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Abstract 
 
This is intended as a very basic introduction to the mathematical methods used in Thomas 
Sargent's book Dynamic Macroeconomic Theory.  It assumes that readers have no further 
mathematical background than an undergraduate "Mathematics for Economists" course.  It 
contains sections on deterministic finite horizon models, deterministic infinite horizon 
models, and stochastic infinite horizon models.  Fully worked out examples are also provided. 
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FOREWARD (2002) 
 

I wrote this guide originally in 1987, while I was a graduate student at Queen’s University at 

Kingston, in Canada, to help other students learn dynamic programming as painlessly as 

possible. The guide was never published, but was passed on through different generations of 

graduate students as time progressed. Over the years, I have been informed that several 

instructors at several different universities all over the world have used the guide as an 

informal supplement to the material in graduate macro courses. The quality of the photocopies 

has been deteriorating, and I have received many requests for new originals. Unfortunately, I 

only had hard copy of the original, and this has also been deteriorating.  

 

Because the material in this guide is not original at all – it simply summarizes material 

available elsewhere, the usual outlets for publication seem inappropriate. I decided, therefore, 

to simply reproduce the handout as a pdf file that anyone can have access to. This required re-

typing the entire document. I am extremely grateful to Malliga Rassu, at the University of 

Auckland for patiently doing most of this work. Rather than totally reorganize the notes in 

light of what I’ve learned since they were originally written, I decided to leave them pretty 

much as they were – with some very minor changes (mainly references). I hope people 

continue to find them useful.  

 
 
INTRODUCTION (1987) 
 
This note grew out of a handout that I prepared while tutoring a graduate macroeconomics 

course at Queen's University. The main text for the course was Thomas Sargent's Dynamic 

Macroeconomic Theory. It had been my experience that some first year graduate students 

without strong mathematical backgrounds found the text heavy going, even though the text 

itself contains an introduction to dynamic programming. This could be seen as an introduction 

to Sargent's introduction to these methods. It is not intended as a substitute for his chapter, but 

rather, to make his book more accessible to students whose mathematical background does 

not extend beyond, say, A.C. Chaing's Fundamental Methods of Mathematical Economics. 

 

The paper is divided into 3 sections: (i) Deterministic Finite Horizon Models, (ii) 

Deterministic Infinite Horizon Models, and (iii) Stochastic Infinite Horizon Models.  It also 

provides five fully worked out examples. 
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1. DETERMINISTIC, FINITE HORIZON MODELS 
 
 
Let us first define the variables and set up the most general problem, (which is usually 

unsolvable), then introduce some assumptions which make the problem tractable. 

 

1.1 The General Problem: 

 

( )
( ){ }tv

v,,v,v;x,,x,xUMax TT 11010      −⋅⋅⋅⋅⋅⋅
 

 subject to i) ( ) 0  11010 ≥⋅⋅⋅⋅⋅⋅ −TT v,,v,v;x,,x,xG  

  ii) 10 allfor   −⋅⋅⋅=Ω∈ Ttvt  

  iii) given 00 xx =  

  iv) 0≥Tx  

 

Where:  tx  is a vector of state variables that describe the state of the system at any point in 

time.  For example, i
tx  could be the amount of capital good i at time t. 

 tv  is a vector of control variables which can be chosen in every period by the 

decision-maker.  For example j
tv  could be the consumption of good j at time t. 

 ( )⋅U  is the objective function which is, in general, a function of all the state and 

control variables for each time period. 

 ( )⋅G  is a system of intertemporal constraints connecting the state and control 

variables. 

 Ω  is the feasible set for the control variables – assumed to be closed and 

bounded. 

 

In principle, we could simply treat this as a standard constrained optimisation problem.  That 

is, we could set up a Lagrangian function, and (under the usual smoothness and concavity 

assumptions) grind out the Kuhn-Tucker conditions. 
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In general though, the first order conditions will be non-linear functions of all the state and 

control variables.  These would have to be solved simultaneously to get any results, and this 

could be extremely difficult to do if T is large. We need to introduce some strong assumptions 

to make the problem tractable. 

 

1.2 Time Separable (Recursive) Problem: 

 

Here it is assumed that both the ( )⋅U  and the ( )⋅G  functions are time-separable. That is: 

( ) ( ) ( ) ( ) ( )TTTTTT xSv,xUv,xUv,xUv,v;x,,xU ++⋅⋅⋅++≡⋅⋅⋅⋅⋅⋅ −−−− 111111000100 ,  

where ( )TxS  is a "scrap" value function at the end of the program (where no further decisions 

are made).  Also, the ( )⋅G  functions follow the Markov structure: 

 

                    ���
���
�

=

=
=

−−− ),(

),(
),(

111

1112

0001

TTTT vxGx

vxGx
vxGx

�   “Transition equations” 

 

Note: Recall that each tx  is a vector of variables i
tx  where i indexes different kinds of state 

variables.  Similarly with .vt  Time separability still allows interactions of different 

state & control variables, but only within periods. 

