
The Ball-Vertex Method: a New Simple

Spring Analogy Method for Unstructured

Dynamic Meshes

Carlo L. Bottasso

Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of

Technology, 270 Ferst Dr., Atlanta, GA 30332-0150, USA

Davide Detomi and Roberto Serra

Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Via La Masa 34,

Milano, 20156, Italy

Abstract

We study the problem of deforming unstructured grids using pseudo-structural
lumped-parameter systems. A basic network of edge springs is complemented with
an additional set of linear springs that oppose element collapsing. This is here
achieved by confining each mesh vertex to its ball, through linear springs that are
attached to the vertex and to its projections on the ball entities. The resulting linear
pseudo-structural problem can be solved efficiently with an iterative method. The
proposed procedures are compared with a revisited version of the torsional spring
method with the help of two and three-dimensional example problems.

Key words:

Unstructured deforming meshes; Dynamic meshes; Moving grids; Spring analogy
method; Fluid-structure interaction problems.

1 Introduction and Motivation

In this work we consider the problem of deforming unstructured three-di-
mensional grids. Deforming meshes are used in many computational appli-
cations, including problems with moving boundaries and interfaces, and for r

? To appear in Computer Methods in Applied Mechanics and Engineering.

adaption. In all these cases, the motion of a portion of the domain boundary is
known, and one wants to deform the rest of the mesh in order to accommodate
these imposed displacements.

The most commonly used technique for grid deformation is based on the spring
analogy method, whose basic idea is to create a network of springs connecting
all vertices in the grid. In the first and simplest of this class of methods [2],
each mesh edge is replaced by a spring, whose stiffness is inversely proportional
to the edge length. This way, longer edges will be softer, while shorter ones
will be stiffer, somewhat preventing the collision of neighboring vertices.

While this classical method performs reasonably well in a number of cases,
it does indeed fail as soon as the local grid motion is not small compared to
the local mesh size. Unfortunately, in many practical cases the necessary grid
displacements are not small, for example when conducting implicit coupled
fluid-structure interaction simulations. Furthermore, even if the displacements
are small, the edge spring method can not prevent the creation of nearly flat
elements, since it can not control the collapse mechanisms of the grid elements.
When nearly flat elements are produced, the algebraic problem obtained by
discretizing the governing PDE’s becomes ill-conditioned, which in turn will
usually induce severe limitations on the allowable time step size. Furthermore,
in the presence of nearly flat elements, edge-vertex (in two dimensions) or
face-vertex (in three dimensions) cross-overs are easily obtained. Clearly, any
cross-over will lead to a locally invalid grid, and therefore must be avoided.

Suitable procedures have been proposed in the literature to address the limi-
tations of the edge spring method, by reducing the potential for occurrence of
cross-overs or delaying the creation of invalid elements. For example, a proce-
dure that tries to separate rigid body motions from deformations was proposed
in Reference [8]. However, for some problems deformational motions will still
be large even after depuration from the rigid body components. Therefore,
there is a need for methods that can specifically deal with large deformation
problems. To address this issue, torsional springs were added to the linear edge
springs in References [7,5] in order to avoid the possible collapse mechanisms
of triangles and tetrahedra.

With the same goal, in this work we propose a new simple method of control-
ling collapse mechanisms in unstructured triangulations. This method is based
on the idea of complementing the linear edge springs with linear face-vertex
springs in three dimensions, or linear edge-vertex springs in two dimensions.
These additional springs effectively constrain each vertex within the polyhe-
dral ball that encloses it, contrasting the possible collapse mechanisms of the
grid elements. Furthermore, the presence of the additional springs is also ben-
eficial in terms of mesh quality, since these springs tend to keep each vertex
close to the centroid of the ball, pushing it away from its boundary.

2

This paper is organized according to the following plan. Definitions, notation
and mesh support data structures are introduced in Section 2. Next, the prob-
lem of grid deformation is formulated in Section 3, followed by a description
of the basic edge spring method in Section 4. Collapse control mechanisms
are discussed in Section 5. In §5.1 we describe the proposed method, and we
detail the construction of the additional network of springs that complement
the basic edge springs. Next, in §5.2 we offer a slightly revisited formulation
of the torsional spring method, with the purpose of using it for comparison.
The new proposed method is then compared with the edge spring and tor-
sional spring methods on a number of significative two and three-dimensional
examples in Section 6. Finally, in Appendices A and B we give further details
on the implementation of the proposed method as used for the examples of
this paper.

2 Definitions, Notation and Supporting Data Structures

We consider a bounded domain Ω ⊂ R
d, with d ≥ 1, and boundary Γ. Th is a

simplicial triangulation of Ω̄. A generic simplex K of the triangulation covers
a domain ΩK ⊂ Ω with boundary ΓK .

The domain Ω can be described by a boundary representation (BRep) of its
topology. Topological entities and their mutual relationships can be repre-
sented using appropriate data structures. An attribute information associated
with each topological entity specifies its geometry: a surface is associated with
each face, a curve is associated with each edge, and a point with each ver-
tex. The procedures described in this work are interfaced with a computer
aided design (CAD) system, that provides geometric and/or topological inter-
rogations on the nature of the domain Ω through a limited set of functional
operators. These operators hide from the present application the details of
the particular data structures and implementation used by the CAD system,
easing the porting to other systems.

