt; l_adu[dinp, dout, ainp, aout](input(x,ds,a), echo(x,ds,a), ds)[]
dinp?x:Int; l_adu[dinp, dout, ainp, aout](input(x,ds,a), echo(x,ds,a), ds)

endproc

The controller is the same as in the general case; only CC needs to be modified with the
sort identifiers of data type ls_ad. The constraint described is that the interactor will
immediately inform the user of data it receives from its application side.

process CC[dinp, dout, ainp, aout] : noexit :=
ainp?X:lstel; dout?X:scrLst; CC[dinp, dout, ainp, aout] []
aout?X:el; CC[dinp, dout, ainp, aout] []
dout?X:scrLst; CC[dinp, dout, ainp, aout] []
dinp?X:int; CC[dinp, dout, ainp, aout]

endproc

Chapter 4 The ADC interactor model

93

The composition of the two interactors, shown schematically in figure 4.6, is written as
follows. Note the renaming of gate l_dinp of the list interactor to s_aout to support the
synchronisation with the scrollbar.

scr[s_dinp, s_dout, s_ainp, s_aout, start, suspend, resume, restart, abort](initBV, initSB)
|[start, suspend, resume, restart, abort, s_aout]|

lst[s_aout, l_dout, l_ainp, l_aout, start, suspend, resume, restart, abort](initLst,initScrLst)

4.9 Some first comments on the ADC interactor model

The ADC interactor model can be seen, rather pessimistically, as little more than syntax.
The ADC interactor is a parameterised template that is instantiated to produce interactor
specifications. However, syntax is very important. It is true that interactors can be
modelled in many specification languages and programmed in any reasonable
programming language. It is important though that the constructs of the specification
language are meaningful, i.e. they correspond to entities that are meaningful in the
context of user interface design and its semantic interpretation captures salient properties
of user interface objects.

The ADC model extends the syntax of LOTOS with syntactic structures that describe
interactors. The alternative to this approach is to use the language as it is or to extend its
semantics. Vissers et al. [180] argue that “it is impractical, if not infeasible, to develop
and use specification languages that contain primitive constructs for each potential
architectural requirement”. Instead they propose the development of an adequate set of
generic language elements and construction rules, that allow the faithful expression of
architectural requirements as a composition of language elements. This statement
describes accurately the role of the ADC interactor model in the specification of user
interface software. Rather than using the language as it is, Gaudel [73] and Vissers et al.
[180] argue for the need to structure specifications to master their size and complexity.
They suggest that the required structure is particular to the field of application of the
formal method. A similar rationale prompts interface developers to use software
architectures (cf. [37] for a discussion regarding the purpose and requirements from
software architectures for the user interface). The ADC interactor model provides a
method to structure LOTOS specification which reflects the nature of user interface
software.

Extending the semantics of a specification language may have some advantages. For
example extensions to LOTOS have been proposed that support suspension and
resumption of processes [101]. This would significantly simplify the specification of the
CU. An advantage of the approach presented here is that it is consistent with existing
tool support [30, 68 and 119] with the current international standard [100].

Finally, the motivation for building the interactor model is not that the semantics of the
language are inadequate, but rather the need to model the semantics of interactive objects
in a generalised form. In this sense the ADC model is more than syntax. It is an
interpretation in LOTOS of a conceptual framework for modelling interactive systems

Chapter 4 The ADC interactor model

94

that postulates what an interactor is, what its components are, and how interactors can be
combined to model interface software. The ADC model may be applied to any level of
abstraction. An elementary interactive unit may be modelled as an ADC interactor and
the same applies to the whole of the user interface. It is not suggested that the modelling
framework was developed independently of its interpretation as a LOTOS specification
template. The two were developed in tandem and are not independent of each other.

The validity of the ADC model as an architectural abstraction is corroborated by a
comparison with the informal software architectures discussed in chapter 2. Further, as
will be discussed extensively in chapter 7, it has been designed to model salient
properties of interface software, previously expressed in terms of abstract models of
interaction, discussed in chapter 3. However, the validity of the ADC model may only
be hypothesised at this stage. Comparisons with related research and its application in
case studies may be used to refute it or to progressively corroborate its validity. In
chapter 5 a case study undertaken with this intention is presented.

Chapter 2 discussed user interface software architectures. It identified a trend towards
object-based architectures, where objects are triplets of lower level entities. These lower
level entities are similar, in purpose, to the components of the ADC interactor
(abstraction, display and controller). Object based architectures vary with respect to how
tightly these entities are coupled, how they are represented and how objects themselves
are composed to build the interface. The same issues arise in the definition of the ADC
model. It is interesting to step back and compare the ADC as a conceptual framework
with the PAC model [39], which was discussed in chapter 2. PAC is mentioned because
its components are reminiscent in purpose and naming to those of ADC. PAC supports a
distinct representation for the control component, but it does not prescribe how the
control information should be represented. The similarity does not stop there. PAC is
recursive in nature, in that the whole interface and its elementary components are
modelled by a PAC object. Similarly the user interface may be described as a single
ADC interactor or as a composition of ADC interactors. There is an important
difference between the ADC and PAC interactors: the PAC controller handles all
communication between the presentation and abstraction components and translates data
between the two representations, maintaining their correspondence. Such
communication is ‘hidden’ from the ADC controller which simply imposes external
‘dialogue’ constraints on their operation.

PAC is an informal architecture, although it has been the subject of some formalisation
attempts. For example Abowd [1] uses his Agent model to formalise the notion of
correspondence between abstraction and display that the controller component of PAC
maintains. Also [1] proposes a formal model of MVC [113] which is compared to that
of PAC. A different object based specification of PAC and MVC is reported in [98]. It
is debatable whether [1] and [98] are valid formalisations of PAC and MVC. The doubts
arise precisely because these conceptual models have not been introduced with a formal
specification, but rather, their definitions rely on intuitions and heuristic guidelines for
structuring user interface software. This suggests that formal interactor models can help
formulate in an unambiguous form user interface software architectures.

Chapter 4 The ADC interactor model

95

The idea of structuring the whole of the interface as a single ADC interactor has a direct
analogue in software architectures as well. For example, Kovacevic [112] proposes a
‘macroscopic’ model for a user interface architecture (figure 4.7). He distinguishes a
communication component which is a passive transducer of information, converting it
from an external user oriented representation to an internal application oriented one and
vice versa. The temporal structure of the interaction is defined in a controller component
with the aid of a buffering component. The similarity with the components of the ADC
model is obvious. The most outstanding difference is that the model does not support an
object based architecture, i.e. the interface is not seen as a composition of many
instances of this model but rather as a monolithic construction that follows the pattern
suggested. When the whole interface is considered as a single ADC interactor, then the
ADU and the CU correspond directly to the communication and controller unit of the
model of [112]. More generally, layered architectures like the Arch reference model
[14] and its predecessor the Seeheim model [77] may be formalised as a single ADC
interactor.

Compared to the Pisa formal interactor model, the ADC interactor introduces a complete
separation of roles for the ADU and the CU components. This modular description of
control information aims to make ADC more usable as a design oriented representation
providing two orthogonal dimensions for the representation scheme. The temporal
ordering constraints on the behaviour of the interactor are represented as a set of
constraints applied to its externally observable behaviour. This contrasts the
specification of the intensional specification of the Pisa interactor (see figure 3.8), which
was described as the composition of lower level entities. The difference is that between
a resource oriented specification and a constraint oriented specification [179]. The
resulting advantage is that the ADC model allows for the easy inspection and
customisation of the interactor by applying constraints on its observable behaviour.
What enables this departure is that the proposed model does not formalise the
components of the GKS reference model and can therefore be made more flexible.

Figure 4.7. The user interface model of Kovacevic (adapted from [112]).

Chapter 4 The ADC interactor model

96

4.9.1 Modelling interfaces as composition graphs

Interfaces are modelled as compositions of interactors. The composition of two or more
interactors has two facets:

• The composition of their effect on the data transmitted.

• The composition of their controller specifications.

Each interactor applies operations to the data passing through it, as specified in the ADU
component. Directing the output of one interactor to the other, by their synchronous
composition, will have the effect of composing the operations they apply. For example,
the combination of the list interactor and the scroll bar interactor applies an operation
input(result(input(...)),scrLst,lstel) on the mouse input, where the inner most input
operation belongs to the data type scr_ad and the outermost input belongs to ls_ad.

When two interactors are connected over a pair of gates, it is required that the domain of
the data that is output by one is a subset of the domain that can be received by the
second. This is a well-formedness constraint for the composition of interactors which
will be discussed more in chapter 6. Provided this condition holds, the temporal
ordering of a composition of interactors is sufficiently described by the composition of
their controller units. This simple observation is a compositionality property, specific to
the ADC interactor model. It results from the orthogonality in the description of its
components and it is supported in the formal specification by the multi-way
synchronisation of LOTOS.

4.9.2 Compositionality of the ADC model

The compositionality suggested above means that the composition of two ADC
interactors is also, or rather it can be formed as, an ADC interactor. For example, the
composition of the previous section is equivalent to an ADC which has the form:

adu[s_dinp, s_dout, s_ainp, s_aout, l_dout, l_ainp,l_aout](initBV, initSB, initLst, initScrLst)
|[s_dinp,s_dout, s_ainp, s_aout, l_dout, l_ainp, l_aout]|

cu[start, suspend, resume, restart, abort, s_dinp, s_dout, s_ainp, s_aout, l_dout, l_ainp, l_aout]

where the ADU for this interactor is defined as

process adu[...](BV:boundValue, SB:scrollbar, L:lstel, SL:scrLst):noexit:=
s_adu[s_dinp, s_dout, s_ainp, s_aout](BV, SB, SB)

|[s_aout]|
l_adu[s_aout, l_dout, l_ainp, l_aout](L, SL, SL)
endproc

and the controller is defined as

process cu[...]:noexit:=
s_cu[start, suspend, resume, restart, abort, s_dinp, s_dout, s_ainp, s_aout]

|[start, suspend, resume, restart, abort, s_aout]|
l_cu[start, suspend, resume, restart, abort, s_aout, l_dout, l_ainp, l_aout]
endproc

Chapter 4 The ADC interactor model

97

This observation is described and proven rigorously in the chapter 6. Capitalising on this
property, transformations of ADC specifications are defined formally.

4.10 Summary

This chapter has presented the formal specification of the ADC interactor model. The
ADC model was introduced gradually starting from a simpler model which does not
support parameterised control behaviours. The full ADC model supports a standard and
parameterised behaviour for all interactor instances. This behaviour is similar to the
state machine for the interactors of the GARNET user interface management system.

An ADC interactor transforms the data passing through it by applying operations defined
in an ACT-ONE data type ad. The data type specification is linked with the operational
description of the interactor by a process called the ADU. The ADU does not exhibit
any temporal ordering in its behaviour. Its state can be described sufficiently by the
value of its abstraction and the display state parameters, without reference to the history
of events that caused it. On the contrary the state of the CU, which specifies the
temporal structure of the observable behaviour, is adequately described by its ‘dialogue
state’, e.g. by an equivalence class of histories of events. This orthogonality in the
description of the ADC gives rise to a property of compositionality briefly exemplified
with the specification of a scrollable list. Finally, this chapter included a brief
comparison of the structure and the purpose of the components of the ADC model and
other formal and informal architectures.

The ADC model provides a conceptual framework for modelling user interface software.
Interface software may be modelled as a single unit or as a structured composition of
lower level entities. Both approaches have direct analogues in the domain of user
interface software. The specification may address different levels of abstraction. The
level of abstraction is determined by the granularity of the actions specified and the
granularity of the data managed by the interactor.

Using ADC as a specification template provides a head-start to the specification activity.
The model defines the dimensions for the description of interactive objects and, by
means of LOTOS temporal operators, a way of building up structured compositions of
such objects. The model defines a mix of specification styles: resource oriented for the
description of the ADU and constraint oriented to describe its temporal behaviour. This
chapter has argued in favour of standardising the specification style in this manner. This
standard style should make it easier to write specifications and should facilitate people
other than their author in reading and writing specifications.

99

Chapter 5

A case study in the use of the ADC interactor

This chapter reports a case study in the use of the ADC interactor model. The case study
concerns a reverse engineered specification of the graphical interface of Simple
Player™, which is an application for playing QuickTime™ movies on the Macintosh
computer. The case study is reported in full in [124]. Since that report was written
several improvements have been made both to the product specification and to the ADC
model itself. To a great extent these changes have resulted from the case study. Only a
brief summary of the specification and the process of its creation is presented below.
Taking up a methodological issue, this chapter discusses the limitations of the case study
as a scientific assessment of the ADC model and the limitations of scale that such studies
need to address. The discussion suggests some qualifiers regarding the conclusions that
the case study may lead to. Still, it is upheld as a useful and necessary experience in
using the ADC model. Overall the case study was successful in that it demonstrates the
use of the model and its feasibility as a representation scheme. Most important it has
prompted numerous improvements to the model which are summarised in the end of this
chapter.

5.1 Motivation for the case study

The ADC model was developed through a series of elementary examples like those used
in the exposition of chapter 4. These examples concerned fictional and idealised
interactive components, like buttons, sliders, and menus. They have provided useful
feedback in the early stages of the model’s development. However, formal models and
particularly those applied to the study of the human computer interface need to be tested
against larger scale problems. The specification of idealised interaction styles, that do
not refer to a particular implementation platform or style-guide, does not constitute a real
test for the modelling technique. If the requirement for realism is relaxed, it is inevitable
that the specificand will be moulded to fit the model instead of testing it. Therefore, it is
necessary to test the ADC interactor model in a problem of realistic size and complexity.

Chapter 5 A case study of the use of the ADC interactor

100

A model, formal or not, is put forward with a particular application domain in mind. An
example application of the model is characterised by how representative it is of the
domain and by its coverage of this domain. For example, the ADC should be applied to
representative examples of graphical interaction as this was its target domain of
application. A credible test for the interactor model should cover as wide as possible a
range of interaction styles.

A single example application is not conclusive on its own. Numerous successful
examples are necessary to accrue confidence in the model. A single example application
may be seen as a test of the feasibility of using the model in the target application
domain and an assessment of the practicality of doing so. The conclusions drawn from
such an application are only indicative of its appropriateness. In principle, the case study
may lead to the rejection of the model, on the grounds that it is insufficient for the
intended application domain, or that it is too cumbersome to use. In practice, the aim is
to highlight limitations of the model in its current form so that they may be corrected.

The conclusions drawn from an assessment exercise depend upon how the model is used.
There is a gap between the academic application of a model, particularly from the person
who proposes it and its application in a realistic design project. The latter is only
possible when the model has developed to a considerable level of maturity. Intermediary
levels of its application may involve, e.g. its application for academic purposes by
people other than the creator of the model, experimental application under controlled
circumstances, the experimental application by practitioners, the use of the model in
anger, etc. Unfortunately, it takes a long time before a model is sufficiently mature and
has been widely enough disseminated so that its application may be assessed
scientifically.

To summarise, this discussion has identified the following issues pertaining to assessing
a model through example applications:

• The software modelled should be of realistic size and complexity.

• Examples should provide sufficient coverage and representativeness for the target
domain.

• Numerous examples are needed to accrue confidence in the model.

• The conclusions drawn depend upon the rigour of the assessment method.

The ADC model is still at an early stage of its development, so it is not yet practical to
test its use by one or more independent specifiers in a realistic design project. The
required rigour for a scientific assessment of its use is not yet possible. Rather than
directing the effort into numerous small scale examples, a single sizeable application of
the model was undertaken. The case study is not put forward as an adequate assessment
of the model. Instead it has had a ‘formative’ role in the sense that it provided the
opportunity for significant changes and improvements to the model. The specification
itself is a useful product of the study, necessary for disseminating the ideas built into the
ADC model through a concrete example.

Chapter 5 A case study of the use of the ADC interactor

101

In spite of its modest formative role, the case study still requires an objective measure of
success or failure. A reverse engineering application of the ADC model to specify an
existing interface fulfils this requirement. By simulating the LOTOS specification, it is
relatively straight forward to compare the behaviour predicted by the model to that
exhibited by the actual software. The interface software was modelled to a high level of
detail. This offers a concrete criterion for comparing the specified behaviour with the
observed behaviour of the system. It can be claimed that the interaction is specified
precisely and difficult issues are not brushed over. On the down side, opting for a low
abstraction level is detrimental towards the magnitude of the study. More sizeable
software can be modelled by adopting a higher level of abstraction.

5.2 Simple Player™: the subject of the case study

QuickTime™ is a system-software extension for the Apple Macintosh computer. It is
used by application programs as a functional interface to work with media such as sound,
video, and high quality compressed images. Simple Player™ is an application program
that uses QuickTime™ to play and edit video sequences. Simple Player™ provides a
diverse range of interactions, rather than a repetition of similar and simple behaviours
(contrast this with a form-filling or a command-line interface). Simple Player™ was
selected as the subject of the reverse engineering case study in fulfilment of the
requirements listed below. These requirements had been set a priori for choosing the
application-subject of the case study.

• The application should be easily available for experimentation. Intricate
contingencies between interactive dialogues are difficult to foresee and have to be
re-examined intermittently throughout the specification activity.

• The temporal behaviour of the application should be interesting and challenging to
model. As a counter example, a form filling interface where fields are completed in
any order does not have an interesting temporal element. In contrast, modification
of the frame-rate of a movie while it is playing and the modes in which this activity
is enabled is a more appropriate test for the model.

• Layout and graphical properties are not an important consideration in choosing the
application. It is known that their description is not a strong point of the ADC
model, since it does not incorporate an explicit model of the display.

• The size of the case study will be an indication that the ADC model is capable of
scaling up: it is not sufficient to study a simple interaction technique or just one
aspect of the behaviour of the system.

Chapter 5 A case study of the use of the ADC interactor

102

5.3 Some basic concepts of QuickTime™

QuickTime™ uses the metaphor of a movie to describe time-based data. The movie is a
multiple-layer hierarchical organisation of data but the application that uses it need not
be aware of this organisation. Simple Player™ may access the movie data through a set
of movie playback functions.

An important element of movie data is the specification of the time dimension: at what
rate will the movie be played, for how long, etc. A movie’s time coordinate system
defines a notional axis for measuring time, marked with a scale which defines the basic
unit of measurement, the time scale. The time coordinate system specifies a duration,
which is the length of a movie measured in time units. A point in a movie is identified
by the number of time units elapsed from the beginning of the movie. The current
position in a movie is defined by the movie’s current time. When the movie is playing,
this time value changes. A movie is characterised by the rate at which time passes for
the movie. This specifies the speed and the direction in which time passes in a movie.
Negative rate values move backward through a movie’s data and positive values move
forward.

Special clock components generate time information for the use of the Movie Toolbox.
Clock components derive their timing information from some external source, e.g. some
special hardware installed in the Macintosh computer to provide its basic timing. Figure
5.1 shows the relationships between an application, the movie controller component, the
Movie Toolbox, and a clock component.

Figure 5.1. Relationships of an application, the movie controller component, the Movie
Toolbox, and a clock component (adapted from [9]).

Chapter 5 A case study of the use of the ADC interactor

103

Other state information
related to the movie is: the
movie preview, the current
selection, the active movie
segment, the movie’s display
characteristics, preferred play-
back volume, current volume,
and preferred rate. The active movie
segment is the part of the movie
that the application is
interested in playing. By
default, it is set to be the entire
movie. It may be changed to some
segment of the movie, for
example, in order to play a user’s
selection repeatedly.

Display characteristics are
defined by a group of display
regions, and a set of functions to operate on them. The Movie Toolbox hides the
intricacies of handling the display characteristics of a movie, via the functions
GetMovieBox and SetMovieBox which are used to display a movie at a particular
location on the screen.

5.4 Interaction with Simple Player™

Simple Player™ supports a mixture of interaction techniques:

• With the standard Macintosh menu bar.

• Issue of commands by keyboard shortcuts.

• Graphical interaction techniques.

The ADC model is primarily focused on modelling graphical interaction, so the menu
based interaction and keyboard commands do not concern this case study. The graphical
interactions, which are the subject of the specification are described below:

• Setting the volume. A slider allows the user to adjust the sound volume. It is
displayed when pressing the mouse button with the cursor over the volume control
button. The user may change the sound volume while the movie is playing.

• Starting the movie. A play/pause button allows the user to start and stop the movie.
Clicking on the play button causes the movie to start playing and the play button
changes into a pause button. Clicking the pause button causes the movie to stop
playing and the button to change back to its ‘play’ state. If the user starts the movie

Figure 5.2. An instance of the Simple Player™
in operation. Some movie controller

components are indicated.

Chapter 5 A case study of the use of the ADC interactor

104

and does not stop it, the movie controller plays the movie until its end. Playing may
be achieved also by double-clicking on the movie image or, indirectly, by
controlling the movie speed.

• Stopping the movie. The movie will pause by clicking on the movie image, or the
play/pause button. It can be stopped indirectly by setting the movie speed to zero.
The button is characterised by some active area surrounding it. If instead of
clicking instantaneously the user drags the mouse out of the active area, the opposite
effect than the mouse press is invoked. Dragging it in will repeat the effect of the
mouse press.

• Controlling the rate of play. Pressing the mouse when the cursor is over the buttons
with the right and left pointing arrows, while the ‘control’ key of the keyboard is
pressed, causes a slider to ‘pop-up’. This slider controls the play-back rate. Pushing
the play button while the ‘option’ key is pressed will make the application play
every single frame.

• Displaying a particular frame. Any frame of the video may be accessed randomly
with the play-bar, or by stepping ahead or backwards using the buttons with the
right and left pointing arrows. The play-bar is a slider that allows the user to
navigate through a movie’s contents. Dragging the thumb within the play-bar
displays a single frame of the movie that corresponds to the position of the indicator.
Clicking within the slider causes the indicator to jump to the location of the mouse
click and causes the movie controller component to display the corresponding movie
frame. The user may ‘jump’ to the beginning (or the end) of the movie with option-
step forward (respectively backward). This will also interrupt playing.

• Defining a selection. If the ‘shift’ key of the keyboard is pressed, the current
position in the movie will be used to define a selection. The selection is shown as a
black band on the play-bar. The end-points of this selection may be changed by
dragging the thumb, playing the movie, or stepping forwards and backwards through
the movie while the ‘shift’ key remains pressed. The user may cancel a selection by
clicking in the play bar away from the thumb.

• The user may drag the size box to change the window size, even while the movie is
playing. Only the outline of the window is shown while this happens.

Simple Player™ provides just a small subset of the functions of QuickTime™. The
interesting characteristic of the interface is that this group of functions is invoked in
many ways. These are modal, so the effect of user input varies depending on the state of
other interactions. Thus the temporal ordering of interactions is interesting to model.

5.5 Scope of the specification

The scope of the application of the ADC model is the Simple Player™ interface software
only. This is depicted schematically in figure 5.3, mediating between a user and the

Chapter 5 A case study of the use of the ADC interactor

105

QuickTime™ system extension. The left boundary, with the QuickTime™ functional
core, is defined by the set of the movie controller actions which are a shorthand for
accessing the Movie Toolbox function interface. In a few cases the interface software
will access directly Movie-Toolbox functions.

The level of abstraction of input and output actions determines the right boundary of the
scope of the interface. Input actions are considered as possible stimuli to the interface
components and no assumption is made about their source. For example mouse actions
over different interaction objects are considered independently as stimuli to the
presentation objects they refer to. The event management mechanism that would relate
these actions to their source, the mouse in this case, is not modelled. The same holds for
output. There is no persistent and global model of the display contents during
interaction.

5.6 A summary of the specification process and its product

The interaction with Simple Player™ was thoroughly studied through experimentation
and using the on-line manual. An informal description of this interaction was assembled
and consulted throughout the case study. Tests and comparisons with the specification
led to improvements when inconsistencies and errors were revealed.

The second step was to decide upon the scope of the exercise which was determined as
described in the previous section. The boundary of Simple Player™ with the functional
core of Quicktime consists in a set of actions and movie controller functions which
interface to the required functionality. The description of the complete set of movie
controller actions and movie controller functions supported by Quicktime is described in
[9]. The complete set of actions and functions that constitute through which Simple
Player™ accesses the functional core is summarised in [124]. This set can be thought of
as a ‘protocol’ describes the range of movie actions, their parameters and the output they
produce. The temporal ordering of the invocation of these actions and functions was
observed through Simple Player™.

The actions and functions accessed through the graphical interface constitute what was
called the ‘functional core’. A formal specification of this core was produced. Each of
the actions or functions of the application interface was mapped to a gate of the

Figure 5.3. Scope and boundaries of the specification of the interface software.

Chapter 5 A case study of the use of the ADC interactor

106

functional core. The specification of the functional core used a data type specification of
the movie data consistent with the description of [9].

Two versions of the functional core specification were studied: one modelling the
passage of time units and the other modelling only the resulting non-determinism. The
initial specifications of the functional core were improved and corrected by testing in
conjunction with the interface specification. Both the timed and the untimed versions
are interchangeable. The counting of time is transparent to the interface which is
affected only by the resulting non-determinism. The two equivalent specifications of the
functional core are outlined in [124].

Figure 5.4 illustrates the behaviour of the functional core as a state transition diagram.
From the initial state, an initialisation action sets the local state variable M. This
variable holds all the state information comprising the movie data. The movie may start
to play forward or backward in which case the state of the application is also described
by the current rate and a status flag ‘ready’. This flag determines if the application is
ready to output a new frame or not. The states videoPlayer, playForward, and
playBackward, shown as nodes in the diagram of figure 5.4, are specified as LOTOS
process instantiations. This is an example of the state-oriented specification style
discussed in section 3.8. In each of the states the functional core offers all the possible
actions comprising the protocol of movie controller actions and functions. These will
effect changes in the state variables and possibly transitions between the states of figure
5.4, when the play is stopped or its direction reversed. The termination of the program is
possible from all states (termination is not indicated in figure 5.4).

Figure 5.4. The operation of the functional core: Each node is described by a
separate process specification. Arrows indicate invocations of a process by another.

Chapter 5 A case study of the use of the ADC interactor

107

The specification of the user interface was structured as a graph of communicating
interactors, marked with the data flows amongst them. This design consisted a working
hypothesis as to how the interaction software could be structured in terms of ADC
interactors. The defined structure is not realistic, i.e. it refers only to the specification. It
is not at any moment supposed that the actual software is structured in this way. The
architecture of the specification is not even optimal. It is possible, that alternative

Figure 5.5. Graphical representation of the configuration of ADC interactors which
model the Simple Player™ interface.

Chapter 5 A case study of the use of the ADC interactor

108

configurations of interactors could do equally well or even better to model the interface,
though this would be a subjective assessment.

Specifications of interaction components were individually tested and integrated into the
specification one by one. During this process the initial structure of the specification
was revised, with the addition of interactors that had not been foreseen initially, taking
into account unexpected dependencies between interactors. The final configuration of
interactors that comprise the specification is shown in figure 5.5.

The combined behaviour of the functional core and the interactors was specified by the
synchronous composition of the corresponding processes. In this way the interactors
constrain the temporal behaviour of the functional core, and vice versa. For example, the
functional core may output a frame, only if the display interactor is ready to receive it.
Gradually all gates of the functional core were so constrained. Interactors were added in
a ‘top to bottom’ fashion, starting from those interacting directly with the application and
finally specifying those controlled by the user. The interactors and their purpose are
briefly summarised below.

The volume interactor models the pop-up slider used for volume control. Its display may
have two forms: a slider when it is popped-up or a button when it is ‘dormant’. Its
abstraction is a bounded integer value representing the volume setting. It receives mouse
input from its display side. It sends to the functional core a volume value at every
movement of the mouse. The volume may be changed while the movie is playing.

The resizeBox interactor models a simple button that may be dragged. It outputs
coordinate information on its gate setMovieBox. This value is read by the application,
effecting the relevant changes to the display of the video and by all other interactors
which are repositioned when the window is resized.

The display interactor models the window area that outputs the movie image. It receives
video data from the functional core through gate video. It also synchronises with the
functional core through gate out_ok. This allows the application to control the rate of
play. The display interactor may be used to start and stop playing. The display
interactor does not maintain any abstraction state, so it is a display-only interactor.

A group of three interactors the PlayerBar, the selectionBand and the thumb support all
interactions related to the movie slider. The abstraction of playerBar contains a
description of the movie duration, the current time in the movie and the current selection.
Operations of the data type playBar_ad convert time information to geometrical
information and vice versa. Interactor selectionBand constructs a line segment on the
play bar display which corresponds to the selection. The thumb displays and lets the
user manipulate the current time of the movie.

A second group of interactors is formed by the monitor, forward and backward
interactors. The forward and backward interactors do not hold any abstraction value.
They are push buttons that may give syntactical feedback when pressed. They may be
used to ‘step’ forward or backward through a movie. With the right keyboard modifier

Chapter 5 A case study of the use of the ADC interactor

109

they effect a jump to the start or to the end of the movie but this is described in the
monitor component. Interactor monitor does not have a display. It maintains an
abstraction state parameter which is the current position in the movie. This is an integer
which is incremented or decremented when it receives a command from the forward and
backward buttons respectively.

Interactor playPause is another non-displayed interactor. It coordinates all interactors
that issue a play or a pause command. Its abstraction state is an integer representing the
rate of play. It has quite a complicated controller component since it manages many
sources of play and pause actions.

Interactor playPauseButton is a display-only interactor. Its display is a simple two-state
button but it has quite a complicated temporal behaviour.

Interactor rate is another pop-up slider. It sends its abstraction state which is a bounded
integer value to the playPause interactor.

Interactor xcontroller defines the presentation-level dialogue for keyboard modifiers.
Most interactors are affected by keyboard modifiers. The effect of keyboard modifiers is
to enter and exit into modes. This is more naturally described in a state oriented style of
specification. Interactor xcontroller constrains the behaviour of most other interactors
and it is a controller-only interactor, i.e. it has no abstraction or display.

Finally a set of auxiliary interactors was introduced, shown as small ellipses or
rectangles in figure 5.5. These are specified as abstraction-only interactors that support
the data-flow between the components of the network. Two types are used in the case
study. The rectangle means that any one of the sources of data may be used as input.
The ellipse means that both receiving interactors will receive the data asynchronously.
This class of interactors is discussed in section 5.8 as logical connectives that facilitate
the composition of interactors.

5.6.1 Example: The specification of volume control

The volume control is displayed as a simple button when it is idle and as a slider when it
is activated. A mouse press over the button will activate the interactor. The mouse press
does not input any data to the interactor, but subsequent movement of the mouse will
cause the position of the mouse to be interpreted producing a bounded integer value for
the volume. This is the abstraction state.

The data type corresponding to the volume control has both abstraction and display sorts.
Respectively these are a bounded integer and a graphical entity. The data input on the
display side are screen coordinates (points). The data input and output on the abstraction
side are integer values. The interactor may also receive coordinate information for its
display from the abstraction side. The specification of volume_ad follows from the
template for the AD data type definition introduced in chapter 4.

Chapter 5 A case study of the use of the ADC interactor

110

type volume_ad is popUpSlider
opns

inputPr: volumeBar, Int -> Int
echoPr: volumeBar, Int -> volumeBar
inputMov: pnt, volumeBar,Int -> Int
echoMov: pnt, volumeBar, Int -> volumeBar
inputRel:volumeBar,Int -> Int
echoRel:volumeBar, Int -> volumeBar
renderRV: volumeBar, rct -> volumeBar
receiveRV: Int, rct -> Int
renderV:volumeBar, Int -> volumeBar
receiveV: Int, Int -> Int
result: Int -> Int

eqns
forall r:rct, p:pnt, v, n:Int, vb:volumeBar
ofsort Int

result(v) = v;
inputPr(vb,v) = v;
inputMov(p,vb,v) = pntToInt(vb,p);
inputRel(vb,v) = v;
receiveRV(v,r)=v;
receiveV(v,n)=n;

ofSort volumeBar
echoPr(vb, v) = popUpSlider(vb);
echoMov(p, vb, v) = chIconAndSlider(vb,p);
echoRel(vb, v) = popDownSlider(vb);
renderRV(vb,r) = changeRect(vb,r);
renderV(vb,v) = IntToBar(vb,v);

endtype

The data is input on the display side at gates pressVol, moveVol and releaseVol. The
display of the interactor is output on the outVol. The abstraction side communicates
directly with the functional core on gates getVolume and setVolume. Finally, it
communicates with the resizeBox interactor on gate setMovieBox. The ADU
specification for the volume interactor follows mechanically from the general definition
of chapter 4.

process adu[press, move, release, dout, ainpR, ainpV, aout](a:Int,dc,ds:volumeBar) : noexit :=
dout!dc; adu[...] (a, dc, dc) []
ainpR?x:rct; adu[...] (receiveRV(a,x), renderRV(dc,x), ds) []
ainpV?x:Int; adu[...] (receiveV(a,x), renderV(dc,x), ds) []
press; adu[...] (inputPr(ds,a), echoPr(ds,a),ds) []
move?x:pnt; adu[...] (inputMov(x,dc,a), echoMov(x,dc,a), ds) []
release; adu[...] (inputRel(ds,a),echoRel(ds,a), ds) []
aout!result(a); adu[...] (a,echoRel(ds,a), ds)

endproc

The constraints component for the interactor volume should include constraints to
describe:

• Dragging the mouse. A mouse press is followed by a sequence of moves, which is
interrupted when the mouse button is finally released.

Chapter 5 A case study of the use of the ADC interactor

111

• Communication with the functional core. After a press the volume interactor reads
the volume setting of the movie before popping up the volume slider. When
dragged it gives feedback of the mouse position by moving the slider before setting
the volume of the functional core.

process cc[press, move, release, dout, ainpR, ainpV, aout] :noexit:=
triggers[press, move, release, dout, ainpR, ainpV, aout]

|[press, move, release]|
inp_control[press, move, release]

endproc

process triggers[press, move, release, dout, ainpR, ainpV, aout]: noexit :=
press; ainpV?x:Int; dout?x:volumeBar; triggers[...] []
move?x:pnt; dout?x:volumeBar; aout?x:Int; triggers[...] []
release; dout?x:volumeBar; triggers[...] []
ainpR?x:rct; triggers[...] []
dout?x:volumeBar; triggers[...]

endproc

process inp_control[press, move, release]: noexit :=
press; (repeat[move][>release; inp_control[press, move, release])

endproc

process repeat[m]:noexit:= m; repeat[m] endproc

The controller unit for the volume control interactor follows from the general form by
substituting the CC specified above.

5.7 The approach to specifying each interactor

Each interactor was specified after its connections had been fully worked out. The data
handled by the interaction was specified trying to answer some simple questions:

• Does the interactor have a display?

• Does it provide input to the application or to other interactors?

• What is the sort of the data transferred through each gate?

• Is a gate destined for input, output or for dialogue actions only?

• What temporal ordering can the interactor induce on the actions on its gates?

These questions pertain to the external behaviour of the interactor only. However, they
determine the specification of an interactor. If the interactor has a display, it will be
equipped with the appropriate sort of data, and probably an input and an echo operation.
If it sends data to other interactors it will be equipped with an abstraction state variable,
receive and render operations to handle input and output data respectively. Once all
gates have been assigned to either of the abstraction, display, or controller sides and once
their typing has been determined, the definition of the ADU follows mechanically.

Chapter 5 A case study of the use of the ADC interactor

112

Data types were specified along with their corresponding interactors. The sorts of the
display and abstraction data, and the typing of input and output gates determine the
signature of the data type. If the interactor has an abstraction component it should at
least have a receive and a result operation. If it also has a display status then an input
operation uses the display status to interpret the input. It will also have an echo
operation to update the display on the receipt of input, and a render operation to translate
input from the abstraction side. In short, the signature of the interactor-specific data type
ad is derived, almost mechanically from the sorts of the interactor’s state parameters and
the sorts of the data input and output. The semantic description of the functionality of a
given interactor is specified by adding equations to this data type.

Interactors synchronise on their standard control behaviours. They share the
corresponding part of their CU definition and synchronise at the SSRRA gates. Custom
behaviour specifications are written as a synchronous composition of behaviours in the
CC component using the constraint oriented specification style (see section 3.8). There
is only one exception to this, which is the state oriented description of xcontroller. In the
CC process definition, all LOTOS temporal operators may be used to combine
behaviours, but as a matter of style enabling and disabling was avoided. The reason for
this convention is that mixing parallel operators with enable and disable leads to infinite
behaviours. Avoiding this kind of behaviour expressions facilitates the use of model
checking tools.

Repeating patterns of temporal ordering constraints were identified across interactor
specifications. This suggests that the specification exercise would be facilitated by a
systematic re-use of such specifications. This issue is discussed more extensively in the
following section.

5.8 Improvements to the ADC Model

The specification case study prompted modifications to the definition of the interactor
model. These are:

• The introduction of dialogue actions for the controller and the modification of the
ADU definition to support input actions that do not carry any data.

• The introduction of special cases of the ADC interactor that do not have an
abstraction or a display, or that have no state component at all.

• The definition of a set of special purpose ‘logical connectives’.

• The redefinition of the standard control behaviours.

• The identification of repeating patterns of temporal constraints.

Chapter 5 A case study of the use of the ADC interactor

113

5.8.1 Non data-carrying actions

The original definition of the ADC model [123] stipulated that all actions over the gates
of the ADU carry data and that the alphabet of the controller consists in the alphabet of
the ADU plus the control actions start, suspend and abort. Two more classes of actions
not accounted for in the original definition of the model are introduced:

• Actions that carry no data but are in the alphabet of the ADU. For example a simple
synchronisation action on the gate ‘erase’ of the interactor selectionBand will erase
the selection.

• Controller actions other than on the SSRRA gates. They are referred to as
‘dialogue’ actions as they are used to model temporal ordering constraints on the
interaction.

The definition of the ADC model in chapter 4 has already incorporated ‘dialogue’ gates
for the controller and the updated version of the SSRRA behaviours. Accommodating
for actions that are not associated with the communication of data is only a syntactic
improvement. However, it makes the resulting specification shorter and simpler.

5.8.2 Abstraction-Only, Display-Only and Controller Interactors

These are degenerate versions of ADC interactors. The abstraction-only interactor does
not display any part of its state, e.g. the monitor interactor of figure 5.5. Consequently it
supports only the receive and result operations of the general data type ad (section 4.3).
A display-only interactor does not hold any abstraction value, e.g. simple push buttons
like the forward and backward step buttons of figure 5.5. A display-only interactor only
supports the operation render of the general data type ad. A controller interactor has
neither of the two types of state component and models exclusively temporal ordering
constraints, e.g. the xcontroller. It is a Controller Unit or a Constraints Component, as
they were introduced in chapter 4. Instead of applying some temporal ordering on a
single ADU, a controller component can be composed synchronously with any number
of ADC interactors. In this way temporal constraints can be applied incrementally on a
composition of interactors, using the constraint oriented specification style.

Figure 5.6. Diagrammatic representations for all types of interactors.

Chapter 5 A case study of the use of the ADC interactor

114

The concept of the interactor, as outlined in chapter 4, was associated with objects that
have a display. It is though convenient to use interactors that do not have a display
component as building blocks for more complex specifications. They can be used in
combination with interactors which have a display component, when the interface is
described as a composition expression. These ‘reduced’ interactors are illustrated as
barrels, which are sliced along their axis. In each case the visual representation loses the
arch that corresponds to the missing state component, as in figure 5.6.

5.8.3 Logical connectives

The term logical connectives is used here to describe a set of behaviour expressions that
support the communication of data between interactors. LOTOS is a synchronous
language so sometimes the communication of data between interactors may introduce
unwanted dependencies. For example, considerations of modularity suggest that the
sending interactor should not be ‘aware’ of a list of recipient interactors. Logical
connectives are introduced with the aim to factor out such communication dependencies.
Some are processes that buffer information between producers and consumers. These
may be thought of as abstraction-only interactors. In other cases, the required
communication scheme is supported directly as a LOTOS process algebra operator.
Since one of the aims of the case study has been to investigate how interactors can be
composed to model interface software, it is useful to reflect on what types of
communications schemes may be needed.