 

The problem becomes: � −

=� ��	
 �
Ω∈

−=
+

1

0
1,...,1,0;

)(),(
T

t
Tttt

v

Ttv
xSvxUMax

t

t

 

  subject to i) ( ) n1i        ,1 ⋅⋅⋅=∀=+ tt
i
t

i
t vxGx  and 1,...,0 −= Tt  

   ii) n1i      given      00 ⋅⋅⋅=∀= ii xx  

 

Once again, in principle, this problem could be solved using the standard constrained 

optimisation techniques.  The Lagrangian is: 
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 ( ) ( ) ( )[ ]�
�� −

= =
+

−

=
−++=

1
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1

0

T

t

n

i

i
ttt

i
t

i
tTtt

T

t
t xv,xGxSv,xUL λ  

This problem is often solvable using these methods, due to the temporal recursive structure of 

the model.  However, doing this can be quite messy.  (For an example, see Sargent (1987) 

section 1.2).  Bellman's "Principle of Optimality" is often more convenient to use. 

 

1.3 Bellman's Method (Dynamic Programming): 

 

Consider the time-separable problem of section 1.2 above, at time t=0. 

 

Problem A: 

 � −

=� ���� �
Ω∈

−=
+

1

0
1,...,1,0;

)(),(
T

t
Tttt

v

Ttv
xSvxUMax

t

t

 

  subject to i) ( ) n1i        ,1 ⋅⋅⋅=∀=+ tt
i
t

i
t vxGx  and 1,...,0 −= Tt  

   ii) n1i      given      00 ⋅⋅⋅=∀= ii xx  

 

Now consider the same problem, starting at some time .t 00 >  

 

Problem B: 

 

 � −

=� ���� � Ω∈
−=

+
1

1,...,;
0

0

)(),(
T

tt
Tttt

v
Tttv

xSvxUMax

t

t

 

  subject to i) ( ) n1i        ,1 ⋅⋅⋅=∀=+ tt
i
t

i
t vxGx  and 1,...,0 −= Ttt  

   ii) n1i      given      
00

⋅⋅⋅=∀= i
t

i
t xx  

 

Let the solution to problem B be defined as a value function ( )00
tT,xV t − . Now, Bellman's 

"Principle of Optimality" asserts: 

 

 Any solution to Problem A (i.e. on the range Tt ⋅⋅⋅= 0 ) which yields 

00 tt xx ≡  must also solve Problem B (i.e.: on the range Ttt ⋅⋅⋅= 0 ). 
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(Note: This result depends on additive time separability, since otherwise we couldn't "break" 

the solution at 0t .  Additive separability is sufficient for Bellman's principle of optimality.) 

 

Interpretation: If the rules for the control variables chose for the 0t  problem are optimal for 

any given 
0t

x , then they must be optimal for the *
tx
0

 of the larger problem. 

 

Bellman's P. of 0. allows us to use the trick of solving large problem A by solving the smaller 

problem B, sequentially.  Also, since 0t  is arbitrary, we can choose to solve the problem 

10 −= Tt  first, which is a simple 2-period problem, and then work backwards: 

 

Step 1:  Set ,Tt 10 −=  so that Problem B is simply: 

 
( ) ( )

{ }1

111   

−

−−− +

T

TTTT

v
xSv,xUMax

 

  subject to: i) ( )111 , −−−= TTTT vxGx  

   ii) 11 −− = TT xx  given 

 One can easily substitute the first constraint into the objective function, 

and use straightforward calculus to derive: 

 

 ( ) 1111 for  rule Control  −−−− ⋅⋅⋅= TTTT vxhv  

 

  This can then be substituted back into the objective fn to characterize the 

solution as a value function: 

 

  ( ) ( )( ) ( )( )( )111111111 1 −−−−−−−−− +≡ TTTTTTTTT xh,xGSxh,xU,xV  
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Step 2:  Set 20 −= Tt  so that Problem B is: 

  

( ) ( ) ( ){ }

���� !�"
++

−

−

−−−−−−

2

1

111222 ,,    

T

T

TTTTTTT

v

v

xSvxUvxUMax

 

  subject to: i) ( )111 −−−= TTTT v,xGx  

   ii) ( )2221 −−−− = TTTT v,xGx  

   iii) 22 −− = TT xx  given 

Bellman's P.O. implies that we can rewrite this as: 

( ) ( ) ( ){ }   ,,   Max 111222v 12-T #�$
%&'�( =+ −−−−−−

−
TTTTvTTT xSvxUMaxvxU

T  

subject to (i), (ii) and (iii). 

 

Recall that step 1 has already given us the solution to the inside maximization 

problem, so that we can re-write step 2 as: 

 

( ) ( ){ }
}{

1,,  

2

1222

−

−−−− +

T

TTTT

v

xVvxUMax
 

 subject to: i) ( )2221 −−−− = TTTT v,xGx  

  ii) given  22 −− = TT xx  

 

Once again, we can easily substitute the first constraint into the objective function, 

and use straightforward calculus to derive: 

( ) 2222 for  rule Control     −−−− ⋅⋅⋅= TTTT vxhv  

This can be substituted back into the objective fn. to get a value function: 

 

( ) ( ) ( ){ }1,,2, 1222}{2
2

−−−−− +≡
−

TTTTvT xVvxUMaxxV
T

 