The link to a CAD tool is in general useful to ensure the geometric and
topological consistency to the domain Ω of modifications to the local topology
and/or geometry of the triangulation Th. In this work, the topology of the
incoming grid is left unaltered, while the procedures modify the mesh geometry
by repositioning its vertices. While in a grid deformation problem boundary
vertices are in general either fixed or with known imposed displacement, it
is sometimes useful, as shown below, to allow the free motion of some of the
boundary vertices, that therefore need to “slide” on the domain boundary.
Hence, we use the link to a CAD system to ensure the correct placement of
these boundary mesh vertices on the true model boundary, even after large
motions. This is important for maximum generality of the procedures, and in

3

particular when dealing with complex, curved models.

Grids too can be represented using a boundary representation, usually in terms
of a subset of the four basic topological entities, in the order regions, faces,
edges and vertices. For a review of the possible choices, with their relative
merits and limitations, see for example Reference [3].

All topological entities in a mesh are generated by discretizing a parent entity
in the geometric model. For example, a mesh face can be obtained either by
discretizing a model face, or by discretizing a model region. The term “clas-
sification” identifies this unique relationship between each entity in the mesh
with an entity in the model. The classification information is here required
for automating the correct placement of vertices on the model boundary, as
previously mentioned, through appropriate queries to the CAD system.

Throughout this work, we use the capital letters R, F , E, V to indicate regions,
faces, edges and vertices, respectively. A generic topological entity belonging
to one of these four types is labelled T . A simplex, a triangle in two dimensions
or a tetrahedron in three, is indicated with the symbol K. Lists of entities are
indicated as {·}; for example, {E} denotes a list of edges. {T}S is used to
indicate a list of entities in the set S. For example, {E}Th

is the list of all
edges in the triangulation Th.

3 Deforming Meshes

We consider a deforming mesh problem, i.e. a problem where we are interested
in deforming the domain Ω, and hence the grid Th associated with it, in order
to accommodate some given displacement on a portion of its boundary. The
basic idea behind all methods for this class of problems is to define suitable
fictitious structural properties for the domain. The deformed configuration of
the elastic domain can then be computed, under the action of the driving
displacements.

The fictitious elastic problem used to compute a deformed grid configuration
can be formulated in different ways. First of all, the problem can be regarded as
transient or steady. Since the grid deformation problem is completely artificial
and no physical solution field is associated with it, it is usually convenient
to consider the steady version of the formulation, even when the simulated
physical phenomenon is transient. This is also the view adopted in the present
work.

Furthermore, the fictitious structural model can be either continuous [9] or
discrete [2]. In the former case, the classical partial differential equations of

4

elastostatics or elastodynamics are discretized in the spatial dimensions, for
example using the finite element method. Alternatively, a lumped-parameter
discrete structural model can be used. In this work, we consider the discrete
case, where the fictitious problem is obtained by defining a suitable network
of springs associated with the grid Th. The problem becomes then how to con-
struct the best possible network of springs that: a) is simple and inexpensive
to compute; b) does not contain collapse mechanisms; and c) leads to graded
and well shaped deformed grids, even for large imposed displacements.

In general, the domain boundary Γ can be partitioned according to the fol-
lowing criterion:

Γ = Γm + Γ0 + Γs. (1)

The moving boundary of the domain Ω is noted Γm, and its corresponding
discrete version in Th is Γm,h. On the moving boundary, displacements are
known. Several different situations are possible. For example, one might have
that

u = g on Γm, (2)

where g represents the prescribed displacement field. More often than not, one
will have that only the displacements of the grid vertices in Γm,h are known,
i.e.

ui = gi ∀ i ∈ {V }Γm,h
. (3)

Note that in both cases the total displacement is imposed, so that the grid
stays attached to the moving boundary. This is however not necessary, and
in certain applications one might want to leave more freedom to the grid. For
example, one might prescribe only the motion component in the local normal
direction to the boundary, therefore letting the mesh vertices free to slide along
Γm. In this case, one would have

u · n = g on Γm, (4)

where n indicates the local normal to a generic point on Γ. For the sake of
brevity, in the following we will consider only the case of Eq (3).

The portion of the boundary where no driving displacements are imposed can
be further subdivided into two parts, corresponding to the terms Γ0 and Γs in
Eq (1). On Γ0 the grid displacements are requested to be null:

u = 0 on Γ0. (5)

For example, this situation might apply to the case of the far-field boundary
in an aeroelastic problem. Finally, on Γs displacements are constrained to be
tangential to the boundary, i.e.

u · n = 0 on Γs. (6)

5

In practice, this means that the grid is allowed to slide along the portion Γs

of the domain boundary. This is typically necessary for an artificial internal
boundary as for example a symmetry plane, as exemplified in figure 1, or for
free surface problems.

This format of the problem caters for both the steady and the unsteady cases.
In the simulation of a transient process, the driving boundary conditions (3)
for the mesh deformation problem are to be regarded as functions of time.
Consequently, a mesh deformation problem is solved at each time step during
the transient simulation.

4 Basic Edge Spring Method

In this section we briefly review the classical edge spring method. Given two
vertices, i and j, the edge-vector from i to j is defined as

eij := xj − xi, (7)

and its length is noted
Lij :=

√
eij · eij. (8)

The unit edge-vector can then be written as

iij =
eij

Lij

. (9)

The displacements of vertices i and j are noted ui and uj, respectively. The
stretching of the edge spring is now computed as (uj −ui) · iij. The resulting
force on vertex i is aligned along the unit vector iij and can be written as

f
Edge
ij = kij(uj − ui) · iijiij = −f

Edge
ji , (10)

where kij is the spring stiffness. The spring stiffness is typically chosen as
inversely proportional to the edge length,

kij := 1/Lij, (11)

so that short edges are stiffer than longer ones, which provides a beneficial
effect in the control of the local element deformation.

