
Physics 116A Winter 2006

The volume and surface area of an n-dimensional hypersphere

An n-dimensional hypersphere of radius R consists of the locus of points such
that the distance from the origin is less than or equal to R. A point in an
n-dimensional Euclidean space is designated by (x1 , x2 , . . . , xn). In equation
form, the hypersphere corresponds to the set of points such that

x2
1 + x2

2 + · · · + x2
n ≤ R2 . (1)

To compute the volume of this hypersphere, we simply integrate the infinitesi-
mal volume element dV = dx1dx2 · · · dxn over the region of n-dimensional space
indicated by eq. (1). We wish to compute this volume Vn(R). Explicitly,

Vn(R) =

∫

· · ·
∫

x2

1
+x2

2
+···+x2

n
≤R2

dx1dx2 · · · dxn = CnR
n . (2)

The factor of Rn is a consequence of dimensional analysis.
The surface “area” of the n-dimensional hypersphere defined by eq. (1) will be

denoted by Sn−1(R). The surface of the hypersphere corresponds to the locus of
points such that x2

1 + x2
2 + · · ·+ x2

n = R2. We can construct the volume Vn(R) by
adding infinitely thin spherical shells of radius 0 ≤ r ≤ R. In equation form, this
reads:

Vn(R) =

∫ R

0

Sn−1(r) dr . (3)

It follows from the fundamental theorem of calculus that

Sn−1(R) =
dVn(R)

dR
= nCnR

n−1 , (4)

where we have used eq. (2). Thus, the only remaining task is to compute Cn.
In order to obtain a better intuition on the meaning of Cn, let us equate the

two expressions we have for Vn(R), namely eq. (2) and eq. (3). In the latter,
Sn−1(r) is determined by eq. (4). Thus,

∫

· · ·
∫

x2

1
+x2

2
+···+x2

n
≤R2

dx1dx2 · · · dxn = nCn

∫ R

0

rn−1 dr . (5)

Eq. (5) is simply the evaluation of an n-dimensional integral either in rectangular
co-ordinates or hyper-spherical co-ordinates. In n-dimensions, we would write

dx1 dx2 · · · dxn = rn−1 dr dΩn−1 , (6)
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where dΩn−1 contains all of the angular factors. For example, for n = 2, dΩ1 =
dθ; for d = 2, dΩ2 = sin θ dθ dφ; etc. One could explicitly define the n − 1
angular variables in n-dimensions. However, if we are integrating over spherically
symmetric functions, then we will always integrate over dΩn−1. Comparing eq. (5)
and eq. (6), we see that:

∫

· · ·
∫

dΩn−1 = nCn . (7)

I will present a trick for computing Cn without ever explicitly parameterizing
the angles of the hyper-spherical coordinate system. Consider the function

f(x1 , x2 , . . . , xn) = e−(x2

1
+x2

2
+···+x2

n
) = e−r2

,

If we integrate this function over the full n-dimensional space in both rectangular
and hyper-spherical coordinates, we obtain:

∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

e−(x2

1
+x2

2
+···+x2

n
) =

∫ ∞

0

rn−1 dr

∫

dΩn−1e
−r2

.

Since the integrand on the right hand side depends only on r (there is no angular
dependence), we can immediately perform the integral over dΩn−1. Using eq. (7),

∫ ∞

−∞

e−x2

1 dx1

∫ ∞

−∞

e−x2

2 dx2 · · ·
∫ ∞

−∞

e−x2
n dxn = nCn

∫ ∞

0

rn−1 e−r2

dr . (8)

All the integrals above can be evaluated exactly:

∫ ∞

−∞

e−x2

dx =
√

π ,

∫ ∞

0

rn−1 e−r2

dr =
1

2
Γ
(n

2

)

.

Inserting these results into eq. (8), we obtain:

πn/2 = Cn
n

2
Γ
(n

2

)

= Cn Γ
(

1 +
n

2

)

,

where we used the property of the Gamma function, xΓ(x) = Γ(x + 1), at the
final step. Solving for Cn, we obtain

Cn =
πn/2

Γ
(

1 +
n

2

) . (9)

Although we chose a particular function f(x1 , x2 , . . . , xn) to obtain the final
result for Cn, it is clear that the value of Cn is independent of this function. After
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all, the defining equation for Cn [eq. (7)] makes no reference to any function. As
a check, let us evaluate nCn for n = 2 and n = 3:

2 C2 =
2π

Γ(2)
= 2π =

∫ 2π

0

dθ ,

3 C3 =
3π3/2

Γ
(

5
2

) = 4π =

∫ 2π

0

dφ

∫ π

0

sin θ dθ .

In the last computation, we used Γ
(

5
2

)

= 3
2
Γ
(

3
2

)

= (3
2
) (1

2
) Γ

(

1
2

)

= 3
4

√
π. Indeed,

we have produced the correct values for the integration over the angular factors
in two and three dimensions.

We are finally ready to compute the volume and surface “area” of an n-
dimensional hypersphere. Inserting eq. (9) into eq. (2) and (4), we find:

Vn(R) =
πn/2 Rn

Γ
(

1 + n
2

)

Sn−1(R) =
nπn/2 Rn−1

Γ
(

1 + n
2

) .

The expression for Sn(R) can be slightly simplified by writing Γ
(

1 + n
2

)

= n
2

Γ
(

n
2

)

.
This yields

Sn−1(R) =
2πn/2 Rn−1

Γ
(

n
2

) .

You should check that you get the expected results for n = 2 and n = 3. For
example, V3(R) = 4

3
πR3 and S2(R) = 4πR2.

Finally, it is amusing to note that limn→∞ Vn(R) = 0 and limn→∞ Sn(R) = 0.
To understand this peculiar behavior, consider a hypercube in n-dimensional space
measuring one unit on each side. The total volume of this hypercube is 1. We can
fit a hypersphere of diameter 1 (or radius 1

2
) inside the hypercube such that the

surface of the hypersphere just touches each of the walls of the hypercube. Then
1−Vn(1

2
) is the volume inside the cube but outside the hypersphere. I have plotted

1 − Vn(1
2
) (on the y-axis) vs. n (on the x-axis) for values of n = 1, 2, 3, . . . , 10.

(The figure appears on the next page.)
Clearly, as N becomes large, 1 − Vn(1

2
) rapidly approaches 1, which is consis-

tent with our assertion that limn→∞ Vn(R) = 0. This simply means that as the
number of dimensions becomes larger and larger, the amount of space outside the
hypersphere (but inside the cube) is become relatively more and more important.
This is already happening as you go from 2 to 3 dimensions. So you can check
your intuition by inscribing a circle in a unit square and a sphere in a unit cube
and computing the total volume in three dimensions (area in two dimensions)
outside the sphere (circle) but inside the cube (square). If you take the ratio
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of volumes (areas) of the sphere (circle) to that of the cube (square), this ratio
actually decreases as you go from 2 dimensions to 3 dimensions!

A related problem involves examine the volume of a hypersphere of radius 1.
(In contrast, the radius was equal to 1/2 in the previous paragraph.) One can
study the behavior of Vn(1) as n increases. Unlike the graph shown above, Vn(1)
is an increasing function of n for small values of n. However, it quickly reaches
a maximum, after which it steadily decreases to zero as n becomes large. This
corresponds to problem 1 on the third homework assignment, so I will leave the
rest to you.
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