       ( )( ) ( )( )( )122222222 ,xh,xGVxh,xU TTTTTTTT −−−−−−−− +=  
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Step 3: Using an argument analogous to that used in step 2 we know that, in general, the 

problem in period T-k can be written as: 

  ( ) ( ) ( ){ }
Equation

s"Bellman'"
1,,, 1}{

−+= +−−−−−
−

kxVvxUMaxkxV kTkTkTkTvkT
kT

 

  subject to: i) ( )kTkTkTkT v,xGx −−−+− =1  

   ii) given kTkT xx −− =  

 

 This maximization problem, given the form of the value function from the 

previous round, will yield a control rule: 

 

( )kTkTkT xhv −−− =  

 

Step 4: After going through the successive rounds of single period maximization 

problems, eventually one reaches the problem in time zero: 

 

 ( ) ( ) ( ){ }
}{

1,,  
,

0

1000
0 v

TxVvxUMax
TxV

−+
=  

  subject to: i) ( )0001 v,xGx =  

   ii) given 00 xx =  

 

 This will yield a control rule: 

 

 ( )000 xhv =  

 

 Now, recall that 0x  is given a value at the outset of the overall dynamic 

problem.  This means that we have now solved for 0v  as a number, 

independent of the x's (except the given 0x ). 
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Step 5: Using the known 00  and vx  and the transition equation: 

 

 ( )0001 v,xGx =  

 

 it is simple to work out ,x1  and hence 1v  from the control rule of that period.  

This process can be repeated until all the tt vx  and  values are known.  The 

overall problem A will then be solved. 

 

1.4      An Example: 

 

This is a simple two period minimization problem, which can be solved using this algorithm. 

 

  [ ])
=

++
1

0

2
2

22

}{ t
tt

v
xvxMin

t

  (1) 

   subject to: i) ttt vxx +=+ 21  (2) 

    ii) 10 =x  (3) 

 

In this problem, T=2. To solve this, consider first the problem in period T-1 (i.e.: in period 1): 

 

Step 1: 

  
{ }

}{

  

1

2
2

2
1

2
1

v

xvxMin ++
   (4) 

   subject to: i) 112 2 vxx +=  (5) 

    ii) given  11 xx =  (6) 

 

Substituting 5 and 6 into 4 yields: 

 

  
[ ]{ }

}{

2 

1

2
11

2
1

2
1

v

vxvxMin +++
 

  FOC:  [ ] 0222 111 =++ vxv  

              * 11 xv −=   Control rule in period 1 (7) 
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Now substituting 7 back into 4 yields (using 5): 

 

  ( ) ( )2
11

2
1

2
11 21 xxxx,xV −++=  

 

   *  ( ) 2
11 31 x,xV =    (8) 

 

Step 2: In period T-2 (i.e.: period 0) Bellman's equation tells us that the problem is: 

 

 
( ){ }

}{

1,  

0

1
2
0

2
0

v

xVvxMin ++
   (9) 

   subject to: i) 001 2 vxx +=   (10) 

    ii) 10 =x   (11) 

 

 Substituting 8 into 9, and then 10 and 11 into 9 yields: 

 

 
[ ]{ }

}{

231  

0

2
0

2
0

v

vvMin +++
 

 FOC:  [ ] 0262 00 =++ vv  

   +    Control value in period 0 (12) 

       

 

Step 5: Substituting 11 and 12 into 10 gives: 

 ,-./01 −++
2
3

21x +     (13) 

  

Now substitute 13 into 7 to get: 

  

      Control value in period 1 (14) 

 

Finally, substitute 13 and 14 into 5 to get: 

 
2
1

12 −=x +     (15) 

 

Equations 11-15 characterize the full solution to the problem. 

 

2
3

0

−=v

2
1

1 =x

2
1

1

−=v

2
1

2 =x
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2. DETERMINISTIC, INFINITE HORIZON MODELS 

 

2.1. Introduction: 

 One feature of the finite horizon models is that, in general the functional form of the 

control rules vary over time: 

  ( )ttt xhv =  

 That is, the h function is different for each t.  This is a consequence of two features of 

the problem: 

 i) The fact that T is finite 

 ii) The fact that ( )ttt v,xU  and ( )ttt v,xG  have been permitted to depend on time 

in arbitrary ways. 

 In infinite horizon problems, assumptions are usually made to ensure that the control 

rules to have the same form in every period. 

 Consider the infinite horizon problem (with time-separability): 

 

  2 3456 7 Ω∈
∞=

t

t

v

tv
Max

,...,0; 8 ∞=0

),(
t

ttt vxU  

   subject to: i) ( )tttt vxGx ,1 =+  

     ii) 00 xx =  given 

 

 For a unique solution to any optimization problem, the objective function should be 

bounded away from infinity.  One trick that facilitates this bounding is to introduce a 

discount factor tβ  where 10 <≤ tβ . 

 A convenient simplifying assumption that is commonly used in infinite horizon models 

is  stationarity: 

 Assume i) t ∀= ββ t  

   ii) ( ) ( )tt
t

ttt vxUvxU ,, β=  

   iii) ( ) ( )ttttt v,xGv,xG =  
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 A further assumption, which is sufficient for boundedness of the objective function, is 

boundedness of the payoff function in each period: 

 Assume: ( ) ∞<<≤ Mv,xU tt0   where M is any finite number.  