The position of each vertex is found by writing its equilibrium under the effect
of all its nE edge-connected springs

nE
∑

j=1

f
Edge
ij = 0. (12)

6

The resulting linear system of equations can be solved in a variety of ways,
either direct or indirect, and that might require or not the assembly of the
stiffness matrix. If assembly is required, the four 3×3 block entry contributions
to the stiffness matrix due to the edge connecting vertices i and j are readily
found by inspection of Eq (10): Kii = −kijiiji

T
ij, Kij = Kji = kijiiji

T
ij,

Kjj = kijiiji
T
ij.

In this work we use a Gauss-Seidel iteration to solve the equilibrium problem,
as detailed in Appendix B. This approach is commonly used in the literature
for solving dynamic grid problems, is simple to implement and does not re-
quire the storage of the assembled system of linear equations. However, other
methods could clearly be used for the same purpose, a preconditioned conju-
gate gradient method being a good candidate that will typically outperform
the Gauss-Seidel method.

5 Controlling Collapse Mechanisms

The edge spring method contains collapse mechanisms for triangles and tetra-
hedra. For example, in the three-dimensional case, one can deform an existing
tetrahedron to the point of rendering it flat, with only finite stretching of its
edges, as shown in figure 2. In order to correct this behavior, suitable addi-
tional stiffening devices have to be added to the plain edge spring network,
with the final goal of controlling the volume (in three dimensions) or the area
(in two) of a grid element. These additional devices should in fact provide an
increased stiffness to the pseudo-structural system, that opposes the creation
of flat elements. Two such mechanisms are described in the following: the
first is a new proposed method that inserts linear springs, while the second is
a revisited version of the algorithms of References [7,5] that insert torsional
springs.

5.1 Ball-Vertex Springs

In three spatial dimensions, the basic idea of the new proposed method is to
introduce additional linear springs that resist the motion of a mesh vertex
towards each one of its region-opposed faces. For each region R using a vertex
i, a new linear spring is constructed that connects i with its projection p on
the plane of the face Fi of R opposite i. This additional spring is exemplified
in figure 3 for a single tetrahedron connected to a vertex, for clarity.

Once the additional springs are constructed for all tetrahedra using a vertex i,
one has effectively constrained the same vertex not to leave the polyhedral ball

7

Bi = ball(i) that encloses it. Given a vertex i, the operator ball(i) first finds
all mesh regions that share that vertex, then finds all mesh faces that bound
these mesh regions and, among these, discards all of the faces that use vertex
i, finally returning all remaining faces. Similarly in two spatial dimensions. Bi

is therefore the set of faces (edges, in two dimensions) that encircle the vertex
and are one edge away from it.

The resulting mesh repositioning scheme can be straightforwardly modified to
handle the two-dimensional problem. In this case, additional linear springs are
constructed that connect each mesh vertex with its neighboring face-opposed
edges. For the sake of simplicity, we restrict our attention to the sole more
interesting three-dimensional problem in the following.

The position of each mesh vertex is found by writing its equilibrium under the
combined effect of its edge-connected springs, together with the additional
ball-vertex springs. If ui and up indicate the displacements of vertex i and of
its projection p on Fi, respectively, the resulting force on i can be expressed,
similarly to the edge spring case, as

fFace-Vertex
ip = kip(up − ui) · iipiip = −fFace-Vertex

pi , (13)

where, exactly as before, eip := xp − xi, Lip :=
√

eip · eip, and iip = eip/Lip

is the corresponding unit vector. The spring stiffness is chosen here again
according to the same criterion, namely kip := 1/Lip.

The only substantial difference with respect to the edge spring case, is given
by the fact that up in (13) is now the displacement of a virtual point, and
not of an existing vertex. One simple way of addressing this problem is by
interpolating the displacement at p based on the displacement values at the
three face vertices, j, k and l, respectively. First, xp is computed as the normal
projection of i on Fi as

xp = xi − (xi − xj) · nn, (14)

where

n :=
ijk × ijl

||ijk × ijl||
(15)

is the unit normal to face Fi. Given xp, the interpolation coefficients ξ and η
corresponding to p can be computed such that

xp = ξxj + ηxk + (1− ξ − η)xl. (16)

No special action is required if the projected point falls outside the targeted
face. Finally, given ξ and η, the interpolated displacement at p is obtained as

up = ξuj + ηuk + (1− ξ − η)ul. (17)

8

Even in the case of the ball-vertex springs, the resulting system of linear
equations can be solved in a variety of ways. If assembly is required, the 3× 3
block entry contributions to the stiffness matrix due to each ball-vertex spring
are readily found by inspection of Eq (13) and (17).

In closing this section, we note that it is also possible to use the sole network
of vertex-ball springs. This would avoid the computation of the edge springs,
and might then imply a somewhat reduced computational cost, at the price
of a possibly reduced control on the element deformation.

5.2 Revisited Torsional Springs

In this section we present the torsional spring method of Reference [5], that
will be used for comparisons with the new proposed formulation using ball-
vertex springs.