Connections between ADC interactors represent data flow or pure synchronisation. In
the case where data is communicated the ADC model distinguishes the producer from
the consumer of the data. Communication schemes may be classified by the number of
the producers and the consumers of data, and by whether they should all receive the data
(AND) or just one of them should (XOR). AND related groups of producers can be
specified in LOTOS as a set of processes synchronising on one or more of their output
gates. The synchronisation of interactors on their output gates introduces the possibility
of a deadlock (see table 3.1), when they offer inconsistent values. This possibility is
rather contrived in the context of user interface specification, and blurs the distinction
between the data handling component (the ADU) and the temporal ordering component
(the CU) of the interactor. For these reasons, this type of connection between output
gates is ruled out. The remaining possibilities are illustrated in table 5.1 along with their
visual representation.

In table 5.1, the construction [g] denotes a set G such that g∈G. So when processes are
combined in parallel over a gate list [g] it is implied that their synchronisation gate-set
should at least include g.

Most of the communication schemes of table 5.1 are synchronous and they are specified
directly as LOTOS behaviour expressions. The component eventQ is introduced to
model asynchronous communication between interactors. It aims to free the producer
and the consumers of data from constraints they would otherwise impose on each other

Chapter 5 A case study of the use of the ADC interactor

115

because of the synchronicity of LOTOS. The behaviour expression below suggests that
some data x received on a gate g is communicated, in any order, on all of the gates
g1,..,gn. Note, that this abstract definition for the event distribution scheme introduces a

very high degree of parallelism into the specification.

process eventQ[g, g1, g2,...,gn]: noexit:=
g?x:data; (send[g1](x)|||send[g2](x)|||...||| send[gn](x)) >> eventQ[g,g1,g2,...gn]
endproc

process send[g](x:data):exit:= g!x; exit endproc

Many mechanisms for asynchronous communication can be imagined as plausible
implementations of process eventQ, which is defined as abstractly as possible. These
may be interesting in the context of implementing some user interface software. They
are not as interesting for the purposes of its formal specification, so this issue is not
discussed further. The set of expressions of table 5.1 are the minimum necessary
general-purpose ‘logical connectives’ needed to compose interactors. Without their
introduction an ADC interactor specification would have to be modified depending on
the context of its use.

one producer many producers (XOR)

one consumer P[g] |[g]| C[g] (P1[g]|||...|||Pn[g]) |[g]| C[g]

synchronous
reception by many
consumers (AND)

P[g] |[g]|
(C1[g] |[g]| ... |[g]| Cn[g])

(P1[g] ||| ... ||| Pn[g]) |[g]|
(C1[g] |[g]|...|[g]| Cn[g])

asynchronous
reception by many
consumers (AND)

(P[g] |[g]| eventQ[g,g1,..,gn])
|[g1,..,gn]|

(C1[g1] ||| ... ||| Cn[gn])

(P1[g] |||...||| Pn[g]) |[g]|
eventQ[g,g1,..,gn] |[g1,..,gn]|

(C1[g1] ||| ...||| Cn[gn])

reception by one of
many consumers
(XOR)

P[g] |[g]|
(C1[g] ||| ...||| Cn[g])

(P1[g] |||...||| Pn[g]) |[g]|
(C1[g] ||| C2[g] |||...||| Cn[g])

Table 5.1. Logical connectives, their structure and their visual representation.

Chapter 5 A case study of the use of the ADC interactor

116

5.8.4 Temporal ordering constraints

During the case study, many similarities were observed across the constraints
components of interactors. The identification and classification of common and re-
usable expressions of temporal ordering constraints is essential for the practical
application of the ADC interactor model. To scale up the use of the ADC model, it may
be useful to construct a library of the corresponding process specifications. As a first
step, some constraint expressions that recur across the interactors of the case study are
discussed below.

Input Constraints

The term input constraints is used here to refer to LOTOS behaviour expressions used in
the CC component, that involve gates that belong to the gate set Gdinp only. In the case

study this concerns mostly mouse input. For example, after pressing the mouse button it
will have to be released before it is pressed again. If mouse movement is allowed, e.g.
when dragging is modelled, any number of moves may take place before the mouse
button is released.

This is captured by the process description

process drag[press, move, release]:noexit:=
press; (repeat[move]

[> release; drag[press, move, release])
endproc

process repeat[m]:noexit:=
m; repeat[m]

endproc

Push buttons use a simple variation of this constraint, where the movement is defined
simply as moving in or out of the active area of the push button.

process push[press, moveIn, moveOut, release]:noexit:=
press; (alternate[moveIn, moveOut]

[> release; push[press, moveIn, moveOut, release])
endproc

process alternate[A,B]:noexit:=
B; alternate[B,A]

endproc

When no movement is modelled, the constraint may be described as an alternation of
press and release interactions:

process inp[press, release]: noexit :=
alternate[press, release]

endproc

In the case study, only a few input behaviours were identified, since most interactions
were achieved by clicking, dragging, etc. Clearly this set of constraints refers to the

Chapter 5 A case study of the use of the ADC interactor

117

syntax of the input language. Here, it refers to elementary actions at the interaction
toolkit level. Similar syntactic regularities may be described as temporal constraint for
more abstract descriptions of an input language.

Weak Feedback Constraints

Weak feedback constraints are temporal constraints, which relate input gates on both
sides of the interactor with output gates on the display side. They describe how actions
on the input gates of the interactor cause the occurrence of output actions on the display
side. These constraints are called weak because they do not force the output
immediately after the input. Rather, they prohibit new input from being accepted before
an output event. In the example below, an action on any of the input gates of the
interactor is prohibited until the state of the interactor is shown to the user.

process weak[dinp, ainp, dout]: noexit:=
dinp; dout; weak[dinp, ainp, dout]

[] ainp; dout; weak[dinp, ainp, dout]
endproc

The gate set of the process contains only input and output gates directly concerned with
the feedback constraint. The remaining gates of the interactor are therefore
unconstrained. This is achieved by synchronising with the process SU_RE of the
controller unit only on the common gates of the constraint. When using the simple
model without the parameterised behaviours, the constraints apply directly to the process
adu as follows:

adu[dinp, dout, ainp, aout]
|[dinp, ainp, dout]|

weak[dinp, ainp, dout]

Consider for example a push button where the input gates on the display side are press,
move and release. This constraint would be written as:

process buttonFeedback[press, moveIn, moveOut, release, dout]:noexit:=
(choice g in [press, moveIn, moveOut, release]
[] g; dout; buttonFeedback[press, moveIn, moveOut, release, dout])

endproc

These temporal ordering properties of the behaviour of an interactor or an interface
should not be confused with closely related notions such as fine-grain semantic feedback
or observability, etc. The notion of adequate feedback depends also on the information
content of the output. Whether the information displayed is actually visible or not
depends also on the ergonomic design of the display, the user capabilities, etc.

Triggers and Strong Sequencing Constraints

Consider the specification of a trigger behaviour in the constraint oriented style, as was
demonstrated in section 4.5. To specify the trigger behaviour, it is important to constrain

Chapter 5 A case study of the use of the ADC interactor

118

all the gates of the CC component, to ensure that after a trigger action the required
behaviour will follow. Triggers are a special case of the more general constraint where
only a choice between certain sequences may be observed. Once a sequence is entered
all other interactions are prohibited. This is why these constraints are called strong
sequencing constraints. For example, after a user input it may be required that an echo
follows immediately, and after the echo an output on the abstraction side should follow.
In this way, strong feedback constraints may be specified, relating input gates and output
gates of the interactor.

As an example consider the triggers constraint for the step-forward button. It ensures
that the command goto is issued before any other interaction.

process triggers[press, moveIn, moveOut, release, goto, ainp, dout] : noexit:=
press; goto; triggers[...]

[] moveIn; goto; triggers[...]
[] moveOut; triggers[...]
[] release; triggers[...]
[] ainp?x:rectangle; triggers[...]
[] dout?x:twoStateButtonDsp; triggers[...]
endproc

To ensure that the trigger behaviour occurs all gates of the CC are included in the gate
set of this process. So while only the first two lines of the behaviour expression specify
the required triggering behaviour, clauses have to be added to ensure that the remaining
gates may continue to interact. The alternative sequences of interactions are specified in
the action prefix form. This is an example of the monolithic specification style discussed
in section 3.8. Alternative sequences of actions, such as a trigger construct are easier to
specify in this style.

Toggles and Modes

A double click on the image area of Simple Player™ effects a play command and a
single click effects a pause command, when the movie is playing. The interactor toggles
between two states depending on the state of the application, whether it is playing or
stopped. For example, in the specification of the case study, the interactor
playPauseACU informs the interactor display and the other sources of play and pause
commands, as to whether the application is playing or not.

The toggle process is just one example of a constraint that maps naturally to the notion
of state transitions. The toggle has two states, which are characterised by whether it
offers action A or B. In each state, a toggle action will cause it to switch between states.
After an action A or B takes place only a toggle action T can be accepted to complete the
transition:

process toggle[T,A,B]:noexit:=
A; T; toggle[T,B,A]

[] T; toggle[T,B,A]
endproc

Chapter 5 A case study of the use of the ADC interactor

119

In the specification of the display interactor the toggle constraint was instantiated as

toggle[ainp, doubleClick, click]

while for the play pause button it was instantiated as

toggle[ainp, play, pause]

In summary, this section has discussed a small set of temporal constraints that are
common across the interactors of the case study. These constraints are specified as
LOTOS processes which are used in the constraints component of the ADC interactor.
The specifications of this section have all been written in basic LOTOS. This is
appropriate because these descriptions concern only the temporal ordering of action
occurrences and not the information content of an interaction. However, the ADC
interactor is specified in full LOTOS. The gates of the ADU are typed, so any
specification of the temporal ordering of its actions has to take into account this typing.
The systematic re-use of the constraint definition puts a requirement of polymorhism on
their instantiation. Polymorhism refers to the ability of an entity to refer at run-time to
instances of various types [131]. However, here the term is used to denote the ability to
write constraints independently of the type of the data they apply to. Unfortunately,
LOTOS does not support such a feature.

5.9 Assessment of the study: lessons drawn and limitations

The case study was first and foremost a useful experience in using the ADC model.
Various graphical interaction styles were modelled. The ADC model turned out to be a
useful framework for guiding and structuring the specification activity. The subject of
this specification is a relatively small scale application. However, the specification is
very detailed and has a high degree of parallelism, so the specified behaviour is quite
complex. The specification was simulated on the Lite toolset [30, 119] and the
simulation was compared with the behaviour of the Simple Player™ software. Model
checking tools were used to verify some dialogue properties. The discussion on the
analytical use of the model is deferred for chapter 7. In practice model checking had
limited success because of the size and the complexity of the specification.

As an indication of the size of the specification, the text written was approximately 1500
lines of full LOTOS code. The complexity of the specification was compounded since
the specification exhibits a much higher degree of parallelism than the software it
models. The interface is described as a parallel composition of entities, which is not
necessarily the case with the actual software. Communications between these
components are not prescribed to take place in any specific order as this cannot be
observed by experimentation with the actual software. This means that the reverse
engineered specification has many more ‘degrees of freedom’ than the actual software.
Though it is a correct specification of the observed behaviour, the high degree of
parallelism puts the complexity of the specification beyond the capability of the tools

Chapter 5 A case study of the use of the ADC interactor

120

used. This problem persisted even after the specification was transformed to basic
LOTOS for verification purposes.

The resulting specification is under-constrained for one more reason. The network of
interactors in figure 5.5 does not describe end-to-end constraints, e.g. between gates on
the application interface and the user side. In principle, such constraints can be built into
the specifications of each interactor although this is detrimental for the modularity of the
specification. On a methodological note a bottom-up and piecemeal study of the
interface is not prone to reveal constraints relating the behaviours of interactors that do
not communicate directly with each other. For example, consider the constraint that no
user input should be possible before the current video image has been displayed. Such a
constraint is easy to model, by the addition of a ‘global’ constraint component connected
to the relevant gates.

Already, the experience of the case study suggests that it is necessary to update, or to
extend, the original hypotheses regarding the use of the model. An interface
specification is not built only by the composition of basic interactors. Stand-alone
controller components and the logical connectives to support the data flow between them
have to be added.

The use of the interactors is greatly facilitated by the existence of an overall architectural
model. One of the main difficulties in this study was to define what is the application
interfaced to. Defining a behavioural specification of the functional core is a useful
activity that defines the boundary for the use of the interactor model. It requires
adopting an overall architecture like for example the Arch reference model for
interactive systems [14], discussed in chapter 2. Similarly the boundary of the scope of
the interactive software needs to be defined at the display side, possibly by a display
model.

Data type specifications for the interactor specifications follow directly from the general
data type ad, by syntactic substitution of the actual sort identifiers. However, such
specifications define only the syntax of the operations involved. To relate more to the
domain in question it seems a promising idea to provide a library of abstract data types.
This has been done in other fields where formal specifications have been applied, indeed
LOTOS is packaged with a standard library for abstract data types, e.g. integer, Boolean,
etc., (see [117]). The ADC model provides a framework for identifying re-usable data
types and for using them in the specification of user interfaces. Depending on what kind
of reasoning will be done with the resulting specifications, different models may be
adopted for the display and the abstraction.

The case study has tested several aspects of the ADC model. However, some parts of it
remain untested as a result of the choice of specificand. The Simple Player™
application, provides an interaction rich in temporal dependencies but the structure of the
interface itself is quite static. It involves the same set of interactors throughout its
operation. As a counter example consider a drawing package where dynamic
creation/destruction of interactive objects is required. To model such objects by ADC
interactors it is necessary to introduce a notion of dynamic creation and deletion of

Chapter 5 A case study of the use of the ADC interactor

121

components, which is more akin to objects in object oriented programming [131] than to
the concept of processes. The interaction with Simple Player™ does not include
navigation dialogue as is commonly found in hypertext systems, or form filling
interfaces. Clearly, it is a worthwhile exercise to apply the model in this domain. This
would legitimise claims that the model is helpful in the specification of such systems.
However, there is no reason to believe that this class of system could not be described
sufficiently using the ADC model.

Simple Player™ was modelled by a composition of interactors. Groups of such
interactors were closely related and indeed they could be thought of as one. By the same
argument a different specification approach would be to model the whole graphical
interface, possibly at a more abstract level, as a single interactor. Indeed, this has been
the intuition of using the model all along. In other words, some notion of congruence is
required, by which the specifier will be allowed to substitute compositions of interactors
with a single interactor. It should then not be necessary to refer to the original
components when using the resulting composite interactor, analytically or as a
component for further compositions.

During the specification exercise when the specification of a particular behaviour was
hard to describe as a single interactor, the problem was divided into the definition of two
or more communicating interactors. This was the case with the playerBar group of
interactors and with the monitor group of interactors. Broadly, given that the example
was reverse engineered, the specification was constructed bottom up. In a forward
engineering example, it is very likely that the starting point would be an abstract
specification of a higher level interactor, that would be refined by its decomposition into
lower level entities.

This problem of switching between the two models of a user interface, as a single
monolithic ADC interactor or as a structured collection of ADC interactors, are
discussed in the next chapter as formal transformations. Other transformations are
discussed too, that concern the effect of hiding the details of communication across
interactors and the way in which standard dialogue behaviours are supported.

5.10 Conclusions

The case study showed the ADC interactor model to be an appropriate formalism for the
specification of the graphical interaction with Simple Player™. The model provides a
conceptual framework for the specification, i.e. it prompts a specification technique by
which many difficult decisions are arrived at almost mechanically. However the original
concept by which the interface is composed of ADC interactors only, was found to be
restrictive. Modifications were introduced to the model to improve the modularity of the
resulting specifications. The extensions include the simplified specification of
‘degenerate’ cases of ADC interactors and the classification and standardisation of
special purpose components managing the data communication between interactors.

Chapter 5 A case study of the use of the ADC interactor

122

However, these extensions are simply ‘syntactic sugar’, since all these components may
be specified as instances of the ADC interactor of chapter 4.

The case study was a positive but not definitive experiment. It does not provide a
scientific assessment of how useful the ADC interactor model would be to practitioners,
but rather it is a formative assessment of the formal model which will help improve it.
Some aspects of the model have not been tested, and further experimentation with
different types of interface software would be a useful continuation of this work.
Nevertheless, the case study provides a concrete and far from trivial application of the
ADC formal interactor model, which is a necessary step towards its further development
and dissemination.

123

Chapter 6

Synthesis, Decomposition and Abstract Views

This chapter investigates some important and practically useful properties which have
been built into the ADC model. To this point they have only been described intuitively
and constitute hypotheses about the model. An important property of the model is its
compositionality. In the present context, this term means that any LOTOS behaviour
expression involving ADC interactors may be shaped into the form of an ADC
interactor, while at the same time preserving its meaning. The implication is that an
interactive system may be iteratively formulated as a single ADC interactor. To
formalise this idea a more rigorous definition of the ADC interactor model is called for.
Two syntactical transformations are defined, the synthesis and the decomposition of
ADC interactors. These transformations preserve the meaning of the specification up to
strong bisimulation equivalence [133]. The synthesis transformation was introduced in
[125] and the decomposition transformation was outlined in [126]. These
transformations are presented with their theoretical foundation and a reflection on their
practical implications.

The concept of abstract views of interactors is also introduced. It refers to an interactor
some of whose gates are hidden. Abstract views are useful for abstracting away from
internal detail of composite interactors. The synthesis and decomposition
transformations apply to abstract views as well. The effect of synthesis and the
decomposition transformations on the standardised behaviours, which have been
collectively referred to as SSRRA in earlier chapters, is examined. Finally, this chapter
deals with the question of dialogue representation in the ADC model, extending some of
the ideas outlined briefly in [126].

6.1 Rigorous definition of the ADC interactor

The ADC interactor model has been defined, in chapter 4, as a template for a LOTOS
process definition associated with an abstract data type. A more abstract and rigorous
description is required which will define unequivocally which LOTOS behaviour

Chapter 6 Synthesis, decomposition, and abstract views

124

expressions may be called ADC specifications. The approach adopted below examines
the syntactic structure and the semantic requirements which characterise ADC interactor
specifications in the LOTOS formal specification language.

6.1.1 Topology of interactor gates

As a first step towards a more abstract and general definition of the ADC interactor
model, the formal model is extended to relate sets of gate identifiers (gate sets for short)
rather than individual gate identifiers. This idea has been introduced already in chapter
4, where the set Gd = {it, ot} was used in the place of a single dialogue gate d, to model

the trigger behaviours of the Pisa interactor model.

Gate lists rather than gate sets are the standard construct of LOTOS. However the
discussion that follows describes process instantiations using sets of gates. A gate is
described by its name. The manipulations and definitions of behaviour expressions that
follow attach no significance to the order in which gates are declared in a process
instantiation. In practical terms, to support this convention using LOTOS, the recursive
process instantiations of the ADU and the CU should preserve the naming and ordering
of gates in the process headings.

For example consider the process definition whose heading is:

process ADU[dinp, dout, ainp, aout] : noexit :=

The convention introduced for the definition of process ADC means that it will not be
allowed to write a recursive instantiation of the form

ADU[dout, dinp, ainp, aout]

With the exclusion of such permutations the gate set Gio={dinp, dout, ainp, aout}

describes sufficiently the gate-list for the process ADU.

The remainder of this paragraph describes the topological constraints on the gate sets
with which an ADC interactor or its component processes are instantiated. The set G of
the gates of the interactor is partitioned into the set of input-output gates Gio and the
control gates Gc.

G = Gc ∪ Gio and Gc ∩ Gio = Ø 6.1

Controller gates may effect standardised control behaviours which so far have been
called the SSRRA behaviours (respectively the formal gate identifiers). Alternatively
they may effect actions carrying no data which are handled by the controller component.
The subsets of Gc are mutually exclusive.

Gc = SSRRA ∪ Gd and SSRRA ∩ Gd = Ø 6.2

SSRRA = {start, suspend, resume, restart, abort} 6.3

Chapter 6 Synthesis, decomposition, and abstract views

125

Gio is partitioned to two gate sets Gabs and Gdsp that correspond to gates on the abstraction

and display side of the interactor respectively.

Gio = Gabs ∪ Gdsp and Gabs ∩ Gdsp= Ø 6.4

Gabs = Gaout ∪ Gainp and Gaout ∩ Gainp = Ø 6.5

Gdsp= Gdinp ∪ Gdout and Gdinp ∩ Gdout = Ø 6.6

The example below demonstrates the generalisation of the interactor model for the case
where the gate sets are not atomic.

Example

Consider an interactor representing a file icon on a desktop interface. The file icon can
be manipulated directly, i.e. it may be dragged and dropped. Suppose also that a double
click of the mouse button when the mouse-cursor is over the icon fires an associated
application, e.g. a word processor. One possibility is to model the file icon as an
interactor with two input gates on its display side G dinp={drag, drop} and an output on the
display side Gdout={dout}. This interactor receives semantic information on its

application side from a higher level entity that models the file system. The interactor
will use such input to update its contents and its presentation to reflect the state of the
file manager, e.g. date and time associated with the file, its name, etc. The file icon has
an output on the abstraction side, through which it sends data to interactors modelling
other entities, e.g. folder icons and the desktop interface. This data is described below as
a value of sort fileInformation. The double click is modelled by a dialogue event Gd

={doubleClick} that synchronises with the start of another interactor modelling the
window with the file contents.

Here, the ADU offers a choice of two input events on the display side:

process ADU[drag, drop, dout, ainp, aout] : noexit :=
drag?x:position; ADU[...](inputDrag(abs, ds, pos), echoDrag(abs, ds, pos))

[] drop?x:position; ADU[...](inputDrop(abs, ds, pos), echoDrop(abs, ds, pos)
[] dout!dc; ADU[...](abs, dc, dc)
[] ainp?x:fileInformation; ADU[...](receive(abs,x),render(abs,x), ds)
[] aout!result(abs); ADU[...](abs, dc, ds)
endproc

The other components of the interactor are almost the same as for atomic gate sets. They
include one more gate in their gate set and the CC has to constrain this as well. For this
example, let the only constraint be that feedback is given before any new input can be
accepted, and that the file icon will send its result (suppose it is a file identity) only after
receiving input on the abstraction side from another interactor.

process CC[drag, drop, doubleClick, dout, ainp, aout] : noexit :=
drag?x:position; dout?x:disp; CC[...]

[] drop?x:position; dout?x:disp; CC[...]

Chapter 6 Synthesis, decomposition, and abstract views

126

[] dout?x:disp; CC[...]
[] ainp?x:fileInformation; dout?x:disp; aout?x:fileInformation; CC[...]
[] doubleClick; CC[...]
endproc

6.1.2 The set of possible interactions

The topology of the gate set has identified five sets which partition the gate set of an
interactor. These are Gdinp, Gdout, Gainp, Gaout and Gc. Each gate set corresponds to what

can be called a different role of a gate for the interactor. This means, that the
membership of a gate determines its use in the ADU and the CU. The definition of ADC
in the following paragraphs, specifies actions on a particular gate according to which of
the gate sets above it belongs to. For convenience, the role of a gate will be referred to
simply as dinp, dout, aout, ainp and c.

Apart from these gates, the set of actions that may be offered by an interactor depends on
the data offered on its Gio gates. This set of actions L is:

 L ⊆ Gc ∪ Gdinp × dInpData∪ Gainp × aInpData ∪ Gdout × dsp∪ Gaout × aOutData 6.7

where the sort identifiers of the data type AD, defined in chapter 4 indicate the domains
of the data that may be communicated at an interactor gate.

6.1.3 The syntactic structure of ADC interactors

An ADC interactor is a non-terminating process (i.e. it has functionality no-exit). In
general the process ADC is formed by the parallel composition of the ADU and the CU.

process ADC[Gc∪Gio]: noexit :=
ADU[G io](a,dc,ds) |[Gio]| CU[Gc∪Gio]

endproc

Following the case study of chapter 5, it was suggested that in some cases the ADC
interactor should comprise of a CU only. In some cases it might even be desirable to
reduce the CU to its constraints component (CC). Using a CC that does not support the
standard behaviours results in simpler and more abstract specifications. In the following
sections which describe the synthesis and decomposition of interactor specifications, the
internal structure of the CU component is not of concern, so the results that follow hold
both for the CU that supports the SSRRA behaviours and for a simple CC component as
well.

6.1.4 The AD data type specification

Consider the example of the scrollable list examined in chapter 4. In the original
synchronous composition expression, both interactors were associated with a custom
data type: scr_ad and ls_ad. The composite interactor formed as a behaviour expression

Chapter 6 Synthesis, decomposition, and abstract views

127

that combines the two interactor instantiations, was rewritten into an equivalent form
with the general syntactic structure of the ADC interactor. However, the composite
interactor was not associated with a higher level data type AD combining the data types
of the components.

In general, it is not necessary that an ADC interactor specification should be associated
with an AD data type even if it models data communication. What is important for the
discussion is that interactions on output gates actually offer a value and that interactions
on input gates do not refuse a value offered to them. By the definition of the ADU of
chapter 4 value offers may be either the dc state variable or the interpretation of the
abstraction by the inquiry operator result. These operations are defined for the data type
associated with the elementary interactors. It is required that elementary interactors are
associated with an internally consistent data type AD, whose definition is formed
according to the template of chapter 4. This ensures that the enquiry operators will
always return a value.

As discussed already an interactor might have multiple input gates or output gates on
either side. In most cases this requires the definition of a corresponding set of
operations. The data type definition reflects the topology of the gates of the ADU:

1. For each gate in Gdinp an input and an echo operation have to be defined.

2. For each gate in Gainp a receive and a render operation have to be defined.

3. For each gate in Gaout a result operation has to be defined.

4. For each gate in Gdout a display sort must be defined.

It is not necessary that different operations are defined for each gate. For example, there
might be two input gates on the display side using the same input operation. However, a
methodological guideline that can be postulated here is that if two gates are associated
with the same operations, then they should probably not be distinguished. Their
separation might be due to architectural considerations external to the interactor, e.g. the
same data is communicated over the gate to two client interactors. This is detrimental
for the modularity of the interactor specification and it is better that this distribution of
data be supported by one of the logical connectives discussed in chapter 5.

In conclusion, only elementary interactors are associated with an AD data type. This
data type is defined as in chapter 4 with the extra requirements listed above. Note, that
these requirements do not exclude the possibility that an elementary interactor is related
to more than one data type, or that it can be an abstraction-only or display-only
interactor.

6.1.5 Elementary ADU

An ADU is a recursive non-terminating process for which the following holds:

Chapter 6 Synthesis, decomposition, and abstract views

128

1. Its gate set Gio can be partitioned in a set of input gates Gi and a set of output

gates Go, such that Gio= Gi ∪ Go and Gi ∩ Go= Ø

2. Interactions on input gates that involve the communication of data are strictly
variable declarations without a selection predicate (see section 3.8). Simple events
that carry no data are also allowed as input.

3. Output actions are strictly value declarations. They are either the value of a local
parameter, e.g. the display state, or the value of an enquiry operator on the data type
AD, e.g. the result operation. In order that a value is always offered the data type
AD should be internally consistent.

4. The elementary ADU is a behaviour expression that offers a choice of events on all
the gates of the ADU before recursively instantiating itself. The recursive
instantiation updates the local variables by applying the operations of the AD data
type corresponding to the role of each gate.

Note that in accordance to the findings of the case study it is useful to model interactions
on input gates that do not carry any data. These interactions have the effect of applying
the operations specified in the ADU without communicating any data. Further, the set of
interactions offered at each gate is not empty. Since AD is consistent there will always
be some value output on the output gates, and by definition a range of interactions will
be offered on input gates. The recursive instantiation of the ADU supports the mapping
of gates to operations. So for example, for each gate in Gdinp there should be an input and

an echo operation, etc. as discussed in section 6.1.4.

6.1.6 A well formed ADU

A well formed ADU may be:

1. An elementary ADU.

2. A parallel composition expression of the form

 ADUA[G io
A]|[G]|ADUB[Gio

B] 6.8

where ADUA and ADUB are themselves well formed ADUs, and

 Go
A ∩ Go

B ∩ G =∅ 6.9

3. The following is stipulated for the gate set of the well formed ADU:

Gio = Gi ∪ Go where Go = Go
A ∪ Go

B and G i = (G i
A ∪ G i

B) − Go 6.10

The parallel composition of two ADUs that synchronise on some of their gates is also a
well formed ADU. Condition 6.9 ensures that it is not possible to specify an ADU that
might deadlock because of its two components offering different values on the same

Chapter 6 Synthesis, decomposition, and abstract views

129

output gate. Equation 6.10 describes the definition of the gate sets for the composite
ADU. A gate which is an input gate for one of the components and an output gate for
the other is classified as an output gate for the compound interactor. This ensures that
the input and output gates of the derived ADU do not intersect, i.e. G i ∩ Go= Ø , in
accordance to the definition of the topology of the interactor gates. Further, it is clear
that G io = G io

A ∪ Gio
B .

Lemma 6.1. Behaviour of a well formed ADU

The behaviour of a well formed ADU is characterised by the following:

1. The set of interactions offered at each gate is not empty.

2. P(ADU) ~ Q, with Q = choice g in [Gio] [] g;Q

where ~ denotes strong bisimulation equivalence (see appendix A.1) and P(.) denotes the
naive transformation from full LOTOS to basic LOTOS, which maps each specified
interaction g<v> to some interaction g on the same gate but ignoring the data component
of the action specification (see appendix A.1).

Process Q is defined so that it is always ready to offer interactions on all its gates. It is
defined as a basic LOTOS process. Property 2 states that if the data values associated
with interactions on the gates of the ADU are ignored, then its behaviour may be
described by Q. This property is a rigorous expression of the fact that the ADU does not
model the temporal behaviour of the interactor.

Proof.

By structural induction. By definition both properties hold for an elementary ADU.
Property 1 holds trivially for the induction hypothesis since no selection predicates are
introduced with the parallel composition and because of the requirement 6.9. Property 2
holds by the distribution of the naive transformation over the parallel composition
operator [118, chapter 13].

Å

6.1.7 Specification of the CU

The temporal ordering of the interactions of the ADU is described in the constraints
component CC. This is a recursive process with functionality no-exit, and it can be any
LOTOS behaviour expression with gates Gcc= Cio∪Gd. There are no further behavioural
requirements for the CC.

The CU is defined as a template in which the CC is incorporated, so as to support the
SSRRA behaviours. The presentation of this structure is deferred until section 6.5. For

Chapter 6 Synthesis, decomposition, and abstract views

130

the current discussion it is sufficient to consider an elementary CU as a process such
that:

1. Gates in Gio are associated with variable declarations whose sorts are defined by the

typing of the gates in the ADU.

2. CU does not have any local state variables.

3. CU does not output any values, i.e. it does not specify interactions with a value
specification component.

4. CU does not have any selection predicates on actions specified with a variable
declaration.

The CC satisfies these properties also, so for the purposes of the synthesis transformation
it is possible that a CC is used in the place of a full CU definition. The definition above
does not constrain the required behaviour of the CU. As will be shown in later sections
the CU encodes the ‘dialogue’ supported by the interactor. Rules 1-4 restrict the use of
LOTOS constructs, effecting the ease with which a dialogue may be specified. These
restrictions do not diminish the expressive power of the notation which is that of Turing
machines, as has been shown in [67].

6.1.8 Conclusion

In the start, this section set out to define a simple criterion by which a LOTOS behaviour
expression could be determined to be an ADC interactor specification. It is now possible
to introduce a formal definition of the ADC interactor:

Definition. ADC interactor specification.

A LOTOS behaviour expression is an ADC interactor specification if:

1. It is a well formed CU or

2. It is formed as the synchronous composition of a well formed ADU and a well
formed CU, where the two processes synchronise on all the gates of the ADU.

6.2 Synthesis

As has been mentioned already it is possible to specify a complex user interface by the
composition of ADC interactor specifications. The composition is a behaviour
expression that uses the standard LOTOS process algebra operators. The property of
compositionality means that this expression can be rewritten into a single compound
ADC interactor, which satisfies the definition of paragraph 6.1.8. This rewriting
transformation is termed synthesis.

Chapter 6 Synthesis, decomposition, and abstract views

131

The synthesis transformation is described by:

1. An input expression called the distributed form DF = ADCA ⊗ ADCB where ⊗ is a

binary composition operator for non-terminating LOTOS behaviour expressions
(one of |||, ||, [>, [] and |[G]| where G⊆GA∩GB).

2. An output expression called the compound form:

CF = ADUAB|[G io
AB]|CUAB

where ADUAB = ADUA|[G1]|ADUB and CUAB = CUA ⊗ CUB

6.11

The compound form is sufficiently defined by ⊗, G io
AB, G1.

3. The transformation requirement is that the compound form is itself an ADC
interactor. By the definition of section 6.1.8 the expression CF is an ADC
interactor, provided the ADUAB is a well formed ADU. It is therefore necessary

that:

 G1 ∩ Go
A ∩ Go

B = ∅ 6.12

4. The correctness preservation requirement describes the invariant of the
transformation, i.e. it expresses the desired relationship between the semantics of the
distributed form and the compound form. Clearly some congruence relation is
required, i.e. the two forms should not be distinguished in the various algebraic
contexts they might appear in [133, chapter 7]. However, as it is discussed more
extensively in chapter 7, the comparison of behaviour specifications should reflect
how they are perceived to be different or similar by a human observer and in the
context of a user interface architecture.

Further debate as to how behaviours of interactors should be compared is deferred until
chapter 7. In the next sections, strong bisimulation equivalence is proved between the
DF and the CF for all possible behaviour composition operators ⊗. This is the strongest
useful (i.e. excluding equality) requirement for comparing behaviours modelled as
labelled transition systems [133]. The bisimulation equivalence of DF and CF entails the
other weaker equivalence and congruence relations.

6.2.1 Synchronous composition of interactors

Static composition operators are examined first. Consider two interactors ADCA and
ADCB with respective gate sets GA and GB. The operator |[G]| describes the partial
synchronisation of ADCA and ADCB over a gate set G⊆GA∩GB. Full synchronisation ||
and pure interleaving |||, can be thought of as boundary cases of the partial
synchronisation of behaviour expressions, where G=GA∪GB and G=Ø respectively.

In section 6.1.2 it was mentioned that each gate is assigned a role in an interactor. This
may be the role dinp, dout, ainp, aout, or c. A gate g∈G may have different roles for

Chapter 6 Synthesis, decomposition, and abstract views

132

each of the two interactors. A different type of connection is obtained for each
combination of roles, e.g. (dinp, dout). This paragraph discusses these different types of
connections and introduces some conventions for the synchronous composition of
interactors. Since this discussion does not distinguish between interactors ADCA and
ADCB, a connection type is symmetric i.e. the same type of connection corresponds to
the combinations (dinp, dout) and (dout, dinp).

A composition of two interactors may use from none, in the case of pure interleaving, to
many types of connections (a)-(l) below.

(a) Connection type (dinp, dinp). Both interactors receive data synchronously from
their display side. In section 5.8 this was described as a case of multiple consumers
receiving data synchronously. An example of this could be a multiple selection of
icons which are ‘dragged’. In this case the mouse position is read by both
interactors.

(b) Connection type (ainp, dinp). The two interactors are synchronised consumers. In
this case though, the input arrives at the display side for B and the abstraction side
for A.

(c) Connection type (dout, dinp). This could be a case of the reuse of the graphical
output of interactor A as graphical input to interactor B. For example, an interactor

Figure 6.1. The range of connection types of ADC interactors. Arrows
indicate gates for input or output. The last case represents a simple

synchronisation.

Chapter 6 Synthesis, decomposition, and abstract views

133

may ‘capture’ the instantaneous
graphical output of Simple Player™
application to create a snapshot of
the application in operation.

(d) Connection type (aout, dinp). Data is
sent from the abstraction side of A
to the display side of B. For
example, the thumb interactor of
the case study (chapter 5) sends data
to the player bar and the selection
band interactors.

(e) Connection type (c, dinp). The
controller unit of interactor A and the
input on the display side of interactor B are mutually constrained. This could be
used to implement a mode, e.g. a keyboard modifier. Such an example can be found
in the case study, where the interactor xcontroller applies constraints to mouse input
to the display side of interactors forward, backward and playPauseButton.

(f) Connection type (ainp, ainp). The two interactors are synchronous consumers.
Consider a graphical interface, which is resized following a menu command. One
possible approach to modelling the interface is that interactors should receive the
new screen coordinates of their enclosing window from the abstraction side.

(g) Connection type (dout, ainp). Data is sent from the display side of B to the
abstraction side of A. This could be an example of a graphics output pipeline,
where each interactor manages one transformation of the graphics data structures.

(h) Connection type (aout, ainp). A value is communicated from A to B. For example,
in the case study the resizeBox interactor was connected to all interactors displayed
with this type of connection.

(i-l) Connection types (c, ainp), (c, dout), (c, aout), and (c,c). In these cases the
controller of interactor A constrains, and is constrained by, a gate of interactor B.
This is similar to type (e) above. These types of connections were used broadly in
the case study, e.g. for xcontroller and the playPause interactor.

The list above does not include all the possible connection types. Figure 6.2 illustrates
those omitted. These connection types concern pairs of interactors which synchronise
over common output gates. Clearly, this introduces the possibility of a deadlock when
the two interactors output a different value. It is shown below how these connection
types are excluded on the basis of the transformation requirement.

6.2.2 Correctness of the synthesis transformation for synchronous compositions

The distributed and the compound forms of the composition are:

Figure 6.2. The types of connections
which have been ruled out.

Chapter 6 Synthesis, decomposition, and abstract views

134

DF = (ADUA|[G io
A]|CUA)|[G]|(ADUB|[G io

B]|CUB)

CF = (ADUA |[G1]|ADUB)|[Gio
A ∪ G io

B]|(CUA|[G2]|CUB) 6.13

Strong bisimulation equivalence of DF and CF is proved below. The proof results in
constraints for the gate sets G1 and G2 so that DF~CF. The proof technique used here is

adapted from [180] and is a ‘shorthand’ version of the proof by bisimulation. It is based
on the following theorem by Milner [133]:

DF ~ CF iff (DF,CF) ∈ R and R is a bisimulation relation. 6.14

Because an ADC interactor specifies no ‘silent’ actions i, the following must hold for R
to be a bisimulation relation [133].

For all interactions g<v> for which there is a transition for DF or CF:

DF g< v> → D ′ F ⇒ ∃C ′ F |(D ′ F ,C ′ F) ∈R •CF g< v> → C ′ F

CF g< v> → C ′ F ⇒ ∃D ′ F |(D ′ F ,C ′ F) ∈R • DF g< v> → D ′ F
6.15

Proof

The proof consists in proposing a relation R that can play the role of the bisimulation
relation. For 6.15 to hold, necessary and sufficient conditions are derived relating the
gate sets of the component processes of DF and CF.

Let R = {<(A|[S1]|B) |[S2]| (C|[S3]|D), (A|[S4]|C) |[S5]| (B|[S6]|D)>} 6.16

where A, B, C, and D are behaviour expressions, S1 to S6 are gate sets. Clearly,
(DF,CF)∈R by substitution. From the semantics of the synchronisation operator, any
transition of DF or CF, involves the transition of at least one of its components. Further,
by the semantics of the synchronisation operator of LOTOS, the transition will always
result in the same static structure for DF' and CF'. Thus, (DF',CF')∈R, for any transition
g<v>.