 This assumption, however, is not necessary, and there are many problems where this is 

not used. 

 The infinite horizon problem becomes: 

 

  9 :;<= >
Ω∈

∞=

t

t

v

tv
Max

,...,0; ? ∞=0

),(
t

tt
t vxUβ  

     subject to: i) ( )ttt vxGx ,1 =+  

      ii) 00 xx =  given 

  

 The Bellman equation becomes:1 

 

   ( ) ( ) ( ){ }
{ }t

tttt
t

tt
v

xVv,xUMax
xV 11 +++= β

 

     subject to (i) and (ii) 

 

 This equation is defined in present value terms.  That is, the values are all discounted 

back to time .t 0=  Often, it is more convenient to represent these values in current 

value terms: 

 Define: ( ) ( )
t
tt

tt

xv
xW

β
=  

 Multiplying both sides of the Bellman equation by t−β yields: 

   ( ) ( ) ( ){ }
{ }t

tttt
tt v

xWvxUMax
xW 11, +++

=
β

  (*) 

     subject to (i) and (ii). 

 

  
                                                
1 A subtle change in notation has been introduced here.  From this point on, ( )tt xV  represents the form of the 
value function in period t. 
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It can be shown that the function defined in (*) is an example of a contraction mapping. In 

Sargent’ s (1987) appendix, (see, also, Stokey et al, (1989)) he presents a powerful result 

called the “contraction mapping theorem”, which states that, under certain regularity 

conditions,2 iterations on (*) starting from any bounded continuous 0W  (say, 00 =W ) will 

cause W to converge as the number of iterations becomes large. Moreover, the W(.) that comes 

out of this procedure is the unique optimal value function for the infinite horizon 

maximization problem. Also, associated with W(.) is a unique control rule ( )tt xhv =  which 

solves the maximization problem. 

 

This means is that there is a unique time invariant value function W(.) which satisfies: 

 

  ( ) ( ) ( ){ }
}{

, 1

t

ttt
t v

xWvxUMax
xW ++

=
β

 

 

     subject to: i) ( )ttt vxGx ,1 =+  

      ii) 00 xx =  given. 

 

Associated with this value function is a unique time invariant control rule: 

 

( )tt xhv =  

 

2.2 How To Use These Results: 

 

 There are several different methods of solving infinite horizon dynamic programming 

problems, and three of them will be considered out here.  In two, the key step is finding 

the form of the value function, which is unknown at the outset of any problem even if 

the functional forms for U(.) and G(.) are known.  This is not required in the third. 

  

                                                
2 Stokey et al., (1989) chapter 3 spell these conditions out.  Roughly, these amount to assuming that ( )tt v,xU  is 
bounded, continuous, strictly increasing and strictly concave.  Also, the production technology implicit in 

( )tt v,xG  must be continuous, monotonic and concave.  Finally, the set of feasible end of period x must be 
compact 
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Consider the general problem: 

     @ ABCD E Ω∈
∞=

t

t

v

tv
Max

,...,0; F ∞=0

),(
t

tt
t vxUβ  

     subject to: i) ( )ttt vxGx ,1 =+  (also regularity conditions) 

      ii) 00 xx =  given 

 

Method 1: Brute Force Iterations 

 

 First, set up the Bellman equation: 

 

   ( ) ( ) ( ){ }
}{

, 11

t

tttt
tt v

xWvxUMax
xW +++

=
β

 

     s.t. i) ( )ttt v,xGx =+1  

      ii) 00 xx =  given. 

 

 Set ( ) ,xW tt 011 =++  and solve the maximization problem on the right side of the Bellman 

equation.  This will give you a control rule ( ).xhv ttt =   Substitute this back into 

( ),v,xU tt  to get: 

     ( ) ( )( )ttttt xh,xUxW =  

  

 Next, set up the Bellman equation: 

 

   ( ) ( ) ( )( ){ }
}{

,,

1

11
11

−

−−
−−

+
=

t

tttt
tt v

xhxUvxUMax
xW

β
 

     s.t. i) ( )11 −−= ttt v,xGx  

      ii) 00 xx =  given. 

 

 Substitute constraint (i) into the maximand to get: 

 

  ( ) ( ) ( ) ( )( )( ){ }
}{

,,,,   

1

111111
11

−

−−−−−−
−−

+
=

t

tttttt
tt v

vxGhvxGUvxUMax
xW

β
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 Solve the maximization problem on right, to get:      ( )111 −−− = ttt xhv  

   

 Now substitute this back into the right side to get:   ( )11 −− tt xW  

  . 

 Continue this procedure until the W(.)'s converge.  The control rule associated with the 

W(.) at the point of convergence solves the problem. 

 

Method 2:  Guess and Verify. 

 

 This method is a variant of the first method, but where we make an informed guess 

about the functional form of the value function. If available, this method can save a lot 

computation. For certain classes of problems, when the period utility function ),( tt vxU  

lies in the HARA class (which includes CRRA, CARA, and quadratic functions), the 

value function takes the same general functional form.3 Thus, for example, if the period 

utility function is logarithmic, we can expect the value function will also be logarithmic. 