In two spatial dimensions, the torsional spring method complements the edge
spring network with additional torsional springs at the vertices of each trian-
gle. The possible face collapse mechanism is thereby prevented by controlling
the face area. In three spatial dimensions, additional virtual triangular faces
are added to each tetrahedron. Each of these additional faces is equipped with
torsional springs at its vertices, that oppose the possible face collapse mech-
anism. In turn, the inserted virtual faces oppose the motion of each vertex
of the tetrahedron towards its opposite face, thereby controlling the collapse
mechanism of the tetrahedron. Here again, in the following we concentrate on
the sole three-dimensional case.

The basic idea of the formulation is to insert, for each region R using a vertex
i, a new face F that is perpendicular to face Fi opposite i in R and that has one
edge in common with R. Since each vertex in a tetrahedron is used by three
edges, one can insert three additional faces for each vertex, for a total of twelve
faces per tetrahedron. The additional faces that are inserted in a tetrahedron
R for controlling the collapse of vertex i against its opposite face Fi are shown
in figure 4. The remaining nine face configurations are obtained by considering
the other three tetrahedron vertices. To reduce the computational cost, often
one single face per vertex is used, resulting in the insertion of a total of four
faces per tetrahedron.

In reality, the request that the inserted face be perpendicular to Fi can lead
to very distorted configurations, even for perfectly well shaped tetrahedra.
For example, consider figure 5, where a face F is inserted using vertex i and
edge ij. It is evident from the figure that the intersection point pj of the face
plane πF with edge kl can be very far (in the limit, infinitely far) from either
vertex k or l, so that the inserted face is extremely skewed. Since very skewed

9

elements will introduce very large torsional stiffnesses in the mesh, Reference
[5] proposed the following remedy to this situation: if point pj falls outside
of edge kl, then it is identified with one of the two bounding vertices of the
edge, either k or l (specifically, l in the case of the figure). An alternative
way of avoiding this difficulty, is to request that the additional edge ipj be
perpendicular to edge kl, which would lead in the previous example to the
more reasonable inserted face F ′, as depicted in figure 6. This second choice
was used for the present work.

With reference to figure 7, consider now the insertion of the additional face F
that passes through edge ij. We want to compute the force on vertex i caused
by the displacements of the face vertices i, j and pj. The (small) rotation of
edge iq, where q = j or q = pj, in the plane of face F can be expressed as

ϕiq =
1

Liq

iiq × (uF
q − uF

i). (18)

If q = pj, the displacement of the virtual vertex pj is interpolated based on
the displacements of its neighboring vertices, using

upj
= (1− ξ)uk + ξul, (19)

where ξ is the interpolation coefficient corresponding to point pj on edge kl. In
Eq (18), the displacements producing the edge rotation are to be understood
as the displacements of vertices i and q projected onto the plane of face F , i.e.

uF
i = Pui, (20)

uF
q = Puq, (21)

where P is the projector
P := I − nnT , (22)

and n is the unit normal to F ,

n :=
iij × iipj

||iij × iipj
|| . (23)

The edge rotation ϕiq induces a stretching in the torsional spring at vertex i,
whose stiffness is labelled ki. Similarly, the edge rotation ϕqi = ϕiq induces
a stretching in the torsional spring at vertex q, whose stiffness is labelled kq.
The resulting moments on the two vertices can therefore be evaluated as

miq = kiϕiq, (24)

mqi = kqϕqi. (25)

The virtual work corresponding to the displacements uF
i and uF

q and the

10

resulting rotations can then be computed as

miq ·ϕiq + mqi ·ϕqi + fTorsion
iq · uF

i + fTorsion
qi · uF

q = 0, (26)

where fTorsion
iq (respectively, fTorsion

qi) is the force on vertex i (respectively, q)
due to the stretching of the torsional springs. By inserting now the definition
of the torsional moments miq and mqi in Eq (26), one gets the expression of
the force which reads

fTorsion
iq = (ki + kq)

1

L2iq
iiq × iiq × (uF

q − uF
i) = −fTorsion

qi . (27)

Clearly, this force lies in the plane of the face. Here again, the various 3 × 3
block contributions to the stiffness matrix are readily obtained by inspection
of Eq (27), together with Eq (19) and (20,21).

The stiffness of the torsional springs at the generic vertex i was computed in
Reference [7] as

ki :=
1

sin2 θi

=
L2ijL

2
ipj

4A2
, (28)

where θi is the face angle at vertex i and A is the area of the inserted face
F . This definition of the spring stiffness opposes the creation of very small
(θi ≈ 0) and very large (θi ≈ π) angles, thereby providing a collapse control
effect.

However, this choice is not dimensionally consistent with the definition of the
edge springs. In fact, since edge spring stiffnesses are inversely proportional
to edge lengths, Eq (11), the forces f

Edge
ij are non-dimensional quantities. On

the other hand, with the definition of the torsional stiffness (28) the forces
fTorsion

iq are inversely proportional to a length. Therefore, adding the effect
of the torsional springs to that of the edge springs produces a result that is
affected by the units of measure; for example, by expressing the same problem
in meters or in millimeters, one would change the relative importance of the
edge and torsional springs by three orders of magnitude. This is clearly an
undesirable effect, that should be avoided. The same undesirable dimensional
effect would also be present in a graded mesh, such as for example a mesh for
external fluid dynamics problems, where the elements close to the body are
typically several orders of magnitude smaller than those in the far field.