Condition (6.15), requires that DF and CF have the same sets of transitions. A transition
g<v> is defined by gate identifier g and value <v>. By the semantics of synchronous
composition, the gate identifier g must belong to the gate set of the component process
performing the transition. This gate set does not change with the recursive instantiation
of the process. This is guaranteed by the convention adopted in paragraph 6.1.1 for the
recursive instantiation of processes ADU and CU.

DF and CF are behaviour expressions formed by the same components. Therefore all
possible transitions may be enumerated by considering each possible combination of
transitions for their components. Transitions of DF and CF are categorised by the
component processes involved. The domain of g for each type of transition is the
intersection of the gate sets of the component processes, constrained by the behaviour
expression DF or CF so that the transition is possible, according to the operational
semantics of LOTOS [100, 18]. An empty gate set means that the transition is

Chapter 6 Synthesis, decomposition, and abstract views

135

impossible. To ensure that DF and CF offer the same events, the domains for g of DF
and CF are equated. Simple set manipulations result in the necessary conditions between
the gate sets of the two expressions.

To cover all possible transitions for DF or CF, this procedure is repeated for all possible
combinations of transitions of their components. The results are listed in table 6.1. Note
that some combinations are impossible by the definition of the model, as for example an
ADU firing without synchronising with the CU component that controls it. The
rightmost column presents the condition resulting by equating the domain of g for the
DF and the CF form, for each possible transition g<v>.

For example consider the first row of table 6.1. It describes the case of a transition of the
form ADUA → AD ′ U A . For the DF such a transition is impossible because by the
definition of ADC in paragraph 6.1.8, all gates of the ADU synchronise with the gates of
its corresponding CU, denoted below as L(CU).

The second row describes a transition of the form CUA → C ′ U A . This is perfectly
legitimate for both the DF and the CF. For DF the transition may happen through any of
the gates of L(CUA), provided it does not belong to either the gates of ADUA or the

synchronisation gates in G. For the CF the transition may happen only if the gate g is

ADUA CUA ADUB CUB Condition

• impossible for both DF and CF

•
G

c
A ∩ G = G

c
A ∩ (G2 ∪ G

io
B)

• •
G

io
A ∩ G = G

io
A ∩ (G1 ∪ G2)

• impossible for both DF and CF

• • impossible for both DF and CF

• •
(G

io
B − G1) ∩ ((G

c
A ∪ G

io
A) − G2) = ∅

• • • No resulting condition (∅=∅)

•
G

c
B ∩ G = G

c
B ∩ (G2 ∪ G

io
A)

• •
(G

io
A − G1) ∩ ((G

io
B ∪ G

c
B) − G2) = ∅

• •
G

c
A ∩ G

c
B ∩ G = G

c
A ∩ G

c
B ∩ G2

• • •
G

io
A ∩ G

c
B ∩ G = (G2 − G1) ∩ ((G

io
A ∩ G

c
B) ∪ (G

io
A ∩ G

io
B))

• •
G

io
B ∩ G = G

io
B ∩ (G1 ∪ G2)

• • • No resulting condition (∅=∅)

• • •
G

io
B ∩ G

c
A ∩ G = (G2 − G1) ∩ ((G

io
B ∩ G

c
A) ∪ (G

io
A ∩ G

io
B)

• • • •
G

io
A ∩ G

io
B ∩ G = G

io
A ∩ G

io
B ∩ G1 ∩ G2

Table 6.1. Each row shows a combination of transitions and the condition put
on the label sets of the components and G, G1, G2 for it to be possible for both

DF and CF.

Chapter 6 Synthesis, decomposition, and abstract views

136

not in the synchronisation gates with CUB, i.e. set G 2, or in the set of gates G io
A ∪ G io

B
, on

which the two controllers synchronise with the two ADUs. By equating the two gate
sets the condition listed on the table arises:

L(DF) = L(CF) ⇔
Gc

A − Gio
A − G = Gc

A − G2 − (G io
A ∪ Gio

B) ⇔

 Gc
A ∩ G = Gc

A ∩ (G2 ∪ G io
B) 6.17

In this case a useful condition results. In others a tautology arises, (i.e. the condition
Ø=Ø), which is noted as ‘no condition’ on the corresponding row of the table.

The combination of the resulting conditions allows many possible constructions for G1

and G2. The necessary and sufficient condition that results from their combination is

 G io
A ∩ G io

B ⊆ G,G1,G 2 ∧ G1 ∩ ((G io
A ∩GC

B) ∪ (G io
B ∩ GC

A)) = ∅ 6.18

Condition 6.19 below is stronger than 6.18 (it is a sufficient condition) but it allows an
economical construction of the compound form.

 G1 = Gio
A ∩ G io

B ∩ G ∧ G2 = G 6.19

Thus, the controllers in the CF must be composed over exactly the synchronisation gate
set used in the DF, while the ADUs can not synchronise over the gates implementing
connections of types (e), (i), (j), (k) and (l) of figure 6.1.

From the transformation requirement it is also required that G1 does not include any

common output gates. The transformation requirement 6.12 can only hold for the gate
sets satisfying equation 6.18 if G itself does not include common output gates. Thus, for
the transformation requirement to hold, the input form must be constrained to satisfy the
following equation

 G ∩ Go
A ∩ Go

B =∅ 6.20

This, as was expected, rules out the connections of types (m), (n) and (o) of figure 6.2.

The discussion so far has ignored the data values passed. It is argued hereby that this
does not discredit the proof presented. An interaction may involve the communication
of data from one interactor to another, unless it involves both interactors reading data
from a third source or simply synchronising. These two cases are examined separately.

Connections (c), (d), (g) and (h) are the only connection types that support data
communication. Without loss of generality it is assumed that A produces data values
and B consumes them. By the definition of the model, the gates of the ADU are typed.
Let ValueSet(t) denote the possibly infinite set of values of sort t, and rangeA(g) ⊆
ValueSet(t) (respectively rangeB(g)⊆ValueSet(t)) denote the set of values possibly
offered by ADUA (respectively read by ADUB) over gate g. As predicate selection was
disallowed in the definition of the interactors it follows that: rangeB(g) = ValueSet(t).

Chapter 6 Synthesis, decomposition, and abstract views

137

Also, CUA and CUB, by definition, allow all values v∈ValueSet(t). In table 6.1, data
communication takes place only in the transition in row (15). By inspection of the DF
and the CF it is easy to see that in both cases the set of possible values is rangeA(g).
Thus, for any gate label g, DF and CF offer the same transitions g<v>, with <v>
∈ rangeA(g).

The remaining types of connections, i.e. (a), (b), (e), (f), (i), (j), (k) and (l) specify the
interaction of the two interactors with a variable declaration on both sides of a
connection. In this case, both the DF and the CF offer the same set of interactions g<v>
where g is the synchronisation gate, and <v> is any value in ValueSet(t).

Å

The above can be summarised in the form of a theorem.

Theorem 6.1. Synthesis of synchronous composition expressions.

A behaviour expression which specifies the synchronous composition of two ADC
interactor specifications over a gate set G, such that G ∩ Go

A ∩ Go
B =∅ , can be rewritten

as a strongly equivalent ADC interactor. The CU of the resulting interactor is formed by
the parallel composition of the two component CUs over the gate set G and its ADU is
formed by the parallel composition of the component ADUs over a gate set

 G1 = Gio
A ∩ G io

B ∩ G 6.21

where the gate sets for interactors ADCA and ADCB are indicated accordingly (figure
6.3). This rewriting, termed synthesis, preserves strong bisimulation equivalence,
denoted by ~.

(ADUA |[G io
A]|CUA)|[G]|(ADUB|[G io

B]|CUB) ~

 (ADUA |[G1]|ADUB)|[Gio
A ∪ Gio

B]|(CUA |[G]|CUB)
6.22

Å

The right hand side of the above equivalence is a behaviour expression that is an ADC
interactor. This transformation is a form of distribution property of the synchronisation
operator with the proviso that the ADUs synchronise not on the gate set G itself, but on a
subset G1 that excludes gates that reflect cross synchronisation of the ADU with the CU

of the other interactors.

This theorem can be simplified for the case of interleaving where G = ∅:

(ADUA |[G io
A]|CUA)|||(ADUB|[G io

B]|CUB) ~

 (ADUA |||ADUB)|[Gio
A ∪ Gio

B]|(CUA |||CUB)
6.23

In the case of full synchronisation, where G = (G io
A ∪ Gc

A) ∪ (G io
B ∪ Gc

B) , and provided

that G ∩ Go
A ∩ Go

B =∅ , equation 6.22 may be simplified to the following form:

Chapter 6 Synthesis, decomposition, and abstract views

138

(ADUA |[G io
A]|CUA)||(ADUB|[G io

B]|CUB) ~

 (ADUA |[G io
A ∩ G io

B]|ADUB)|[G io
A ∪ Gio

B]|(CUA ||CUB)
6.24

6.2.3 Correctness of the composition with [] (choice)

The same proof technique is used as with the synchronous composition of interactors.
However, the proofs for choice and disable do not need to consider the communication
of data between the interactors. The distributed and the compound forms of the
transformation are as follows:

DF = (ADUA|[G io
A]|CUA)[](ADUB|[G io

B]|CUB)
CF = (ADUA |||ADUB)|[Gio

A ∪ G io
B]|(CUA[]CUB)

6.25

Choice can be used to specify alternative interactions. Consider, for example, a set of
interactors for drawing different shapes on a drawing package. These may be invoked
from an interactor that supports logical disjunction, e.g. a palette or a set of radio
buttons. The set of alternative interactors could be related by the choice operator and
their composition could be synchronised with the menu interactor on their start events.
Unfortunately, the case study of chapter 5 has not given rise to examples of the use of
choice and disable in interface specifications. For the sake of completeness, the
correctness of the synthesis transformation for the operators choice and disable operators
is discussed as well.

The bisimulation relation is defined to contain two pairs of structures, as follows:

R= {a, b} where
a = < (A|[S1]|B) [] (C|[S2]|D), (A|||C) |[S3]| (B [] D)> 6.26

b = <A |[S1]|B, (A|||C) |[S2]| B)>}

where A-D are behaviour expressions, S1-S3 are gate sets. (DF, CF) is isomorphic to
type (a) of elements of relation R, so (DF, CF)∈R. To satisfy the definition for the
bisimulation relation DF and CF need to have exactly the same sets of transitions, and
the result of the transition will also be a pair of behaviour expressions belonging to R.
The structure of the behaviour expressions changes with the first transition into a pair

CU B

CU AADU A

ADUB

G 1 G
BADU CUBADUA CUA |[G]|
B

Figure 6.3. The synthesis of two interactors into one.

Chapter 6 Synthesis, decomposition, and abstract views

139

(DF',CF') of type b. Transitions for pairs of behaviour expressions (DF,CF) of type (b)
maintain the same structure, so R indeed contains all the possible pairs of behaviour
expressions that might result from a transition.

Both pairs of structures (a) and (b) refer to common components. The possible
transitions are enumerated as all possible combinations of transitions of their
components. The set of transitions have to be the same for the DF and CF, so the label
sets that are involved in each set of transitions are equated. This is done for both pairs of
structures in the relation R. For each pair of structures a table is constructed listing
combinations of transitions for their components and the necessary conditions upon the
gate sets.

Once the first transition has been made both DF and CF are reduced to a static
composition expression. Consider the case where the choice is made in favour of CUA.
(The corresponding conditions for the case where a transition of CUB occurs result

symmetrically).

ADUA CUA ADUB CUB Impossible for DF Impossible for CF Condition resulting
from L(DF)=L(CF)

1 • by ADC definition by ADC definition

2 •
G

c
A ∩ G

io
B = ∅

3 • • no condition

4 • by ADC definition by ADC definition

5 • • by ADC definition by ADC definition

6 • • by ADC definition

G
io
A ∩ G

io
B = ∅∧

G
c
A ∩ G

io
B = ∅

7 • • • by ADC definition semantics of |||

8 •
G

c
B ∩ G

io
A = ∅

9 • • by ADC definition

G
io
A ∩ G

io
B = ∅∧

G
c
B ∩ G

io
A = ∅

10 • • semantics of [] semantics of []

11 • • • semantics of [] semantics of []

12 • • no condition

13 • • • by ADC definition semantics of |||

14 • • • semantics of [] semantics of []

15 • • • • semantics of [] semantics of []

Table 6.2. Transitions of pairs behaviour expressions (DF,CF) of type (a). Each row
shows a combination of transitions of their components and the condition required
from their label sets for the transition to be possible for both DF and CF for exactly
the same events.

Chapter 6 Synthesis, decomposition, and abstract views

140

DF = ADUA |[G io
A]|CUA

CF = (ADUA |||ADUB)|[Gio
A]|CUA

6.27

Table 6.3 does not introduce any conditions other than those already identified in table
6.2. (The same holds for the symmetrical case, where the choice has been resolved in
favour of CUB). In conclusion, the resulting necessary and sufficient conditions for

DF~CF are as follows:

 Gc
A ∩ Gio

B =∅ ∧ Gc
B ∩ Gio

A = ∅ ∧ Gio
A ∩ Gio

B =∅ 6.28

6.2.4 Correctness of the composition with [> (disable)

The disable operator is useful for describing interruption, e.g. evoked by a ‘quit’ button.
The button itself can be specified as an interactor which a dialogue with the user to
confirm that the application should be stopped. This dialogue could be specified as an
interactor related with the rest of the interface with the disable operator.

The distributed and compound forms for the disable composition operator are:

DF = (ADUA|[G io
A]|CUA)[> (ADUB|[G io

B]|CUB)
CF = (ADUA |||ADUB)|[Gio

A ∪ G io
B]|(CUA[> CUB)

6.29

The proof is almost identical to that presented above for the choice operator, so it is not
repeated. The bisimulation relation is defined to be:

R= {a, b} where
a = < (A|[S1]|B) [> (C|[S2]|D), A|||C |[S3]| (B[> D)> 6.30

b = <A |[S1]|B, (A|||C) |[S2]| B)>}

The following necessary and sufficient condition results for the gate sets of the
component processes:

 Gc
A ∩ Gio

B =∅ ∧ Gc
B ∩ Gio

A = ∅ ∧ Gio
A ∩ Gio

B =∅ 6.31

The disable and choice operators, can easily be recognised as a useful structure in
interface design specification. For example, disable may describe termination with ‘quit’
or ‘close’ dialogues, and choice might help specify alternative behaviours, e.g. different
‘screens’ evoked by the appropriate interaction. However, at present, the implications of
using disable and choice to combine ADC interactor specifications has not yet been
explored in practical examples. The last two results are summarised in the form of a
theorem.

Theorem 6.2. Synthesis of dynamic composition expressions.

The composition of two ADC interactor specifications with a dynamic composition
operator, i.e. choice [] or disable [>, can be rewritten as a strongly equivalent ADC

Chapter 6 Synthesis, decomposition, and abstract views

141

interactor. The CU of this interactor is a behaviour expression which combines the two
component CUs with the same dynamic operator. The ADU of the compound interactor
is formed by the interleaved composition of the two component ADUs.

(ADUA |[G io
A]|CUA) ⊗ (ADUB|[G io

B]|CUB) ~

 (ADUA |||ADUB)|[Gio
A ∪ Gio

B]|(CUA ⊗ CUB)
6.32

where ⊗ is either [] or [> and

 Gc
A ∩ Gio

B =∅ ∧ Gc
B ∩ Gio

A = ∅ ∧ Gio
A ∩ Gio

B =∅

Å

6.2.5 Example

In the case study of chapter 5 the graphical interface to the Simple Player™ application
for the Macintosh computer was modelled as a composition expression, whose operands
are all elementary ADC interactors. A small segment of the graph which illustrated this
composition expression, is examined here, to illustrate the application of the synthesis
transformation. It is the group of interactors that handle all interaction with the player
bar. This includes the interactor playerBar, the interactor thumb and the interactor
selectionBand. Also, it includes two logical connectives necessary for the distribution of
data among the interactors. The relevant segment of the graph of figure 5.5 is shown in
figure 6.4.

ADUA CUA ADUB Impossible for DF Impossible for CF Condition resulting from
L(DF)=L(CF)

1 • by definition of ADC by definition of ADC

2 •
G

c
A ∩ G

io
B = ∅

3 • • no condition

4 • no ADUB component by definition of ADC

5 • • no ADUB component by definition of ADC

6 • • no ADUB component

G
io
A ∩ G

io
B = ∅∧

G
c
B ∩ G

io
A = ∅

7 • • • no ADUB component by the semantics of |||

Table 6.3. Transitions of pairs of behaviour expressions (DF,CF) of type (b). Each
row shows a combination of transitions of their components and the condition
required upon their label sets for it to be possible for both DF and CF for exactly the
same events.

Figure 6.4. The composition of three interactors of Simple Player™.

Chapter 6 Synthesis, decomposition, and abstract views

142

In most user interface implementation architectures this group of interactors is
implemented as a single unit. While the modular description was found easier for the
purposes of the reverse engineering study, it is most likely that in a forward engineering
design exercise these components are modelled as a single interactor. The synthesis
transformation is applied upon the composition expression which corresponds to the
graph segment of figure 6.4, and a single ADC interactor expression is obtained. In the
context of the graph of figure 5.5 representing the global interface architecture, the graph
segment can be replaced by a single barrel node representing the compound form.

Distributed Form (DF)

The top side of the playerBar interactor is connected to the functional core, not shown in
figure 6.4. This core sends to the player bar the time coordinate of the currently shown
frame of the movie played. The player bar interactor outputs its display state through
gate doutPB. There are two recipients for this data. The thumb interactor receives the
time information at gate ainpTHMB through the connective dm1 shown as an ellipse, and
the selection band receives the time information on gate ainpSB. The thumb interactor
uses this information to update its display, offered as a display state at gate doutTHMB.
Similar information can flow in the opposite direction. Mouse events are input to the
interactor thumb from the display side, and communicated to the other two interactors
from gate aoutTHMB, once more with the help of a connective.

For economy of presentation, where the gate set is obvious it is substituted by ‘...’ and
the following shorthand is used:

Gc= {start, restart, suspend, resume, abort}

The LOTOS behaviour expression defining the DF is:

((playerBar[Gc, dinpPB, aoutSB, doutPB, setMovieBox, data, data, gotoTime, setSelection]
|[Gc, doutPB]|

dm1[Gc, doutPB, ainpTHMB, ainpSB])
|[Gc, ainpTHMB, dinpPB]|

(thumb[Gc, press, move, release, doutTHMB, ainpTHMB, aoutTHMB]
|[Gc, aoutTHMB]|

dm2[Gc, aoutTHMB, dinpPB, dinpSB]))
|[Gc, dinpSB, aoutSB, ainpSB]|

selectionBand[Gc, dinpSB, doutSB, ainpSB, aoutSB, erase, enable, send]

For economy of space, it is only possible to show here a bit of the internal structure of
one interactor. The interested reader is referred to [124], for a full exposition of the
specification. Consider for example the selectionBand interactor. It is itself the
composition of an ADU and a CU as follows:

process selectionBand[Gc, dinpSB, doutSB, ainpSB, aoutSB, erase, enable, send]:noexit:=
aduSB[dinpSB, doutSB, ainpSB, aoutSB, erase](noSelection, thePlayerBar, thePlayerBar)

|[dinpSB, doutSB, ainpSB, aoutSB, erase, enable, send]|
cuSB [Gc, dinpSB, doutSB, ainpSB, aoutSB, erase, enable, send]

Chapter 6 Synthesis, decomposition, and abstract views

143

endproc

Process aduSB is initialised with an abstraction value noSelection, (defined in the data
typing component of the specification), and an initial display state thePlayerBar, which
is presumed to be the initial presentation of the player bar (with no selection band
showing).

process aduSB[dinpSB, doutSB, ainpSB, aoutSB, erase] (a:line,pc,ps:playBar) : noexit :=
aoutSB!a; aduSB[...] (a,pc,ps) []
doutSB!pc; aduSB[...] (a,pc,pc) []
ainpSB?x:playBar; aduSB[...] (receivePB(a,x),renderPB(pc,x),ps) []
dinpSB?x:pnt; aduSB[...] (inputPnt(x,a),echo(x,ps,a),ps) []
erase; aduSB[...] (inputEr(a),echoEr(pc, a),ps)

endproc

Process cuSB supports the standard control behaviours plus the particular to
selectionBand dialogue constraints. For brevity only the constraints component ccSB of
cuSB that describes them is shown.

process ccSB [dinpSB, doutSB, ainpSB, aoutSB, erase, enable, send] : noexit :=
(enable; (operation[dinpSB, doutSB, ainpSB, aoutSB, erase, send]
[> send; aoutSB?x:line; ccSB [...))

[] ainpSB?x:playBar;ccSB [...]
[] doutSB?x:playBar; ccSB [...]
[] erase; doutSB?x:playBar; aoutSB?x:line; ccSB [...]
endproc

process operation[dinpSB, doutSB, ainpSB, aoutSB, erase, send] : noexit :=
dinpSB?x:pnt; doutSB?x:playBar; operation[...]

[] doutSB?x:playBar; operation[...]
endproc

Compound Form (CF)

Process compound, the CF, has the general ADC structure:

process compound[Gc, Gio] : noexit :=
adu[G io] |[Gio]| cu[Gc,G io]

endproc

where the following shorthand is used:

Gio = {setMovieBox, data, setSelection, gotoTime, doutPB, dinpPB, aoutSB, ainpSB, ainpTHMB,
aoutTHMB, press, move, release, doutTHMB, dinpSB, doutSB, erase}

The ADU and the CU of the compound form are defined as follows:

process adu[Gio]: noexit :=
((aduPB[dinpPB, aoutSB, doutPB, setMovieBox, data, data, gotoTime, setSelection]

(initPlayBarData, thePlayerBar, thePlayerBar)
|[doutPB]|

aduDM1[doutPB, ainpTHMB, ainpSB](thePlayerBar))
|[ainpTHMB, dinpPB]|

Chapter 6 Synthesis, decomposition, and abstract views

144

(aduTHMB[press, move, release, doutTHMB, ainpTHMB, aoutTHMB](indicator, thumb, thumb)
|[aoutTHMB]|

aduDM2[aoutTHMB, dinpPB, dinpSB](aPoint)))
|[dinpSB, aoutSB, ainpSB]|

aduSB[dinpSB, doutSB, ainpSB, aoutSB, erase](noSelection, thePlayerBar, thePlayerBar)
endproc

process cu[Gc,G io]: noexit :=
((cuPB[Gc, dinpPB, aoutSB, doutPB, setMovieBox, data, data, gotoTime, setSelection]

|[Gc, doutPB]|
cuDM1[Gc,doutPB, ainpTHMB, ainpSB])

|[Gc, ainpTHMB, dinpPB]|
(cuTHMB[Gc, press, move, release, doutTHMB, ainpTHMB, aoutTHMB]

|[Gc, aoutTHMB]|
cuDM2[Gc, aoutTHMB, dinpPB, dinpSB]))

|[Gc, dinpSB, aoutSB, ainpSB]|
cuSB[Gc, dinpSB, doutSB, ainpSB, aoutSB, erase, enable, send]
endproc

6.2.6 Discussion

A reflection on the outcome of the synthesis transformation gives rise to some questions.
The compound form is not simpler than the distributed form and it does not seem to
enhance modularity, at least in any obvious way. The controller units have been
‘factored out’, and they have been ‘divorced’ from their corresponding ADUs. The
synthesis transformation is simply a re-writing of the behaviour composition expression
and not some simplification of it. Some such simplifications are examined in later
sections, where common behaviours are factored out and simpler expressions result. In
that context, synthesis enables the regrouping of the component processes, which is
necessary prior to any simplification of the behaviour expression.

Rather than simplifying the specification text, the synthesis transformation changes the
‘grain’ of the architectural description. For example, it may be better to think of the
player bar of this example as a single interactor (the compound form) and not as a group
of interactors. Whether or not this is the case depends on the purpose and the context of
the specification exercise and the designed architecture. The regrouping of interactors
supported by the synthesis transformation does not change the semantics or the
complexity of the specification. Rather, it moulds the specification into the form that fits
the architectural design of the interface. For example, at the initial stages of an interface
design, a single compound interactor describing the interface to Simple Player™ may be
a more appropriate description, rather than the distributed form corresponding to the
graph of figure 5.5.

If a higher level description is adopted, many of the details of the specification and the
configuration of the interactors will be irrelevant. This may be the case for a bottom-up
design process, where the compound form is used as a building block for more complex
expressions without reference to its internal detail. It is equally the case for top-down

Chapter 6 Synthesis, decomposition, and abstract views

145

design where specifications of pre-defined components are combined, or where the
configuration of the interactors has not yet been worked out. In such cases, the need for
a more abstract description of interactors is apparent and this abstraction is the subject of
the next section.

Synthesis does not apply generally to LOTOS specifications; the proof of correctness is
contingent upon the specific form of the ADC process definition. Regarding the
synchronous composition of interactors, synthesis is effectively a re-shuffling of the
operands and synchronisation gates in a parallel composition of processes. A similar re-
shuffling was introduced as a congruence law for Basic LOTOS processes in [180], but
the conditions required there do not hold for the ADC model. The reshuffling of a
synchronous composition can be seen as a special case of the graphical composition
theorem of [19], summarised in appendix A.2. The maximal cooperation condition
which is required by the graphical composition theorem is stronger than the conditions of
table 6.1. In particular, 6.22 holds by the graphical composition theorem applies only
where G = (G io

A ∪ Gc
A) ∩ (G io

B ∪ Gc
B) and where G1 = Gio

A ∩ G io
B and G2 = G. Finally, the

proof presented here is more general as it extends to the disable and choice operators as
well.

Chapter 6 Synthesis, decomposition, and abstract views

147

Relevant work reported by Faconti et al. in [64] is concerned with the synchronous
composition of logical input devices for graphics systems to form hierarchies (their
approach could easily apply to the interactor model of Paternó and Faconti [150]). The
equivalence of all possible textual specifications of a diagrammatic representation is
established on the basis of the graphical composition theorem. This validates the
graphical representation as a more accurate and precise model of the specification and
motivates the support of a visual editor. In the terms of the previous sections the
equivalence discussed is between a set of distributed forms. In contrast, the approach
presented here focuses on the synthesis of a compound form that maintains the general
ADC structure.

6.3 Abstract Views of Interactors

The hide operator of LOTOS was introduced in section 3.8.8. A hide expression
designates that parts of some specified behaviour can not be observed by its
environment. The hide operator takes as an argument a set of gates which are hidden.
Hiding may apply to an interactor or to a group of interactors in order to abstract from
internal detail. The term abstract view is adopted here to describe an interactor some of
whose gates are hidden. In the figures abstract views are illustrated as black frames
enclosing the interactors-barrels.

Abstract views can be used as building blocks for interface specifications. As was the
case with interactor specifications, it is interesting to examine in what circumstances a
composition expression whose arguments are abstract views can itself be reshaped into
an abstract view. This section shows that abstract views of interactors maintain, in large,
the compositionality characteristics of interactors. Synthesis applies to abstract views as
well. Below, theorems 6.1 and 6.2 for the synthesis of interactors are extended to
describe the synthesis of abstract views.

Theorem 6.3. Synchronous composition of abstract views.

Consider the abstract views of two interactors ADCA and ADCB which hide gates

 G h
A and Gh

B respectively and which synchronise at gates:

 G ∩ Go
A ∩ Go

B =∅ 6.33

where the gate sets of the interactors are indicated accordingly. This synchronous
composition expression can be rewritten as the abstract view of an ADC interactor
provided that any one abstract view does not hide gates of the other. The CU of the
resulting form is described by the parallel composition of the two component CUs over
the gate set G. The ADU of this form is the parallel composition of the two component
ADUs over the gate set:

 G1 = Gio
A ∩ G io

B ∩ G 6.34

Chapter 6 Synthesis, decomposition, and abstract views

148

The resulting abstract view hides the union of the two sets of gates hidden by the
component abstract views, so

 G h
AB = Gh

A ∪ Gh
B 6.35

Under the condition mentioned above synthesis preserves weak observational
congruence, denoted by ≅.

If G h
A ∩ (G io

B ∪ Gc
B) =∅ and Gh

B ∩ (G io
A ∪ Gc

A) =∅ then

hide Gh
A in (ADUA|[G io

A]|CUA)|[G]| hide G h
B in (ADUB|[G io

B]|CUB) ≅
 hide Gh

AB in (ADUA|[G1]|ADUB)|[G io
A ∪ G io

B]|(CUA|[G]|CUB)

6.36

Proof

It is known [100, pp.90] that the following weak observational congruence holds for any
two LOTOS behaviour expressions B1 and B2.

hide A in B1|[A']|B2 ≅ (hide A in B1) |[A']|(hide A in B2) if A∩A'=∅ 6.37

Strong observational equivalence entails weak observational congruence (cf. [133]), the
required congruence 6.36 follows by 6.37 and the theorem 6.1.

Å

In the special case where G h
B ∩ (Gc

B ∪ G io
B) =∅ , equation 6.37 describes the composition

of an abstract view with an interactor (see figure 6.5.b). If the same holds for ADCA then
6.37 reduces to the equivalence of theorem 6.1.

Figure 6.5. Synthesis applied (a) to the synchronous composition of two abstract
views, and (b) to the composition of an abstract view and an interactor.

Chapter 6 Synthesis, decomposition, and abstract views

149

Theorem 6.4. Dynamic Composition of Abstract Views.

Consider the abstract views of two interactor specifications ADCA and ADC B which hide
gates G h

A and Gh
B respectively. Their composition by choice [] or disable [> can be

rewritten as an abstract view which hides the union of G h
A and Gh

B. The CU of the
compound form combines the two component CUs with [] or [> respectively. The ADU
of the compound form is formed by the interleaved composition of the two component
ADUs. This rewriting preserves weak observational congruence:

hide Gh
A in (ADUA|[G io

A]|CUA) ⊗ hide Gh
B in (ADUB|[G io

B]|CUB) ≅

 hide Gh
B ∪ Gh

A in (ADUA |||ADUB)|[Gio
A ∪ G io

B]|(CUA ⊗ CUB)
6.38

where ⊗ is [] or [> and Gc
A ∩ Gio

B =∅ ∧ Gc
B ∩ Gio

A = ∅ ∧ Gio
A ∩ Gio

B =∅

This rewriting is illustrated in figure 6.6.

Proof

It is known [100, pp. 90] that hiding distributes over dynamic composition operators.
Thus the following weak observational congruences hold for any two LOTOS behaviour
expressions B1 and B2.

hide A in B1[]B2 = (hide A in B1) [] (hide A in B2)

hide A in B1[>B2 = (hide A in B1) [> (hide A in B2)

Let B1= hide Gh
A in ADCA and B2= hide Gh

B in ADCB. By substitution of 6.32 the

congruence 6.38 follows.

Å

Another congruence law for hiding ([100, pp. 90]) states that successive applications of
hide can be 'factored out' of a behaviour expression:

hide A in (hide A' in B) ≅ hide A∪Α' in B 6.39

Figure 6.6. Synthesis of dynamic compositions of abstract
views.

Chapter 6 Synthesis, decomposition, and abstract views

150

It is easy to see that the cumulative effect of applying synthesis successively to a
behaviour expression which involves abstract views and interactors is to rewrite the
expression as the abstract view of a compound ADC interactor:

hide [...all hidden gates...] (ADUtop level |[Gtop level]|CUtop level) 6.40

where the ADUtop_level is a well formed ADU and the CUtop_level is isomorphic to the
original behaviour expression. This answers some question raised earlier in this section.
Abstract views support compositionality provided that the hidden gates of one abstract
view and the gate set of the other processes do not overlap. This is not a severe
constraint in writing specifications, but it does mean that some caution should be
exercised in naming the gates of an interactor. This problem can be overcome easily by
associating actual gate names with an identifier for the interactor they belong to.

The congruences shown in this section followed, in a straight forward manner, from the
corresponding equivalences defined for ADC interactors. They are interesting to this
thesis, because they show that the notion of an abstract view is an essential extension to
that of an interactor. As far as the synthesis transformation is concerned, abstract views
can be manipulated in the same manner as interactors. In the congruences discussed,
rewriting behaviour expressions involving ADC interactors result in expressions
involving abstract views. This suggests that abstract views are themselves essential
‘building blocks’ for complex specifications.

6.4 Decomposition

Theorems 6.1 to 6.4 summarise the synthesis transformation, each describing the
equivalence of two behaviour expressions. Synthesis applies to the left hand side of each
equivalence, the distributed form, and regroups its components so as to produce the right
hand side, the compound form. When read from right to left, these equivalences
describe the inverse of the synthesis transformation. This is called here the
decomposition of interactors.

The decomposition transformation corresponds to a very general and intuitive design
step where one software element is substituted with the composition of two others.
Decomposition transformation is defined here so that its input expression has the form
that results from the synthesis transformation. The problem of shaping any ADC
interactor specification to this required form is discussed in more detail below.

1. The input expression for the decomposition transformation is:

 CF = ADUAB|[G io
AB]|CUAB 6.41

where

Chapter 6 Synthesis, decomposition, and abstract views

151

ADUAB = ADUA |[G1]|ADUB and CUAB = CUA ⊗ CUB

if ⊗ is |[G]| with G ∩ Go
A ∩ Go

B = ∅ then G1 = G io
A ∩ Gio

B ∩ G
if ⊗ is [], [> then G1 =∅

The naming of the components implies that they should be well-formed ADUs and
well-formed CUs respectively.

2. The output expression for the decomposition transformation is:

 DF = (ADUA|[G io
A]|CUA) ⊗ (ADUB|[G io

B]|CUB) 6.42

3. The transformation requirement is that the resulting component processes are
themselves ADC interactors. This is true trivially by the definition of the ADC
interactor, of section 6.1.8, and because the input form requires that the components
appearing in 6.41 are well formed.

4. The correctness preservation requirement is that the distributed form is weak
observational congruent to the compound form. This requirement holds on the basis
of theorems 6.1 and 6.2.

This transformation is simply a regrouping of the LOTOS processes that comprise the
compound form. This form is quite restrictive so decomposition, as defined here, is not
as widely applicable as the synthesis transformation. In general, an ADC interactor does
not have the form described by 6.41, and to mould it into this form the ADU and the CU
have to be decomposed first. This problem is discussed in the remainder of this section.

6.4.1 Decomposition of an elementary ADU

Consider an elementary ADU that manages multiple abstraction and display sorts of the
same or different data type AD. It may be a useful transformation to decompose this
ADU into two or more elementary ADU components, each managing a single pair of
abstraction and display sorts, or possibly one of the two only. The decomposition of this
special form of ADU is discussed below.

The definition of the ADU relates every one of its gates to a pair of abstraction and
display sorts. For example a dout gate will output a display sort, an ainp gate will apply
a receive operation to update some abstraction sort and a render operation to update the
display sort. For the argument that follows it makes no difference that some interactors
can be abstraction-only or display-only. Clearly, the state of the ADU is observed from
the output gates and is defined by the value of the state parameters. The correspondence
of gates to abstraction and display sorts partitions the sets of gates of the ADU. Each of
the subsets of its gates can only observe and effect behaviour relevant to these sorts. In
such a case it is possible to decompose the ADU with a simple transformation to obtain
two or more components which partition its gate sets.

Chapter 6 Synthesis, decomposition, and abstract views

152

In the following, instantiations of the ADU are subscribed, e.g. ADUϑ. An action of the

ADU is denoted as g<v>, where g is a gate and <v> stands for some action specification.
A transition of the ADU is described as using the following system of indexing:

 ADUϑ
g <v > → ADUϑgv 6.43

Definition. Restriction operator.

For the purposes of this discussion, it is useful to introduce a restriction operator \G
similar to that of CCS [133, chapter 2]. Restriction is a unary postfix operator whose
argument G is a gate set. It applies to a behaviour expression and it prohibits any
interaction on the gate set G. Its operational semantics can be described as:

if g∉G and P
g< v> → P' then P\G

g< v> → P'\G 6.44

Consider a partitioning of gates Gio of an elementary ADU to two gate sets GA and GB,

such that each manages distinct state parameters. Using the restriction operator this
condition can be described as follows:

If G io = G A ∪ G B and GA ∩ G B =∅ then

∀g ∈G A|ADUϑ
g <v > → ADUϑgv • ADUϑgv \ G B ~ ADUϑ \ G B

∀g ∈G B|ADUϑ
g <v > → ADUϑgv • ADUϑgv \ G A ~ ADUϑ \ G A

6.45

Equivalence 6.45 means that when the ADU has multiple state parameters, the effect of
operations applied to one sort (respectively, a pair of sorts) cannot be observed from the
gates that correspond to the other sorts.

A transformation T is defined that transforms an ADU which satisfies 6.45 to an
observationally equivalent behaviour expression ADUA|||ADUB with respective gate sets
GA and GB. The definition of T follows a similar technique to that used in [28].
Transformation T is defined as follows.

T(ADU) = ADUA ||| ADUB

where ADUA = TA(ADU) and ADUB = TB(ADU)
6.46

The mappings TA and TB are defined in a compositional way for all operations that may

be involved in the definition of an elementary ADU.

1. Action Prefix

∀g ∈G A|B = g < v >;Bgv • TA(B) = g < v >;TA(Bgv) ∧ TB(B) = stop

∀g ∈G B|B = g < v >;Bgv • TA(B) = stop ∧ TB(B) = g < v >;TB(Bgv)
6.47

2. Choice

 TA(BA[]BB) = TA(BA)[]TA(BB) and TB(BA[]BB) = TB(BA)[]TB(BB) 6.48

Chapter 6 Synthesis, decomposition, and abstract views

153

3. Process instantiation P

TA(P)=PA and TB(P)=PB 6.49

4. Process definition

If P:=B then PA:=TA(B) and PB:=TB(B) 6.50

The correctness preservation requirement for T is

ADU~T(ADU) 6.51

The proof of 6.51 is facilitated by first proving the following lemma.

Lemma. Disjunction of complementary components of an ADU.

An ADU which satisfies 6.45 can be described in the constraint oriented style as the
disjunction of two independent behaviours. Using the restriction operator of 6.44, each
of these behaviours is described as the restriction of the ADU to a subset of its gates.
These gate sets are defined to satisfy 6.45, i.e. they provide access to different state
parameters.

ADU~ADU\GA ||| ADU\GB 6.52

Proof of the lemma.

ADU is recursive so 6.52 can be shown by the method of transition induction, i.e. by
induction on the length of the transition. It will be shown that

(ADU, ADU\GA||| ADU\GB)∈S where S is a bisimulation relation. 6.53

Clearly both expressions have the same sets of transitions g<v>. In particular the
following can be stated

∀ g ∈G A ,ϑ a state of ADU and < v > an action specification:

ADUϑ
g <v > → ADUϑgv iff

ADUϑ \ GA |||ADUϑ \ G B
g< v> → ADUϑgv \ G A||| ADUϑ \ GB

6.54

On the basis of 6.45 the last transition is rewritten as:

 ADUϑ \ GA ||| ADUϑ \ G B
g< v> → ADUϑgv \ G A ||| ADUϑgv \ G B 6.55

From a shorter length of induction it can be assumed that:

(ADUϑgv, ADUϑgv\GA||| ADUϑgv\GB)∈S 6.56

The symmetric argument can be made for all g∈GB. Therefore

Chapter 6 Synthesis, decomposition, and abstract views

154

(ADUϑ, ADUϑ\GA||| ADUϑ\GB)∈S 6.57

The state ϑ of the ADU has not been constrained so it could be the initial state. It
follows that S satisfies the definition of a bisimulation relation, and so 6.52 is true.

û

Proof. Correctness of the transformation T.

The shorthand ∑ is introduced to denote choice from an indexed set of interactions. An
elementary ADU has the form

ADUϑ = g i ; ADUϑgi v

gi ∈G A ∪GB

∑ 6.58

T is applied to this expression.