 

 As before, we first set up the Bellman equation: 

 

  ( ) ( ) ( ){ }
}{

,  1

t

ttt
t v

xWvxUMax
xW ++

=
β

 

    subject to: i) ( )ttt v,xGx =+1  

      ii) 00 xx =  given. 

 

 Second, guess the form of the value function, ( )1+t
G xW , and substitute the guess into the 

Bellman equation: 

 

  ( ) ( ) ( ){ }
}{

, 1

t

t
G

tt
t v

xWvxUMax
xW ++

=
β

             s.t. (i) and (ii) 

 

                                                
3 See Blanchard and Fischer (1989), chapter 6, for a discussion. 
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Third, perform the maximization problem on the right side.  Then substitute the resulting 

control rules back into the Bellman equation to (hopefully) verify the initial guess. (i.e.:  The 

guess is verified if ( ) ( )1+= t
G

t xWxW .) 

If the initial guess was correct, then the problem is solved. If the initial guess was incorrect, 

try the form of the value function that is suggested by the first guess as a second guess, and 

repeat the process.  In general, successive approximations will bring you to the unique 

solution, as in method 1. 

 

Method 3:  Using the Benveniste-Schienkman Formula. 

 

This is Sargent's preferred method of solving problems in his Dynamic Macro Theory 

textbook.  The advantage of using this method is that one is not required to know the form of 

the value function to get some results. From Sargent [1987] p. 21, the B-S formula is: 

 

  
( ) ( )( ) ( )( ) ( )(( )

   
,,,

1+∂
∂

∂
∂+

∂
∂

=
∂

∂

ttt

tt

t

t

x
xhxGW

x
xhxG

x
xhxU

x
xW β

    B-S Formula 1 

 

 Sargent shows that if it is possible to re-define the state and control variables in such a 

way as to exclude the state variables from the transition equations, the B-S formula 

simplifies to: 

  
( ) ( )( )

t

tt

t

t

x
xh,xU

x
xW

∂
∂=

∂
∂

           B-S Formula 2 

 The steps required to use this method are: 

 (1) Redefine the state and control variables to exclude the state variables from the 

transition equations. 

 (2) Set up the Bellman equation with the value function in general form. 

 (3) Perform the maximization problem on the r.h.s. of the Bellman equation.  That is, 

derive the F.O.C.'s. 

 (4) Use the B-S Formula 2 to substitute out any terms in the value function. 

 As a result, you will get an Euler equation, which may be useful for certain purposes, 

although it is essentially a second-order difference equation in the state variables. 
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2.3. Example 2:  The Cass-Koopmans Optimal Growth Model. 

 

  
{ } G ∞=+ 0,

   s.t.   
1 t

t
t

kc
nCMax

tt Hβ   i)   ttt CAkk −=+
α

1  

       ii)   00 kk =  given. 

 Where : nconsumptio ≡tC  

   stock capital ≡tk  

   10 << β  

   10 << α  

 

 Since the period utility function is in the HARA class, it is worthwhile to use the guess-

verify method. 

 The Bellman equation is: 

 

   ( ) ( ){ }
{ }1

1

,
     

+

++
=

tt

tt
t kC

kWnCMax
kW

βI
s.t. (i) and (ii) (1) 

 

 Now guess that the value fn. is of this form: 

 

   ( ) tkn  JFEkW t +=     (2) 

 

      K     ( ) 11 ++ += tt nkFEkW L    (2') 

 

 where E and F are coefficients to be determined. 

 

 Substitute constraint (i) and (2') into (1) to get: 

 

   ( ) [ ] [ ]{ }
{ }1

11      

+

++ ++−=
t

ttt
t

k

knFEkAknMax
kW MM βα

 (3) 

 

   FOC: 
11

1

++

=
− ttt k

F
kAk

β
α  
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     N  
α

β
β

tt Ak
F

F
k

+
=+ 11       (4) 

 

 Now substitute 4 back into 3: 

 

  ( ) OPQRST
+

++OPQRST
+

−= ααα

β
ββ

β
β

tttt AkBFEAk
F

F
AknkW

F1
F

n 
1 UU  

 

  V ( ) ( ) ( ) tk 1
1

 n  1 nF
F

F
nFAFEFnAnkW t WWWWW βα

β
βββββ ++

XYZ[\] XYZ[\]
+

++++−=         (5) 

 

 Now, comparing equations (2) and (5), we can determine the coefficient for :n tk 
^

 

 

  ( )FF βα += 1  

     _  
αβ

α
−

=
1

F     (6) 

 

 Similarly, E can be determined from (2) and (5), knowing (6). 

 

 Since both the coefficient E and F have been determined, the initial guess (equation 2) 

has been verified. 

 Now (6) can be substituted back into (4) to get: 

 

  ααβ tt Akk =+1         and using constraint (ii):  (7) 

 

  [ ] ααβ tt AkC −= 1     (8) 

 

Given the initial 0k  equations (7) - (8) completely characterize the solution paths of C and k. 
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2.4. Example 3:  Minimizing Quadratic Costs 

 

 This is the infinite horizon version of example 1. 