There are different possible solutions to this problem. For example, one could
define ki as

ki :=
1

sin2 θi

%, (29)

where % is a local characteristic length, for example the radius of the cir-
cumscribed circle of the inserted face or the face average edge. Other choices
for the characteristic length % are certainly possible. Alternatively, one could

11

employ the sole torsional springs [6], avoiding the use of the linear springs
altogether. This choice might however imply a somewhat decreased control on
the element deformation, especially if the four face configuration is used.

6 Numerical Examples

In this section, two test cases demonstrate the proposed ball-vertex method for
moving grids. The new procedure is compared with the revisited formulation
of the torsional spring method described in the previous pages.

Mesh quality measures expressed in terms of geometric criteria are used for
assessing the characteristics of the two procedures. This gives an objective
(i.e. solver and application-independent) comparison of the grids, while actual
numerical simulations would raise questions concerning the particular finite
element or finite volume formulation, the time stepping algorithm, the bound-
ary conditions used and other problem dependent issues. The use of objective
grid quality measures avoids these problems.

We consider quality measures based on the ratio of the radii of the inscribed
and circumscribed spheres (or circles in two dimensions), noted r/R, which
gives a measure of the stretching of an element, and quality measures based
on dihedral angles. Large dihedral angles can negatively impact the solution
of partial differential equations, affecting the discretization error and the con-
ditioning of the discrete problem [1]. Very small dihedral angles indicate the
generation of sliver elements, which should also be avoided. The smallest di-
hedral angle between two neighboring mesh faces in the grid is defined as

γmin := min
K∈Th

min
E∈{E}K

γE,K ,

where {E}K is the list of edges bounding simplex K, while the largest dihedral
angle is

γmax := max
K∈Th

max
E∈{E}K

γE,K .

The dihedral angle at edge E formed by faces F1 and F2 of simplex K is
γE,K = π ± arccos (~nF1 · ~nF2), being ~nF the normal to face F . Similarly, we
define the average small and large dihedral angles in the grid as

γmin,avrg :=
1

nK

∑

K∈Th

min
E∈{E}K

γE,K ,

γmax,avrg :=
1

nK

∑

K∈Th

max
E∈{E}K

γE,K ,

respectively, where nK is the number of simplices in the grid.

12

6.1 Two-Dimensional Pitching and Plunging Airfoil

In this first example we consider a pitching and plunging airfoil of unit chord,
with pitching amplitude θ0 = 17 deg and plunging amplitude h0 = .22 chords,
that moves according to

θn = θ0
(

cos(2πn/N)− 1
)

,

hn = h0

(

9

10
sin(2πn/N)− 1

10

T

2π
(cos(2πn/N)− 1)

)

,

where n is the generic time step, and N = 80 is the number of time steps per
cycle. The simulation is conducted for a total of 9 cycles. Figure 8 shows the
upper and lower mesh configurations at the end of the first cycle. Displace-
ment at each time step are applied in an incremental fashion, as described in
Appendix A, with a maximum number of increments per time step rmax = 50.
The maximum number of Gauss-Seidel iterations is kmax = 300 and the Gauss-
Seidel convergence criterion is ε = 10−5.

Figure 9 shows the number of displacement increments at each time step, rn

(see Appendix A), as a function of the time step number, n. Here and in the
following, a solid line is used to indicate the results of the proposed ball-vertex
method, while a dashed line is used for the revisited torsional spring method.
Although the imposed displacements at each time step are rather large, the
ball-vertex method exhibits a remarkably constant behavior throughout the
simulation. The torsional spring method fails at the end of the fourth cycle,
in the sense that the full required displacement was not achieved within the
allowed number of displacement increments and Gauss-Seidel iterations.

Quality measures of the grids are examined in the following figures. Figure 10
shows the minimum and average values of the r/R ratio. Notice that both
methods are able to maintain a good average quality of the grid, as shown
by the two curves in the top part of the figure. This was apparent also in
the visual inspection of animations of the grid motion problem: both methods
yield deformed grids that appear of nice quality in the “eye norm” and do
not seem to degrade during the simulation. However, figure 10 shows that the
ball-vertex method seems to have better control on the worst element in the
grid. A rapid deterioration of the worst quality measure is clearly evident for
the torsional spring method during the fourth cycle, eventually leading to the
failure of the simulation.

These effects are confirmed by the plots of the grid angles. In figure 11 we show
the behavior of the average small and large angles, γmin,avrg and γmax,avrg. The
plot shows that the grid quality measures oscillate about a constant value,
with no noticeable progressive damaging of the mesh. Figure 12 shows the be-
havior of the worst angles in the grid, γmin and γmax. Here again, oscillations

13

of constant amplitude throughout the simulation characterize the ball-vertex
method. For the torsional spring method, one can notice somewhat larger os-
cillation amplitudes until, during the fourth cycle, a flat element is generated,
as shown by the plot of the smallest angle in the grid.

Notice that we are using fairly large imposed displacements per time step
for this example, with the purpose of highlighting possible differences in the
behavior of the two schemes in extreme cases. Indeed, as expected, reducing
the time step length and therefore reducing the magnitude of the imposed
displacements to smaller values, both methods successfully complete the sim-
ulation with quite similar results.

6.2 Three-Dimensional Pitching and Plunging Wing

Next, we consider the three-dimensional case of a pitching and plunging wing.
A view of the mesh is given in figure 13. The ratio of the largest and smallest
elements in the grid is approximatively 105 for this mesh, and without the di-
mensional correction proposed in the previous section for the torsional spring
method the algorithm fails at the very first step. For this example, we have
used the radius of the circumscribed circle of each inserted face in the defini-
tion of the torsional springs, together with the twelve face configuration. The
pitching amplitude is θ0 = 20 deg, while the plunging amplitude is h0 = .7
chords, and

θn = θ0

(

π

180

(

− sin(2πn/N + 0.2π) + sin(2.2π)
)

)

,

hn = h0 sin(2πn/N).