T(ADUϑ) = ADUAϑ ||| ADUBϑ

where

ADUxϑ = Tx g i < v >; ADUϑg iv
g i ∈G A ∪G B

∑

 , x ∈{A,B}

Tx (ADUϑ) = gi < v >;Tx (ADUϑg iv
g i ∈GA

∑)

6.59

On the basis of the lemma 6.52 it is sufficient to show that

ADUϑ\GA ~ ADUAϑ and ADUϑ\GB ~ ADUBϑ 6.60

This is shown trivially by showing that (ADUϑ\GA, ADUAϑ) is a bisimulation relation,
and correspondingly for (ADUϑ\GB, ADUBϑ).

û

6.4.2 Decomposition of a well formed ADU

A well formed ADU can be a parallel composition of simpler ADU components. The
transformation T is extended to cope with a well formed ADU by the addition of a fifth
rule:

5. If B = B1|[G]|B2 then

TA(B)=TA(B1) |[G-B]|TA(B2) and TB(B)=TB(B1) |[G-A]|TB(B2) 6.61

Proof Correctness of T.

The correctness of the transformation can be shown by structural induction. The
transformation has been proven correct for the elementary ADU components. The
induction hypothesis is that

Chapter 6 Synthesis, decomposition, and abstract views

155

B1~TA(B1) ||| TB(B1) and B2~TA(B2) ||| TB(B2) 6.62

By substitution it follows that

B~ (TA(B1) ||| TB(B1)) |[G]| (TA(B2) ||| TB(B2)) 6.63

The right hand side of equation 6.63 satisfies the maximal cooperation condition, so by
the graphical composition theorem (appendix A.2) equation 6.63 can be rewritten as :

B~(TA(B1) |[G-B]|TA(B2)) ||| (TB(B1)|[G-A]|TB(B2)) 6.64

which proves the correctness of 6.61.

û

The transformation T can be used to decompose a well formed ADU or an elementary
ADU that manages multiple state parameters. An example of its application is discussed
in section 7.3. Transformation T does not help decompose an elementary ADU which
manages one abstraction and/or one display sort only, as in the examples of chapter 4
and 5.

At this point it is interesting to compare the proposed transformation with related
transformations that apply to standard LOTOS processes. In general the problem of
decomposition has been solved for finite non-recursive processes only. For example,
[118] reports the decomposition of basic LOTOS finite processes into two processes that
partition its gate sets, only for the case where the process is written in an action prefix
form (a normal form using the terminology of [133]). An improvement has been
proposed in [28] that works for a wider range of basic LOTOS expressions. However,
the restrictions imposed prohibit recursive processes and multiple instantiations of the
same process, so a different transformation needed to be defined for the ADU.

So far in this chapter the internal structure of the CU has not been detailed, nor have
there been any special behavioural requirements set upon it. It can be any LOTOS
process. The data component of an action specification is irrelevant to the workings of
the CU. It is only necessary in order to synchronise with the ADU. At this stage the
decomposition of the CU is an instance of the general problem of decomposing a basic
LOTOS process. The algorithms of [28] and [118, chapter 2] or the use of the inverse
expansion of [118, chapter 3] are possible partial solutions. In the case where a CU is
simply a CC, decomposition is more applicable, particularly when the CC is written in a
constraint oriented style.

6.5 Parameterised behaviours

The ADC interactor definition, of section 6.1, does not stipulate any syntactic or
behavioural requirements for the CU. The synthesis and decomposition transformations
introduced so far support this abstract definition of the ADC model. This section details

Chapter 6 Synthesis, decomposition, and abstract views

156

the definition of the CU, to model the standard behaviours that have been labelled
collectively SSRRA in chapter 4. They are specified constructively by adopting a
standard structure for the CU and declaratively by referring to properties of the labelled
transition system that models the interactor behaviour.

In the process definitions below, the keywords process, endproc, and where, and the
functionality specification of each process (exit or noexit) are omitted for brevity. The
definition below is a generalisation of the one in section 4.7.

CU[{start, suspend, resume, restart, abort} ∪ Gd∪ Gio] :=
start; RUN[{suspend, resume, restart, abort} ∪ Gd ∪ Gio]

RUN[{suspend, resume, restart, abort} ∪ Gd ∪ Gio] :=
(CC[Gd∪ Gio] |[Gd∪ Gio]| SU_RE[{suspend, resume} ∪ Gd∪ Gio])

[> INT[{suspend, resume, restart, abort} ∪ Gd ∪ Gio]

SU_RE[{suspend, resume} ∪ Gd ∪ Gio]:=
ANY[Gd ∪ Gio] [>suspend; resume; SU_RE[{suspend, resume} ∪ Gd ∪ Gio]

ANY[G]= choice g in G [] g<sort(g)>; ANY[G]

INT[{suspend, resume, restart, abort} ∪ Gd ∪ Gio] :=
restart; RUN[{suspend, resume, restart, abort} ∪ Gd ∪ Gio]

[] abort; stop

Where the shorthand <sort(g)> is the empty string when the gate g is used for simple
synchronisation and ?x:s for a gate associated with a sort s.

The SSRRA behaviours may be described in terms of the set of traces of the ADC
process Tr(ADC).

1. The interactor starts with an event on gate start

 ∀σ ∈Tr(ADC) • first(σ) ={start} 6.65

2. An interactor may be suspended with an event on gate suspend. After suspension
the interactor does not offer any interactions of the constraints component, i.e. on
gates Gio∪Gd. Once suspended the interactor can only resume with an event on a
gate resume. It resumes at exactly the same state it was before the suspension.

∀σ ∈Tr(ADC)|last(σ) = suspend• out(ADC) ={resume,restart,abort}

∀σ ∈Tr(ADC)|last(σ) ≠ suspend• ADCσ ;suspend;resume ~ ADCσ
6.66

3. At any moment in the operation of the interactor a restart event will have the effect
of returning the interactor to the dialogue state following the start operation.

 ∀σ ∈Tr(ADC) • ADCstart ~ϕ ADCσ;restart 6.67

Where ϕ is a bijective coding function which relates LOTOS actions with the same
gate identifier (see appendix A.1). This means that a restart event will result in a

Chapter 6 Synthesis, decomposition, and abstract views

157

state which is φ-bisimilar to the state of the interactor after its initialisation. 6.66
compares the temporal behaviour of the two processes and not the values of the state
parameters. The state parameters are not re-initialised with a restart event. Such an
operation could be encoded in the AD data type and not the CU component.

4. An abort event terminates the interactor behaviour.

 ∀σ ∈Tr(ADC)|last(σ) = abort • ADCσ ~ stop 6.68

6.5.1 Synthesis and the SSRRA behaviours

In general the synthesis transformation does not preserve the structure of the CU. The
CU of the resulting compound form is a LOTOS expression whose operands are the CUs
of the participating interactors. Below, a special case is discussed, where it is possible to
rewrite this expression into the form of the CU. The component processes and SSRRA
gate identifiers are annotated to indicate the process they correspond to. Also, Gx will
denote G io

x ∪ Gd
x
, and SSRRAx= {startx, suspendx, resumex, restartx, abortx}. The general

CU structure is now written as:

CUx = startx; RUNx

RUNx= (CCx|[Gx]|SU_REx)[> INTx

SU_REx= ANYx [> suspendx; resumex;SU_REx

ANYx= choice g in Gx [] g; ANYx

INTx= restartx; RUNx [] abortx; exit

Consider the synchronisation of CUA and CUB which synchronise over their SSRRA
gates (where SSRRAA=SSRRAB). This was the case with all the interactors of the case

study.

CUAB = CUA |[G]| CUB where SSRRA⊆G.

The controller CUAB of the compound form can then be written in the general CU

structure above as follows:

CUAB = start; RUNAB

RUNAB= (CCAB|[GAB]|SU_REAB) [> INTAB

SU_REAB= ANYAB[> suspend; resume; SU_REAB

ANYAB= choice g in GAB [] g; ANYAB

INTAB= restart; RUNAB [] abort; exit
where CCAB= CCA |[G-SSRRA]| CCB

This construction may be used for the example of section 6.2.5. The CU of the
compound form is a parallel composition expression of several CU components. Their
common elements can be factored out, and the constraints component would be the
following

process cc[...]: noexit :=
((ccPB[dinpPB, aoutSB, doutPB, setMovieBox, data, data, gotoTime, setSelection]

Chapter 6 Synthesis, decomposition, and abstract views

158

|[doutPB]|
ccDM1[doutPB, ainpTHMB, ainpSB])

|[ainpTHMB, dinpPB]|
(ccTHMB[press, move, release, doutTHMB, ainpTHMB, aoutTHMB]

|[aoutTHMB]|
ccDM2[aoutTHMB, dinpPB, dinpSB]))

|[dinpSB, aoutSB, ainpSB]|
ccSB[dinpSB, doutSB, ainpSB, aoutSB, erase, enable, send]
endproc

The choice and disable operators cannot be factored into the CC component in a similar
fashion as above. In an expression of the form CUA[]CUB (or CUA[>CUB) the first
interaction commits the compound CU to either operand (respectively an interaction of
CUB will commit the interactor to the second operand). This is also true when they have
identical start gates, in which case, the choice is made non-deterministically at the first
interaction of the compound interactor.

In conclusion, the standard structure for the SSRRA cannot be maintained through the
synthesis transformation apart from the special case when the interactors synchronise on
their SSRRA gates. This case is not so uncommon. In the case study of chapter 5 this
was the case for all the interactors specified. Common SSRRA behaviours characterise
self contained segments of interaction, e.g. dialogue boxes, one page of a spreadsheet
application, or one screen on a hypertext document. Navigation between such
components, their invocation or say the dynamic creation of file icons by a file manager
are characterised by distinct SSRRA behaviours. In such cases the compound CU
cannot be simplified further than is suggested by the synthesis transformation, in
theorems 6.1-6.4. This observation shows that the synchronisation over the SSRRA
gates can be used to specify some sort of grouping. For example, interactors associated
with closely related tasks or functions can be grouped together to reflect the structure of
the tasks they support.

6.5.2 Decomposition of the CU

This paragraph investigates the preservation of the CU structure through decomposition.
Decomposition, as defined in section 6.4, assumes that the CU of the compound form is
a pair-wise composition of two CU components. In the opposite case, the CU will have
to be shaped into this form. This paragraph examines the special case where the CU is
written in the constraint oriented style [180]. This refers to the specification of the CC,
the only component of CU with a variable specification style.

The CC component describes the ‘custom’ dialogue properties of the interactor
modelled. In the constraint oriented style of specification, discussed in section 3.8, each
logical constraint on the dialogue of the interactor is expressed as a behaviour
expression. These expressions are composed by means of parallel operators.
Interleaving combines the logical constraints in a disjunction. Synchronised composition
specifies the conjunction of the logical constraints expressed.

Chapter 6 Synthesis, decomposition, and abstract views

160

Theorem 6.5. Decomposition of a constraint oriented CU.

Consider a CU which has the standard structure of paragraph 6.5.1 and whose CC is
written in the constraint oriented style as the parallel composition of constraints CCA and
CCB. These processes describe temporal ordering constraints on gate sets A and B
respectively. They synchronise on a set of gates G which must be a subset of A ∩ B.

CCA∪B = CCA |[G]| CCB where G ⊆ A∩B 6.69

The CU can be rewritten in the strongly equivalent form

CUA |[SSRRA∪G]| CUB 6.70

where CUx is defined as in paragraph 6.5.1.

Proof

This theorem is shown in a series of steps. For brevity the gates start, suspend, resume,
restart, abort are denoted as st, su, re, rs, ab.

1. By the definition of SU_RE

SU_REA∪Β = ANYA∪Β [> su; re; SU_REA∪B 6.71

by expansion it is easy to see that if G ⊆ A∩B then

SU_REA∪Β ~ SU_REA|[{su, re}∪G]|SU_REB 6.72

2. By bisimulation or the graphical composition theorem of [19] (appendix A.2) it may
be shown that:

((CCA|[A]|SU_REA)|[{su,re}∪G]|(CCB|[B]|SU_REB)) ~

(CCA|[G]|CCB) |[A∪B]|(SU_REA|[{su,re}∪G]|SU_REB) 6.73

3. From 6.72 and 6.73 and 6.69 it follows that:

(CCA|[A]|SU_REA)|[{su, re}∪G]| (CCB|[B]|SU_REB) ~

CCA∪B|[A∪B]|SU_REA∪B 6.74

4. Lemma. Distribution of restart and abort behaviours.

Let P, Q be processes with gate sets GP∩{rs, ab}=∅ and GQ∩{rs, ab}=∅.

Also let

TP= P[>(rs; TP [] ab;stop)
TQ= Q[>(rs; TQ [] ab;stop) and 6.75
TPQ= (P|[Gs]|Q) [> (rs; TPQ [] ab;stop)

Chapter 6 Synthesis, decomposition, and abstract views

161

It can be shown by bisimulation that:

TP|[{rs, ab}∪Gs]|TQ ~ TPQ 6.76

5. Lemma 6.76 is applied for P=(CCA|[A]|SU_REA) and Q=(CCB|[B]|SU_REB), and

Gs=G ∪{su, re}. By substitution:

TP=(CCA|[A]|SU_REA)[> (rs; TP [] ab;stop)

TQ=(CCB|[B]|SU_REB)[> (rs; TQ [] ab;stop) 6.77

TPQ=(CCA|[A]|SU_REA)|[Gs]|(CCB|[B]|SU_REB)[>(rs; TPQ [] ab;stop)

By 6.74 the last process definition can be rewritten as

TPQ=(CCA∪B|[A∪B]|SU_REA∪B) [> (rs; TPQ [] ab;stop) 6.78

6. An interaction on gate st can be prefixed to both sides of 6.76, preserving strong
equivalence:

st; (TP|[G∪SSRRA]|TQ)~ st; TPQ 6.79

and by the definition of CU this equivalence is rewritten as

(CUA|[G∪SSRRA]|CUB)~CUA∪B 6.80

û

Corollary.

Consider an ADC interactor with gates Gd∪ Gio ∪ SSRRA, such that it is possible to
solve the decomposition problem for its ADU so that

G io
A = A ∩ G io, G io

A = B ∩ G io and G ⊆ A ∩ B •
ADU[Gio] = ADUA[G io

A]|[G]|ADUB[Gio
B]

6.81

and further, its CC is written in the constraint based style:

CC[A∪B]:= CCA[A] |[G]| CCB[B] 6.82

Then it is possible to decompose the interactor specification to two interactors, which
synchronise at least on the SSRRA gates. The composition expression relating the ADC
interactors is as follows:

ADC = (ADCA |[G ∪ SSRRA]|ADCB) where

ADCA = ADUA|[A]|CUA and ADCB = ADUB|[B]|CUB

6.83

Chapter 6 Synthesis, decomposition, and abstract views

162

The decomposition described by 6.83 is an ideal case where there are no temporal
constraints across the two gate sets A and B. In general, this will not be the case, and
these constraints over a set of gates AB⊆A∪B will be described by a process CCAB[AB].
Then the constraints component is written in the constraint oriented style as follows:

CC[A∪B]:= CCA[A] |[G]| CCB[B] |[AB]| CCAB[AB] 6.84

Theorem 6.5 can be applied twice for the CU, once with the gate sets A∪B and

AB⊆A∪B, giving

CUA∪B=CU(A∪B)-AB |[SSRRA∪AB]| CUAB 6.85

and subsequently for gate sets A and B to split the controller unit CU(A∪B)-AB and the
ADUAB. The final result would be a decomposition as below:

ADC = (ADCA |[G]|ADCB)|[AB]|CUAB

ADCA = ADUA|[A]|CUA and ADCB = ADUB|[B]|CUB

6.86

This result also demonstrates the use of a CU as stand alone component, for capturing
temporal constraints across the gates of two different interactors. Note that this
decomposition results in a cluster of interactors which synchronise on their SSRRA
gates, supporting the notion of a group as described earlier in this section.

6.6 Dialogue Modelling

In the context of human computer interaction the term dialogue is conventionally
interpreted as the syntactic structure of the interaction between user and computer. The
notion of syntax is rooted in linguistic models [77, 78] of interaction that distinguish the
lexical, syntactic, and semantic levels of abstraction. In chapter 2 the dialogue
component of the Arch reference model was discussed. This component is responsible
for task-level sequencing, both for the user and for the portion of the functional core
sequencing that depends upon the user. It has been mentioned already that the scope of
the dialogue component is not at all clear cut, a fact demonstrated by the Slinky
analogue, discussed in section 2.3.

In the framework of the ADC model dialogue is, nominally, the temporal ordering of
interactions on its gates. It is stressed that what is modelled as dialogue in the ADC
model is not inherently a property of either the specificand, i.e. the modelled interface, or
the ADC model itself. What one specifier chooses to encode as dialogue, another may
choose to specify in the semantics of data operations. This choice is similar to the choice
between specification styles for operations on data, e.g. as discussed in [76], or the
choice between specification notations as discussed in [144].

The barrier between the dialogue component and the presentation component is also
fuzzy. In the case of the ADC model there is no distinct lexical level. It is defined

Chapter 6 Synthesis, decomposition, and abstract views

163

implicitly by the lowest level of abstraction of the events modelled. For example, if the
mouse input is considered as the lowest-level input action, then this is where the barrier
is put, and similarly if a higher level of input interactions is considered, e.g. a menu
selection this will define a different barrier. The same holds for output actions.

Within the framework of the ADC model, dialogue design for a single interactor consists
partly in the instantiation of the standard (SSRRA) behaviours and partly in designing
the temporal ordering for the remaining interactions. This latter set of behaviours is
defined entirely in the constraints component (CC) of the CU.

From the understanding of what is dialogue it follows that the data values associated
with events may be ignored when discussing dialogue properties. This may be achieved
in practice by a transformation from Full LOTOS to Basic LOTOS, e.g. the naive
transformation supported by the Lite toolset [30, 119] and reported in [118]. The
intuition of what is dialogue can now be rephrased as below.

Definition. Dialogue representation in ADC.

The dialogue of an ADC specification is described by P(ADC), where P(.) is the naive
transformation from a full LOTOS specification to a basic LOTOS specification defined
over the same set of gates, and which maps each specified interaction g<v> to an
interaction g.

From the definition of the ADC model and the definition of the transformation P(.), (see
appendix A.1, or [118]), it follows easily that:

P(ADC) ~ P(CU) 6.87

Therefore the dialogue of the interactor is sufficiently modelled by P(CU).

By definition the naive transformation P(.) distributes over the hide operation. Thus, the
dialogue of an abstract view is given by a hiding applied to the transformation to basic
LOTOS of the controller unit (figure 6.7).

P(hide g in (ADU |[Gio]| CU)) ≈ hide g in P(CU) 6.88

The equivalences 6.87 and 6.88 are very useful for the verification of dialogue properties
of the interface design specification. Dialogue verification concerns a basic LOTOS

Figure 6.7. The dialogue of an abstract view can be observed sufficiently by an abstract
view of the CU component alone.

Chapter 6 Synthesis, decomposition, and abstract views

164

specification only. This is useful to overcome the practical difficulty in verifying
properties of full LOTOS specifications and also of managing complex behaviour
expressions.

The dialogue for an interface specified as the composition of many ADC interactors is
distributed in the interactor specifications, but also, it is described by the behaviour
expression that combines these interactors. To verify the dialogue of a composition
expression involving many interactors or abstract views, it is sufficient to define their
synthesis and to verify the dialogue on a basic LOTOS expression involving the CU of
the compound interactor. This expression is obtained easily. Theorems 6.1-6.4 have
shown that the CU of the compound form which results from the synthesis of interactors
or abstract views is isomorphic to the input behaviour expression.

6.7 Conclusions

This chapter has discussed the ADC model and operations upon ADC interactor
specifications in considerable depth and rigour. Variations of the basic ADC model
were discussed, e.g. with composite ADU components, interactors that handle many
sorts of data, or abstract views. The synthesis transformation and the decomposition
transformation were defined. Synthesis merges two interactors or abstract views into
one. Decomposition achieves the reverse. It is quite a common aspiration to perform
such correctness preserving transformations of a specification, so related work for
LOTOS specifications has been cited regularly. That the transformations result also in
ADC interactors or abstract views, is an essential property of the formal model. The
concept of an ADC interactor applies both to the interface as a whole and to its
components. The transformations establish a link between these two views. The
preservation of the structure of the ADC model has dictated the agenda for this
investigation, and it is this structure that enabled solutions to these transformations to be
identified, whereas they do not exist in general for LOTOS processes.

Chapter 6 has been a considerable formalisation exercise so here, as a recapitulation, the
results of this exercise are presented in an informal and illustrative manner.

The formal definition of an interactor required the rigorous definition of its constituent
components. Figure 6.8 shows the legitimate components for interactors: well formed
ADUs and CUs. The CU may have the concrete structure that supports the
parameterised the SSRRA behaviours or may act simply as a constraints component
(CC).

The synthesis and the decomposition
transformations apply to a host of objects, that may be
interactors, abstract views, or controller units only. The
range of the possible entities to be used is indicated in
figure 6.9. They include ‘degenerate’ interactors
which are display-only and abstraction-only, which are

Figure 6.8. Components of
ADC interactors.

Chapter 6 Synthesis, decomposition, and abstract views

165

indicated by barrels sliced along their axis. The rectangles representing controller units
and constraints components are where the dialogue design for a particular interactor is
encoded.

Hiding is important in scaling-up the use of interactors, in that it provides an abstract
view of an interactor composition expression, and so allows the use of a compound
interactor as a building block without considering its internal behaviour. It has been
demonstrated that abstract views of interactors can be composed with interactors and
other abstract views, provided gate identifiers do not collide, resulting in an abstract
view of the composition. This shows that abstract views are themselves essential design
constructs.

Synthesis is straight forward; it applies to all the objects in this domain provided the gate
lists satisfy the conditions stipulated by theorems 6.1-6.4. If one of the objects
synthesised is an abstract view, the result will also be an abstract view. The barrels
shown in figure 6.10 stand for any of the types of interactors shown in figure 6.9, and
similarly the ones in black frames could correspond to any of the types of abstract views
in figure 6.9.

Decomposition is not as straight forward. It can be broken down to two stages. In the
middle column of figure 6.11, interactors and abstract views are assumed to have the
internal structure of the compound form that results from a synthesis transformation. If

Figure 6.9. Illustrations of the range of possible interactors and abstract views.

Figure 6.10. The synthesis transformation of well formed interactors or their abstract
views is always possible.

Chapter 6 Synthesis, decomposition, and abstract views

166

the compound interactor has this internal organisation the decomposition to a form
described by the third column is always possible. The first column contains objects with
the general form of an interactor or abstract view, i.e. any of the objects shown below the
line in figure 6.9. The transition from this column to the second pertains to the general
problem of decomposition of LOTOS processes. This is not always solvable. In section
6.4, some partial solutions for the decomposition of the ADU component were discussed,
an algorithm was proposed and its correctness was proven, .

One of the aspirations of the model, discussed in chapter 4, was to model generic re-
usable behaviours. A more concrete version of the ADC interactor model includes the
parameterised description of behaviours that may be common across many interactors. It
was shown that, in general, this extension to the model is detrimental for its modularity.
A few exceptions were pointed out, where this extended structure of the ADC interactor
is preserved through synthesis and decomposition. The most interesting is where the
interactors are composed in parallel. Interactors related in this way may form part of the
same coherent logical group, starting together, suspending, and interrupting
synchronously. This can be a dialogue box, a panel of push buttons, etc. Another
example is the Simple Player interface studied in chapter 5. This difficulty of preserving
the semantics of the parameterised behaviours during synthesis and decomposition
indicates some limits to specifying an interactor model by what is essentially a syntactic
extension to the language. The result is a trade-off between the facility of using the
parameterised definitions of SSRRA behaviours and the compositionality of the
specifications.

Figure 6.11. The decomposition is possible only if it is possible to bring the interactor or
the abstract view to have the required form.

168

Chapter 7

Use of the ADC model

This chapter discusses some applications of the ADC interactor model. The first two
sections concern the analytical use of the model, for the specification and the verification
of properties related to the usability of a specified user interface. Section 7.1 examines a
class of properties pertaining to the relation of the abstraction and the display of an
interface. The formal specification of this class of properties has been one of the original
aims of the ADC model. The proposed formalisation improves on an earlier publication
[123]. Section 7.2 discusses the specification and verification of dialogue properties.
This discussion integrates, in the framework of the ADC interactor model, research
results originating from different models. Sections 7.3 and 7.4 demonstrate the use of
the ADC model within two design approaches. The first, stepwise refinement, is rooted
in the traditions of formal methods in software engineering. The second, task based
design, is more psychologically founded, using models of users’ knowledge of their
tasks to inform the design of a user interface. Section 7.4 discusses a simple formal
description of a task model, originally proposed in [128]. This model is related to an
interface specification, to formalise essential intuitions for task based design, extending a
brief discussion on the subject in [122]. An overriding concern throughout this chapter
is how workable these applications of the ADC model are in practice, how they are
served by current tool support, and, perhaps more important, how verification results are
interpreted, particularly in making predictions concerning the users.

7.1 Predictability and observability properties

The class of properties discussed hereby are related to the usability of a user interface.
Originally, these properties were discussed as Generative User Engineering Principles
(GUEPS) [85, 170]. As mentioned in chapter 3, abstract models of interaction [49 ,84]
were introduced in an attempt to formalise these properties, with minimal commitment to
a particular implementation architecture. Sufrin and He [169] developed a constructive
model for the specification and classification of these properties. This scheme was used
also by Abowd [1] to describe these properties systematically, in the framework of his

Chapter 7 Using the ADC model

169

Agent model. It is adopted here also, to model these properties in terms of the ADC
interactor model, in the formal framework of Labelled Transition Systems (LTS). LTS
have been introduced briefly in section 3.7.

Predictability properties describe what can be inferred about the future behaviour of an
interactive computer system from its current state. Their formal expression relies on the
comparison of the instantaneous ‘state’ of the specified system to its subsequent
behaviour. Observability properties pertain to what inferences can be made regarding
the ‘internal’ behaviour of an interactive computer system from what can be observed
externally from its display. Their formal expression relies on the definition of distinct
‘views’ of the system, one reflecting its internal workings and another reflecting its
observation from the display.

The notion of a ‘state’ seems intuitive and straight forward, but it varies considerably
across the formal models discussed so far. Abstract models of interaction assume a set
of states, e.g.[49, 84], which are not described or enumerated. Models with more
structure, like the Agent model of Abowd [1], describe states as a mapping of attributes
to values. In the process algebraic framework of LOTOS, a state of a process
corresponds to a state of the underlying Labelled Transition System. This state may be
described by a behaviour expression that specifies the future behaviour of the process.
Comparing states amounts to comparing behaviour expressions, e.g. they may be strong
observational equivalent, weak observational equivalent, etc.

The formalisation of predictability and observability in the framework of abstract models
of interaction is based upon the concepts of equivalence and indistinguishability of
states, e.g. [49, 84]. Equivalence describes an apparent and temporary similarity of
states at a particular instance during the interaction. For example, if at two distinct
moments during interaction the display is the same, then the corresponding states of the
interface are called display equivalent. Indistinguishability pertains to the relation
between two states that cannot be shown to differ by subsequent interaction, i.e. when
they are subjected to the same interactions. Unfortunately, this terminology is confusing
as, in the context of process algebrae, it is the latter notion that is associated with the
term ‘equivalence’. To overcome this collision of terms, the designations ‘similar’ and
‘equivalent’ are introduced with the definitions below. Respectively, they correspond to
the relations of ‘equivalence’ and ‘indistinguishability’ for the abstract state based
models.

Definition. Status of a process.

The status of a process, at a given moment in time, is described by the interactions it can
participate in. Let P denote a behaviour expression. P may offer to its environment a set
of interactions, denoted as out(P). To specify only the interactions offered on a set of
gates G, outG(P) is defined as:

 outG(P) ={g ∈G|P ⇒g}∪ {g < v >|g ∈G ∧ v ∈valueSet(g) ∧ P ⇒g <v >} 7.1

Chapter 7 Using the ADC model

170

where valueSet(g) denotes the set of possible values that may be associated with
interactions on gate g. For a variable declaration g?x:s, where s is some sort identifier,
valueSet(g) includes all possible values of this sort. Otherwise, it may contain a single
value that is output on gate g, by some value declaration g!v.

Definition. Abstraction-similar and Display-similar interactors.

The state-display model [84] introduced the distinction between the result and the
display components of an interface model. This distinction has been built into the ADC
model. Indeed, it has been one of the motivations for its definition. An interactor may
be associated with multiple result operations. For each gate g∈Gaout a single event
g!result(A) is offered, where A is the abstraction held by the interactor. Similarly the
interactor outputs its display state D on the display side as: dout!D.

Two interactors P and Q (or two states of the LTS which represents an interactor) are
called abstraction-similar (display-similar) when they are defined with identical gate
sets Gaout (respectively Gdout,) and when they output the same values on those. To
exclude the contrived case where no events are offered on a gate, the clause is added that
these sets should not be empty.

similarA(P,Q) iff outG aout
(P) = outG aout

(Q) ≠∅

similarD(P,Q) iff outG dout
(P) = outGdout

(Q) ≠∅
7.2

Definition. Abstraction-side and Display-side behaviours of an interactor.

Interactors are characterised by the behaviour they exhibit when observed from the
abstraction or the display sides. The abstraction-side behaviour of the interactor is
observed by interaction at gates G aout and Gainp. The display-side behaviour is observed at
gates Gdinp and Gdout. They are described by the pseudo-LOTOS expressions:

AP = hide (Gc ∪ Gdinp ∪ Gdout) in P

DP = hide (Gc ∪ G ainp ∪ Gaout) in P
7.3

Definition. Abstraction and Display Equivalence.

Two interactors P and Q are called abstraction equivalent if their abstraction-side
behaviours are observationally equivalent, i.e. AP≈AQ. They will be called display
equivalent when their display-side behaviours are observationally equivalent, i.e. DP≈DQ.

The meaning of these definitions depends on the equivalence relation ≈ they prescribe.
There have been different proposals as to how to define the observable behaviour of a
process and when two such behaviours should be deemed to be equivalent, e.g. [45,
133]. The choice between such proposals is a contentious issue which, in the present
context, impinges on the ability of humans to tell apart interactive behaviours and to
detect and interpret differences of the display contents. The relevant discussion is
deferred until section 7.4, which questions the psychological validity of such definitions.
Weak observational equivalence [133] is used in this section. Weak observational

Chapter 7 Using the ADC model

171

equivalence distinguishes processes only with respect to observable interactions with
their environment (see definition in appendix A.1), so it is a more realistic notion than
strong observational equivalence [133]. Weak observational equivalence is an attractive
proposition for this section, as its verification is supported by model checking tools, e.g.
[68].

Using these definitions, a summative classification of observability and predictability
properties similar to [1, pp.160] can now be written as in table 7.1. Consider, for
example, the first row of the table. An interactor is called display predictable, if the
similarity of two instances of its display implies that they are also display equivalent. In
other words, the display status of the interactor determines its display-side behaviour. A
symmetrical definition of result predictability can be written as in row 2 of table 7.1.

Observability properties, are described in rows 3-10 of table 7.1. For example, if the
current output on the display side determines the current result, then the interactor is
called honest. The user may infer that differences, and therefore changes, in the result
will be observable as differences in the display. A weaker requirement is that the display
side behaviour determine the current result. In this case the interactor is called
trustworthy. Differences in the result status of the interactor, are possible to detect at the
display side, by further interaction.

The famous What You See Is What You Get (WYSIWYG) property can be formalised
in a weak and strong form. Row 5 of table 7.1 describes strong WYSIWYG. A
similarity in the display of two interactor states implies abstraction equivalence. This is
paraphrased as “What you see now determines what you will be able to get”. Row 6 of
table 7.1 describes weak WYSIWYG: “All you can possibly see determines what you

1 Display Predictability similarD(P,Q) ⇒ DP ≈ DQ

2 Result Predictability similarA(P,Q) ⇒ AP ≈ AQ

3 Honesty (static) similarD(P,Q) ⇒ similarA(P,Q)

4 Trustworthiness(static) DP ≈ DQ ⇒ similarA(P,Q)

5 Strong WYSIWYG (static) similarD(P,Q) ⇒ AP ≈ AQ

6 Weak WYSIWYG (static) Dp ≈ DQ ⇒ AP ≈ AQ

7 Honesty (dynamic) similarA(P,Q) ⇒ similarD(P,Q)

8 Trustworthiness (dynamic) similarA(P,Q) ⇒ DP ≈ DQ

9 Strong WYSIWYG(dynamic) Ap ≈ AQ ⇒ similarD(P,Q)

10 Weak WYSIWYG(dynamic) Ap ≈ AQ ⇒ DP ≈ DQ

Table 7.1. Expressions of predictability and observability properties.

Chapter 7 Using the ADC model

172

will be able to get”. In terms of the ADC model, this means that display equivalence
implies abstraction equivalence.

The last four rows of table 7.1 correspond to what Abowd [1] called result oriented
interaction. They have not been discussed as GUEPS or as desirable properties of
interaction, but the classification scheme of [1], which is also adopted here, suggests
their plausibility. At a first glance, these four cases describe to what extent the
abstraction behaviour of the interactor determines the display behaviour. In most
graphical interfaces the display contains more detail than the abstraction [172]. As Dix
argues [49, chapter 7], if an interactive system is seen as the composition of a ‘display
layer’ and an ‘inner system layer’, there should be a surjective mapping from states and
operations of the display layer to those of the inner system layer. This view of
interactive systems does not seem consistent with a result-oriented interaction, and so
this may be the reason why previous formalisations of GUEPS, in [1] and [169], have
concentrated on the dark shaded rows of table 7.1.

A closer examination reveals that the expressions of rows 7 to 10 of the table, are
complementary to the four expressions listed above them. For example, consider row 7
of table 7.1, where abstraction-similarity implies display-similarity. This means that a
change of the display informs the user of a change of the abstraction state. This property
is called dynamic honesty, to show that it discloses changes in the interactor abstraction
state.

For example, consider an electronic messaging application that operates in the
background, while the user is engaged in unrelated tasks. The user is alerted to the
arrival of a new message by an icon being superimposed on the display. Consider also, a
user who infers that the state of the messaging application has changed from the change
of the display. When the display has not changed, i.e. there is no icon on the screen, the
user infers that a message has not arrived. According to the definition of honesty, of row
3, an honest system warrants the second inference but not the first. A system that
displays a message-arrival icon without reason is still statically honest. An interface that
satisfies the dynamic honesty requirement will correct this problem. On the other, hand
a system that does not display the icon when a message arrives is dynamically honest but
not statically honest. Clearly, true honesty should require both conditions to hold.

A weaker condition than dynamic honesty is dynamic trustworthiness. When result
similarity implies display similarity, it is possible to infer changes in the result through
experimentation with the display. The corresponding property in Sufrin and He’s model
was called “goal determines view”. The dynamic strong WYSIWYG formulation means
that it is possible to detect differences in the abstraction-side behaviour from
instantaneous changes in the display side. In other words, a non similarity on the display
side portrays a non equivalence of the abstraction side behaviours. The formal
expression of the weak WYSIWYG stipulates that it should be possible to detect
differences in the abstraction-side behaviour from differences in the display-side
behaviours, i.e. a non equivalence on the display side portrays a non similarity of
abstraction side behaviours.

Chapter 7 Using the ADC model

173

For a system to be called honest, trustworthy, etc. the conjunction of the static and
dynamic versions of the properties has to be satisfied. The shaded rows of table 7.1 are
merged, in table 7.2. Clearly, these expressions could be written more concisely using
logical equivalence (⇔), but the implications of table 7.2 illustrate more clearly the
inferences the user is justified to make by observing the display.

From the user’s perspective, it is, perhaps, more interesting to predict the effect of a
command or a sequence of commands, rather than to assert that the system is display
predictable or result predictable. This property is defined in a manner similar to the
definition of Sufrin and He [169]. A sequence of user commands s is said to be directly
predictable if it has the same effect on the result in situations which are display similar.
It is predictable if it has the same effect on the result in situations which are display
equivalent. In table 7.3, if P is an interactor state and s is a sequence of user input, then
let P⇒s Ps.

The formalisations of tables 7.1-7.3 appeal to the same intuitions as the corresponding
definitions by Sufrin and He [169], Abowd [1] and Dix [49]. Their interpretation differs
slightly and this is attributed to the differences of the respective models. The ADC
interactor is a communication entity that supports the users’ interaction with the
functional core of an interactive system, rather than encapsulating it. In the ADC model
it is only the events communicated by the interactor on its two sides that are examined.
Thus, the similarity predicate was defined in terms of the output gates from which the
status of the abstraction and the display status are observed. The behaviour on either
side is observed at both input and output gates.

Unfortunately, the definitions of predictability of tables 7.1-7.3 are too strong. For
example, a closer look shows that no reasonable ADC interactor can be display
predictable. By the definition of the model, the display does not change until an output
event takes place. Therefore, immediately before and immediately after any input action
on the display side, similarity is maintained:

Honesty

similarD(P,Q) ⇒ similarA(P,Q) ∧
¬similarD(P,Q) ⇒ ¬similarA(P,Q)

Trustworthiness (DP ≈ DQ ⇒ similarA(P,Q)) ∧ (DP / ≈ DQ ⇒ ¬similarA(P,Q))

Strong WYSIWYG (similarD(P,Q) ⇒ A P ≈ AQ) ∧ (¬similarD(P,Q) ⇒ A P / ≈ AQ)

Weak WYSIWYG (Dp ≈ DQ ⇒ A P ≈ AQ) ∧ (Dp / ≈ DQ ⇒ AP / ≈ AQ)

Table 7.2. The conjunction of the static and dynamic expressions of predictability and
observability properties.

Directly Predictable similarD(P,Q) ⇒ AP
s ≈ AQ

s

Predictable DP ≈ DQ ⇒ A P
s ≈ AQ

s

Table 7.3. Predictability of a sequence of user-input s.

Chapter 7 Using the ADC model

174

∀P ∈S g < v >∈outdinp(P) ∧ P g <v > → Q• similarD(P,Q) 7.4

However, the display behaviour after such an interaction does normally change, as a
result of the input action. For the interactor to be predictable, the display side behaviour
should never change:

∀P ∈S g < v >∈outdinp(P) ∧ P g <v > → Q• DP ≈ DQ 7.5

Clearly this cannot be true for any useful interaction, as this would mean that user
interactions do not influence the behaviour of the system as it is observed from the
display.

This problem arises because an event based formalism is used to model status, a concept
that is better described by a state based formalism. In fact, in the LOTOS specification
both the display and the abstraction are modelled by state parameters. Similarity is a
comparison of two statuses. The predictability related properties describe what may be
inferred from a status regarding the behaviour.

It is helpful to recall the tension between modelling status and events, discussed
extensively by Dix [49, chapter 10]. As Dix points out, there is an essential difficulty in
modelling status, a state-based notion, in terms of an event based model. The required
relationship between the display status and its future behaviour breaks down between an
input and an output interaction. Dix questions the feasibility of abstractions that model
both input and output by events, and suggests that an ‘interactivity condition’ should be
applied, e.g. that an output follows all input. This condition can be enforced trivially as
a temporal constraint on the ADC interactor, e.g. the continuous feedback constraint of
section 6.1.1, but it does not solve the problem. Rather, the interactivity condition
should be associated with the similarity predicate.

Sufrin and He [169] and by Abowd [1] model input as events, and the result and display
as states. In both cases, the underlying representation of their model is state based. This
makes the comparison straight forward, but there are restrictions on the type of
interactions that can be modelled. In the examples of Sufrin and He [169], all user input
is directly associated with an instant update of the display information.