 

  
{ }

[ ]` ∞
=

+
0

22

t
tt

t

v
vxMin

t

β  

     subject to i) ttt vxx +=+ 21  

      ii) 00 xx =  given 

 

 Since this is a linear-quadratic problem, it is possible to use the guess-verify method. 

 

 The Bellman equation is: 

  ( ) ( ){ }
{ }t

tt
t

v

xWvMin
xW 1

22
tx  +++= β

  (1) 

     s.t. i) ttt vxx +=+ 21  

      ii) 00 xx =  given 

 

 Now guess that the value fn. is of this form: 

 

  ( ) 2
tt PxxW =      (2) 

    a   ( ) 2
11 ++ = tt PxxW     (2') 

 

 where P is a coefficient to be determined. 

 

 Substitute constraint (i) and (2'), then the result into (1) to get: 

 

   ( ) [ ]{ }
{ }t

ttt
t

v

vxPvMin
xW

222
t 2x  +++= β

  (3) 

   FOC: [ ] 0222 =++ ttt vxPv β  

   b  [ ] tt PxPv ββ 21 −=+  

     b   tt x
P

P
v

β
β

+
−=

1
2

  (4) 
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Substitute (4) back into (3) to get: 

 

  ( )
2

2
2

1
2

2
1

2 cdefgh
+

−+cdefgh
+

−+= ttttt x
P

P
xPx

P
P

xxW
β

ββ
β

β  

 

    b   ( ) 2
2

2
2

1
2

2
1
2

1 ttt x
P

P
Px

P
P

xW ijklmn
+

−+iij
k

llmn ijklmn
+

−=
β

ββ
β

β
 

 

    o   ( ) 2
22

1
2

2
1
2

1 tt x
P

P
P

P
P

xW pq
prsptpu�v wxyz{|

+
−+

wxyz{|
+

−=
β

ββ
β

β
 (5) 

 

 P can now be determined by comparing the equations (2) and (5): 

 

  }~
}��}�}��� ������

+
−+

������
+

−=
22

1
2

2
1
2

1
P

P
P

P
P

P
β

ββ
β

β
 (6) 

 

 The P that solves (6) is the coefficient that was to be determined.  For example, set 

,1=β  and equation (6) implies: 

   244.P =   

 

 Equation (4) becomes : tt x.v 621−=   (7) 

 

 Constraint (i) becomes: tt x.x 3801 =+   (8) 

 

 For a given 0x , equations (7) and (8) completely characterize the solution.  Note from 

equation 8 that the system will be stable since 0.38 < 1. 
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2.5. Example 4:  Life Cycle Consumption 

 

   
{ }∞

=0ttc
Max  � ∞

=0

)(
t

t
t CUβ     (1) 

     s.t. i)  [ ]ttttt CyARA −+=+1     Transition equation (2) 

      ii)  00 AA =   given  (3) 

 

 Where: nconsumptio ≡tC  

   stream incomegiven y exogenousl known, ≡ty  

   tAt  in time beginninglth labour wea-non ≡  

    known, ≡tR exogenous sequence of one-period rates of return on tA  

 

 To rule out the possibility of infinite consumption financed by unbounded borrowing, a 

present value budget constraint is imposed: 

 

   tjt
j j

j

k
kttjt

j

k
ktt AyRyCRC +

������
+=

������
+ +

∞

=

∞

=

−

=

−
++

−

=

−
+

� �
∏∏

1 1

1

0

1
1

0

1  (4) 

 

 Here, we are not given an explicit functional form for the period utility function. We can 

use method 3 in this problem to derive a well-known result. 

 To use the B-S formula 2, we need to define the state and control variables to exclude 

state variables from the transition equation. 

 

 Define: State Variables: { }1−ttt R,y,A  

 

   Control Variable: 
t

t
t R

A
v 1+≡   (5) 

 Now we can re-write the transition equation as: 

 

   ttt vRA =+1       (2') 

 

 Notice that (2') and (2) imply:  tttt vyAC −+=   (6) 
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 The problem becomes: 

   
( )

{ }∞
=

∞

=

�
−+

0

0

tt

t
ttt

t

v

vyAUMax β
 (1') 

     s.t. i)  ttt vRA =+1  (2') Reformulated problem 

      ii)  00 AA =  given (3) 

 

 The Bellman equation is: 

 

}{1 ),,(
tvttt MaxRyAW =− { }tttttt RyAWvyAU ,,()( 11 +++−+ β      s.t. 2' and 3. 