The mesh deformation problem is solved for 4 cycles, using N=800 time steps
per cycle. The Gauss-Seidel convergence criterion is ε = 10−5.

Figure 14 shows the number of incremental steps, rn, as a function of the
time step number. Here again, a solid line indicates the proposed ball-vertex
method, while a dashed line corresponds to the results of the torsional spring
method. On average, fewer incremental steps are necessary for the former
approach, which also shows a remarkably constant behavior. This is important,
since it means that no deterioration of the grid quality is produced throughout
the simulation.

Figure 15 shows the r/R ratio. The average quality of the grid oscillates about
a constant value for both methods. A flat element is produced by the torsional
spring method during the first cycle. However, contrary to the previous ex-
ample, the simulation was continued in this case even after the creation of an
invalid element, in order to be able to compare the average grid quality. Fig-

14

ure 16 shows the average small and large dihedral angles, γmin,avrg and γmax,avrg.
Both quantities oscillate about constant values and do not show progressive
damaging of the mesh. Finally, figure 17 reports the worst small and large
dihedrals, and shows the rapid deterioration of the grid in the torsional spring
case in the first cycle. All the results for the three-dimensional case seem to
closely parallel those found for the simpler two-dimensional problem.

7 Conclusions

In this work we have presented a new method for enhancing the robustness
of pseudo-structural techniques for the deformation of unstructured meshes.
Similarly to the torsional springs method, the pseudo-structural system is
designed in such a way as to avoid the appearance of collapse mechanisms for
the mesh elements.

Control on the volume (or area) of a grid element is here achieved by con-
fining each vertex to its ball. Additional linear springs are added to the net-
work; these springs connect each vertex with additional virtual points obtained
as projections on the ball entities, either edges or faces in, respectively, two
and three dimensions. The method is straightforwardly implemented and in-
tegrated with the edge spring method; alternatively, it could be used by itself,
with a slightly lower computational cost and a slightly decreased control on
the element deformation.

The new procedures were compared with the torsional spring method. Nu-
merical experiments in two and three dimensions have shown that the new
method behaves well, and is able to guarantee nicely graded, good quality
grids even after repeated cycles of fairly severe deformations. For the torsional
spring method, a minor but eventually important modification to the original
formulation was proposed to make it dimensionally consistent; nevertheless,
the revisited torsional springs would seem to be somewhat less robust than
the new proposed procedure, at least for the problems here considered. In
any case, the proposed ball-vertex method would seem to offer a simple and
straightforward solution to the problem of devising robust, effective, pseudo-
structural discrete systems for mesh deformation problems, especially in three
spatial dimensions.

References

[1] I. Babuska and A.K. Aziz, On the angle condition in the finite element method,
SIAM Journal on Numerical Analysis 13 (1976) 214–226.

15

[2] J.T. Batina, Unsteady Euler airfoil solutions using unstructured dynamic
meshes, AIAA Paper No. 89-0150, AIAA 27th Aerospace Sciences Meeting,
Reno, NV, USA (1989).

[3] M.W. Beall and M.S. Shephard, A general topology-based mesh data structure,
International Journal for Numerical Methods in Engineering 40 (1997) 1573–
1596.

[4] C.L. Bottasso and D. Detomi, A procedure for tetrahedral boundary layer mesh
generation, Engineering with Computers 18 (2002) 66–79.

[5] C. Degand and C. Farhat, A three-dimensional torsional spring analogy method
for unstructured dynamic meshes, Computers and Structures 80 (2002) 305–
316.

[6] C. Farhat, Personal communication, 2003.

[7] C. Farhat, C. Degand, B. Koobus and M. Lesoinne, Torsional springs for two-
dimensional dynamic unstructured fluid meshes, Computer Methods in Applied

Mechanics and Engineering 163 (1998) 231–245.

[8] C. Farhat, K. Pierson and C. Degand, Multidisciplinary simulation of the
maneuvering of an aircraft, Engineering with Computers 17 (2001) 16–27.

[9] T.E. Tezduyar, M. Behr and J. Liou, A new strategy for finite element
computations involving moving boundaries and interfaces – the deforming-
spatial-domain/space-time procedure: I. The concept and the preliminary tests,
Computer Methods in Applied Mechanics and Engineering 94 (1992) 339–351.

Appendix A Incremental Displacement Algorithm

In this section we describe an incremental procedure for the solution of the
mesh deformation problem. A possible implementation of the algorithm is
given in figure 18.

The current position vector of vertex i of the incoming grid Th is noted xi. The
moving boundary Γm is discretized in Th as Γm,h. The prescribed boundary
conditions on the discrete moving boundary can therefore be expressed as

ui = gi ∀ i ∈ {V }Γm,h
, (30)

where {V }Γm,h
is the set of moving vertices.