To weaken the formal expressions of this section, the similarity predicate, of equation
7.2, should only apply to a subset of the states of the interactor. For example, it could
apply to all states that follow an output, a weaker requirement, or to states that may
proceed an input, a stronger requirement. The latter ensures that the relevant properties
hold whenever the user is able to influence the behaviour of an interactor. Therefore the
similarity predicate is defined now as follows:

similarA(P,Q) iff

 outaout (P) = outaout (Q) ≠ ∅∧ outdinp(P) ≠∅∧ outdinp(Q) ≠∅

similarD(P,Q) iff

 outdout(P) = outdout(Q) ≠ ∅∧ outdinp(P) ≠∅∧ outdinp(Q) ≠∅

7.6

Chapter 7 Using the ADC model

175

7.1.1 Example: Predictability of the scrolling list

Consider the scrolling list of section 4.8. Let P be a state of the list interactor, reached
after the trace below, where the interactor is initialised with values LA and LD.

1 start
2 l_dinp ?p1:pnt;
3 l_dout !echo(p1, LD, LA);
4 l_dInp ?p2:pnt;
5 l_aOut!result(input(p2,input(p1,LD, LA),echo(p1,LD, LA)));

Different instantiations of this trace are obtained by giving values to the value identifiers
p1 and p2. When a point is input at line 2, by the definitions of ls_adu and ls_ad of
section 4.8, the abstraction of the interactor becomes:

input(p1,LD, LA) = sel(LA, pick(LD, p1)) 7.7

An l_dout interaction follows, at line 3. This changes the display state to:

echo(p1,LD, LA) = changeLne(LD,pick(LD,p1)) 7.8

At line 4, the second input event changes the abstraction to

input(p2,input(p1,LD, LA),echo(p1,LD, LA)) =
sel(sel(LA,pick(LD,p1)), pick(changeLne(LD,pick(LD,p1)), p2) = 7.9
sel(LA, pick(LD,p2))

Consider p1 and p2 such that different elements of the list are selected:

pick(LD,p1)) ≠ pick(LD,p2) 7.10

Let the state Q be reached after the same trace as P, with the omission of the second
input action at line 4. Then the display of Q is the same as that of P, but different results
will be read from their aout gates.

out l_dout(P) = out l_dout(Q) ={l_dout!changeLne (LD,pick(LD,p1))}

out l_aout(P) ={sel(sel(LA,pick(LD,p1)),pick(LD,p2))

out l_aout(Q) = {sel(LA,pick(LD,p1))

7.11

This interactor is not honest and also not strong WYSIWYG since

similarD(P,Q) ∧ (¬similarA(P,Q)) ∧
(outdinp(P) ={l_dinp?p3:point} ≠∅) ∧

(outdinp(Q) = {l_dinp?p2:point} ≠∅)

7.12

P and Q are not display equivalent. This can be seen if the traces leading to P and Q are
suffixed by an output event on the display side. For P, the next output event on the
display side is:

(6-P) l_dout !echo(p2, sel(LA,pick(LD,p1), echo(p1, LD, LA)

Chapter 7 Using the ADC model

176

For Q an output event on the display side is:

(6-Q) l_dout !echo(p1, LD, LA)

From the specification of the data type ls_ad, in section 4.8, it follows that

echo(p2, sel(LA,pick(LD,p1), echo(p1, LD, LA)) =
changeLne(changeLne(LD,pick(LD,p1)),pick(changeLne(LD,pick(LD,p1)),p2)=
changeLne(LD, pick(LD, p2)) 7.13

which is not equal to the value output with the event (6-Q)

echo(p1, LD, LA) = changeLne(LD, pick(LD,p1)) 7.14

However if the controller component, of section 4.8 is modified so that an output is
effected immediately after each input action, i.e. by enforcing the constraint called
continuous feedback in chapter 5, then such differences can not occur. The improved
controller component is as follows:

process CC [dinp, dout, ainp, aout] : noexit :=
ainp?X:lstel; dout?X:scrLst; CC[...] []
aout?X:el; CC[...] []
dout?X:scrLst; CC[...] []
dinp?X:int; dout?X:scrLst; CC[...]

endproc

The traces leading up to states P and Q are identical for the revised interactor. The
similarity condition can be true only after interaction (6-P) or (6-Q) respectively, when it
is again possible to accept input. With the revised interactor, the similarity predicate can
only be true when

pick(LD,p1)) = pick(LD,p2) 7.15

If this is the case, it turns out that the two states are also display-equivalent, i.e. DP ≈ DQ,
and the revised interactor is display-predictable.

This example shows the kind of reasoning required to prove the properties discussed. It
draws attention to that these properties depend both on the data type specification for the
interactor and also the dialogue specification.

7.1.2 Validity of predictability and observability formalisations

The reader has been cautioned already in chapter 3 about the limited soundness of these
formal expressions. While it has been argued that they describe some user interface
design heuristics in the framework of the interactor model, they cannot support claims
that the system will be considered predictable, honest, etc., by its users. The ADC
interactor does not model how users perceive what is displayed, nor when two displays
are judged to be the same. The same applies for the comparison of the display and the
abstraction side behaviours. Whether two results are similar or not, and whether two

Chapter 7 Using the ADC model

177

interactor states are abstraction equivalent or not, may depend on the user’s tasks, the
mental model that the user constructs of the system, the situated behaviour of the user,
etc. A further limitation of the formulations of this section has been flagged already. It
concerns the formal definition of equivalence as a means of comparing interactive
behaviours. Observational equivalence is sensitive to differences evident after prolonged
sequences of interactions. Clearly a human user is not always able to distinguish such
differences. Following this arguments it is clear, that asserting a formal expression of
similarity or equivalence of interactors is, in essence, an assertion of a psychological
theory. Such a proposal is outside the scope of this thesis. However, it interesting to
note the bridging role of the model for incorporating psychological motivations into a
formal analysis.

7.1.3 Verification of predictability and observability properties

In general, automatic verification is impractical, because the sets out(P) and out(Q), of
equation 7.6, may be infinitely large and processes P and Q can be infinite. The
discussion below exemplifies some of the problems involved in the automatic
verification of result predictability. Similar problems, if not at a greater extent, are
encountered with the verification of the remaining properties discussed in this section.

For example, to show that an interface represented by an ADC interactor is result
predictable, table 7.1 requires the following implication to be shown:

 similarA(P,Q) ⇒ AP ≈ AQ 7.16

for any two states P and Q of the interactor. The practical difficulty of comparing the
LTS of two different LOTOS behaviour expressions, i.e. of the interactor and its
abstraction side behaviour, can be overcome by the observation that

 similarA(P,Q) ⇔ similarA(A P ,AQ) 7.17

Then it is straight forward to verify result predictability by a search on the LTS (S, Act,
µ → , s0) that models the behaviour expression A so that:

 ∃P,Q ∈S | similarA(P,Q) ∧ out(P) ≠ ∅∧ out(Q) ≠∅∧ (P / ≈ Q) 7.18

If no such states are found, then the interactor is result predictable.

The success of this venture depends on whether the model checking tools can generate a
finite labelled transition system that models the specified behaviour. There are both
theoretical and technological limitations. From a theoretical point of view a finite set of
values should be produced by operation result. Even if this is the case, the comparison
of the values of two ACT-ONE terms is a decidable problem in some cases only. Also,
the size of the LTS produced may prohibit any analysis. Clearly, it is very important to
choose sensibly the level of detail injected in the description. Tool support, e.g. Lite [30,
119], Caesar/ Aldebaran [68] may provide finite interpretations for LOTOS processes.

Chapter 7 Using the ADC model

178

Tools apply mostly to basic LOTOS specifications, in which case they can verify the
equivalence of two processes but they ignore the data component of interactions. When
the data types are specified so that any inquiry operation returns a finite set of values,
Caesar/Aldebaran can verify Full LOTOS behaviours as well. To achieve it in practice
may still be a challenging task, because of the size of the LTS representations produced.

To establish the property of result predictability, equation 7.18 can be verified by a
search on a single LTS. In the case of observability properties, like WYSIWYG and
trustworthiness of table 7.2, the verification will need to compare two different LTS, one
concerning the abstraction side behaviour and the other concerning the display side
behaviour. This is difficult to do with the available tool support since there is no way to
relate individual nodes of each derived LTS to the nodes of the LTS of the interactor.
This is not a serious theoretical limitation, but it means that the general purpose
verification tools for LOTOS do not readily support the verification of observability
properties.

In summary, expressions like those of tables 7.1- 7.3 have an intuitive appeal and are
concise formulations of heuristics for user interface design. Unfortunately, their
practical utility is limited because they are hard to verify. It is probably for this reason
that the publications that discuss this kind properties, e.g. [1, 169], concern small scale
examples and use informal reasoning rather than rigorous or formal proofs. There has
been no report of the automatic verification of this type of properties.

7.2 Dialogue analysis

This section concerns the formal verification of the dialogue component of an interface
design. This verification presupposes the distinct formal specification of the dialogue.
This is a trait of UIMS with a separable dialogue component, for which the special
purpose dialogue specification notations, discussed in section 3.1, have been developed.
The review of interface architectures, in chapter 2, showed that modern object based
interface architectures are characterised by the distributed implementation of the
dialogue. This means that the dialogue is encoded partly in each object and partly in the
way the objects are composed together. This is true for interactor based specifications
too, so the question that arises, is when and how can interactor specifications be used as
dialogue specifications. Section 6.6 discussed this problem, and provided a
characterisation of what is the scope of ‘dialogue’ in the context of the ADC model.
Also, section 6.6 discussed how the dialogue specification for a group of ADC
interactors is specified in the CU of their synthesis. The CU does not specify any data
manipulations, so the transformation P(CU) to basic LOTOS models the dialogue
sufficiently. A similar proposition was put forward for the abstract views of interactors,
for which the dialogue specification is also a basic LOTOS process. Thus, even when
there is not a separable dialogue component in the implementation software, the ADC
model makes it possible to factor out the dialogue specification for the whole of the
interface specification.

Chapter 7 Using the ADC model

179

Some dialogue properties that a designer might wish to verify are the following:

1. Deadlock freedom. The interface does not reach termination because of an
inconsistent dialogue specification. Checking for deadlock freedom is supported by
model checking tools, e.g. [68]. When a deadlock is detected the tool provides a
diagnostic, indicating the sequence of actions that lead to the deadlock.

2. Completeness. The specification has specified all intended and plausible
interactions of the user with the interface. Completeness can be inferred only by
comparing an interface specification to, say, some task specification, some
requirements document, etc. For example, the designer might wish to specify that
all possible action sequences necessary to achieve a certain task are supported by the
interface design.

3. Determinism. A user action, in a given context, has only one possible outcome.
Checking for determinism is supported by model checking tools, e.g. [68].

4. Reachability. A range of properties fall under this heading, including deadlock
freedom and completeness. It qualifies the possibility and ease of reaching a target
state, or set of states, from an initial state, or set of states.

Dialogue properties can be specified directly in LOTOS and they can be verified against
the dialogue specification P(CU). This process is supported by the Caesar/Aldebaran
toolset [68]. In many cases the formal expression of dialogue properties is facilitated by
referring to some notion of state. This is consistent with the LTS interpretation of
LOTOS, but the interactor specification does not support an explicit description of these
states. It is possible though to specify states of the LTS by the actions they offer. A
temporal logic can be used to specify dialogue properties, as propositions pertaining to
the underlying LTS. This process is supported by the LITE [30, 46] and the AMC [70]
tools. The discussion below presents both the specification of dialogue properties in
LOTOS, and also the use of a temporal logic called ACTL [48]. ACTL is an action
based and branching time temporal logic. Its operators use actions to specify the states
of an LTS. ACTL provides quantification operators both for paths and for linear time.
Each linear operator must be preceded by a branching one and vice versa. A brief
introduction to ACTL is provided in appendix A.3.

7.2.1 Informal description of dialogue properties

First, dialogue properties are discussed informally in terms of a state based
representation. A reachability property specification consists in three parts. The first
specifies the state, or states, from which the transitions of interest may start. The second
part qualifies the path, i.e. it may specify some invariants that must hold for all
intermediate transitions, or some temporal operator that defines when the transition is
possible, e.g. never, always, sometimes, etc. The third part describes the target state or
set of states. This scheme, has been used in [30, 142, 143] and it provides a concise a
classification of dialogue properties. The presentation below is very similar to that of

Chapter 7 Using the ADC model

180

[143], with the difference that the dialogue specification is not assumed to be a
refinement of some user task model. This does not change the range of the formal
expressions but it means that they are interpreted differently. The dialogue properties
discussed here pertain only the designed interface as opposed to characterising its
relation to a task. In section 7.4, the relationship with the task model is also discussed.
Finally, the description of table 7.4 puts more emphasis than [143] on the temporal
operator associated with the path qualifier. This is consistent with the formalisation in
ACTL that follows.

The properties summarised in table 7.4 can be instantiated for the case of the Simple
Player™ specification discussed in chapter 5. An example of action accessibility for this
interface is that it should always be possible to resize the movie window or to change the
volume. The start state for this property is the initial state of the LTS, there are no
conditions on the target state, and the path qualifier is that the action resize should be
available at all times. So from any state, it should be possible to issue a resize command,
i.e. to invoke a dinp command on the resize box interactor. This property does not hold,
simply because the resize interactor requires a dinp interaction to be followed by an
output on a gate dout, i.e. by some feedback. An example of an integrity constraint

Shorthand Label Path Qualifier Start State or Set of
States

Target State or Set of
States

State Accessibility Possibly Initial state A specified state or set
of states

Deadlock
Freedom

Never Initial state A state offering no
actions

State Exclusion Never Initial state Any state that does not
satisfy an unwanted

condition
Action

Accessibility
Always: A set of
actions should be

available

Initial state Any state

Action Succession
and Integrity
Constraints

Always: a predicate
on the sequence of
actions should hold

Initial state Any state

State Floatability Eventually, without
entering an

undesired state

A specified state q A specified state r

Weak State
Inevitability

Eventually A specified state q A specified state r

Strong State
Inevitability

Eventually Any state A specified state r

Reversibility Eventually At any state that
follows action α

A state identical to the
one before α fired

Re-startability Eventually Any state Initial state

Table 7.4. A state-based scheme for the classification of dialogue properties

Chapter 7 Using the ADC model

181

could be that the whole of the interface cannot issue a stop command twice, without an
intervening play command, or that the interface does not accept successive double clicks
as input.

The descriptions of table 7.4 may help for an informal specification of dialogue, and
possibly an informal testing of some of these properties. These descriptions can apply to
the whole behaviour of the ADC interactor or only the dialogue specification P(CU).
Clearly, it is important to distinguish the two. For example, by definition, all interactor
dialogues in the case study are restartable in that their dialogue specification P(CU) is
restartable. However, this is true only because the dialogue specification does not refer
to the data component of the specification. The specification of the case study did not
model re-initialisation of the movie interface, which is what this property might be taken
torefer to. The scope of the dialogue properties discussed below concerns only the CU
specification, and the verification methods follow this assumption.

Olsen et al. [143] proposed the specification of the properties of table 7.4, in terms of
propositional production systems (PPS). They have also outlined algorithms for the
assessment of the properties they discuss. Abowd et al. [3] suggested that the PPS
specification of an interface dialogue should be transformed to a state transition network.
Dialogue properties would then be specified in a branching time temporal logic and
would be evaluated using a model checking tool. Neither approach has been
implemented. At this point the advantages of using a more established formal
specification language, like LOTOS, become apparent. In the following paragraph, two
recent approaches to specifying and verifying dialogue properties are summarised and
compared. Both use established formal methods and general purpose tool support, as
opposed to tools specifically created to support the interactor model.

7.2.2 Formal specification of dialogue properties

Palanque and Bastide [144] describe the specification of user interfaces using an object
based variant of Petri-Nets. Their notation is interpreted to a standard Petri-Net
specification, and dialogue properties such as absence of deadlock, re-initialisability,
computation of reachable states, etc., are specified in terms of this underlying
representation. Verification can apply to the whole system or to some of its components
[147]. For example, Palanque and Bastide [144] specify the predictability of a command
as a reachability property. A command is called predictable if its target state is always
the same regardless of what its starting state is. A limitation of their approach is that the
specification of user interface properties is not assisted by an architectural model or a
higher level language for describing properties of interaction.

Paternó [151] uses ACTL to specify dialogue properties of interfaces specified in
LOTOS, in the framework of the Pisa interactor model [150]. Mezzanotte and Paternó
have applied this approach to the verification of a multi-modal flight information system
[152] and a graphical interface to an air traffic control tool [153]. The LOTOS
specification of an interface is transformed to basic LOTOS using the LITE specification

Chapter 7 Using the ADC model

182

environment [30]. When possible, theoretically and practically, an LTS representation
of the interface is produced. A model checking tool [70] can then verify whether the
LTS satisfies the ACTL expressions. The important difference to the work of Palanque
and Bastide discussed earlier, is that the specification of dialogue properties need not
refer to the underlying LTS representation. The interactor structure prompts the
expression of the relevant properties. Some examples of dialogue properties specified in
ACTL are discussed below, ‘translated’ in the framework of the ADC interactor model.
The purpose of these examples is to illustrate what looks to be the most advanced
approach to the verification of dialogue properties and to show that it applies also to the
ADC model. Some caveats are flagged and the discussion draws attention to benefits of
the ADC model as a representation of the interface design.

• An input action on the display side may generate an effect on a specific part of the
interface.

AG([dinp] E(ttttUaouttt)) 7.19

This can be interpreted as follows. Always (the AG operator), from the state following a
dinp interaction, there exists (the E operator) a sequence of interactions, for which the
only requirement is that they lead up to an interaction on a gate aout. This sequence of
interactions is specified by the path formula ttttUaouttt.

In expression 7.19, the user interaction and the output interaction are both described by
what was called a role of a gate in section 6.1. The role dinp characterises a gate used
for input on the display side. Expression 7.19 is in fact a template, that can be
instantiated by substituting this description with an appropriate pair of gates of the
interactor studied. For example, they could be gates l_dinp and l_aout of the scrolling
list of section 4.8. In this way, the interactor structure prompts generic expressions of
dialogue properties. This is shown by a further example.

• A user input on the presentation side may eventually result in a feedback event.

AG([dinp] E(ttttUdout tt) 7.20

For example, expression 7.20 can be instantiated for the list interactor of section 4.8 by
substituting the relevant gate identifiers:

AG([l_dinp] E(ttttUl_dout tt)) 7.21

This means that an input on the display side of the list interactor may result, eventually,
in a selection of a member of a list being output on the application side.

Model checking applies to a transformation of the specification to basic LOTOS and not
to full LOTOS. Therefore the formulae above are weak specifications of the properties
they model. Expression 7.21 for example, does not ensure that the value sent to the
application at gate l_aout is the one that results from the input operation.

• Continuous feedback.

Chapter 7 Using the ADC model

183

AG[dinp] A(tt ¬dinpUdouttt) 7.22

This can be interpreted as follows. Always (the AG operator), if a sequence of
interactions ends with an interaction on a gate dinp (the term [dinp]) then for all possible
evolutions (A operator) the following condition will hold: no interaction on a gate dinp
may take place before an interaction on a gate dout takes place.

Alternative characterisations of gates, that are not specific to the interactor model, may
help write dialogue specifications. For example, assuming a class of events err that
signify an error, then error recovery may be specified:

• Error events are eventually followed by input to the application

AG([err] E(ttttUaouttt) 7.23

The truth of the above expression is only an indication that the system will recover after
such an error, since it offers output on its application side.

• Existence of messages explaining user errors

Assuming a set of gates associated with explanation messages to the user, e.g. a subset of
the gates Gdout, then it is possible to describe the response of a system to an error:

AG([err] E(ttttUexplaintt)) 7.24

In a similar fashion, if some events are associated with task completion, then the formal
specification may be used to verify whether it is feasible for the user to complete their
tasks for a given interface design. The link to task modelling, the identification of errors,
the identification of errorful behaviour, etc., are not part of the interface specification.
The validity or not of the predictions arrived at depends on how these gate sets are
defined. This definition may follow theoretical considerations or design decisions that
are not part of the interactor model.

What is most interesting about the approach of Paternó and Mezzanotte is how they
capitalise on the standard structure of the Pisa interactor model to develop reusable
expressions of interaction properties. The expressions they propose, which are similar to
the examples listed, refer to sets of gates of an interactor: gates for user input, for
display, for communicating to the application, etc. These gate sets are easily identifiable
for a single interactor. A specifier can easily instantiate the general property definitions,
substituting gate identifiers or sets of them in the relevant expressions. For an interface
specified as a composition of interactors, in the framework of the Pisa model, these gate
sets are defined by inspecting the configuration of the interactors [152]. In the
framework of the ADC interactor, a complex configuration can be transformed, by
synthesis, to a single interactor. During synthesis the role of the gates is redefined as
was described in section 6.1. As a result, the formal specification of dialogue properties
is the same for a simple interactor as it is for a compound interactor.

Chapter 7 Using the ADC model

184

The work of Paternó and Mezzanotte in the analytical evaluation of user interface
specification is interesting also because of the scarcity of results in the automated
verification of user interface specifications. They demonstrate the potential of
automating much of the specification and verification tasks and using formal methods in
the design of user interfaces. This is an important contribution towards the wider
application of formal methods techniques in user interface design, particularly by non-
formal methods experts. Their reports though can be criticised for overplaying this
potential. While the Pisa model is specified in full LOTOS, the verification concerns
only basic LOTOS. The Pisa model, does not have an ‘orthogonal’ description of data
handling and temporal ordering properties. Thus, in the framework of the Pisa interactor
model, dialogue specifications may well depend on the value of the state parameters of
the Pisa interactor. Simply ‘stripping’ the data component by the transformation to basic
LOTOS does not preserve the dialogue specification. Paternó [151] and Paternó and
Mezzanotte [152, 153] overlook these limitations, making too strong a case for the use of
model checking tools.

In conclusion, there is much merit to the use of a temporal logic to specify dialogue
properties of interaction. Generic expressions of dialogue properties follow by
inspection of the interactor specifications. Powerful tool support helps their automatic
verification. Requirements external to the interface architecture, e.g. task related
behaviour, error handling, etc., can also be specified in the same fashion. The ADC
model can be used in the manner introduced with the Pisa model. Also, it supports the
articulation of dialogue properties for synthesised interactors and provides a clearer
definition of the dialogue scope.

7.2.3 Constructive specification of properties with LOTOS

As mentioned already, dialogue properties can be specified directly as LOTOS
specifications. An immediate practical advantage is that the same language is used to
specify ADC interactors and their properties. The dialogue specifications are very
similar to those used inside the CC of the interactor, so the same set of processes can be
used for both purposes, e.g. they could be taken from some ‘library’ of pre-defined
dialogue properties. The verification is supported by the CAESAR/ALDEBARAN
toolset [68]. Perhaps not surprisingly, some properties can be easier to specify in
LOTOS rather than in ACTL and vice versa.

The LOTOS process below specifies that an occurrence of an input on the display side is
followed by the occurrence of an output before another input is allowed. An output
event is still allowed to happen without a prior input event.

process feedback[inp, out] : noexit :=
inp; out; feedback[inp, out]

[] out; feedback[inp, out]
endproc

This process definition is similar to the constraints specified in the CC component. To
specify that an input event is possibly followed by an output event, the interactor list is

Chapter 7 Using the ADC model

185

compared to the process feedback. For this comparison all actions that are not input or
output on the display side are hidden, since they do not concern this property. This is
specified as an argument for the verification as follows:

hide all but
l_dinp
l_dout

The list interactor is compared to the feedback property with respect to weak
observational equivalence:

hide (G - {l_dinp, l_dout}) in P(list_CU) ≈ feedback[l_dinp, l_dout] 7.25

Weak observational equivalence is chosen because it is recognised that each interactor
may exhibit internal behaviour which is ignored and because all actions apart from
l_dinp and l_dout are hidden. The hiding means that the property holds even if the
feedback is not offered immediately after the input interaction. Equivalence 7.25
describes the same behaviour as 7.20. It is difficult to assert, unless to describe a
subjective preference, which approach is easier to construct or to comprehend.

If the feedback property is amended so that other interactions are not hidden, then
continuous feedback may be specified as follows:

process continuous[inp, out, other] : noexit :=
inp; out; continuous[inp, out, other]

[] out; continuous[inp, out, other]
[] other; (continuous[inp, out, other][]stop)
endproc

The list interactor is compared to the process continuous, up to a renaming of all gates
other than l_dinp and l_dout to the gate label other. The renaming relation is specified as
follows:

rename
"l_aInp" -> "other"
"l_aOut" -> "other"
"start" -> "other"
"suspend" -> "other"
"resume" -> "other"
"abort" -> "other"

Then the following relation needs can be verified using the Aldebaran tool, up to the
renaming above:

P(l_cu) ≈ continuous[l_dinp, l_dout, other] 7.26

The model checking will return a verdict false in this case, and true if the constraint
component is modified as in paragraph 7.1.1. Again the verification of 7.26 can be
compared to 7.22. The renaming and the hiding operations define an abstraction
relation. Interactions can be characterised as input or output by the abstraction relation.
Depending on how these arguments are defined the same process specification for

Chapter 7 Using the ADC model

186

continuous feedback may apply at different sets of interactors and at different levels of
abstraction.

Chapter 7 Using the ADC model

187

LOTOS is very well equipped to define action succession properties and safety
properties. ACTL is certainly more concise. The higher level ACTL constructs, e.g. AG
(always), [dinp]φ, etc., are quite powerful constructs that some people may find more
intuitive than a process algebraic description as, for example, is argued in [46]. Both
approaches discussed require a good understanding of LOTOS and ACTL respectively
and a careful interpretation of the meaning of the specifications written. Figure 7.1
outlines the two different approaches for model checking using the AMC tool [70], or
the Caesar/Aldebaran toolset [68].

7.2.4 Conclusion

This section has discussed interactor models as a conceptual framework for specifying
and verifying dialogue properties. Rather than requiring an in depth understanding of a
monolithic representation of a dialogue, interactor models prompt the expression of
dialogue properties in terms of architectural constructs, i.e. the gates of the interactors
and sets of such gates with a common purpose, e.g. input, output, controlling the
functional core, etc. The verification of these properties though, needs to apply to a
distinct dialogue specification with a clearly defined scope. This dialogue specification,
does not need to correspond to a separable dialogue implementation. Chapter 6 provided

Figure 7.1. Illustration of two possible approaches to model checking of LOTOS
specifications. In the left, using the AMC tool and in the right using the
Caesar/Aldebaran toolset.

Chapter 7 Using the ADC model

188

a clear description of dialogue in ADC interactor specifications and an approach for
factoring out its specification from a composition of many nteractors.

The approaches discussed rely heavily on the use of general-purpose verification tools.
It is hoped, that as this technology evolves and matures, it will benefit more the user
interface designers who construct formal specifications of their designs. This section
discussed the use of two general purpose model checking tools for behavioural
specifications and a scheme for describing such properties informally. The
specifications were independent of assumptions regarding the user behaviour or
cognition and it did not aim to propose a set of principles for dialogue design. Emphasis
was drawn to the careful interpretation of dialogue specifications.

The approach to dialogue analysis discussed above, is quite traditional, in that it
concerns the temporal ordering of interactions. It is worth noting, that the LTS
interpretation of the interface specification is also amenable to alternative types of
analysis. Thimbleby [171] discusses how graph analysis may be used to provide
quantified predictions relating to the usability of a system, that are also neutral with
respect to implementation platform or user considerations. For example, these may
provide estimates of the complexity of a task, how much the user needs to learn to
operate the system, or as reported in [7], whether or not a system is well structured. The
successful use of these alternative formulations of usability, as for all the properties
discussed in this chapter, depends on choosing carefully the level of description of the
system.

7.3 Top-down interface design and the ADC interactor model

This thesis has avoided making assumptions regarding user cognition and behaviour, the
phenomenon of interaction, and it has not endorsed any particular view of the design
process, e.g. top-down vs. bottom-up, task based, using style guides, etc. If only to show
how the interactor model may be used in conjunction with such theories and methods, it
is necessary to extend the discussion to these topics. This section discusses how the
ADC model can support the general concept of stepwise refinement. In the following
section, a more psychologically informed method is discussed that involves modelling
some aspects of user knowledge. The purpose of this exercise is to draw links to the
relevant bodies of research and to illustrate the versatility of the ADC model, rather than
to advocate a particular view of design.

Stepwise refinement is a process by which software is developed incrementally through a
series of distinct design steps. In each step design options are resolved adding detail and
structure to the design representation. Top-down design methods prescribe a process
which tries to ensure that the original and the resulting design specifications are
consistent. In a formal method of software development this consistency requirement is
a formally defined relationship, e.g. some form of equivalence, or a formally defined
implementation relationship. Below, the terms specification and abstract
implementation (or simply implementation) are used in reference of two successive

Chapter 7 Using the ADC model

189

design representations, where the latter is a refinement/implementation of the former.
This terminology is standard for discussing LOTOS specifications [158]. The user
interface software that results from the refinement process is called the realisation of the
interface specification.

An interface specification may be transformed to its implementation using any of the
following transformations:

• Functional Decomposition. A single interactor is decomposed to a group of
interactors with the same externally observable behaviour.

• Functional Rearrangement. A group of interactors is transformed to a different
group of interactors with the same externally observable behaviour.

• Functional Extension. A given specification is enriched with extra functionality that
is consistent with the original specification. For example, a help facility may be
added on an interface as an extension of the original functionality.

• Functional Reduction. A specification may include design options that are left
unresolved. An implementation of the specification may be obtained by fixing one
or more of these options.

To support these transformations in the context of the ADC interactor model entails that
the outcome of each should still be an ADC specification or, in the case of
decomposition and rearrangement, a behaviour expression that combines ADC
specifications. It is trivial to see that an interface specification can be reduced or
extended within the framework of the ADC interactor model. For example, increasing
the gate set and specifying relevant behaviours, is an extension of the functionality,
which is consistent with the original specification. On the other hand, adding a
constraint on the CC of an interactor is a functional reduction of it. Functionality
decomposition is supported by the decomposition transformation of the previous chapter,
while rearrangement may be effected through a combination of synthesis and
decomposition. The example that follows illustrates the refinement of an interactor
specification by the decomposition transformation of chapter 6. The example discusses a
hypothetical scenario concerning the specification of Simple Player™. As in chapter 5,
the specification is reversely engineered to match the observed behaviour of the
software. The specification is assumed to proceed through a series of abstraction levels
which add structure and detail incrementally. This is an ‘imaginary design trajectory’,
presented in [126] in a more extensive and informal manner, but it is not suggested that
this was the actual process followed in the case study. A single step of this design
process is isolated below, to discuss the application of the decomposition transformation
of chapter 6.

The point of departure for this design step is a specification of the whole interface as a
single interactor spec, which interacts with the user on its display side and with the
application on its abstraction side. The specification for this design step incorporates
several design decisions already. The functional core has been specified as a boot

Chapter 7 Using the ADC model

190

strapping activity for the specification, as mentioned in chapter 5, so the gates of the
interface which are connected with the functional core are known in advance. The
specification describes the temporal constraints on the input, reflecting the properties of
the interaction toolkit used. The manipulation of the volume and movie box parameters
is specified as a well formed ADU, called specADU. The temporal constraints for their
management are encoded in the constraints component specCC of the interactor.
Interactor spec is summarised below and it is illustrated in figure 7.2. For brevity all
mouse input is grouped under the heading mouseInput and all keyboard input under the
heading keyboardModifiers. On the display side one output gate is allocated to each
interactor with a display component. In figure 7.2, the display output gates are grouped
under the heading display. Arrows indicate gates where data is communicated with the
interaction and simple lines indicate simple synchronisation.

The interactor spec of figure 7.2 is defined as follows:

process spec[...]: noexit :=
specADU[pressVOL, moveVOL, releaseVOL, doutVol, getVolume, setVolume, pressBox, moveBox,

relBox, doutBox, setMovieBox]
|[pressVOL, moveVOL, releaseVOL, doutVol, getVolume, setVolume, pressBox, moveBox, relBox,
doutBox, setMovieBox]|

specCU[...]
endproc

Process specADU is a well formed ADU that is the parallel composition of two
elementary ADUs, respectively managing data of type volume_ad and resizeButton_ad.
The definitions of volADU and rbADU and the corresponding data types is included in
appendix A.4 for completeness.

process specADU[pressVOL, moveVOL, releaseVOL, doutVol, getVolume, setVolume, pressBox,
moveBox, relBox, doutBox, setMovieBox]:noexit:=

volADU[pressVOL, moveVOL, releaseVOL, doutVol, setMovieBox, getVolume,setVolume]
(preferredVolume,defaultVolumeBar, defaultVolumeBar)

|[setMovieBox]|
rbADU[pressBox, moveBox, relBox, doutBox, setMovieBox](graphicalContext, resizeBox, resizeBox)
endproc

The controller unit specCU is constructed according to the general definition of the CU
described in section 6.7. The definition of the constraints component specCC is
presented below.

process specCC[...] : noexit :=
noConstraint[video, stills, play, pause, getTime, gotoTime,setSelection, gotoStart, gotoEnd, out_ok]

|||
((volSeq[pressVOL, moveVOL, releaseVOL, doutVol, setMovieBox, getVolume, setVolume]

|[setMovieBox]|
rszSeq[pressBox, moveBox, relBox, doutBox, setMovieBox])

|[pressVOL, moveVOL, releaseVOL, pressBox, moveBox, relBox]|
inputConstraints[...])
endproc

First, the temporal constraints for user input are discussed. The mouse input may be
clicking, pushing and holding, or dragging. Each of the components which are visible on

Chapter 7 Using the ADC model

191

the screen is manipulated in either of these ways and for each some mouse input
constraint applies. For example, any number of moves of the mouse may take place
when this is dragged. While a push button is held pressed, it can be moved out and back
into an ‘active region’ surrounding the button, as described by the toggle process. The
following process describes these temporal constraints on the mouse input:

process inputConstraints[click, doubleClick, press_shift, move_shift, release_shift, pressPLR,
moveTHMB, relPLR, pressVOL, moveVOL, releaseVOL, pressFwd, relFwd, moveInFwd,
moveOutFwd, pressBT, moveInBT, moveOutBT, releaseBT, pressBwd, relBwd, moveInBwd,
moveOutBwd, pressBox, moveBox, relBox, pressRate, moveRate, relRate]: noexit:=

(mouseButton[click, doubleClick]
||| drag[press_shift, move_shift, release_shift]
||| drag[pressPLR, moveTHMB, relPLR]
||| dragV[pressVOL, moveVOL, releaseVOL]
||| hold[pressBT, moveInBT, moveOutBT, releaseBT]
||| hold[pressFwd, moveInFwd, moveOutFwd, relFwd]
||| hold[pressBwd, moveInBwd, moveOutBwd, relBwd]
||| drag[pressBox, moveBox, relBox]
||| drag[pressRate, moveRate, relRate])
where

process mouseButton[c,d] : noexit :=
c; mouseButton[c,d] [] d; mouseButton[c, d]

endproc
process dragV[p, m, r] : exit :=

p; (repeat[m] [> r?x:pnt; dragV[p, m, r])
endproc
process drag[p, m, r] : exit :=

p?x:pnt; (repeat[m] [> r?x:pnt; drag[p, m, r])
endproc
process hold[p, mi, mo, r] : exit :=

p; (toggle[mo, mi] [> r; hold[p, mi, mo, r])
endproc
process toggle[m, n]: noexit :=

Figure 7.2. Simple Player™ modelled as a single ADC interactor. Grey lines and
arrows represent groups of gates, described by the relevant heading in italic print.

Chapter 7 Using the ADC model

192

m; toggle[n,m]
endproc
process repeat[m] : noexit :=

m?x:pnt; repeat[m]
endproc

endproc

This specification of the input constraints demonstrates how the corresponding process
definitions are re-used, a point discussed already in section 5.8. To achieve the
synchronisation with the ADU, their gates are typed, necessitating the repetition of some
process definitions. For example, the process drag was defined in two forms, one where
the action press is a pure synchronisation action and then again where it is associated
with a parameter of sort pnt. In this case LOTOS hinders the specification activity by
being too strict and some pre-processor to support the polymorphic definition of these
constraints would be helpful.

Resizing may occur at any moment during interaction. While the user drags the resize
box, the window for the application is not resized continuously. Instead an outline box is
given as an intermediate feedback. When the operation is completed with a release of
the mouse button, all interactors receive the updated coordinates through the gate
setMovieBox, and adjust their displays. This is specified as follows:

process rszSeq[pressBox, moveBox, releaseBox, doutBox, setMovieBox]: noexit :=
pressBox?x:pnt; doutBox?y:pb_dsp; rszSeq[...] []
moveBox?x:pnt; doutBox?y:pb_dsp; rszSeq[...] []
releaseBox?x:pnt; doutBox?y:pb_dsp; setMovieBox?x:rct; rszSeq[...] []
doutBox?y:pb_dsp; rszSeq[...]

endproc

The volume interactor is a slider that pops up with a mouse press. Its output informs the
user about the current volume setting and allows the user to modify it. It pops down
when the user releases the mouse button. When the mouse is first pressed, the current
setting of the volume in the functional core must be read first. This may be either a
value set with a previous interaction or the preferred volume for the movie played.

process volSeq[pressVol, moveVol, releaseVol, doutVol, setMovieBox, getVol, setVol]: noexit :=
pressVol;getVol?x:Int; doutVol?x:volumeBar;volSeq[...]

[] moveVol?x:pnt; doutVol?x:volumeBar; setVol?x:Int; volSeq[...]
[] releaseVol; doutVol?x:volumeBar; volSeq[...]
[] setMovieBox?x:rct; volSeq[...]
[] doutVol?x:volumeBar; volSeq[...]
endproc

The gates of the interactor which are not related by the constraints discussed so far, e.g.
setTime, gotoTime, etc., are allocated to process noConstraint. This process specifies no
constraint on the occurrence of interactions on its gates and is combined with the other
constraints by the interleaving operator.

By the corollary of section 6.5, interactor spec can be decomposed into the synchronous
composition of interactors volume, resizeBox and noConstraintsCU (as illustrated in

Chapter 7 Using the ADC model

193

figure 7.3). The distributed form for this decomposition, i.e. the implementation for this
refinement step, is specified by the following behaviour expression:

volume[start, suspend, resume, restart, abort, pressVOL, moveVOL, releaseVOL, doutVol,
setMovieBox, getVolume, setVolume]

|[setMovieBox, start, suspend, resume, restart, abort]|
rszBox[start, suspend, resume, restart, abort, pressBox, moveBox, relBox, doutBox, setMovieBox])

|[start, suspend, resume, restart, abort]|
CUimp[...]

The ADU of the two interactors are the processes volADU and rbADU defined
previously. The CUs have the standard structure of section 6.5, and their constraints
components are defined as follows:

process volCC[press, move, release, dout, setMovieBox, getVol, setVol]:noexit:=
volSeq[press, move, release, dout, setMovieBox, getVol, setVol]

|[press, move, release]|
dragV[press, move, release]
endproc

process rszBoxCC[pressBox, moveBox, releaseBox, doutBox, setMovieBox]: noexit :=
rszSeq[pressBox, moveBox, releaseBox, doutBox, setMovieBox]

|[pressBox, moveBox, releaseBox]|
drag[pressBox, moveBox, releaseBox]
endproc

Interactor CUimp is a standard CU whose constraints component impCC contains those
behaviours from the process input constraints which have not been absorbed in the
volume and resize box interactors.

process impCC[...] : noexit :=
noConstraint[video, stills, play, pause, getTime, gotoTime,setSelection, gotoStart, gotoEnd, out_ok]
|||
(mouseButton[click, doubleClick]
||| drag[press_shift, move_shift, release_shift]
||| drag[pressPLR, moveTHMB, relPLR]

Figure 7.3. Decomposition of spec into a synchronous composition expression.