 

 Substituting (2') into the Bellman equation yields: 

 

   ( ) ( ) ( ){ }tttttttv
ttt

RyvRWvyAUMax
RyAW t

,,
,, 1}{

1
+

−

+−+
=

β
 

   FOC: ( ) ( ) 011 =+−+− + tttttttt R,y,vRWRvyA'U β  (7) 

 

 Now recall that the B-S formula 2 implies: 

 

   ( ) ( )1
1

2
1111 +

+

+
+++ ≡

������
−+= t

t

t
tttttt C'U

R
A

yA'UR,y,vRW  (8) 

 

 Substituting (8) into (7) gives: 

 

   ( ) ( )1+= ttt C'URC'U β   Euler Equation (9) 

 

 Now, to get further results, let’ s impose structure on the model by specifying a 

particular utility function: 

 

   Let ( ) tt CnCU  
�

≡  

          �  ( )
t

t C
C'U

1= (10) 
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Substituting 10 into 9 yields: 

 

   ttt CRC β=+1     now updating: (11) 

     � [ ]tttt CRRC ββ 12 ++ =

� tkt
k

t CRC +
=

+ ∏=
1

0

2
2 β

In general: tkt

j

k

j
jt CRC �����  ∏= +

−

=
+

1

0
β    (12) 

 Substituting 12 back into 4 yields: 

 

  ¡ ¡∞

=

∞

=
+

−
+

−

=
+

−

=

−
+

−

=
+¢£¤¥¦§ ∏+=¢£¤¥¦§ ∏¢£¤¥¦§ ∏+

1 1

1
1

0

1

0

1
1

0j j
tjtkt

j

k
ttkt

j

k

j
kt

j

k
t AyRyCRRC β  

  ¨ =+ © ∞
=1j

t
j

t CC β        "                 "             " 

  ¨             ª ∞
=

=
0j

t
jCβ        "                 "             " 

  ¨ =
− β1

tC
            "                "               " 

 

  ¨   ( ) «¬­®¯°
+«¬­®¯° ∏+−= ± ∞

=
+

−
+

−

=1

1
1

0
1

j
tjtkt

j

k
tt AyRyC β  

 

 

3. STOCHASTIC INFINITE HORIZON MODELS 

 

3.1. Introduction: 

 

As with deterministic infinite horizon problems, it is convenient to assume time separability, 

stationary, and boundedness of the payoff function.  However, stochastic models are more 

general than deterministic ones because they allow for some uncertainty. 

 

Life Cycle Consumption 
           Function 
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The type of uncertainty that is usually introduced into these models is of a very specific kind.  

To preserve the recursive structure of the models, it is typically assumed that the stochastic 

shocks the system experiences follow a homogeneous first order Markov process. 

In the simplest terms, this means that the value of this period's shock depends only on the 

value of last period's shock, not upon any earlier values.  (White noise shocks are a special 

case of this: they do not even depend upon last period's shock.) 

 

  Consider the stochastic problem: 

   

  ² ³´µ¶ ·
Ω∈

∞=

t

t

v

tv
Max

,...,0; ¸ ∞=0
0 ),(

t
tt

t vxUE β  

   subject to:  i) ( )11 ++ = tttt ,v,xGx ε  

       ii) 0x  given 

 

where { }∞
=0ttε  is a sequence of random shocks that take on values in the interval ],[ εε  and 

follow a homogeneous first order Markov process with the conditional cumulative density 

function 

  ( ) { }εεεεεε =≤= + tt |'Pr,'F 1  (iii) 

Also, tE  denotes the mathematical expectation, given information at time t, tI . We assume:  

( )(.)(.),(.),,}{,}{,}{ 000 FUGvxI t
kk

t
kk

t
kkt ==== ε  

The assumed sequence of events is: 

  (1) tx  is observed 

  (2) Decision maker chooses tv  

  (3) Nature chooses 1+tε  

  (4) Next period occurs. 

  The Bellman equation for this problem is: 

 

  ( ) ( ) ( ){ }
}{

,,
, 11

t

ttttt
tt v

xWEvxUMax
xW +++

=
εβ

ε  



 24

As in the deterministic infinite horizon problem, under regularity conditions4 iterations on 

 

  ( ) ( ) ( ){ }
}{

,,
, 111

t

tttttt
ttt v

xWEvxUMax
xW ++++

=
εβ

ε  

 

 starting from any bounded continuous 1+tW  (say, 01 =+tW ) will cause ( ).W  to converge 

as the number of iterations becomes large.  Once again, the ( )⋅W  that comes out of this 

procedure is the unique optimal value function for the above problem. 

   

 Furthermore, associated with ( )⋅W  is a unique time invariant control rule ( )tt xhv =  

which solves the maximization problem. 

 

3.2 How to Use These Results: 

 

The solution techniques given in the deterministic infinite horizon problem still work in the 

stochastic infinite horizon problem, and there is no need to repeat them.  Perhaps the best way 

to illustrate these results is by using an example. 

 

3.3 Example 5:  A Stochastic Optimal Growth Model with a Labour-Leisure Trade-off. 

 

This example is chosen not only to illustrate the solution techniques given above, but also to 

introduce the reader to a particular type of model.  This modelling approach is used in the 

"Real Business Cycle" literature of authors such as Kydland and Prescott [1982] and Long 

and Plosser [1983]. 

 

Under the appropriate assumptions made about preferences and technology in an economy, 

the following optimal growth model can be interpreted as a competitive equilibrium model.5  

That is, this model mimics a simple dynamic stochastic general equilibrium economy.  

Because of this, the solution paths for the endogenous variables generated by this model can 

be compared with actual paths of these variables observed in real-world macroeconomies. 