The algorithm operates as follows. All lumped parameters that are necessary
for constructing the edge springs, the additional collapse-avoidance springs and
their associated data are computed as functions of the current configuration,
xi∀i ∈ Th, and stored for later use. Next, an iteration is started, with iteration

16

index r. At the current iteration r, the displacement scaling factor αr ≤ 1 is
computed. αr is used to compute the displacement increment for each moving
vertex that will be applied at the current iteration. This is given as

ur
i = αrgi, ∀ i ∈ {V }Γm,h

. (31)

The scaling factor αr is computed in the following fashion. For each vertex i
on the moving boundary Γm,h, the list of faces (edges, in two dimensions) Bi

is computed as

Bi := ball(i). (32)

The minimum distance dr
i between vertex i and each face (edge, in two di-

mensions) F ∈ Bi is then computed as

dr
i := min

F∈Bi

dist(xr
i , F). (33)

The quantity dr
i can then be interpreted as the radius of the ball inscribed

sphere (circle, in two dimensions). Based on dr
i , a scaling factor for the applied

displacement at vertex i at the current iteration can be computed as

αr
i :=

(

dr
i

s
+ ur−1

i

)

1

gi

, (34)

where s is a safety factor, typically chosen as s = 2 in this work, ur−1
i :=

√

ur−1
i · ur−1

i is the magnitude of the applied displacement at the previous
iteration, and gi :=

√
gi · gi is the magnitude of the desired full applied dis-

placement. In practice, αr
i represents the safe scaling factor for vertex i at the

current iteration which ensures that the corresponding incremental displace-
ment will not locally entangle the grid. Finally, the global scaling factor, αr,
is chosen as the minimum of all scaling coefficients computed for the various
moving vertices, or it is set to one once the full required displacement has
been reached, i.e. αr is computed as

αr := min (1, min
i∈{V }Γm,h

αr
i). (35)

Based on the computed value αr, the imposed displacements at iteration r
are evaluated by means of Eq (31). At this point, the linear problem resulting
from the spring analogy method is solved, to yield the resulting displacements
ur

i for all vertices i in the grid that are not on Γm,h or Γ0,h. The increment
iteration is completed by updating all position vectors in the grid, except
for those on Γ0,h. Iterations are terminated when αr = 1, i.e. when the full
displacements have been applied.

17

The algorithm is completed by projecting all vertices classified on Γs on
the corresponding model entities. The projection enforces the sliding con-
straints (6) on these portions of the boundary. This is obtained in the algo-
rithm of figure 18 through the closest-point operator

x′ = P(T,x), (36)

which takes as input the model entity T where snapping should take place
and an initial guess x, and returns a snapped position x′ that lies on T .

Non-linear versions of the iterative scheme are possible, for example by updat-
ing the spring stiffnesses and accompanying data during the iteration process.
This strategy however comes at the price of an increased computational cost,
and it is therefore not adopted here.

Appendix B Gauss-Seidel Solution

At the k-th Gauss-Seidel iteration, each vertex i is visited and its equilibrium
is enforced. For example, using the sole edge springs, Eq (12), we have

(nE
∑

j=1

kijiiji
T
ij

)

u
[k]
i =

nE
∑

j=1

kijiiji
T
iju

[k]
j , (37)

where the displacement u
[k]
i is unknown and is computed as a function of the

known current displacements u
[k]
j .

As stopping criterion for the Gauss-Seidel iterations, we use the following
expression:

max
i∈{V }Th

d
[k]
i

dr
i

≤ ε, (38)

where ε is a convergence tolerance, d
[k]
i =

√

d
[k]
i · d[k]i , and d

[k]
i is the local

displacement at the current Gauss-Seidel iteration, i.e.

d
[k]
i := u

[k]
i − u

[k−1]
i . (39)

The quantity d
[k]
i /dr

i represents the ratio of the current displacement to the
radius of the ball (see Appendix A, Eq (33)) inscribed sphere or circle. This
is a local (vertex based) criterion, in the sense that it measures the actual
displacement scaled by the value of the local ball size. This criterion is better
suited to graded meshes, that can exhibit changes in the local ball size of sev-
eral orders of magnitude, than a global stopping criterion, such as for example
maxi∈{V }Th

d
[k]
i ≤ ε.

18

For efficiently propagating the information during the Gauss-Seidel solution
process, vertices need to be ordered. In fact, for reducing the number of it-
erations, we would like to maximize for each vertex the number of already
processed neighbors in order to quickly propagate the information from the
moving boundary to the rest of the grid.

A simple ordering scheme for this goal was proposed in Reference [4]. First,
model faces classified on Γm are collected in connected sets, i.e. if two model
faces share a common model edge or vertex they are assigned to the same set.
Next, a mesh vertex classified on model boundary is selected for each con-
nected set. This vertex represents the “seed” point for an ordering process.
The seed vertex is assigned the number 1 and labelled V1. Starting from V1,
all edge-connected vertices that are also classified on the connected set or its
boundaries are gathered, numbered and stored in a linked list. The vertex that
was assigned the number 2, V2, is now considered. The process is repeated, and
all edge-connected vertices to V2 that are also classified on the connected set
or its boundaries are collected in the list and numbered. At the end of this first
phase, all vertices in Γm,h have been numbered. The process is now restarted
from vertex V1. All edge-connected vertices that have not yet been numbered
are gathered, numbered and stored in the linked list. Next, vertex V2 is con-
sidered, and all its edge-connected vertices that have not yet been numbered
are processed. The procedure continues until all vertices are numbered.

The algorithm essentially constructs successive layers of vertices, the first layer
being represented by all vertices belonging to Γm,h, that wrap the connected
set and march away from it. The procedure is illustrated in figure 19.

19

G
0

G
s

G
m

Figure 1. Partitioning of domain boundary. Moving boundary: Γm; null displacement
boundary: Γ0; sliding boundary: Γs.