Chapter 7 Using the ADC model

194

||| hold[pressBT, moveInBT, moveOutBT, releaseBT]
||| hold[pressFwd, moveInFwd, moveOutFwd, relFwd]
||| hold[pressBwd, moveInBwd, moveOutBwd, relBwd]
||| drag[pressRate, moveRate, relRate])
where (* ...as before...*)

Two interesting issues are highlighted by this brief example. First, that the
decomposition transformation is not as widely applicable as would be desirable. This
issue has already been discussed in section 6.4. In the context of this example, it is easy
to see that a more plausible description for the original ADU would not be as a parallel
composition of two components, but as a single process that manages both the
parameters pertaining to the volume and those pertaining to the movie box. In such a
case, the decomposition transformation would not apply because the volume data type
uses the result of the resize box, and the condition 6.45 for the decomposition of an
elementary ADU with multiple state parameters would not hold.

The second issue that arises is that the specifications are quite sizeable and the ‘logistics’
of carrying out the transformation step are not negligible. Tool support can relieve
interface designers of such tedious tasks enabling them to focus on the creative part of
their work. Current tools for developing LOTOS specifications support a set of
transformations applicable to limited subsets of LOTOS and only for particular forms of
the initial specification [20, 118]. Using this set of transformations is feasible, as indeed
has been illustrated by Bernadeschi et al. [16]. The benefit of their approach is that they
use standard and developed technologies. The drawback, which is relevant to this thesis,
is that the concept of the interactor does not enter into the design process until the last
stage, when the architecture of the system has been settled. What is advocated with the
development of the ADC interactor, is that the concept applies to any abstraction level
and at any stage in the design. For this to be a workable proposition, the development of
special purpose transformations and tools to support them is necessary.

Bernadeschi et al. [16] start from a basic LOTOS specification of a ‘black box’ view of
the whole interface, incorporating some temporal constraints, that pertain to the user
tasks the system will support. This basic LOTOS specification of a task model, which is
refined by successive transformations into an architectural description. Only when the
architecture has been determined, the lowest level processes are refined to interactor
specifications, using the Pisa interactor model of [150]. This design method assumes
that the interface model should be a refinement of a task model and considers interactors
only as the elementary building block for putting together the interface specification.
This question regarding the relation of an architecture to the task model is discussed
extensively in the next section.

The most important contribution of Bernadeschi et al. is to demonstrate how existing
tool support and theory can serve the design of an interactive system. Their approach is
still at an early stage of its development, i.e. there have been no reports as to the use of
this approach within a realistic project, but it shows the potential to be scaled up. A
similar approach to that of [16], using the ADC interactor model, is outlined in [126].
There, the emphasis is on the preservation of dialogue specifications, through a series of

Chapter 7 Using the ADC model

195

decompositions of interactors and abstract views. Compared to the example shown here,
that early discussion did not adequately demonstrate that the ADC model can be used as
a design representation at all steps of the refinement process. Rather, like [16], the
refinement concerns the basic LOTOS specification but, unlike [16], it did not use
standard transformations and tool support. This observation raises some questions
regarding the direction of future research. Throughout this thesis the use of standard
notations and tools has been advocated. However, to reap practical benefits from the
compositionality of the model, it seems that special purpose tools and possibly higher
level notations, have to be developed. If such an approach is taken, it could well be at
the cost of losing the benefits of future developments in the LOTOS language and tool
support.

7.4 Relating interactor specifications with a task model

In the domain of human-computer interaction (HCI), the term task refers to the
intentional activity of a user who interacts with a computer in order to achieve some
goals. Tasks are studied by a task analysis process. The product of this process is a
summative description of the tasks which is called a task model. Research in HCI has
developed several task analysis methods and task model representations which vary
according to their intended use and scope of application. An overview of this type of
research can be found in [108]. This section discusses a formal representation for a task
model that focuses on the temporal ordering of the task related activity of users. The
model is based on Johnson’s theory of Task Knowledge Structures (TKS) [108, 109 and
110]. Relating the task and the interactor formal models helps formalise some intuitions
underlying task based design approaches. Task based design prescribes the process by
which a system can be designed to satisfy task related requirements, as they are captured
by a representation of users’ tasks. The discussion below identifies some open research
questions, but also, it proposes a practical approach to using formal specifications in the
design of user interfaces.

7.4.1 Some elements of the TKS theory

The TKS theory [108, 109] suggests that the knowledge a person has about a task is
structured and stored in the person’s memory as a Task Knowledge Structure. This
knowledge is activated and processed during task execution and its structure is reflected
in the behaviour of the person during task performance. A model of this knowledge
structure, also called TKS, can be constructed by means of a task analysis. A TKS
model consists in a goal structure , a procedure set and an object structure. These
concepts are introduced briefly in the following paragraph. The interested reader is
referred to [109] for an extended discussion of the psychological foundations of TKS,
and to [185] for a comparison with some other task analytical approaches. As a
psychological theory TKS focuses on the categorisation of the elements of user
knowledge associated with a task, rather than a prediction of the phenomena that take

Chapter 7 Using the ADC model

196

place during task performance or during interaction (as for example is the case with the
interactive cognitive subsystems theory [13]).

Consider a person engaged in a purposeful activity within a given domain. This domain
is characterised by a state and the person is aware of a meaningful state to be achieved
which constitutes that person’s goal. In the process of achieving a goal, there may be
identifiable, meaningful intermediate states that constitute subgoals. This decomposition
of goals is structured into what is called the goal structure. This goal structure contains
temporal information, which is important for the design of the user interface and which
is explicitly represented in the formal task model of the next paragraph. The most basic
element of activity identified in task performance is a single action. Actions are atomic,
and they can be combined into subgoals. Procedures encode well rehearsed chunks of
activity that are executed under appropriate conditions of the task domain. Actions
apply to objects. Objects embody declarative knowledge of the task domain and are
described in terms of their attributes and relationships to other objects. A TKS model
can also incorporate indications of how necessary an object or an action is for a task,
how typical it is for the task or even the frequency of certain actions. Figure 7.4
illustrates the decomposition hierarchy of the goal structure of TKS and its relation to the
object structure through the task actions. The goal structure also describes logical and
temporal relations between task components, e.g. the user must perform either of two
sub-tasks, or both, an action may be optional, the tasks must be performed in sequence,
or in any order, etc.

7.4.2 Formal representation of the temporal structure of a task

The temporal relations between task activities can be described by the standard LOTOS
process algebra operators. The LOTOS operators and their meaning in the context of

Figure 7.4. The main elements of TKS. Single lines indicate decomposition of task
activity. Dashed lines indicate that an action is applied to an object.

Chapter 7 Using the ADC model

197

task specification are summarised in table 7.5. In [128] this use of LOTOS was
introduced and some limitations of LOTOS for specifying the TKS goal structure were
noted. LOTOS, as most formal languages, is obscure to the untrained and so difficulties
arise regarding the validation of the model by users. As a task modelling notation it
would benefit from some ‘syntactic sugaring’. For example, [120] identifies the need for
notation to represent the relationship between a set of subtasks that all have to be
executed and completed without interruption, but where there is no preference or
constraint as to the order of their execution. This relation between goals can be specified
in LOTOS but not in a concise form. Further, LOTOS does not model true concurrency
which can be useful to represent parallel tasks [108, pp. 174]. On the other hand,
LOTOS is a powerful and standard notation with a well defined theoretical framework
for reasoning about specifications and tool support for their manipulation. Tools support
the symbolic simulation of specifications, which can assist the validation of the task
model, their verification, and their testing.

The hierarchical representation of the goal structure, as in figure 7.4, can be extended
with special nodes indicating the temporal ordering between the subgoals and actions of
the task, giving a simple graphical notation for the task specification. The interested
reader is referred to [127] where such a notation is introduced. A variant of this notation
is supported by the Adept toolset [111]. More recently, Paternó and Mezzanotte [152]
have used a similar graphical and formal representation of task knowledge for the TLIM
method. The formal representation of TKS described here, can be used in the same way
as the TLIM task model, with the difference that the components of the task model are
derived by an explicitly defined method for the knowledge analysis of tasks [109]. The
framework for relating the interface and task models which is discussed in the following
paragraph, does not in itself require the use of the TKS model. Alternative descriptions
of the task decomposition and temporal ordering could be used in a similar way.
However the TKS model provides a clear link with task analysis and a psychological
basis for the entities described.

Operator Meaning in terms of the task model

<action>; B Perform <action> then perform task B.

[b] -> B If the Boolean expression b is true then perform B.

A [] B Perform A or B

A ||| B Tasks A and B are independent of one another, but can be
performed simultaneously: they are multi-threaded

A >> B Completing task A enables task B.

A [> B Perform A until its termination, unless at some point B has to be
performed thereby interrupting A.

A|[a,b,...]|B Tasks A and B synchronise over actions a, b,.... For example, A
may trigger B through action a.

Table 7.5. The meaning of LOTOS operators in the context of task modelling.

Chapter 7 Using the ADC model

199

7.4.3 Task based design and the property of task conformance

The requirement that an interactive system should be designed with due consideration of
the user tasks has been called task conformance. Abowd et al. [2] propose a structured
classification of properties for the principled design of interactive systems. According to
[2] task conformance pertains to two questions:

• Task-completeness: Does the system address all of the tasks of interest?

• Task-adequacy: Does it support the users’ tasks as the user understands them?

This description gives an indication of the issues involved but is rather ill-defined.
While there are several theories as to how users understand their tasks there has not yet
been a clear and widely accepted statement of principles concerning the mapping of task
models to interface models [189]. This issue was raised in [122], where it was suggested
that the relationship between task and interface model needs to be explicitly defined. In
order to reach a formulation of task conformance it is instructive to examine a family of
design approaches, which advocate the prescriptive use of task knowledge
representations in the design of interactive systems. These are called task based design
approaches.

Task based design emphasises the importance of understanding users’ current tasks, the
requirements for changing those tasks and the consequences that a design can have on a
task [189]. Task models provide the focus for generating designs and help ensure that
novel design ideas are motivated by a user-task perspective. Task based design
approaches, e.g. CLG [135], TMM [89], Adept [188], ETAG [79], MUSE [114], and
TLIM [153], etc., prescribe a design process by a set of models, their content, and
notations for their representation. Figure 7.5 outlines the process of task based design as
a progression between the models it involves. A task analysis of user task knowledge
prior to the creation of the system design produces a model called the current task
model. This model is the starting point of the design process. In task based design the
task is redesigned and the result of this design activity is called the envisioned task
model. This model describes how work tasks could be achieved with the introduction of
the designed system rather than the operation of the system as such. The design
proceeds with a specification of the interface to support these tasks, the interface model.

This is a simplistic
description of task based
design which does not
portray the structure of
the models, their
evaluation and the
iterative nature of

interface design. However, it helps describe some of the issues involved in task based
design and it was for this purpose that it was introduced in [189]. Most task based
design approaches mentioned are refinements of the process of figure 7.5, although not

Figure 7.5. Overview of task based design (adapted from
[189]).

Chapter 7 Using the ADC model

200

all distinguish so clearly between current and envisioned tasks. Most do not describe
explicitly how to progress from one model to the other. Wilson and Johnson [189]
attempt to draw out and make explicit ways of using three types of knowledge
represented in a task model to progress from the current task model to the interface
model: the structural properties of user task knowledge, knowledge of task actions and
objects, and the task sequencing knowledge. Their main recommendations are
summarised below.

1. The structural knowledge of the user, i.e. the decomposition of a higher level tasks
to lower level task components must be reflected in the structure of the user
interface. The structure of the user interface pertains to ‘groupings’ of interactors.
Components of the interface model that correspond to closely related components of
the task model (goals, subgoals, procedures, actions, objects) should be grouped
together in the user interface display. Grouping should be strongest at the lowest
level of task activity, i.e. the actions associated with the same task component
should be closely related in the interface.

2. Actions in the task model should be mapped to commands that the user will issue to
the system. Additionally, objects suggest the types of information that may be
manipulated by the commands. Therefore task objects and task actions may be
directly supported by interactors. Complex objects may be supported by groups of
interactors. The user interface design should support objects and actions to the user
at an abstraction level determined by the task model.

3. The interface model should not violate task sequencing knowledge, i.e. it should not
force the users to perform their tasks in a different order than that of the task model.
This sequencing may be relaxed but the grouping of the interface components
should still reflect the task model.

There are more possibilities for using task models to inform user interface design. For
example, interaction tasks may be associated with some costing, leading to predictions of
performance or mental workload as, for example, with the GOMS approach [32].
Relating task sequencing to a theory of errors may enable the designer to foresee how an
interface design may be prone to erroneous interaction sequences, e.g. [71].

7.4.4 Relating task and interface representations

The ADC interactor model and the TKS formal model are expressed in the same formal
framework but they are concerned with entirely different domains. Mappings between
entities in the task model and those of the interface model are drawn using a conceptual
framework which relates the two models.

The task model is by definition an abstract representation of user task related knowledge.
Task actions determine an abstraction level at which the task can be related directly to
the interface model. The assessment of an interface with respect to a task must abstract
away from entities and behaviours related to lower levels of abstraction. In the

Chapter 7 Using the ADC model

201

framework of the ADC interactor model, this is achieved by studying interactors of the
appropriate levels of abstraction, i.e. whose input and output actions correspond to task
actions directly. For example, the actions of an interactor modelling the cursor of a text
editing program are too low level to correspond to actions of the task of writing an
article. On the contrary, the task action of setting the volume on a multimedia
application can be mapped to the interactions with the volume control interactor of
section 7.3.

Task knowledge may describe the users’ work at a macroscopic level, which can involve
many computer systems and persons and it can span over a long period of time. For
example it may describe how to organise a meeting, to control the flow of airborne
traffic over a given geographic area, etc. Task knowledge may also concern a small
segment of activity, even the operation of a machine through physical actions, e.g.
selecting an object on a drawing package, operating an automatic teller machine, etc. A
point that has been stressed repeatedly throughout this thesis is that, similarly, the
concept of an interactor applies to a wide range of abstraction levels. It may be the
means to effect application functions, e.g. printing a document, changing the instructions
to a pilot in an air traffic control system. It may also be an abstraction of a device,
mapping physical actions to logical commands, e.g. keyboard, mouse, etc.

The general idea of relating tasks to interface models is illustrated in figure 7.6.
Abstraction levels for interactors range over the components of the Arch model reference
model. Tasks which model the intentions of the user are characterised as external tasks.

Figure 7.6. A framework for relating task and interface
representations. Mappings between them at a given level of
abstraction assume the operation of lower level entities.

Chapter 7 Using the ADC model

202

Internal tasks describe how external tasks are achieved by using the system [108, pp. 6].
There does not need to be a one-to-one correspondence between the abstraction levels
indicated for tasks and interactors. At the lowest abstraction level which describes
physical interaction, perception and elementary motor movements by the user can be
related directly to interaction with physical input devices. For example, studies of
physical interaction by Card et al. [31] and Accott et al. [5] deal with this level. At the
highest level of abstraction for the user interface, individual actions refer to abstractions
of application functionality. Task descriptions may extend to tasks of the work domain,
i.e. the world in which work originates, is performed and has its consequences [50]. In
this world the user uses a computer to solve problems, although not all the tasks need to
be directly supported by the computer.

Links between the task and the interface models can be drawn at any such abstraction
level. If a task and an interface model are studied at an abstraction level N, it is
implicitly assumed, that the interaction required to carry out the task is achieved via the
immediately lower level of interaction N-1. For example, selecting a frame from a video
sequence, may be considered as a basic action for the task of writing an article, for which
the image obtained is used as an illustration. The details of how it is achieved, e.g. in
terms of viewing a movie frame by frame and invoking the selection function for a
frame, are not explicitly described in the corresponding task model.

Figure 7.6 does not imply a particular design strategy nor does it prescribe a standard
set of abstraction levels through which the design should proceed in a top down fashion
(cf. CLG [135] or the TMM method [89]). A similarly coupled view of user and system
model is proposed by Barnard and Harrison in [12]. Contrary to their ‘interaction
framework’, the framework of figure 7.6 does not aim to model the course of interaction
or the psychological phenomena taking place as it unfolds. It is simply a conceptual aid
for mapping task related requirements to the interface specification.

The discussion below focuses on the preservation of task sequencing information
between the task and the interface model. The formalisation proposed describes a partial
requirement in the transition from the envisioned task model to the interface model.

Figure 7.7. Drawing mappings between task and interface models.

Chapter 7 Using the ADC model

203

The level of abstraction at which the comparisons are drawn restricts the study of the
interface model to a subset of the interactors, only those of a higher level of abstraction,
and a subset of the interaction gates, only those that support input/output and
synchronisation with interactors of lower levels. This idea is illustrated in figure 7.7.
Interactions on other gates can be considered as ‘internal detail’ which is not directly of
concern for the comparison with the task. For example, if the interface is modelled at
the interaction toolkit level, input refers to pressing the mouse buttons, moving the
mouse, etc., and the output refers to the appearance of interaction toolkit components,
e.g. highlighting a menu item, checking a check box, etc. At a higher level of
abstraction, the output might be to display a document, to output a set of values, etc. If
the interface is described as a composition of interactors, only interactors of level of
abstraction higher than of the selected set of gates need to be considered. Let G be the
set of gates over which the interactions with the interface are observed. The interface is
modelled by the following expression:

IMG := hide all but G in IM 7.27

Some interactions may correspond to the same task action. For example, in the case
study of chapter 5 there are many alternative ways to start Simple Player™, e.g. via the
play/pause button, double clicking on the display, etc. All these alternatives must be
renamed to indicate their correspondence to task actions, with a renaming R I:G a L. The
interface model becomes IMR=IMG[RI(G)].

Let A be the set of all task actions that have a direct correspondence to interface actions.
The correspondence of task actions to the actions of the interface model can be
represented by a mapping RT:A a L. Some task actions may not correspond directly to
an interaction. For example, they may represent user decisions or simply task actions
which are not supported by the interface, e.g. telephone communications, etc. The
interface model should not support corresponding interactions but these actions are
significant in describing task sequencing.

There may be gates in G that do not correspond to a task action, e.g. representing tasks
actions introduced in order to control the user interface. A different task requirement
results if these interactions are modelled explicitly or not. If an idealised description of
the task is adopted which does not include these actions, a comparison with the interface
has to consider the relevant interactions as internal detail. The comparison of the
interface to the task specifications will reveal the feasibility of performing task actions in
the specified sequencing but ignoring ‘interaction tasks’, e.g. bringing the system to the
appropriate mode, house-keeping of the interface, etc. In the discussion that follows, it
is assumed that the envisioned task model has been extended to incorporate internal tasks
necessary to interact with the interface modelled by IMG, so the mapping RT may be
considered surjective. The task model describes what is an acceptable interaction with
the system to perform the required tasks, and the comparison of the interface model to
the task model portrays the fit of the interface to this task description. The task model is
renamed according to the mapping RT, so it is represented as TMR=TM[RT(A)]. The
interface model IMG and the task TMR are both modelled as LOTOS processes or, more

Chapter 7 Using the ADC model

204

generally, as labelled transition systems, so the next question that arises is how to
compare them formally.

7.4.5 A formal definition of task conformance

The choice of the mathematical relationship required between the two models should
reflect on how a human observes a computer system during task performance and how
the human compares observed behaviours. Defining what is an observation and how its
outcome may help distinguish or identify systems is a hard problem, even for the
traditional applications of formal methods that are not concerned with human cognition
and behaviour. Various researchers, e.g. Brinksma [29] and de Nicola [45, 47], discuss
alternative models of observing and comparing of system behaviours. Each method of
comparison offers different ‘discriminating power’ between system specifications. The
appropriateness of these concepts varies with their intended use.

In chapter 6, bisimulation equivalence and some of its variants, e.g. strong, weak,
φ−bisimulation, etc., were used to relate the input and the output forms of
transformations (their definitions can be found in appendix A.1). This was appropriate
in that context to establish the strongest (useful) relation between the input and the
output forms of the transformations. Paternó [148] compares user interface
specifications with respect to observational equivalence [133], comparing the specified
interaction with the functional core or with the user. However, for reasons discussed
extensively in [45], observational equivalence is too strong a requirement for comparing
user interface systems. It discriminates systems which can not be distinguished on the
basis of their interactions with external stimuli. A weaker comparison is to compare just
the traces of a process. In the context of comparing two interfaces, this means that two
interfaces that offer the same sequences of actions starting from their initial state, but
offer different options as the interaction unfolds will be considered equivalent. Clearly,
the comparison of interfaces should use a more discriminating method than the
comparison of traces and a less discriminating method than observational equivalence.

A comprehensive review of the various proposals for comparing system behaviours and
a cognitive theory of how users perceive and compare interface behaviours are outside
the scope of this section. The reader is referred to [45, 10] for an extensive treatment of
the topic. Another important issue is to choose carefully which actions to consider in
comparing behaviours and how they are interpreted with respect to the actual interaction
phenomena. For example, if output actions are modelled, is it assumed that the user
always perceives what is output by the system?

The formal concept of conformance [27] is proposed here as a suitable relation for
comparing interface to task model, which embodies the intuitions regarding the
preservation of sequencing information during task based design. A formal framework
for comparing interactor specifications with respect to their responses to finite
deterministic tests is summarised below. The reader is referred to [117] for a more
comprehensive presentation of this testing theory.

Chapter 7 Using the ADC model

205

Definition. Conformance of behaviour expressions.

Let Q1 and Q2 be processes and let L be the set of all possible labels for all LTSs.

Q1 conf Q2 if

∀σ ∈Tr(Q2) ∧ ∀A ⊆ •

if ∃ ′ Q 1|∀α ∈A • Q1 ⇒σ ′ Q 1 / ⇒ α then ∃ ′ Q 2|∀α∈A • Q2 ⇒σ ′ Q 2 / ⇒ α
7.28

If Q1 can perform some trace σ and then behave like a process ′ Q 1 and if Q2 can perform
the same trace σ and then behave like ′ Q 2, then the following conditions are required:
whenever ′ Q 1 refuses to perform an action α from a set A then ′ Q 2 must also refuse every
action in A. In other words, Q1 conf Q2 means that testing the traces of Q2 against the
process Q 1 will not lead to deadlocks that could not occur with the same test performed
with Q2 itself.

A formal expression for task conformance can now be written as follows:

IMR conf TMR 7.29

This expression means that a user interacting with an interface, that behaves as IM, will
not reach an impasse when performing a task, as described in TM, when task actions in
A can be related to interactions on gates G of the interface, via two mappings RI and RT

as in the previous section.

IMR may specify behaviours which are not specified in TMR, in other words, the task
model is a partial specification of requirements for the interface model. Conformance is
an appropriate relation for comparing the task and interface models, because it is not
symmetrical and also because it is sensitive to the non-determinism that results from
hiding the internal behaviour of the user interface. What is primarily required from the
interface model is that all tasks specified in the task model are possible. Therefore the
interface should conform to the behaviour specified by the task model and the mapping
R. However, it is not required that an interface model be limited to the tasks described
by the task model. Conformance can be verified through a comprehensive deadlock
analysis, but perhaps more interesting for practical purposes it can be tested [27]. A set
of tests can be constructed from the task model and they can be applied to the formal
specification of the interface or to the actual interface software without knowledge of its
internal structure.

Testing compares systems with respect to their response to a set of finite sequences of
interactions with the environment, the tests. A formal definition of conformance, due to
Brinksma [27], which is based on testing is summarised below.

• A test suite is a set of processes which are called test cases.

• Let σ∈A* and T be a test case. A derivation T||Q⇒σ T'||Q' is a test run of T and Q.
A test run is completed when T'||Q'~stop.

Chapter 7 Using the ADC model

206

• A completed test run is successful if its last event prior to terminating is a reserved
event success signifying successful termination. A completed test run fails if it is
not successful.

• A test case T is successful, denoted as Succ(T,Q), if all test runs of T and Q are
successful. A test suite is successful if all its test cases are successful.

• Let S be a process and Q be the set of all possible processes. The canonical tester
of S is a process T(S) such that

Tr(T(S))=Tr(S) ∧∀Q∈Q | Q conf S iff Succ(T(S),Q) 7.30

It has been shown [27] that for all LOTOS process specifications there exists a canonical
tester. The details of the generation of the canonical tester are not given here. Various
algorithms and tools have been proposed to solve the problem for test generation, e.g.
[117, 69, and 184]. The generation of the canonical tester is supported by LOTOS
general purpose tools [30, 119].

Verification of task equivalence

An interesting property of the canonical tester is that it relates testing and verification.
In [27] it is shown that by the definition of the canonical testers it follows that Q1 conf Q2

if every deadlock of T(Q2) || Q1 can be explained by T(Q2) having reached a terminal
state, i.e.

Q1 conf Q2 if

∀σ ∈Tr(Q2)|∀α∈ A •

if T(Q2)||Q1 ⇒σ T(′ Q 2)|| ′ Q 1 / ⇒ α then T(Q2) ⇒σ T(′ Q 2) / ⇒ α
7.31

Thus task conformance can be verified by a deadlock analysis on the parallel behaviour
expression T(TMR) || IMG. If there is a trace leading to a deadlock of this expression, but
not for T(TMR) on its own, then the interface model is not conformant to the task model.
If all deadlocks of the synchronous composition T(TMR) || IMG are also deadlocks for
TMR alone, then the interface model conforms to the task model. Deadlock analysis can
be carried out by the Caesar/Aldebaran toolset [68]. The Aldebaran tool may be used to
detect deadlocks of an LTS, also providing as a diagnostic the trace that leads to the
deadlock. However, this may not be desired because of the size of the models which
may be prohibitive, or because it is preferred to test the actual software rather than its
formal specification. In practice, it is unwieldy to compare the sets of the traces that lead
to deadlocks for two specifications, as this comparison is not directly supported by the
general purpose tools for LOTOS and it has to be done by hand.

Chapter 7 Using the ADC model

207

A practical method for testing task conformance

An alternative to comprehensive deadlock analysis is to generate a finite set of tests that
give a reasonable coverage of the behaviour of the canonical tester. These can be tested
against the interface specification on a specification test bed such as the LOLA tool
[156]. Also the tests, or rather the implementations of these tests, can be applied directly
to the actual interface system. Note, that in this case passing a test does not mean that
the interface software or its formal model actually conforms to the task model, since the
interface may be non-deterministic. Each successful test case is an indication (only) that
the system is conformant. A failed test case means that the system is not conformant to
the task.

A practical method of testing the task conformance of an interface model can now be
outlined:

1. Select a level of abstraction for studying the task in question and define the interface
model as the composition expression involving interactors of a higher abstraction
level. Determine the set of gates G through which lower level interactors
communicate with the selected interactors. Define the correspondence of task
actions to interface actions by the mappings RT and RI. These mappings are
specified through the renaming of the gates of the specifications TM and IM.

2. Produce the ‘canonical tester’ T(TMR), e.g. using a test generation tool like
COOPER [30, 184]. Let CT = T(TMR). Hide all gates of the task model which do
not correspond to interactions with the user interface.

3. From CT produce a set of finite tests Ti, with i:1..n, that the interface specification
will be tested against.

4. Run the tests against IMG. Testing may be performed on a test bed tool, like the
LOLA component of the TOPO toolset [156]. A full exploration of the synchronous
composition of a test ti against the interface model should give a ‘may’ outcome
after a full exploration of all behaviours.

Conformance is not a pre-order relationship [29]. This means that when an interface
specification IM1 conforms to a task model TM, and a more detailed model of the
interface IM 2 is specified that conforms to IM 1, then IM2 does not necessarily conform to
TM. Testing is promising as a practical framework for the validation of an interactive
system with respect to task requirements. A test suite can be expanded and refined with
implementation constructs during the development of an interactive system. A
realisation of a formally specified test suite may be used to test the realisation of the
system, possibly with the involvement of users. Testing can thus link the formal
specification of interfaces and tasks with other stages of the development of the user
interface. A small set of tests of finite size may reveal interesting problems with an
interface design and can focus the attention of the designer on the behaviours required by
the task model. In comparison, model checking requires the generation and
manipulation of quite sizeable models even when very small specifications are

Chapter 7 Using the ADC model

208

concerned. A practical question that arises, is how to choose an effective set of tests that
provides a good coverage of the task behaviour and is economical as well. This issue is
a subject of future work and is not addressed here.

Interactions which do not relate directly to task actions are a source of design concern.
At one level they may be abstracted away from, encouraging the current and the
envisioned task models to be described independent of the tools that support the task.
The corresponding gates can then be considered internal detail of the interface model for
the comparison with the task. In this case, conformance pertains to whether task
sequencing is preserved without respect to intermediary interactions, e.g. changing
modes, navigating through screens, etc., which are crucial to describe the interaction
tasks. When such interactions are explicitly modelled in the task model the conformance
relationship reveals differences in the way the interaction dialogue hinders or supports
the task sequencing described in the task model.

7.4.6 Example: Testing for task conformance.

The remainder of this section demonstrates how a model of a task may help assess two
interface designs. The task is fabricated for the purposes of the discussion. It is
envisaged that this type of assessment should follow a task analysis. The exemplar task
is to produce a small text, e.g. an invitation to a party, which has already been composed
with a word processor. The imaginary user experiments with the typesetting, i.e.
changing the fonts, letter sizes, column layouts, margins, etc. The task is performed with
the Microsoft Word application. The example compares how versions 5.1 and 6.0 of
Microsoft Word fare with respect to the particular task. Both versions have the same
functionality as far as this task is concerned but their interfaces are different. In reality,
the two versions are distinct applications whose functional core offers different
functionality. However, this difference can be overlooked here since the functionality
accessed through the two interfaces is the same.

For brevity, the task description is restricted to changing the orientation of the page,
which is effected through the ‘page set-up’ dialogue box of Word, and changing the
margins, which is effected through the ‘document layout’ dialogue box or by direct
manipulation on the ‘print preview’. Print preview is an operating mode for the word
processor, in which the text is displayed to resemble its appearance in printed form. In
this mode the user cannot modify the text content of the document, as is possible in the
standard mode of a word processor, (the ‘Normal View’ or ‘Page Layout View’ of
Microsoft Word). Unlike Word 5, Word 6 lets the user set the margins and the
orientation of the document in the preview mode as well as in the standard mode.

Chapter 7 Using the ADC model

209

Figure 7.8 illustrates the goal structure of this simple task, annotated with LOTOS
operators to indicate their temporal ordering. The task produceInvitation is defined with
three subtasks observation, typeset and terminate, which are performed in sequence
(operator >>). The subtask observation involves the interaction preview and the task
action observe performed in sequence (the arrow between the two actions stands for the
action prefix operator). Typesetting is described here as a choice of two actions setting
the margins and setting the orientation. The subtask termination is where the user
decides whether to make more changes, in which case the task is repeated. If the user
decides that the result is satisfactory then the task terminates. The LOTOS specification
of the goal structure is as follows:

process produceInvitation[...]: exit:=
observation[preview, observe] >>
typeset[margins, orientation, observe] >>
terminate[margins, orientation, preview, observe, satisfied, close, decideAChange]

endproc
process observation[preview, observe] : exit :=

preview; observe; exit
endproc
process typeset[margins, orientation, observe] : exit :=

margins; observe; exit
[] orientation; observe; exit
endproc
process terminate[margins, orientation, preview, observe, satisfied, close, decideAChange]:exit:=

decideAChange; produceInvitation[...]
[] satisfied; close; exit
endproc

The task is defined recursively, so possibly infinite cycles of activity follow from the
above description. The task action observe is mapped to interactions on gate showPrv.
The actions satisfied and change represent user decisions and have no image on the
interface model. A set of finite tests were derived (manually) with the process described
in the previous paragraph. Each is a finite sequence of steps ending with a success

Figure 7.8. Diagrammatic illustration of the task ‘produce invitation’.

Chapter 7 Using the ADC model

210

event, to signify the successful termination of a test. For example, the tests t1 and t2
below have been derived from the canonical tester.

process t1[preview, observe, margins satisfied, close, success]: exit :=
preview; observe; margins; observe; satisfied; close; success; exit

endproc
process t2[preview, observe, orientation, satisfied, close, success]: exit :=

preview; observe; orientation; observe; satisfied; close; success; exit
endproc

The test t1 describes a task action sequence where the user observes the preview display,
sets the margins in any of the two ways supported, checks the result of this action, is
satisfied by it and terminates the task. The task action satisfied must be hidden so the
actual test for the interface model is:

hide satisfied in t1

For both versions, the interface is modelled as the parallel composition of two
interactors. Interactor word5 (respectively word6) models the standard interface to the
word processor during editing operations. In the particular word processor, this may be
either the ‘page layout view’ or the ‘normal view’ of the edited document. In both
versions, the final result can be inspected through the preview facility, which is modelled
by the interactor preview5 (respectively preview6). The difference between the two
versions is that in Word 6 the document layout and page orientation dialogue boxes, can
also be accessed through the preview interactor, along with all editing operations that
apply to the whole document.

The interactor labelled word5 in figure 7.9 may invoke the interactor preview5. This is
achieved via a control gate that is connected to the start and resume (formal) gates for
the latter. Word5 also sends data to preview5 through gate w5ToPrv. Changes to the
document effected via the preview5 interactor, are communicated to word5 through the
gate prvToW5. The suspend gate of the preview5 interactor is connected to a control
gate of word5. The specifications of word6 and preview6 are very similar. The only
difference is that preview6 receives also orientation information from the ‘page set up’

Figure 7.9. The specification architecture for Word 5 and Word 6. Word 6 supports
interaction to set the margins and the orientation, even through the preview interactor.

Chapter 7 Using the ADC model

211

dialogue box. Relevant changes will appear in the data type specifications of preview6
and the controller component.

Testing t1 against version 5 shows that it may succeed while t2 is rejected, indicating
that version 5 does not conform to the task produceInvitation. The result is ‘may
succeed’ for both tests with version 6. This is a positive indication for task conformance,
although not definitive, given that the test suite is only of a finite size.

7.4.7 Related work

The concept of a task-template [160, 161], discussed briefly in section 3.5, was an
attempt to relate system models to models of user’s tasks. Task-templates can be
thought of as ‘filters’ that select those elements of a system specification which are
necessary to perform a task. In association with the state-display model they provide a
framework for an analytical use of task representations. The ‘syndetic’ model of [63]
uses interactors to model an interactive system and also as a representation of a user,
informed by the Interactive Cognitive Subsystems theory [11]. This syndetic model
provides a formal framework for analysing the cognitive component of interaction in
terms of the mental resources needed to use a device for a specific task.

In contrast to these analytical and theoretically motivated approaches, [147] draws
parallels between two formal methods for design, which relate representations of user
tasks with system behaviour. These two methods are called TLIM and MICO. TLIM
[153] uses a formal specification of the user’s tasks in the LOTOS formal specification
language. The task model specifies the temporal relationships between component tasks
using LOTOS, in a very similar fashion to the formal representation of TKS described
previously. The system is modelled as a composition of interactors using the interactor
model of [150]. The task specification is mapped to the interactor-based description by
means of an algorithm which aims to ensure the compliance of the system to the task
constraints. TLIM generates an architectural design from the task specification so the
task model may be seen as a very abstract system specification.

The MICO design method models tasks and systems using the Interactive
Communicating Objects formalism ICO [145] which is based on Petri-Nets. MICO does
not prescribe how the system and the user model are derived, but it suggests that the
design of the system involves the iterative re-design of both system behaviour and user
tasks. MICO supports this iterative design process, by providing a framework for
specifying formally the user interface and the user tasks. The two models are merged
into a single representation, which is analysed to determine whether the system conforms
to the task. The ‘semantic consistency’ of task and interface model is verified in the
MICO method [146] by a deadlock analysis of the combined task and interface
representations. This corresponds to deadlock analysis on the expression TMR || IMG,
which verifies the feasibility of completing the task rather than that task sequencing is
supported by the interface model.

Chapter 7 Using the ADC model

212

The formal framework proposed in this section shares some characteristics with the
related approaches mentioned. The ADC interactor model is similar to that of the [150],
so the method discussed in this section could extend also to that interactor model. Like
the syndetic model of [63] it adopts a psychologically informed method for describing
aspects of user cognition. However, it does not do so with the aim to provide a model of
the interaction of system and user, nor does it use the task model as an abstract
specification of the system. Rather, as is the case with the MICO method, the two
models are developed independently. The formal framework enables their combined
analysis to ensure the conformance of the user interface design to a given task model.
The approach presented in this section places its emphasis on defining this notion of
conformance. This definition is informed by the consideration of task based design
approaches, which try to ensure the conformance of an interface design to a task by
process, rather than by an explicit formulation of the conformance relationship.

Paternó et al. [155] report the combined use of interactor models and task models in
order to evaluate an interface design. They describe a prototype system for logging user
interactions and mapping these logs to user tasks via mappings derived from the user
interface software architecture. While it has different objectives, the research of [155] is
further testimony that models of interactors and tasks can play a bridging role throughout
different stages of the design activity.

7.4.8 Discussion

The discussion on task based design has focused on how it supports a progression from a
task model to an interface model, and in particular on how task based design aims to
support task sequencing. The definition of the task conformance requirement is
determined by two main hypotheses:

1. The formal notion of conformance captures the required relationship between task
and interface model. Few attempts have been made to explicitly define this
relationship. A rare example, is the MICO method [146, 147], mentioned above,
which seeks to establish deadlock freedom for the combined task and interface
behaviours.

2. The task and the interface models are compared at the level of abstraction
determined by the task model, which in turn is defined by the task analysis.
Interactors of lower abstraction levels are ignored and behaviours internal to the
interface model are abstracted away (as illustrated in figure 7.7). Similarly, the
relationship between task and interface model relates explicitly task and interface
actions. All other task actions are a source of non-determinism as far as the system
is concerned, e.g. the user makes a commitment to a particular course of action
which is not ‘known’ to the interface.

The set of tests produced from the task model may be used to test different interface
designs and at varying levels of abstraction. Testing in this sense may be associated with
techniques from the domain of human computer interaction. A suite of tests derived

Chapter 7 Using the ADC model

213

from the task model may benefit the evaluation of user interface designs, in combination
with systematic evaluation techniques as, e.g. user testing [186], cooperative evaluation
[134], etc., which rely on either users or designers working through a predefined set of
tasks. The approach described hereby could help generate systematically the required
suite of task action sequences from the task model. The addition of concrete detail to
test cases is an interesting aspect of testing, e.g. specifying data exchanged with
interaction, the information to be extracted from the display, upper limits on the response
time, etc.

By adding concrete detail and contextual information about the situated work of the user,
a test may be developed to a user interaction scenario. A scenario is a concrete
description of what people do and experience as they perform a specific task using the
designed computer system. Scenarios can be used in many ways during the development
of an interactive system. Most relevant to this section is their use for evaluation.
Nielsen [141] discusses the use of scenarios in combination with heuristic evaluation.
Heuristic evaluation is a highly informal usability inspection technique, where a set of
expert evaluators inspect a user interface in order to generate a list of usability problems
in the interface. This inspection is normally not associated with a set of scenarios which
can constrain the evaluator. However, to support the design of highly domain dependent
interaction [141] recommend using a set of scenarios derived from a task analysis.

The approach presented has put a lot of emphasis on the use of tools to support the
construction and validation of the models, their verification, etc. Tools support the
generation of tests only in part, mainly because from the canonical tester it is possible to
derive an infinitely large set of tests. An important practical question is how to select the
most interesting tests, and having performed some tests how to use their results to
determine which other tests to perform. From the point of view of task based design it is
most important to establish principles to help prescribe the mapping R between task and
interface actions and to determine how the envisioned task model is designed from the
current task model.

7.5 Conclusions

Several uses of the ADC model have been discussed in this chapter. They reflect on
some of the main themes of formal methods research in the context of human-computer
interaction. The purpose of the discussion has been to show the versatility of the ADC
interactor model that enables different approaches to be integrated in a single conceptual
and formal framework.