   

                                                
4 The same conditions as in Note 2, with the added assumption of homogeneous first order Markov shocks. 
5 See Stokey et al., (1989), chapter 15 for further discussion on this topic. 
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Consider the following problem: 

  ( )[ ]
{ }ttt

t
tt

t

n,k,C

nnCnEMax ¹ ∞
=

−+
0

0 1               ºº δβ  (1) 

   subject to:  i) ttt ykC =+   (2) 

       ii) αα −
++ = 1

11 tttt nkAy  (3) 

       iii) 11   ++ += ttt AnAn ξρ »»  (4) 

 

where tn  represents units of labour chosen in period δ ,t  is a positive parameter, ρ  is a 

parameter which lies in the interval (-1, 1), and tξ  represents a white noise error process.6  

The endogenous variable ty  represents output in period t.  The rest of the notation is the same 

as in example 2. 

 

These are only two substantive differences between this example and example 2.  First, a 

labour-leisure decision is added to the model, represented by the inclusion of the term ( )tn−1  

in the payoff function (1) and the inclusion of tn  in the production function (3).  Second, the 

production technology parameter tA  in equation 3 is assumed to evolve over time according 

to the Markov process (4). 

 

Notice that in this example ttt n,k,C  and  are the control variables chosen every period by the 

decision maker, whereas tt Ay  and  are the state variables.  To solve this problem, we first set 

up the Bellman equation: 

 

  ( ) ( )[ ] ( ){ }
},,{

,1n          
, 11

ttt

ttttt
tt nkC

AyE nnCMax
AyW +++−+

=
βδ ¼¼

 (5) 

 

Since this is a logarithmic example, we can use the guess-verify method of solution.  The 

obvious first guess for the form of the value function is: 

  ( ) tttt AnHynGDA,yW   ½½ ++=   (6) 

                                                
6 For example, tξ  is normally distributed with mean 0 and variance 

2
ξσ . 
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where D, G and H are coefficients to be determined. 

  ¾ ( ) 1111   ++++ ++= tttt AnHynGDA,yW ¿¿   (6') 

To verify this guess, first substitute (3) into (6') to get 

 

  ( ) ( )[ ] 1111 1  ++++ +−+++= tttttt AnHnnknAnGDA,yW ÀÀÀÀ αα  

 

Now substitute this into equation 5: 

 

[ ] ( )[ ] ( ) ( )[ ]{ }
},,{

11
, 1

ttt

tttttt
tt nkC

nnGknGAnHGDEnnCnMax
AyW ÁÁÁÁÁ ααβδ −+++++−+

= +

 

Using equation 2 to substitute out tC  in the above yields: 

 

[ ] ( ) ( )[ ] ( ) ( ){ }
},{

  1 1
, 1

tt

ttttttt
tt nk

AnEHGnnGknGDnnkynMax
AyW ++−+++−+−

= ÂÂÂÂÂ βαβαββδ

         (7) 

 

 The FOCs are: 

 

  
( )

0
1

1
  : =−+

−
−

tt
t n

G
n

n
αβδ

   Ã    
( )

( )αβδ
αβ
−+

−=
1

1
G

G
nt (8) 

  0
1 =+
−

−
ttt

t k
G

ky
:k

αβ
    Ä    tt y

G
G

k
αβ

αβ
+

=
1

(9) 

 Now we can substitute equations 8 and 9 back into 7 to get: 

 

  ( ) ( ) ÅÆ
ÇÈÉÊ

+
++ÅÆ

ÇÈÉÊ
−+

+ÅÆ
ÇÈÉÊ

+
= tttt y

G
G

nD
G

ny
G

nA,yW
αβ

αβαββ
αβδ

δδ
αβ 111
1 ËËË  

    ( ) ( )
( ) ( ) 11

1
1 +++ÌÍÎÏÐÑ

−+
−−+ tt AnEHG

G
G

nG ÒÒ β
αβδ

αβαβ      (7') 

 Recall from equation 4 that 111   where +++ += tttt AnAn ξξρ ÓÓ  is a white noise error term 

with mean zero.  Hence:  

.AnAnE ttt ÔÔ ρ=+1  
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Collecting terms in equation 7' yields: 

 

  ( ) ( ) ( ) constants1 ++++= tttt AnHGynGA,yW ÕÕ ρβαβ  (10) 

 

Comparing equations 6 and 10, it is clear that 

  αβ+= 1G Ö
αβ−

=
1

1
G (11) 

  ( )HGH += ρβ Ö ( )21 αβ
ρβ

−
(12) 

Similarly, the constant D can be determined from equations 6 and 10, knowing the values of 

G and H given in equations 11 and 12. 

 

Since all the coefficients have been determined, the initial guess of the form of the value 

function (equation 6) has been verified.  We can now use equations 11 and 12 to solve for the 

optimal paths of t,tt Ck,n  and  as functions of the state ty . 

  From equation 9: tt yk αβ=    (13) 

  From equation 8: 
( )

( ) ( )αβαβδ
αβ

−+−
−=

11
1

tn   (14) 

  From equations 13 and 2: ( ) tt yC αβ−= 1   (15) 

Notice that while the optimal tt Ck  and  are functions of the state ty , the optimal tn  is not.  

That is, tn  is constant.  This is a result that is peculiar to the functional forms chosen for the 

preferences and technology, and it provides some justification for the absence of labour-

leisure decisions in growth models with logarithmic functional forms. 
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