20

i

R
j

k

l

Figure 2. Tetrahedron collapse mechanism with the edge spring method. A vertex
can cross one of the faces of its ball with only finite stretching of its connected edge
springs.

21

i

Fi

p

R
j

k

l

Figure 3. Ball-vertex spring method: additional linear spring connecting each vertex
i with the opposite face Fi in a tetrahedron R.

22

i

Fi pj

Rj

k

l

i

Fi

pk Rj

k

l

i

Fi
pl

R
j

k

l

F F F

Figure 4. Torsional spring method: additional faces inserted in a tetrahedron R for
controlling the collapse of vertex i onto face Fi.

23

i

Fi

pj

R

j

k

l

F

90deg

pF

Figure 5. Torsional spring method: distorted additional face for a well shaped tetra-
hedron.

24

pj
90deg

i

Fi

R

j

k

l

F'

Figure 6. Torsional spring method: modified face insertion criterion.

25

i

Fi

Rj

k

l

F
kj

ki

kpj

pj

pF

uj

F

upj

F

ui

F

ui

uj

upj

Figure 7. Torsional spring method: inserted face and related quantities.

26

Figure 8. Pitching and plunging airfoil: upper and lower mesh configurations during
the first cycle.

27

0 80 160 240 320 400 480 560 640 720
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

n

r n

Figure 9. Pitching and plunging airfoil: number of incremental steps rn as a function
of the time step number n. Solid line: ball-vertex method; dashed line: torsional
spring method.

28

0 80 160 240 320 400 480 560 640 720
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

(r
/R

) m
in

, (
r/

R
) av

rg

Figure 10. Pitching and plunging airfoil: minimum, (r/R)min, and average,
(r/R)avrg, radii ratios as functions of the time step number n. Solid line: ball-vertex
method; dashed line: torsional spring method.

29

0 80 160 240 320 400 480 560 640 720
40

45

50

55

60

65

70

75

80

85

n

γ m
in

,a
vr

g, γ
m

ax
, a

vr
g

Figure 11. Pitching and plunging airfoil: average minimum, γmin,avrg, and average
maximum, γmax,avrg, angles as functions of the time step number n. Solid line:
ball-vertex method; dashed line: torsional spring method.

30

0 80 160 240 320 400 480 560 640 720
0

15

30

45

60

75

90

105

120

135

150

165

180

n

γ m
in

, γ
m

ax

Figure 12. Pitching and plunging airfoil: worst minimum, γmin, and worst maximum,
γmax, angles as functions of the time step number n. Solid line: ball-vertex method;
dashed line: torsional spring method.

31

Figure 13. Pitching and plunging wing: view of the initial grid.

32

0 800 1600 2400 3200
1

2

3

4

5

6

7

8

9

10

n

r n

Figure 14. Pitching and plunging wing: number of incremental steps rn as a function
of the time step number n. Solid line: ball-vertex method; dashed line: torsional
spring method.

33

0 800 1600 2400 3200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

(r
/R

) m
in

, (
r/

R
) av

rg

Figure 15. Pitching and plunging wing: minimum, (r/R)min, and average, (r/R)avrg,
radii ratios as functions of the time step number n. Solid line: ball-vertex method;
dashed line: torsional spring method.

34

0 800 1600 2400 3200
30

40

50

60

70

80

90

100

110

n

γ m
in

,a
vr

g, γ
m

ax
,a

vr
g

Figure 16. Pitching and plunging wing: average minimum, γmin,avrg, and average
maximum, γmax,avrg, dihedral angles as functions of the time step number n. Solid
line: ball-vertex method; dashed line: torsional spring method.

35

0 800 1600 2400 3200
0

20

40

60

80

100

120

140

160

180

n

γ m
in

, γ
m

ax

Figure 17. Pitching and plunging wing: worst minimum, γmin, and worst maximum,
γmax, dihedral angles as functions of the time step number n. Solid line: ball-vertex
method; dashed line: torsional spring method.

36

input : Th,Γm,h, gi ∀ i ∈ {V }Γm,h
, rmax

Compute spring stiffnesses at current configuration xi ∀ i ∈ {V }Th

x1
i = xi ∀ i ∈ {V }Th

r = 0

do

r = r + 1

Compute increment coefficient αr at xr
i ∀ i ∈ {V }Th

ur
i = αrgi ∀ i ∈ {V }Γm,h

[Current imposed displacements]

Solve linear problem and compute vertex displacements ur
i ∀ i ∈ {V }Th−Γm,h−Γ0,h

xr+1
i = x1

i + ur
i ∀ i ∈ {V }Th−Γ0,h

[Update vertex positions]

while ((αr < 1) and (r ≤ rmax))

xr+1
i = P(T,xr+1

i) ∀ i ∈ {V }Γs,h
[Project vertex position onto model entity T,

if T is a face or edge of Γs]

Figure 18. Incremental displacement algorithm.

37

1
2

3
a)

1
2

3

4b)

1
2

3

4c)

1
2

3
d) 4

5 6

1
2

3

4e)

5 67

1
2

3

4f)

5 677 8

1
2

3

4

5 677 8

1
2

3

4g)

5 677 87
9

1
2

3

4h)

5 677 87
9

10
11

1
2

3

4i)

5 677 87
9

10
11 12

1
2

3

4j)

5 677 87
9

10
11 1213

Figure 19. Construction of a line ordering in an unstructured mesh using the “onion
leaves” greedy algorithm.

38