Section 7.1 revisited the concept of generative user engineering principles (GUEPS) for
user interface design. This concept has influenced much of the early research work in
formal aspects of human computer interaction. Formulations of GUEPS in terms of the
ADC model were proposed in the framework of LTS. The expressions follow the
general classification scheme of Sufrin and He [169], although slightly different
interpretations of the relevant properties are proposed. The verification of this class of

Chapter 7 Using the ADC model

214

properties poses problems mainly because of the size of the LTS representations of
interface specifications. Rigorous reasoning seems to be a more viable alternative.
Consequently, it seems that this class of properties are more appropriately defined and
verified with more abstract, and therefore economical, specifications.

The verification of dialogue properties is a more tractable problem. In terms of
expressive power and of the possibilities for verification of this class of properties,
interactor specifications do not offer more expressive power than traditional dialogue
representations, e.g. PPS [142], Statecharts [81], etc. They offer, though, a conceptual
framework for the specification of these properties. The specification of dialogue
properties is facilitated by the standard structure of the interactor. Rather than inspecting
a monolithic dialogue model to define or verify properties, the expressions presented
relate classes of actions easily identified with the interactor model. The expression of
dialogue properties using a branching time temporal logic, and their verification using a
general purpose model checking tool, constitute a workable verification method,
introduced with the Pisa interactor model. The relevant expressions were easily
reformulated in terms of the ADC interactor model. Further, it was argued that the
compositionality property of the interactor model may help formulate dialogue
properties for complex interfaces that are composed by many interactors. An alternative
to the use of a temporal logic was illustrated, which is to specify dialogue properties in
LOTOS and verify the equivalence of the interface specification with the required
property specification.

In the final two sections the ADC interactor model was discussed as a design
representation used within a top-down design of the user interface and in a task-based
design approach. The examples presented were brief and only serve to illustrate the
potential of the interactor model. As with the verification of dialogue properties the use
of tool support is necessary for anything but trivial examples. Without such tool support,
few claims can be made regarding the practical benefits that the ADC model offers in
those contexts.

In all four sections, of this chapter a constant theme has been the use of established
methods and tool support. The obvious advantages of this policy is that technology
currently available is used and future developments of this technology will benefit this
research. Apart from the verification of dialogue properties of a user interface, existing
generic tool support has not met the requirements for the problems discussed. For
example, the automatic verification of display predictability in section 7.1, requires some
operations (simple graph search and comparison of nodes) not offered by the tool
support discussed. As discussed in section 7.1 observability would require more
sophisticated mappings between related LTS. Stepwise refinement was demonstrated
through examples edited by hand. It was mentioned already that tools need to be
developed to support the automatic transformation of ADC specifications. In the case of
task conformance, verification relied on the comparison ‘by hand’ of the diagnostics
given by the model checking tools. Even for test generation, the test cases must be
written by hand to eliminate the recursion in the canonical tester. In some cases what is
required is that current tool support be extended to accommodate the specific problems

Chapter 7 Using the ADC model

215

discussed, e.g. for verification of predictability and observability properties, for test
generation, etc. In other cases, like in the case of applying transformations it seems
necessary to develop special purpose editing facilities.

In section 7.4 the discussion addressed a topic with important repercussions for all other
sections. This is the choice of appropriate semantics to model the way users perceive
and compare temporal behaviours, e.g. bisimulation, trace, failures, etc. Testing of input
and output of an interactive system was suggested as a reasonable approximation, but
clearly the choice of the appropriate semantics is a problem for research into the
psychology of the user. It seems to be an interesting research question, but as was
mentioned already, the answer depends also on what are the elementary actions for the
user and machine, so potential answers are particular to the system and user models
studied.

By adopting testing as a working approximation for comparing interface specifications, a
practical approach emerges for the testing of interfaces. In section 7.4, testing was used
as a means to establish the property of task conformance. Task conformance, as well as
other properties of user interfaces, may be modelled by finite sets of tests, which can be
progressively refined and updated and even tested against the realisation of the interface.
Whether this is a workable technique in the pragmatic world of user interface
development is still an open question. At least, the discussion of this section suggests an
interesting avenue for further exploration, that promises to bridge the gap between
theoretical models of human cognition, formal specifications of interface designs and the
practical concerns of user interface development.

216

Chapter 8

Conclusions

This chapter summarises the thesis and puts forward a list of emerging research
questions and some suggestions as to how future work can address them. The chapter
rounds up the thesis with a brief assessment of its contributions.

8.1 Summary of the thesis

This thesis has investigated the application of formal methods to the development of user
interface software. In particular, it has sought to establish appropriate abstractions for
describing user interface software and a formal scheme for their representation.

The approach taken to this research question has been to draw lessons from two research
fields which have proposed abstractions for user interface software. These are the fields
of user interface software architectures and formal models of interactive systems. A
standard specification language (LOTOS) was adopted for the specification of user
interfaces, to benefit from its mature theoretical foundation and existing general purpose
tool support. An important motivation for the thesis has been to develop a practical
scheme for the specification of user interface software. Reusable templates for the
specification of user interface software have been defined, which embody the general
characteristics of the proposed abstractions and which support the systematic reuse of
specification components and a compositional approach to writing specifications.

The thesis has focused on interactor models which are formal abstract representations of
user interface software at a detailed construction level. An important consideration has
been to map results and techniques originating with more abstract models of interaction
(such as those discussed in chapter 3) to this concrete level. The Abstraction-Display-
Controller (ADC) interactor model has been put forward as a formal abstraction that can
fulfil the role described. The thesis has described the requirements for the model, has
documented the properties of its formal representation and has discussed some of its
potential uses.

Chapter 8 Conclusions

217

The ADC functionality is described partly by the operations upon its abstraction and its
display state components and partly in terms of the dialogue it supports. These two
descriptions are linked by the architectural concept of a ‘gate’. A gate groups
interactions with a similar purpose. This can be to input or output data, to apply some
operations on the state components or simply to synchronise with other interactors
without any effect on the state parameters of the interactor. The temporal ordering of
interactions on gates is described in the controller unit. The abstraction, the display, the
operations upon them, the gates and the temporal ordering of interactions are orthogonal
dimensions for describing user interface software. This orthogonality can facilitate the
articulation and development of design decisions and the comparison of designs at an
informal level. The designer can use the ADC interactor as a conceptual framework to
construct a model of an interface and its components.

The ADC interactor has been specified formally as a template of a LOTOS process
definition associated with an abstract data type. The compositionality of the model has
been demonstrated by a set of theorems which describe transformations of LOTOS
behaviour expressions. A case study in the use of the ADC model was reported, which
tested the model and subsequently led to its improvement. The case study is a formal
specification of considerable complexity which describes a real software system.
Several uses of the model were discussed in chapter 7. This discussion stressed the
integrating role of the ADC model which enables the expression and verification of
properties of the user interface, in terms directly relevant to the interface architecture.
The use of the model for the stepwise refinement of an interface design specification to
its realisation was exemplified. Finally, the ADC formal interactor model was discussed
in conjunction with a psychologically based model of the users’ tasks to assess aspects of
the usability of a user interface design.

8.2 Discussion and Future Work

This section discusses the ADC interactor model from a variety of perspectives, raising
some issues for future research. The research agenda it provides is an important product
of the thesis. Some of the research questions raised are currently the subject of
investigation, as part of the ARAMIS (Applying Requirements on Architectural Models
of Interactive Systems) research project at Queen Mary and Westfield College. The
ADC interactor model has been adopted as the formal system model for this project.

Relevance of the ADC interactor model to implementation practices.

One of the early decisions of the reported research was that formal models of user
interface software should resemble user interface architectures. In chapter 2 several user
interface architectures were discussed and the ADC interactor model was shaped so that
it embodies some of their characteristics, e.g. modularity, orthogonal dimensions for its
description, etc. In particular, the compositionality of the ADC model is intended to

Chapter 8 Conclusions

218

resemble the compositionality of some of these informally defined architectures, e.g.
PAC [39], ALV [95]. An argument that can be levelled against this approach is that the
research models discussed in chapter 2, have had to date only limited impact on practical
user interface development. Presently, user interface development is based on the use of
toolkits and the technique of call-back functions. This questions the appropriateness of a
compositional model as a practical aid for the implementation of user interfaces.
However, there are merits to supporting compositionality: it helps conceptualise an
interface at various levels of abstraction, it helps structure an interface specification, it
assists the analytical use of the specification. The relevance and usefulness of
compositionality for developing user interface software remains to be tested with future
applications of the model, but eventually it may well depend on developments in
software platforms for implementing user interface systems.

The ADC model as a conceptual framework

This thesis has been concerned mostly with the formal representation of the interactor
model, but the importance and the utility of an informal description should not be
overlooked. There is a real need for less formal frameworks for describing user
interfaces as, for example, the User Action Notation (UAN) of [88]. This notation does
not have a formal syntax or a semantics, but there is some evidence that user interface
designers prefer UAN over other more formal representations like temporal logic and
Petri Nets [107]. A plausible explanation is that the scheme is easy to grasp and
highlights salient aspects of user interface software. Compared to UAN, the ADC
interactor model has the advantage of being modular and it has a direct mapping to a
formal representation. The ADC model has not been used independently of its formal
representation, but this use seems a worthwhile subject for future research. Such an
investigation may help bridge the ‘formality gap’, discussed in chapter 3, between design
requirements and their formal specification. Regarding the narrower objective of
developing the ADC interactor model, the use of the ADC interactor model as a
conceptual structure independently of its formal representation, will provide evidence of
the utility and validity of the model.

Object-orientedness and the ADC interactor model

The investigation of user interface architectures, in chapter 2, has identified the concept
of an object as an elementary architectural unit. Also, the concept of an interactor was
introduced, in chapter 3, as a specialisation of the more general concept of an object, in
the object oriented software engineering sense. The ADC interactor has been modelled
formally as a process rather than as an object. It is worth comparing an ADC interactor
to the general notion of an object and to assess whether this disparity influences the
appropriateness of the ADC interactor for the specification of user interface systems.

Interactors and objects alike are encapsulated specification entities which are capable of
interacting with similar entities. They each possess a set of operations and a state that

Chapter 8 Conclusions

219

records the result of the operations. The state can be accessed externally only through a
well-defined interface of the interactor (respectively the object) with its environment. It
has been suggested [40, 164] that the following concepts characterise object-oriented
specification languages:

• An object, considered as a unified notion of a module of specification. Objects have
to be encapsulated, i.e. they interact with their environment through a prescribed
interface. The language must support a standard model of communication.

• A class, considered as a collection of similar objects.

• Inheritance, considered as a programming/specification engineering technique by
which class definitions can be modified incrementally.

The notion of object based specification, or programming, is used for a language that
supports only the first of the concepts listed above. Clark [36] defines object based
specification in LOTOS as a specification style. A close examination reveals that it is
identical to the resource oriented specification style [180], described in chapter 3. This
definition characterises the ADC interactor as object based.

However, the concept of an object is not fully supported by the ADC formal interactor
model. Objects need to be created and destroyed dynamically at run-time, and this
notion of the lifetime, or existence, of an object with its own identity, should be reflected
in an object-based specification. An ADC formal interactor can describe the lifetime of
one interactor for which the connections and the context for its execution are specified
statically in advance. The ADC model does not readily generalise to an indefinite
number of objects following the same specification or whose configuration changes
dynamically. For this generalisation, the model must be extended so that starting an
interactor does not just start a process, but creates an individually identifiable instance of
the ADC interactor. Supporting the notion of an identity for the object implies also that
all interactions need to be associated with object identifiers for sender and recipient, to
distinguish between objects of the same class. These extensions are trivial to apply to
the ADC model and its transformations although they would clutter the specifications.
On the other hand, more effort is needed to define a scheme for managing dynamically
the connections between objects, and to model their dynamic creation and destruction.
This is a challenging task in the framework of LOTOS, which is intended to support the
specification of static configurations. A specification ‘style’ for supporting object based
specification in full LOTOS without the need for semantic extensions of the language
has been reported in [140]. The combination of such a scheme with the ADC formal
representation could be an interesting avenue to explore in the future.

Higher levels of object orientation, as characterised by Meyer [131, pp. 60], should
support the concepts of object classes and inheritance. The ADC interactor model does
not support inheritance, i.e. it does not provide syntactic operators to specify
incrementally a class of interactors by modifying the description of its parent classes.
Cussack et al. [40] have proposed an interpretation in LOTOS of the concept of
inheritance. This relationship is not preserved by syntactic composition operators of

Chapter 8 Conclusions

220

LOTOS so, they conclude, the language does not support object orientation. Some
extensions of LOTOS to support inheritance have been proposed [130, 163], but their
use is not widespread and it is not clear how they can benefit the specification of user
interfaces. Inheritance is more useful as a feature of the implementation environment
rather than for designing a user interface system. While it falls short of object-
orientation, the ADC interactor model supports modularity and encourages reuse, as was
pointed out in chapter 5. A more practical and better justified extension of the model
that should facilitate its use would be a scheme for reusing ADC components, e.g. the
polymorphic description of temporal constraints or a library of abstract data types. Their
development is the subject of future work.

Validation of formal system models

Chapter 5 discussed the limitations of the case study as a scientific assessment of the
model. It was argued that a thorough and objective evaluation of the ADC model shall
be feasible at a further stage of its development. However, this assessment on its own is
not the most important objective. Rather, more pressing questions concern the kinds of
notations, models and tools which are needed and the direction of future research. It is
more fruitful to test some of the assumptions and trade-offs incorporated in the model.
For example, are LTSs a sufficiently expressive model or should a more expressive
formal framework be adopted, e.g. to introduce true concurrency or time? Questions
about the validity of the ADC model arise as well, concerning the relevance of formally
specified or verified user interface properties to user interface development. Are
decisions made throughout the design process adequately modelled using ADC
interactors? Does the existence of an architectural specification facilitate the
development of the user interface? These questions can be answered by studying the
application of the model in forward engineering case studies, and by recording the
tension between the design questions that need to be resolved and the capabilities of the
modelling framework.

The question of the validity of the representations concerns also the analytical use of the
model. Analytical results from other formal models of user interface software, both
abstract and concrete, were reproduced in the framework of the ADC model. A criticism
that applies to the thesis, as well as to the previous research results it integrates, is that
they fail to establish the relevance of the properties modelled to the problem of user
interface design. Many of the research approaches cited propose alternative formal
models, discuss their features and their potential, and report exemplary applications in
designing user interfaces. However, what seems to be missing from current research in
the application of formal methods in human computer interaction is the empirical
comparison of what can be expressed and verified using formal methods with what the
designer needs to build into a specification, or between the former and the observations
that emerge during the evaluation of the actual user interface. Such an investigation
aided by the use of semi formal representations of the ADC interactor model is planned
future work.

Chapter 8 Conclusions

221

Tool support and visual representation

The question of using the model effectively prompts further research questions.
Proposals are needed for making the best use of current tool support and for establishing
the role of the formal specification in the development process. The earlier discussion
on ADC as a conceptual framework suggests the need to develop informal notations to
‘interface’ to the formal specification. It is planned to investigate the feasibility of this
concept. Alternatively, the formal specification may be facilitated by a visual
specification language. In this thesis a set of conventions have been developed and used
for the illustration of the ADC model. One avenue that will be investigated is to develop
a visual (formal) specification language out of these conventions and editing tools to
support this notation.

Future work could extend the process algebraic definitions of the transformations.
Currently the decomposition transformation applies to a very restricted set of cases, and
algorithms need to be developed to support the decomposition of interactors that share
some state or to produce expressions involving dynamic composition operators. The
development of software to support the transformations already described is planned in
association with the editing facilities mentioned previously. Tool support could be
developed to support verification, by helping to specify predicates for the verification of
the user interface specification. These tools could provide an interface to the target
formalism, e.g. ACTL or LOTOS.

Link to display models

Contrary to the concept of an ADC interactor described in chapter 4, the formal model of
chapter 6 which supports the synthesis transformation, allows for interactors with
multiple gates for display output. For example, if the list interactor and the scroll bar
interactor of section 4.8 are synthesised, it would be desirable that a single output gate on
the display side should offer the value of the combined display states for the two
interactors. This synthesis of the display states concerns the specification of the data
types rather than the process algebraic definition of synthesis. The ADC model abstracts
away from any particular representation of the display, so it is applicable to any level of
abstraction desired. However, by adopting a standard model for the display and the
operations upon it, it would be possible to associate synthesis with the composition of
display states. A single interactor modelling the screen could receive the display from a
group of interactors and could compose their display values. Possible models of the
display were mentioned in chapter 4, e.g. as a mapping of pixels to values [175], or as a
set of regions [167]. An interesting problem for the future theoretical development of
the formal interactor model is to experiment with such display models, aiming at an
abstract representation that does not obscure the behavioural specification and which
formalises properties of the display.

Chapter 8 Conclusions

222

Developments in tool support and transformations for LOTOS

The previous point is closely related to another more practical observation. One of the
arguments made in chapter 3 was that interface software is best specified using a hybrid
notation. Accordingly, the ADC interactor model was shaped to help writing and
manipulating full LOTOS specifications. Much of the complexity of the transformations
stems from the interplay between the data component of the specification and the process
algebraic component. This can be contrasted with chapter 7 where it can be observed
that most uses of the model are easier when only basic LOTOS is discussed. So while
(full) LOTOS describes more concisely the concept of an interactor it is hard to use in a
practical context. The development of a model of the display may be some improvement
for the model, but how practical it may be depends also on the capabilities of the general
purpose tools for LOTOS.

Interactors and task based design

In the final part of chapter 7, the ADC interactor model was related to a model of the
user’s task knowledge. Task conformance was specified as a property of the temporal
ordering of actions, as specified in the interface and the task model. Task conformance
concerns also the task objects and their mapping to interface objects, the complexity of
the task, etc. Research into a set of principles for relating task knowledge, or other user
characteristics, to a user interface design would provide a solid theoretical foundation for
the practical approach outlined in chapter 7. Presently, it seems a promising research
project to consolidate and to develop further the proposed framework for testing and to
examine its potential integration in the realistic development of user interfaces.

8.3 Contributions

The foremost contribution of the thesis is the development of the ADC interactor model.
The thesis has focused primarily on the formal interactor model but has consistently
developed and alluded to the concepts behind it. The formal representation and the
conceptual framework it describes have been developed in parallel, with successive
improvements and repeated attempts to describe these clearly.

ADC interactors have been defined as abstractions of software components that support
the communication between the functional core of an interactive system and its user.
The user interface system as a whole can be modelled as a single (monolithic) ADC
interactor that communicates directly with the functional core and the user.
Alternatively, the model may apply to a very small portion of the user interface software.
In the latter case, the interface can be thought of as a composition of many ADC
interactors. It is beneficial to switch between these two views during the design of a user
interface, depending on what the focus of the design activity is: the structure of the
software or its external behaviour. The ADC model describes a conceptual framework
that can be used at all the intermediate levels of abstraction between an abstract external

Chapter 8 Conclusions

223

view of an interface and a detailed construction oriented view. Its formal representation
supports the transition from one view to the other, whether that be in a top down fashion
or a bottom up fashion.

An important consideration of the thesis has been to contribute to addressing the problem
of writing, reading and managing specifications of user interface software. The
systematic reuse of formal abstractions and the use of existing and general purpose tool
support have been advocated throughout. The ADC formal interactor model is one of a
few formal interactor models that follow this policy, e.g. [150] also uses LOTOS and its
tool support, and [145] uses Petri-Nets and general purpose tools for their verification.
Other interactor models such as [55, 59], can be seen more as experimentation with
alternative formal frameworks which emphasise the analytical use of their formalism
independently of tool support. Interactors are specified by instantiating the ADC
interactor model and the individually required adaptations are restricted to localised parts
of the interactor specification. For example, the mapping between the dynamic
component of the specification and the data specification component is fixed. While this
does not reduce the expressiveness of the specification language, it results in a consistent
specification style which, it has been argued, is easier to use and to understand than
unstructured LOTOS.

Parameterisation was explored as a means of reusing common temporal behaviour
specifications, i.e. starting, stopping, suspending, resuming and aborting the interactor.
Other behaviours commonly encountered, e.g. continuous feedback, toggles, triggering
behaviours, etc., were identified during the case study. The ADC model helps identify
and organise such behaviours and further applications of the model should help compile
a richer taxonomy of their specifications. These specifications can be easily reused by
their composition (as opposed to parameterisation/actualisation) in the constraints
component of an ADC interactor. In this case, LOTOS facilitates the specification
because it supports multi-way synchronisation, which allows for the constraint oriented
style of specification. In other cases, the synchronous communication of LOTOS was
found restrictive, so ‘auxiliary’ components were defined to help specify the interface as
a composition of smaller scale components (section 5.8). It was argued that the
specifications of all the behaviours mentioned would benefit from tool and language
support for their systematic reuse.

The main merit of the formal ADC interactor model is that it embodies the property of
compositionality. To support this property a set of transformations have been defined
(chapter 6). The synthesis transformation helps shape complex behaviour expressions
involving ADC interactors into a single interactor. The decomposition transforms a
monolithic ADC interactor into a behaviour expression involving simpler interactors.
This ability to compose and decompose specifications maintaining the structure of the
ADC interactor is a unique feature of this model that helps both the constructive and the
analytical use of the specifications.

Another contribution of the thesis is the integration of diverse analytical results within
the same conceptual and formal framework (chapter 7). The ADC interactor model

Chapter 8 Conclusions

224

helps formalise predictability and observability related properties, which have been
introduced with more abstract models of interactive systems. Section 7.1 includes an
original formulation of predictability and observability properties which, it was argued,
improves on earlier attempts. The ADC model also provides a framework for specifying
and verifying dialogue properties, even when there is no separate dialogue component in
the actual software specified, as is often the case (see the object-based architectures of
chapter 2). The constructive specification of dialogue properties directly in LOTOS, and
their verification by means of equivalence checking (section 7.2), is a further
contribution of this thesis. The ADC interactor model combines the benefits of abstract
models and dialogue specification notations. Other interactor models do not address the
specification and verification of predictability and observability properties of the
interface. Abstract models which are tailored for modelling this class of properties do
not support the automatic verification of dialogue properties.

Finally, the thesis has described an approach to bridging the gap between software
engineering system models and psychologically informed user models. As was
mentioned in the introduction (chapter 1), this is a common objective for much research
work in the field of human computer interaction. The framework of section 7.4 does not
aspire to model or predict the phenomena surrounding interaction and does not make
assumptions concerning user cognition and behaviour. It makes explicit and formalises
intuitions which underlie task based design as mappings between formal representations
of a user task model and an interface model, and helps define (partially) the requirement
for task conformance. Task based design approaches try to establish this requirement by
guiding the design process. A clear definition of this requirement is an important
contribution of the thesis. The formal expression of task conformance is not particular to
the ADC interactor model or to the TKS theory on which the formal user task model was
based, although both models are well suited for describing the temporal dimension of a
task and of the user interface behaviour. The definition of task conformance has
prompted the proposal of a practical framework for testing user interface designs and
their realisation with respect to the tasks they are intended to support. Potentially, this
framework can bridge between formal models of user interfaces and practical techniques
for user interface development.

In summary, the research reported has provided a deep and wide investigation into
formal abstractions of user interface software. It has developed further the notion of a
formal interactor model and in particular its use as an architectural abstraction. The
ADC model improves on existing approaches, by integrating concepts from the domain
of user interface software architectures, practical concerns about writing and using
specifications, and ideas developed in the context of more abstract interaction models.
The development of the ADC interaction model has opened up avenues for further
research particularly aiming to enhance the applicability and relevance of formal
methods to user interface design and development.

1

References

[1] Abowd GD (1992) Formal Aspects of Human Computer Interaction, PhD thesis,
University of Oxford, Technical Report YCS 161, University of York.

[2] Abowd GD, Coutaz J & Nigay L (1992) Structuring the Space of Interactive
system Properties, In Larson J & Unger C (Eds.) Engineering for Human
Computer Interaction. Proceedings of the IFIP TC2/WG2.7 working conference,
IFIP transactions A-18, Elsevier (North-Holland), pp. 113-129

[3] Abowd GD, Wang HM & Monk A (1995) A formal technique for automated
dialogue development. In Olson GM & Schuon S (Eds.) DIS’95 Conference
Proceedings. ACM Press, pp. 219-226.

[4] Abramsky S (1987) Observation Equivalence as a Testing Equivalence.
Theoretical Computer Science, Vol. 53, No. 198, pp. 225-241.

[5] Accot J, Chatty S & Palanque P (1996) A formal description of low level
interaction and its application to multimodal interactive systems. In Bodart F &
Vanderdonckt J (Eds.) Design, Specification and Verification of Interactive
Systems ’96, Springer (Wien), pp. 92-104.

[6] ACM SIGCHI (1992) ACM Special Interest Group on Human-Computer
Interaction. Curriculum Development Group. ACM SIGCHI curricula for
human-computer interaction. Technical report, ACM, New York.

[7] Addison M & Thimbleby H (1994) Manuals as structured programs. In Cockton
G, Draper SW & Wier GRS (Eds.) People and Computers IX, Proceedings of
HCI’94, Glasgow, 1994, Cambridge University Press, pp. 67-80.

[8] Alexander H (1990) Structuring dialogues using CSP. In Harrison MD &
Thimbleby HW (Eds.) Formal Methods in Human Computer Interaction,
Cambridge University Press, pp. 273-295.

[9] Apple Computer Inc. (1993) Inside Macintosh. QuickTime™. Addison Wesley.

[10] Baeten JCM & Weijland WP (1990) Process Algebra. Cambridge University
Press.

References

2

[11] Barnard PJ (1987) Cognitive Resources and the learning of Human-Computer
Interaction. In Caroll MJ (Ed.) Interfacing Thought-Cognitive aspects of Human-
Computer Interaction. MIT Press, pp. 112-158.

[12] Barnard PJ & Harrison MD (1992) Towards a Framework for Modelling
Human-Computer Interactions. In Gornostaev J (Ed.) Proceedings of the East-
West International Conference on Human-Computer Interaction EWHCI’92, St.
Petersburg, Russia, 4-8 August, 1992, International Centre for Scientific and
Technological Information, Moscow, pp. 189-197.

[13] Barnard PJ & May J (1994) Interactions with advanced graphical interfaces and
the deployment of latent human knowledge. In Paternó F (Ed.) Interactive
Systems: Design, Specification and Verification. Springer (Wien), pp. 15-49.

[14] Bass L, Coutaz J & Unger C (1992) A reference model for interactive system
construction. In Gornostaev J (Ed.) Proceedings of the East-West International
Conference on Human-Computer Interaction EWHCI’92, St. Petersburg, Russia,
4-8 August, 1992, International Centre for Scientific and Technological
Information, Moscow, pp 23-30.

[15] Bass L & Coutaz J (1991) Developing Software for the User Interface, Addison-
Wesley, USA.

[16] Bernadeschi C, Fantechi A & Paternó F (1995) Application of correctness
preserving transformations for deriving architectural descriptions of interactive
systems from user interface specifications. In Proceedings SEKE’95, The 7th
International Conference on Software Engineering and Knowledge Engineering,
June 22-24, 1995, Knowledge Systems Institute, Illinois.

[17] Biljon VWR (1988) Extending Petri Nets for specifying man-machine dialogues.
International Journal of Man Machine Studies, Vol. 28, pp. 437-455.

[18] Bolognesi T & Brinksma E (1989) Introduction to the ISO specification language
LOTOS. Van Eijk P, Vissers C & Diaz M (Eds.) The Formal Description
Technique LOTOS, Elsevier (North-Holland), pp. 23-73.

[19] Bolognesi T, De Frutos-Escrig D & Ortega-Mallen Y (1991) Graphical
Composition Theorems for Parallel and Hiding Operators. In Quemada J, Mañas
J & Vazquez E (Eds.) Formal Description Techniques III, Elsevier (North-
Holland), pp. 459-470.

[20] Bolognesi T, De Frutos D, Langerak R & Latella D (1995) Correctness
preserving transformations for the early phases of software development. In
Bolognesi T, van de Lagemaat J & Vissers C (Eds.) LOTOSphere: Software
Development with LOTOS. Kluwer (Netherlands), pp. 161-180.

References

3

[21] Bornat R & Thimbleby H (1989) The life and times of ded. In Long J &
Whitefield A (Eds.) Cognitive Ergonomics and Human-Computer Interaction.
Cambridge University Press, pp. 225-255.

[22] Bouali A, Gnesi S & Larosa S (1994) The Integration Project for the JACK
Environment. Bulleting of the EATCS, No 54, pp 307-223..

[23] Bouajjani A, Fernadez JC, Graf S, Rodríguez C & Sifakis J (1991) Safety for
branching time semantics. In Leach Albert J, Monien B, Rodríguez Artalejo
(Eds.) Automata, Languages and Programming, 18th International Colloquium,
Madrid Spain, July 1991, LNCS 510, Springer-Verlag, pp. 76-92.

[24] Bowen JP & Hinchey MG (1995) Seven more myths of formal methods. IEEE
Software, Vol. 12, No. 4, pp. 34-41.

[25] Bowen JP & Hinchey MG (1995) Ten commandments of formal methods. IEEE
Computer, Vol. 28, No. 4, pp. 56-63.

[26] Bowen JP & Stavridou V (1993) The industrial take-up of formal methods in
safety-critical and other areas: a perspective. In Woodcock JCP & Larsen PG
(Eds.) Formal Methods Europe 1993: Industrial Strength Formal Methods,
Springer-Verlag, LNCS 670, pp. 183-195.

[27] Brinksma E (1989) A theory for the derivation of tests. In van Eijk PHJ, Vissers
CA & Diaz M (Eds.) The Formal Description Technique Lotos, Elsevier (North-
Holland), pp. 235-247.

[28] Brinksma E & Langerak R (1995) Functionality decomposition by compositional
correctness preserving transformation. South African Computer Journal,
SAJC/SART, No. 13, pp. 2-13.

[29] Brinksma E, Scollo G & Steenbergen C (1987) LOTOS specifications, their
implementations and their tests. In Sarikaya B & Bochman (Eds.) Protocol
Specification, Testing and Verification VI, Elsevier (North-Holland) IFIP, pp.
349-360.

[30] Caneve M & Salvatori E (1992) LITE user manual. LOTOSPHERE Project
Technical Report, Lo/WP2/N0034/Vo8.

[31] Card SK, Mackinlay JD & Robertson GG (1991) A morphological analysis of
the design space of input devices. ACM Transactions on Information Systems,
Vol. 9, No. 2, pp. 99-122.

[32] Card SK, Moran TP & Newell A (1983) The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates (Hillsdale NJ).

[33] Cardelli L & Pike R (1985) Squeak: a Language for Communicating with Mice.
In SIGRAPH ’85 conference proceedings, ACM Computer Graphics, Vol. 19,
No. 3, 199-204.

References

4

[34] Carrol JM (1990) Infinite detail and emulation in an ontologically minimized
HCI. In Chew JC & Whiteside J (Eds.) Empowering People-CHI’90 conference
Proceedings. ACM Press, pp. 321-327.

[35] Chi UH (1985) Formal Specifications of User Interfaces: A Comparison and
Evaluation of Four Axiomatic Approaches. IEEE Transactions on Software
Engineering, Vol. 11, No. 8, pp. 671-685.

[36] Clark RG (1992) LOTOS Design-Oriented Specifications in the Object Based
Style, Technical Report 84, Dept. of Computer Science and Mathematics,
University of Stirling.

[37] Cockton G (1990) The architectural bases of design re-use. In Duce D A, Gomes
MR, Hopgood FRA & Lee JR (Eds.) User Interface Management and Design.
Proceedings of the workshop on user interface management systems and
environments. Lisbon, June 1990. Springer-Verlag, pp. 15-34.

[38] Cohen B, Harwood WT & Jackson M (1986) The Specification of Complex
Systems. Addison-Wesley.

[39] Coutaz J (1987) PAC, an Object Oriented Model for Dialog Design. Bullinger
HJ & Shakiel B (Eds.) INTERACT’87 Conference Proceedings, Elsevier (North-
Holland), pp. 431-436.

[40] Cussack E, Rudkin S & Smith C (1990) An object oriented interpretation of
LOTOS. In Vuong ST (Ed.) Formal Description Techniques II, Elsevier (North
Holland), pp. 211-226.

[41] Dance JR, Granor TE, Hill RD, Hudson SE, Meads J, Myers BA & Schulert A,
The Run time structure of UIMS Supported Applications, Computer Graphics,
Vol. 21, No. 2, 1987, pp. 97-101.

[42] De Bruin H, Bouwman P & van den Bos J (1994) Modelling and analysing
human-computer dialogues with protocols. In Paternó F (Ed.) Interactive
Systems: Design Specification and Verification, Springer (Wien), pp. 95-116.

[43] De Bruin H (1995) DIGIS A Model-Based Graphical User Interface Design
Environment for Non-Programmers. PhD thesis, Erasmus Universiteit
Rotterdam.

[44] De Meer J, Roth R & Vuong S (1992) Introduction to algebraic specifications
based on the language ACT ONE. Computer Networks and ISDN Systems, Vol.
23, pp. 363-392

[45] De Nicola R (1989) Extensional Equivalences for Transition Systems, Acta
Informatica Vol. 24, 211-237.

[46] De Nicola, Fantechi A, Gnesi S & Ristori (1993) An action-based framework for
verifying logical and behavioural properties of concurrent systems. Computer
Networks and ISDN Systems, Vol. 25, pp. 761-778.

References

5

[47] De Nicola R & Hennessy MCB (1984) Testing Equivalence for Processes.
Theoretical Computer Science, North Holland, Vol. 34, pp. 83-133.

[48] De Nicola R & Vaamdrager F (1990) Action versus State based Logics for
Transition Systems. In Guessarian I (Ed.) Semantics of Systems of Concurrent
Processes, Springer, Verlag, LNCS 469, pp 407-419.

[49] Dix AJ (1991) Formal Methods for Interactive Systems, Academic Press.

[50] Dowell J & Long J (1989) Towards a conception for an engineering discipline of
human factors. Ergonomics, Vol. 32, No. 11, pp. 1513-1535.

[51] Duce DA (1995) Users: Summary of working group discussion. In Paternó F
(Ed.) Interactive Systems: Design Specification and Verification, Springer 1995,
pp. 51-56.

[52] Duce DA, ten Hagen PJW & van Liere R (1989) Components, Frameworks and
GKS Input. In Hansmann W, Hopgood F & Strasser W (Eds.) Eurographics’89
Conference Proceedings, Elsevier (North-Holland), pp. 87-103.

[53] Duce DA, ten Hagen PJW & van Liere R (1990) An approach to hierarchical
input devices. Computer Graphics Forum, Vol. 9, No. 1, pp. 15-26.

[54] Duke D, Faconti F, Harrison MD & Paternó F (1993) Unifying Views of
Interactors. In Proceedings of the Workshop on Advanced Visual Interfaces ’94,
Bari, June1994, ACM Press, pp. 143-152.

[55] Duke DJ & Harrison MD (1993) Abstract Interaction Objects. In Hubbold RJ.,
Juan R (Eds.) EUROGRAPHICS’93, Computer Graphics Forum, Vol. 12, No.3,
pp. 26-36.

[56] Duke DJ & Harrison MD (1994) A theory of presentations. In Naftalin M,
Denvir T & Bertran M (Eds.) Proceedings Formal Methods Europe ’94, Industrial
Benefit of Formal Methods, Springer-Verlag, LNCS 873, pp. 271-290.

[57] Duke DJ & Harrison MD (1994) From Formal Models to Formal Methods. In
Taylor RN & Coutaz J (Eds.) Software Engineering and Human-Computer
Interaction. ICSE’94 Workshop on Software Engineering and Human Computer
Interaction, Springer-Verlag, LNCS 896, pp. 159-173.

[58] Duke DJ & Harrison MD (1994) Folding Human Factors into Rigorous
Development. In Paternó F (Ed.) Interactive Systems: Design, Specification and
Verification. Springer, pp. 333-350.

[59] Duke DJ & Harrison MD (1995) Event model of human-system interaction.
Software Engineering Journal. Vol. 10, No. 1, pp. 3-12.

[60] Duke DJ & Harrison MD (1995) Interaction and task requirements. In Palanque
P, Bastide R (Eds.) Design, Specification, Verification of Interactive Systems
’95, Springer Wien, pp. 54-75.

References

6

[61] Ehrig H & Mahr B (1985) Fundamentals of Algebraic Specification 1, Springer
Verlag.

[62] Faconti GP (1993) Towards the Concept of Interactor. AMODEUS project
report, ref. sm/wp8.

[63] Faconti GP & Duke DJ (1996) Device Models. In Bodart F & Vanderdonckt J
(Eds.) Design, Specification and Verification of Interactive Systems ’96,
Springer (Wien), pp.73 -91.

[64] Faconti GP, Fornari A & Zani N (1994) Visual Representation of Formal
Specification: An Application to Hierarchical Input Devices. In Paternó F (Ed.)
Interactive Systems: Design, Specification and Verification. Springer, pp. 349-
368.

[65] Faconti GP & Paternó F (1990) An approach to the formal specification of the
components of an interaction. In Vandoni CE & Duce DA (Eds.)
Eurographics’90 Conference Proceedings. Elsevier (North-Holland) pp. 481-494.

[66] Faconti GP & Paternó F (1992) The input model of standard graphics systems
revisited by formal specification. In Kilgour A & Kjelldahl L (Eds.)
Eurographics’92 Conference, Computer Graphics Forum, Vol. 11, No. 3, pp.
237-251.

[67] Fantechi A, Gnesi S, Mazzarini G (1991) How expressive are LOTOS behaviour
expressions? In Quemada J, Mañas J, Vásquez E (Eds.) Formal Description
Techiques III, Elsevier (North-Holland), IFIP, pp. 17-32.

[68] Fernadez JC, Caravel H, Mounier L, Rasse A, Rodríguez C & Sifakis J (1992) A
toolbox for the verification of LOTOS Programs. 14th International Conference
on Software Engineering, Melbourne, May 1992.

[69] Fernadez JC, Jard C, Jéron T & Viho C (1996) Using on-the-fly verification
techniques for the generation of test suites. In Alur R & Henzinger TA (eds.) 8th
International Conference on Computer Aided Verification: (CAV’96), Springer-
Verlag (Berlin), LNCS 1102, pp. 348-359.

[70] Ferro G (1994) Un model checker lineare per la logica temporale ACTL. Tesi di
Laurea, Università degli studi di Pisa.

[71] Fields RE, Wright PC & Harrison MD (1995) A Task Centred Approach to
Analysing Human Error Tolerance Requirements. In Harrison MD & Zave P
(Eds.) Requirements Engineering ’95. IEEE Computer Society Press, pp. 18-26.

[72] Foley JD, Wallace VL & Chan P (1984) The human factors of Computer
Graphics Interaction Techniques, IEEE Computer Graphics and Applications,
Vol. 4, No. 11, pp13-48.

[73] Gaudel MC (1994) Formal Specification Techniques. 16th International
Conference on Software Engineering (ICSE’94), Sorrento, Italy, pp. 223-227.

References

7

[74] Glass RL (1996) Formal methods are a surrogate for a more serious software
concern. In IEEE Computer, Vol. 29, No. 4, pp. 19.

[75] Goldberg A & Robson D (1983) Smalltalk-80. The Language and its
Implementation. Addison-Wesley.

[76] Gotzhein R (1987) Specifying Abstract Data Types with Lotos. In Sankaya B &
Bochman EV (Eds.) Protocol Specification Testing and Verification VI, Elsevier
(North-Holland), pp. 15-26.

[77] Green M (1985) Report on Dialogue Specification Tools. In Pfaff GE, User
Interface Management Systems, Springer-Verlag, pp. 9-20.

[78] Green M (1986) A Survey of Three Dialogue Models. ACM Transactions on
Graphics, Vol. 5, No. 3, pp. 244-275.

[79] de Haan G (1994) An ETAG based approach to the design of user interfaces.
Proceedings of the 15th Interdisciplinary Workshop on Informatics and
Pscychology. Scharding 1994.

[80] Hall JA (1990) Seven Myths of Formal Methods. IEEE Software, Vol. 7 No. 5,
pp. 11-19.

[81] Harel D (1987) Statecharts: A Visual Formalism for complex systems. Science
of Computer Programming Vol. 8, No. 3, pp. 231-274.

[82] Harrison MA (1978) Introduction to Formal Language Theory. Addison Wesley.

[83] Harrison MD (1992) A model for the option space of interactive systems. In
Larson J & Unger C (Eds.) Engineering for Human Computer Interaction.
Proceedings of the IFIP TC2/WG2.7 working conference, IFIP transactions A-18,
Elsevier (North-Holland), pp. 155-170.

[84] Harrison MD & Dix AJ (1990) A state model of direct manipulation in
interactive systems. In Harrison MD & Thimbleby HW (Eds.) Formal Methods
in Human Computer Interaction, Cambridge University Press, pp. 129-151.

[85] Harrison MD & Thimbleby HW (1985) Formalising Guidelines for the Design of
Interactive Systems. In Johnson P & Cook S (Eds.) People and Computers:
Designing the Interface, Proceedings BCS-HCI’85 Conference, Cambridge
University Press, pp. 161-171.

[86] Harrison MD & Duke DJ (1994) A review of formalisms for describing
interactive behaviour. Taylor RN & Coutaz J (Eds.) Software Engineering and
Human-Computer Interaction. ICSE’94 Workshop on Software Engineering and
Human Computer Interaction, Springer-Verlag, LNCS 896, pp. 49-75.

[87] Hartson RH & Boehm-Davis D (1993) User interface development processes and
methodologies. Behaviour and Information Technology, Vo. 12, No. 2, pp. 98-
114.

References

8

[88] Hartson RH & Hix D (1989) Human-computer interface development: concepts
and systems for its management, ACM Computing Surveys, Vol. 21, No. 1, pp.
5-92.

[89] Hartson RH & Mayo KA (1994) A framework for precise, reusable abstractions.
In Paternó F (Ed.) Interactive systems: design, specification and verification,
Springer, pp. 49-484.

[90] Hartson RH, Siochi AC & Hix D (1990) The UAN: A user oriented
representation for direct manipulation systems. ACM Transactions on
Information Systems, Vol. 8, pp. 181-203.

[91] Hekmapoutr S & Ince D (1987) Evolutionary prototyping and the human
computer interface. In Bullinger HJ & Shakiel B (Eds.) INTERACT ’87
conference proceedings, Elsevier(North-Holland), pp. 479-484.

[92] Hill RD (1986) Supporting concurrency, communication, and synchronization in
human computer interaction-the Sassafras UIMS, ACM Transactions on
Graphics, Vol. 5, No. 3, pp. 179-210.

[93] Hill RD & Herrmann M (1987) The Structure of Tube-A tool for implementing
advanced user interfaces. In Proceedings Eurographics ’89, Elsevier (North-
Holland), pp. 12-25.

[94] Hill RD & Hermann M (1990) The composite object user interface architecture.
In Duce DA, Gomes MR, Hopgood FRA & Lee JR (Eds.) User Interface
Management and Design. Proceedings of the workshop on user interface
management systems and environments. Lisbon, June 1990. Springer-Verlag,
pp. 257-271.

[95] Hill RD, Brinck T, Rohall SL, Patterson JF & Wilner W (1994) The Rendezvous
architecture and language for constructing multiuser applications, ACM
Transactions on Computer Human Interaction, Vol. 1, No. 2, pp. 81-125.

[96] Hoare CAR (1985) Communicating Sequential Processes. Prentice Hall
International.

[97] Holloway CM & Butler R (1996) Impediments to the industrial use of formal
methods. IEEE Computer, Vol. 29, No. 4, pp. 26-27.

[98] Hussey A & Carrington D (1996) Using Object-Z to compare the MVC and PAC
architectures. In Roast C & Siddiqi J (Eds.) Formal Aspects of the Human
Computer Interface, BCS-FACS workshop , Springer eWiC series.

[99] ISO (1985) Information processing systems-computer graphics-graphical kernel
system (GKS) ISO 7942, ISO General Secretariat.

[100] ISO (1989) Information Processing Systems-Open Systems Interconnection-
LOTOS-A Formal Description Technique based on the Temporal Ordering of

References

9

Observational Behaviour, ISO/IEC 8807, International Organisation for
Standardisation, Geneva.

[101] ISO (1997) Enhancements to LOTOS, ISO/IEC, Ref. JTC1/SC21/WG7. Project
WI 1.21.20.2.3.

[102] Jacob RKJ, Leggett JL, Myers BA & Pausch R (1993) Interaction styles and
input/output devices. Behaviour and information technology, Vol. 12, No. 2, pp.
69-79.

[103] Jacob RKJ (1986) A Specification Language for Direct-Manipulation User
Interfaces. ACM Transactions on Graphics, Vol. 5, No. 4, pp. 283-317.

[104] Johnson CW (1995) The application of Petri-Nets to reason about human factors
problems during accident analysis. In Palanque P, Bastide R (Eds.) Design,
Specification, Verification of Interactive Systems ’95, Springer Wien, pp. 93-112.

[105] Johnson CW & Harrison MD (1990) PRELOG-A system for presenting and
rendering logic specifications of interactive systems. In Vandonis CE & Duce D
(Eds.) Eurographics ’90 Conference Proceedings, Elsevier (North Holland), pp.
469-480.

[106] Johnson CW & Harrison MD (1992) Using temporal logic to support the
specification and prototyping of interactive control systems. Interactional Journal
of Man-Machine Studies, Vol. 37, pp. 357-385.

[107] Johnson CW (1996) The evaluation of user interface notations. In Bodart F &
Vanderdonckt J (Eds.) Design, Specification and Verification of Interactive
Systems ’96, Springer (Wien), pp. 188-206..

[108] Johnson P (1992) Human Computer Interaction. Psychology-Task Analysis and
Software Engineering, McGraw-Hill (London).

[109] Johnson H & Johnson P (1991) Task knowledge structures: Psychological basis
and integration into systems design. Acta Psychologica, Vol. 78, pp. 3-26.

[110] Johnson P, Johnson H, Waddington R. & Shouls A (1988) Task Related
Knowledge Structures: Analysis, Modelling and Application, People and
Computers IV , Cambridge University Press, pp. 35-61.

[111] Johnson P, Wilson S, Markopoulos P & Pycock J (1993) ADEPT-Advanced
Design Environment for Prototyping with task models, Demonstration abstract.
In Aschlund S, Mullet K, Henderson A, Hollnagel E & White T (Eds.) Bridges
Between Worlds-INTERCHI ’93 conference proceedings, Addison-Wesley, pp.
56.

[112] Kovacevic S (1992) A compositional model of human-computer dialogues. In
Blattner M. & Dannenberg R (Eds.) Multimedia Interface Design, ACM Press,
Addison-Wesley, pp. 373-404.

References

10

[113] Krasner GE & Pope ST (1988) A Cookbook For Using the Model-View-
Controller User Interface Paradigm in The Smalltalk-80 System, Journal of
Object Oriented Programming, Vol. 1, No. 3, pp. 26-49.

[114] Lim KY & Long J (1994) The MUSE method for usability engineering.
Cambridge University Press, Glasgow.

[115] Liskov B & Guttag J (1986) Abstraction and Specification in Program
Development. MIT-Press, Cambridge-Massachusetts.

[116] Logrippo L, Faci M & Haj-Hussein M (1992) An Introduction to LOTOS:
learning by examples, Computer Networks and ISDN Systems, Vol. 23, No. 5,
pp. 325-342.

[117] LOTOSPHERE (1990) A theoretical and methodological framework to
conformance testing. Burmeister J & de Meer J (Eds.) project deliverable
Lo/WP1.T1.3/N0006/V5, ESPRIT ref. 2304.

[118] LOTOSPHERE (1991) Catalogue of LOTOS Correctness Preserving
Transformation. In Bolognesi T (Ed.) Final Deliverable Lo/WP1/T1.2 /N0045
/Vo3.

[119] Mañas JA (1995) Getting to use the LOTOSphere Integrated Tool Environement
(LITE). In Bolognesi T, van de Lagemaat J & Vissers C (Eds.) LOTOSphere:
Software Development with LOTOS. Kluwer (Netherlands), pp. 87-107.

[120] Markopoulos P (1992) The Adept models and formal description techniques.
Technical report from the ADEPT project, ref. Adept/D/3/1/2.4.92, DTI IED
4/1/1573.

[121] Markopoulos P, Wilson S, Pycock J & Johnson P (1991) Formal specifications
and task based user interface design. In Paternó F (Ed.) Formal Methods in
Computer Graphics, Eurographics Workshop, Marina di Carrara, 17-19 June,
1991.

[122] Markopoulos P & Gikas S (1994) Towards A Formal Model for Extant Task
Knowledge Representation. In Stary C (Ed.) 1st Interdisciplinary Workshop on
Cognitive Modelling and User Interface Development, Vienna, December 15-17,
1994.

[123] Markopoulos P (1995) On the Expression of Interaction Properties within an
Interactor Model. In Palanque P & Bastide R (Eds.) Design, Specification,
Verification of Interactive Systems ’95, Springer (Wien), pp. 294-311.

[124] Markopoulos P (1996) Case study in the formal specification of the
SimplePlayer™ graphical interface for playing QuickTime™ movies, using the
ADC interactor model. Technical Report 712, Dept. of Computer Science,
QMW College, University of London.

References

11

[125] Markopoulos P, Rowson J & Johnson P (1996) On the composition of interactor
specifications. In Roast C & Siddiqi J (Eds.) Formal Aspects of the Human
Computer Interface, BCS-FACS workshop, Springer, eWiC series.

[126] Markopoulos P, Rowson J & Johnson P (1996) Dialogue design in the
framework of an interactor model. In Bodart F & Vanderdonckt J (Eds.) Design,
Specification and Verification of Interactive Systems ’96, workshop informal
proceedings, pp. 231-244.

[127] Markopoulos P, Wilson S, Pycock J & Johnson P (1992) Adept-A task based
design environment. In Shriver BD (Ed.) 25th Hawaii International Conference
on System Sciences, Conference Proceedings, Vol. II, IEEE Computer Society
Press (California), pp. 587-596.

[128] Markopoulos P, Wilson S & Johnson P (1994) Representation and Use of Task
Knowledge in a User Interface Design Environment. IEE Proceedings~E,
Computers and Digital Techniques, Vol. 141, No. 2, pp. 79-84.

[129] Marshall LS (1986) A formal Description for User Interfaces, PhD thesis,
University of Manchester.

[130] Mayr T (1989) Specification of Object-Oriented Systems in LOTOS. In Turner
KJ (Ed.) Formal Description Techniques, Elsevier(North-Holland), pp. 107-119.

[131] Meyer B (1988) Object-oriented software construction. Prentice-Hall
International (UK).

[132] Mezzanotte M & Paternó (1995) Including Time in the Notion of Interactor. In
Johnson C & Gray P. (Eds.) Proceedings from a Workshop on temporal Aspects
of Usability. CIST Technical Report, Glasgow University.

[133] Milner R (1989) Communication and Concurrency. Prentice Hall, UK.

[134] Monk A, Wright P, Haber J & Davenport (1993) Improving your human
computer interface: a practical technique. Prentice-Hall (Hemel-Hempstead).

[135] Moran TP (1981) The command language grammar: a representation for the user
interface of interactive computer systems, International Journal of Man-Machine
Studies, Vol. 15, pp. 3-50.

[136] Myers BA (1990) A new model for handling input. ACM Transactions on
Information Systems. Vol. 8, No. 3, pp. 289-320.

[137] Myers BA, Giuse DA, Dannenberg RB, Zanden BV, Kosbie DS, Pervin E,
Mickish A& Marchal P (1990) Garnet-Comprehensive support for graphical
highly interactive user interfaces. IEEE Computer, Vol. 23, No. 11, pp. 71-85.

[138] Myers BA (1993) Why are Human-Computer-Interfaces Difficult to Design and
Implement? Technical report, Carnegie Mellon University, CMU-CS-93-183.

References

12

[139] Myers BA & Rosson MB (1992) Survey on user interface programming. In
Bauersfeld P, Bennett J & Lynch G (Eds.) Striking a Balance, CHI’92 Conference
Proceedings, ACM Press, pp. 195-202.

[140] Najm E & Stefani JB (1992) Dynamic Configuration in LOTOS. In Parker KR
& Rose GA (Eds.) Formal description techniques IV, Elsevier (North-Holland),
pp. 201-216.

[141] Nielsen J (1995) Scenarios in discount usability engineering. In Carrol JM (Ed.)
Scenario-based design: envisioning work and technology in system development,
Wiley, pp. 59-83.

[142] Olsen D (1990) Propositional production systems for dialogue description. In
Chew JC & Whiteside J (Eds.) Empowering people - CHI’90 conference
proceedings, Human Factors in Computing Systems, ACM (New York), pp. 57-
63.

[143] Olsen D, Monk A & Curry M (1995) Automatic Dialogue Analysis. Human
Computer Interaction, Vol. 10, No. 1, pp. 40-78.

[144] Palanque P, Bastide R, Dourte L & Sibertin B (1993) Design of User Driven
Interfaces Using Petri Nets and Objects. In Rolland C, Bodart F & Couvert C
(Eds.) Advanced Information Systems Engineering, Paris, Springer-Verlag,
LNCS 685, Springer, pp. 569-585.

[145] Palanque P & Bastide R (1995). Petri net based design of user-driven interfaces
using the interactive cooperative objects formalism. In Paternó F (Ed.)
Interactive Systems: Design Specification and Verification, Springer 1995, pp.
383-400.

[146] Palanque P & Bastide R (1996) A design life-cylce for the formal design of user
interface. In Roast C & Siddiqi J (Eds.) Formal Aspects of the Human Computer
Interface, BCS-FACS workshop , Springer, eWiC series

[147] Palanque P, Paternó F, Bastide R & Mezzanotte M (1996) Towards an integrated
proposal for Interactive Systems design based in TLIM and ICO. In Bodart F &
Vanderdonckt J (Eds.) Design, Specification and Verification of Interactive
Systems ’96, Springer (Wien), pp. 162-187.

[148] Paternó F (1993) A formal approach to the evaluation of interactive systems.
SIGCHI Bulletin, Vol. 26, No. 2, pp. 69 -73.

[149] Paternó F (1994) A Theory of User Interaction Objects. Journal of Visual
Languages and Computing, Vol. 5, pp. 227-249.

[150] Paternó F & Faconti G (1992) On the use of LOTOS to describe graphical
interaction. In Monk A, Diaper D & Harrison MD, People and Computers VII,
Proc. HCI’92 Conference, Cambridge University Press, pp. 155-173.

References

13

[151] Paternó F (1993) Definition of properties of user interfaces using action based
temporal logic. In Proceedings, 5th International Conference in Software
Engineering and Knowledge Engineering, San Francisco, June, pp. 314-319.

[152] Paternó F & Mezzanotte M (1995) Analysing Matis by Interactors and ACTL.
Amodeus Project Document: System Modelling/WP36.

[153] Paternó F & Mezzanotte M (1995) Formal analysis of user and system
interactions in the CERD. Case Study. Amodeus project document: System
modelling System Modelling/WP48.

[154] Paternó F & Leonardi A (1994) A Semantics-based Approach for the Design and
Implementation of Interaction Objects, (Eurographics’94), Computer Graphics
Forum, Blackwell , Vol. 13, No. 3, pp. 35-53.

[155] Paternó F, Sciacchitano MS & Lowgren J (1995) User Interface Evaluation
Mapping Physical User Actions to Task-Driven Formal Specifications. In
Palanque P & Bastide R (Eds.) Design, Specification, Verification of Interactive
Systems ’95, Springer Wien, pp. 294-311.

[156] Pavón S & Larrabeiti D (1993) LOLA (LOtos LAboratory) User Manual v.3.4,
http://www.dcs.upm.es/~lotos.

[157] Quemada J, Ferreira Pires J, Mañas JA, Azcorra A & Robles T (1993)
Introduction to LOTOS. In Turner K (Ed.) Using formal description techniques -
an introduction to Estelle, LOTOS and SDL, Wiley, pp. 47-83.

[158] Quemada J, Azcorra A & Pavón (1993) Software Development with LOTOS. In
Turner K (Ed.) Using formal description techniques - an introduction to Estelle,
LOTOS and SDL, Wiley, pp. 345-373.

[159] Roast CR (1993) Executing Models in Human Computer Interaction. PhD
Thesis. Department of Computer Science. The University of York.

[160] Roast C R & Harrison M W & Wright P (1989) Complementary methods for the
iterative design of interactive systems. In Salvendy G & Smith M (Eds.)
Designing and Using Human Computer Interfaces and Knowledge Based
Systems, Elsevier , pp. 651-658.

[161] Roast, C. (1994) Modelling Interaction Using Template Abstractions. In
Cockton G, Draper SW & Weir GRS (Eds.) People and Computers IX,
Cambridge University Press, pp. 273-285.

[162] Rosson MB, Maass S & Kellogg WA (1988) The designer as user: building
requirements for design tools from design practice. Communications of the
ACM, Vol. 31, No. 11, pp. 1288-1298.

[163] Rudkin S (1992) Inheritance in LOTOS. In Parker KR & Rose GA (Eds.)
Formal description techniques IV, Elsevier (North-Holland), pp. 409-424.

References

14

[164] Ruid-Delgado A, Pitt D & Smythe C (1995) A review of object oriented
approaches in formal methods. The Computer Journal, Vol. 38, No. 10, pp. 777-
784.

[165] Runciman C (1990) From abstract models to functional prototypes. Harrison
MD & Thimbleby HW (Eds.) Formal Methods in Human Computer Interaction,
Cambridge University Press, pp. 201-232.

[166] Saiedian H (Ed.) (1996) An invitation to formal methods. IEEE Computer, Vol.
29, No. 4, pp. 16-30. This is a ‘roundtable’ discussion, or rather a suite of papers
from several authors.

[167] Samuel J (1996) Constraint programming for user interface construction. PhD
thesis. Queen Mary and Westfield College, University of London.

[168] Sufrin B (1982) Formal Specification of a Display-Oriented Text Editor.
Science of Computer Programming, North Holland, Vol. 1,pp. 157-202.

[169] Sufrin B & He J (1990) Specification analysis and refinement of interactive
processes. Harrison MD & Thimbleby HW (Eds.) Formal Methods in Human
Computer Interaction, Cambridge University Press, pp. 153-200.

[170] Thimbleby HW (1984) Generative user-engineering principles for user interface
design. In Shackel B (Ed.) Proceedings INTERACT’84, North-Holland, pp. 661-
666.

[171] Thimbleby HW (1994) Formulating Usability. SIGCHI Bulletin, Vol. 26, No. 2,
pp. 59-64.

[172] Took R (1990) Putting design into practice: formal specification and the user
interface. In Harrison MD & Thimbleby H (Eds.) Formal Methods in Human-
Computer Interaction. Cambridge University Press, pp. 63-96.

[173] Took R (1990) Surface interaction: a paradigm and model for separating
application and interface. In Chew JC & Whiteside J (Eds.) Human Factors in
Computing Systems - CHI’90 conference proceedings, ACM Press (New-York),
pp. 35-42.

[174] Took R (1994) Understanding direct manipulation algebraically. In Paternó F
(Ed.) Interactive Systems: Design, Specification and Verification, Springer, pp.
413-428.

[175] Torres JC & Lares B (1995) Using an abstract model for the formal specification
of interactive graphic systems. In Paternó F (Ed.) Interactive Systems: Design
Specification and Verification, Springer, pp. 429-444.

[176] Turner K (1987) An Architectural Semantics for LOTOS. In Rudin H & West
CH (Eds.) Protocol Specification Testing and Verification VII, Elsevier (North
Holland), pp. 15-28.

References

15

[177] Turner K (Ed.) (1993) Using formal description techniques - an introduction to
Estelle, LOTOS and SDL. Wiley.

[178] Van Eijk PHJ, Vissers CA & Diaz M (Eds.) The Formal Description Technique
Lotos, Elsevier (North-Holland).

[179] Vissers CA, Scollo G & van Sinderen M (1988) Architecture and Specification
Style in Formal Descriptions of Distributed Systems. In Aggarwal S & Sabnani
K (Eds.) Protocol Specification Testing and Verification VIII, Elsevier (North-
Holland), pp. 189-204.

[180] Vissers CA, Scollo G, van Sinderen M & Brinksma E (1991) Specification styles
in distributed systems design and verification. Theoretical Computer Science,
Vol. 89, pp. 179-206.

[181] The UIMS Tool Developers Workshop (1992) A Metamodel for the runtime
architecture of an interactive system. SIGCHI Bulletin, Vol. 24, No. 1, pp. 32-37.

[182] Wasserman W (1985) Extending State Transition Diagrams for the Specification
of Human Computer Interaction. IEEE Transactions on Software Engineering,
Vol. 11, No. 8, pp. 699-713.

[183] Wellner PD (1989) Statemaster: A UIMS based on Statecharts for Prototyping
and Target Implementation. CHI’89 Conference Proceedings, ACM Press, pp.
177-182.

[184] Wezeman CD (1990) The CO-OP method for compositional derivation of
canonical testers. In Brinksma E, Scollo G & Vissers CA (Eds.) Protocol
Specification, Testing and Verification IX, Elsevier (North-Holland), pp. 145-
158.

[185] Whitefield A (1994) Comparative analysis of tasks analysis products. Interacting
with Computers, Vol. 6, No. 3, pp. 289-309.

[186] Whiteside J, Bennet J & Holtzblatt J (1988) Usability Engineering: Our
experience and evolution. In Helander M (Ed.) Handbook of Human Computer
Interaction. Elsevier (North-Holland), pp. 791-817.

[187] Wilson S, Markopoulos P, Pycock J & Johnson P (1992) Models in User
Interface Design. In Gornostaev J (Ed.) Proceedings of the East-West
International Conference on Human Computer Interaction EWHCI’92, St.
Petersburg, Russia, 4-8 August, 1992, International Centre for Scientific and
Technological Information, Moscow, pp. 210-217.

[188] Wilson S, Johnson P, Kelly C, Cunningham J & Markopoulos P (1993) Beyond
hacking: a model based approach to user interface design. In Alty JL, Diaper D
& Guest S (Eds.) People and Computers VIII, BCS HCI’93, conference
proceedings, Cambridge University Press, pp. 217- 231.

References

16

[189] Wilson S & Johnson P (1996) Bridging the generation gap: From work tasks to
user interface designs. In Vanderdonckt J (Ed.) Proceedings of the 2nd
International Workshop on Computer-Aided Design of User Interfaces,
CADUI’96, Presses Universitaires de Namur, pp. 77-94.

[190] Wing JM (1990) A specifier's introduction to Formal Methods. IEEE Computer,
Vol. 23, No. 9, pp. 8-24.

[191] Wood CA & Gray PD (1992) User interface-application communication in the
Chimera user interface management system. Software-Practice and Experience,
Vol. 22, No. 1, pp. 63-84.

[192] Zave P (1996) Formal methods are research, not development. IEEE Computer,
Vol. 29, No. 4, pp 26-29.

225

Appendix

A.1 Equivalence and pre-orders of processes

The operational semantics of LOTOS is described in two steps [18]. The first step is to
interpret a LOTOS behaviour expression as a labelled transition system (LTS), by means
of the axioms and inference rules associated with LOTOS syntax (summarised in table
3.2). The second step is to define equivalence classes for the derived LTSs. Different
semantics are associated with the definition of the equivalence relations (and their
corresponding pre-order relations). This section describes the equivalences and pre-
orders used in the thesis.

A LTS is a 4-tuple (Q, A, µ → , q0). For basic LOTOS the set A is the set of the gates
of the process, plus the internal action τ, which corresponds to the explicitly specified
silent action i and the implicitly specified success action δ. For full LOTOS each element
of A, is a pair g<v> where g is as above, and <v> is a value description, e.g. a value
identifier, etc.

Definition. Strong Bisimulation Equivalence (adapted from [118]).

A relation R⊆Q×Q is a bisimulation relation on Q iff ∀(P,S) ∈R, ∀α∈ A ∪{τ} the
following holds:

P α → ′ P ⇒ ∃ ′ S |(′ P , ′ S) ∈R •S α → ′ S

S α → ′ S ⇒ ∃ ′ P |(′ P , ′ S) ∈R •P α → ′ P

Two processes P and S are called strong bisimulation equivalent if there exists a strong
bisimulation relation R relating their initial states of their LTS, i.e. (p0,s0)∈R.

Definition. Weak Bisimulation Relation (adapted from [118]).

A relation R⊆S×S is a weak bisimulation relation on S iff ∀(P,S) ∈R, ∀α∈ A the
following holds:

Appendix

226

P ⇒α ′ P ⇒ ∃ ′ Q |(′ P , ′ S) ∈R • S⇒α ′ S

S⇒α ′ S ⇒ ∃ ′ P |(′ P , ′ S) ∈R •P ⇒α ′ P

Two processes P and S are called weak bisimulation equivalent, denoted P≈S, if there
exists a weak bisimulation relation R relating their initial states of their LTS, i.e.
(p0,s0)∈R.

The definitions above extend to full LOTOS processes. Two LOTOS behaviour
expressions B1 and B2, with all their free value-identifiers contained {x1,.., xn} are weak
(strong) bisimulation equivalent, if all instances [E1/x1,..,En/xn]B1 and [E1/x1,..,En/xn]B2 are
weak (respectively strong) bisimulation equivalent where E1,..,En, are closed value
expressions of the same sort as x1,.., xn respectively.

A LOTOS context C[.] is a LOTOS behaviour expression with a formal process
parameter denoted by ‘[.]’. If C[.] is a context and B is a behaviour expression then C[B]
is a behaviour expression that is a result of replacing all ‘[.]’ occurrences in C[.] with B.

Two LOTOS behaviour expressions B1 and B2 are called weak bisimulation congruent,

denoted B1≅ B2, if for all LOTOS contexts C[.], C[B1]≈C[B2].

Definition. φ-simulation (adapted from [118]).

Consider two LTS, Sys1=(Q1,A1,
µ 1 → ,q01) and Sys2=(Q2,A2,

µ 2 → ,q02), modelling
two LOTOS processes P1[G] and P2[G].

A function φ: A1→A2, is a coding function from Sys1to Sys2 iff

∀g1,g 2 ∈G ∪{i, δ},∀v1,v 2 ∈Value* •
g1 ≠ g2 ⇒φ (g1 < v1 >) ≠φ (g2 < v2 >) and φ(i) = i and φ(δ < v >) = δ

A relation Rφ ⊆ Q1 × Q2 is a φ−simulation relation for Sys1 and Sys2 iff

∀(q1,q 2) ∈Rφ ,∀α1 ∈A1 •

if q1
α1 → ′ q 1 then ∃ ′ q 2 ∈Q2|q 2

φ (α1) → ′ q 2 and (′ q 1, ′ q 2) ∈Rφ

Let B1 and B2 be two LOTOS behaviour expressions, interpreted as two LTS Sys1 and
Sys2 respectively. B1 is in simulation preorder to B2, denoted as B1≤φB2, iff for some
coding function φ from Sys1 into Sys2, there is a φ-simulation relation Rφ such that (s01 ,
s02) ∈Rφ. If φ is bijective Rφ is a φ−bisimulation relation for Sys1 and Sys2 iff

∀(q1,q 2) ∈Rφ ,∀α1 ∈A1 •

if q1
α1 → ′ q 1 then ∃ ′ q 2 ∈Q2|q 2

φ (α1) → ′ q 2 and (′ q 1, ′ q 2) ∈Rφ

if q2
α1 → ′ q 2 then ∃ ′ q 1 ∈Q1|q1

φ −1(α1) → ′ q 1 and (′ q 1, ′ q 2) ∈Rφ

Appendix

227

Two processes P and S are called φ−bisimulation equivalent, denoted P~φS, if there exists

a φ-simulation relation Rφ relating their initial states of their LTS, i.e. (p0,s0)∈Rφ.

Definition. Naive transformation from full LOTOS to basic LOTOS.

The definition of the mapping P from full LOTOS behaviour expressions, to basic
LOTOS expressions, is adapted from [118]. The mapping is defined here only for the
LOTOS constructs used to specify ADC interactors. In this definition g denotes a gate,
e denotes an ACT-ONE value expression, x denotes an ACT-ONE value identifier, s a
type sort, B a full LOTOS behaviour expression, Q a LOTOS process identifier.

P(g !e; B) = g; P(B)

P(g?x:s; B) = g; P(B)

P(Q[g1,..,gn](e1,.., ek)) = Q[g1,..,gn]

P(Q[g1,..,gn](x1,..,xk)) := B) = Q[g1,..,gn]:=P(B)

A.2 Graphical composition theorem for parallel and hiding operators

This section summarises a theorem concerning the regrouping and rearrangement of
expressions specifying the parallel composition of processes [19]. The theorem and its
proof are based on a graphical representation of parallel composition expressions, called a
process gate networks (PGN). A PGN is a net of nodes representing processes and
nodes representing gates linked with arcs. A summary description of the theorem and
the construction is included below. For a full exposition the reader is referred to [19].
The essence of the theorem is that a process gate net represents a class of strongly
equivalent LOTOS behaviour expressions, containing only parallel composition
operators, provided that all the process gates are explicitly shown in the net and
provided they are all different.

In the following constructions Proc refers to LOTOS processes and behaviour
expressions, Gates refers to the universe of gate names, and gates:Proc→Gates is a
function associating to any process the set of its visible gates.

Definition. Process Gate Network.

A process gate net is a 3-tuple (P,G,E) comprising of two disjoint sets P of process
nodes and G of gate nodes and a set of arcs E⊆(P×G).

Definition. General Process Gate Net Including Hiding (GPNIH)

A GPNIH is an ordinary process gate network (P,G,E) plus a function
Class:G→{I,H,V} classifying gate nodes into three categories. The gates
IG={g∈G|Class(g)=I}are called internal gates, the gates CHG={g∈G|Class(g)=H} are

Appendix

228

called communicating hidden gates and the gates CVG={g∈G|Class(g)=V} are called
communicating visible gates. The gates in HG=IG∪CHG are called the hidden gates.
The gates SG = CHG∪CVG are called the synchronisation gates.

Definition. Concrete Process Gate Net Including Hiding (CPGNIH)

A CPGNIH is a coherently labelled GPNIH, i.e. a 3-tuple (GN, PL, GL) where GN is a
GPNIH, PL:P→Proc is a mapping from the set P to a set of LOTOS processes,
GL:G→Gates is a mapping from the set G to the universe of gate-names, for which the
following holds.

• GL is injective.

• Any process includes the gates corresponding to the nodes with which it is related
to by the net.

• If a gate is represented in the net, and a process is not connected with the
corresponding node, then it does not include such a gate in its gate set.

Definition. The set of processes (SP) of the CN

Given a CPGNIH, CN=(GN, PL, GL) the multi-set of processes SP of CN is defined as
SP={PL(Pi)| Pi∈P}

Definition. A tree corresponding to a CPGNIH

A tree corresponding to a CPGNIH, CIN, is a tree with three types of nodes:

• Leaves, l∈L, over which the functions Process and gates are defined so that

Process:L→SP(CN) is one to one.

gates(l) = gates(Process(l))∩SG(CN).

• Binary nodes, b∈B, corresponding to parallel composition, over which the following
functions are defined assigning to each node a set of gates:

gates(b)= gates (b.1)∪gates(b.2)

syn-gates(b) = gates (b.1)∩gates(b.2)

The last condition is called the maximal cooperation principle.

• Unary nodes, u∈U, corresponding to hiding, over which Hidden is defined,
associating to each node a set of gates, and gates is defined by

gates(u) = gates (u.1) - Hidden(u)

The tree must verify the following conditions:

Appendix

229

• Hidden gates are in fact hidden

gates(root)∩HG=∅

• Only hidden gates are hidden

For all hiding nodes u, Hidden(u)⊆HG

• No communication is specified through internal gates

For all parallel nodes p: syn-gates(p)∩IG = ∅

• Communicating hidden gates are not hidden until all communication through them
has been done.

For all hiding nodes h: ∀g ∈Hidden(h) ∩ CHG • / ∃ leaf |h / < l and g ∈gates(l)

where < represents the ancestor relation between nodes of the tree.

Definition. Associated LOTOS expression.

Given a tree corresponding to some CIN, its associated LOTOS expression is defined as
follows:

If t=l (a leaf) then exp(t) = Process (l)

If t=b(t1,t2) then exp(t) = exp(t1)|[syn-gates(b)]|exp(t2).

Theorem. Graphical Composition Theorem with Hiding

If t1 and t2 are two trees associated to a given CPGNIH, CIN, then the associated
LOTOS expressions exp(t1) and exp(t2) are strong bisimulation equivalent.

A.3 Action based temporal logic (ACTL)

This brief introduction of the syntax and the semantics of the notation is adapted from
[22]. ACTL [48] specifies states of a labelled transition system, using an action formula.
The syntax and semantics for action formulae is summarised first.

Definition. Action Formulae syntax and semantics.

Given a set of observable actions Act, the language AF(Act) on Act is defined as
follows:

χ ::= tt | b | ¬χ | χ∨χ

where b∈Act.

The satisfaction relation for action formulae is defined as follows:

Appendix

230

a ∆ tt always
a ∆ b iff a = b
a ∆ ¬χ iff not a ∆ b

a ∆ χ ∨ χ' iff a ∆ χ ∨ a ∆ χ'

The term false and the conjunction are defined as abbreviations:

ff≡¬tt

χ∧χ'≡¬(¬χ∨¬χ')

Definition. The set of actions satisfying an action formula χ.

The relation κ:AF(Act)→2Act is defined as follows::

κ(tt) = Act

κ(b) = {b}

κ(¬χ) = Act/κ(χ)

κ(χ∨χ') = κ(χ)∪ κ(χ')

It can be proven [22] that, for χ∈AF(Act), κ(χ)={a∈Act : a ∆ χ}.

Definition. ACTL Syntax.

A state formula (denoted as φ) has the following syntax

φ ::= tt | φ∧φ | ¬φ | Επ | Απ

where A and E are path quantifiers and π is a path formula with the following syntax

π ::= Χχφ | Χτφ | φχUφ | φχUχ'φ

where χ,χ'∈AF(Act), X is the ‘next’ operator and U the ‘until’ operator.

Definition. ACTL Semantics.

s ∆ tt always
s ∆ φ∧φ' iff s ∆ φ and s ∆ φ'

s ∆ ¬φ iff not s ∆ φ
s ∆ Επ iff ∃σ∈Π(s) | σ∆ π
s ∆ Απ iff ∀σ∈Π(s):σ is maximal • σ ∆ π
σ ∆ Χχφ iff |σ|≥1 and σ1

a → σ2 | a ∈κ(χ) and σ2 ∆ φ
σ ∆ Χτφ iff |σ|≥1 and σ1

τ → σ2 and σ2 ∆ φ
σ ∆ φχUφ' iff ∃i≥1 | σi ∆ φ' and ∀j:1..i −1, σ(j) ∆φ and σ j ⇒κ (x) σ j+1

σ ∆ φχUχ'φ iff ∃i≥2 | σi ∆ φ', σi-1 ∆ φ and σ i −1
κ (′ χ) → σ i and

 ∀j:1..i −2 • σ j ⇒κ (χ) σ j+1 ∆ φ

Appendix

231

Notation. Auxiliary notation for ACTL.

• Eventually. EFφ stands for E(ttttUφ) and AFφ stands for A(ttttUφ).

• Always. EGφ stands for ¬AF¬φ and AGφ stands for ¬EF¬φ.

• holds for a path following an action . <χ> φ stands for E(ttffUχφ) if χ≠ff.

• holds for all paths following an action . [χ] φ stands for ¬<χ> ¬φ.

A.4 LOTOS specifications for the decomposition example

This section of the appendix is a listing of parts of the LOTOS specification code
concerning the example of decomposition of section 7.3.

type volume_ad is popUpSlider
opns

inputPr: volumeBar, Int -> Int
echoPr: volumeBar, Int -> volumeBar
inputMov: pnt, volumeBar,Int -> Int
echoMov: pnt, volumeBar, Int -> volumeBar
inputRel: volumeBar,Int -> Int
echoRel: volumeBar, Int -> volumeBar
renderRV: volumeBar, rct -> volumeBar
receiveRV: Int, rct -> Int
renderV:volumeBar, Int -> volumeBar
receiveV: Int, Int -> Int
result: Int -> Int

eqns
forall r:rct, p:pnt, v, n:Int, vb:volumeBar
ofsort Int

result(v) = v;
inputPr(vb,v) = v;
inputMov(p,vb,v) = pntToInt(vb,p);
inputRel(vb,v) = v;
receiveRV(v,r)=v;
receiveV(v,n)=n;

ofSort volumeBar
echoPr(vb, v) = popUpSlider(vb);
echoMov(p, vb, v) = chIconAndSlider(vb,p);
echoRel(vb, v) = popDownSlider(vb);
renderRV(vb,r) = changeRect(vb,r);
renderV(vb,v) = IntToBar(vb,v);

endtype

type resizeButton_ad is pushButtonType
opns

echoPr : pb_dsp, rct, pnt -> pb_dsp
echoRel: pb_dsp, rct, pnt -> pb_dsp
echoMove: pb_dsp, rct, pnt -> pb_dsp
inpPr : pb_dsp, rct, pnt -> rct

Appendix

232

inpRel : pb_dsp, rct, pnt -> rct
inpMov : pb_dsp, rct, pnt -> rct
resultRB : rct -> rct

eqns
forall p:pnt, ppd:pb_dsp, r:rct
ofsort pb_dsp

echoPr(ppd,r, p) = setHilite(ppd, onH);
echoMove(ppd,r,p) = setRect(ppd, drag(r,p));
echoRel(ppd,r,p) = setHilite(ppd, offH);

ofsort rct
inpPr(ppd, r, p) = r;
inpMov(ppd,r,p) = drag(r,p);
inpRel(ppd, r, p) = drag(r,p);
resultRB(r) = r;

endtype

The ADU describes only the management of the window size and the volume.

process volADU[...](a:Int,dc,ds:volumeBar) : noexit :=
doutVol!dc; volADU[...] (a, dc, dc) []
ainp?x:rct; volADU[...] (receiveRV(a,x), renderRV(dc,x), ds) []
getV?x:Int; volADU[...] (receiveV(a,x), renderV(dc,x), ds) []
pressVol; volADU[...] (inputPr(ds,a), echoPr(ds,a),ds) []
moveVol?x:pnt; volADU[...] (inputMov(x,dc,a), echoMov(x,dc,a), ds) []
releaseVol; volADU[...] (inputRel(ds,a),echoRel(ds,a), ds) []
setV!result(a); volADU[...] (a,echoRel(ds,a), ds)

endproc

process rbADU[...](a:rct,dc,ds:pb_dsp) : noexit :=
doutBox!dc; rbADU[...] (a, dc, dc)[]
pressBox?x:pnt; rbADU[...] (inpPr(ds,a,x), echoPr(ds,a,x), ds) []
moveBox?x:pnt; rbADU[...] (inpMov(ds,a,x),echoMove(ds,a,x), ds) []
releaseBox?x:pnt; rbADU[...] (inpRel(ds,a,x), echoRel(ds,a,x), ds) []
setMovieBox!resultRB(a); rbADU[...] (a, dc, ds)

endproc

	REFERENCES.pdf
	References

