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Abstract

Logic and probability theory have both a long his-
tory in science. They are mainly rooted in philosophy
and mathematics, but are nowadays important tools
in many other fields such as computer science and, in
particular, artificial intelligence. Some philosophers
studied the connection between logical and probabilis-
tic reasoning, and some attempts to combine these
disciplines have been made in computer science, but
logic and probability theory are still widely consid-
ered to be separate theories that are only loosely
connected. This paper introduces a new perspective
which shows that logical and probabilistic reasoning
are no more and no less than two opposite extreme
cases of one and the same universal theory of reason-
ing called probabilistic argumentation.1

Keywords. Logical reasoning, probabilistic reason-
ing, uncertainty, ignorance, argumentation.

1 Introduction

Guessing the outcome of tossing a coin, given that the
coin is known to be fair, is certainly different from
guessing the outcome of tossing an unknown coin.
Both are situations of uncertain reasoning, but with
respect to the available information, the second one
is less informative. We will refer to it as a situation
of uncertain reasoning under (partial) ignorance or
ambiguity .2

Initially, we may judge the two possible outcomes
(head or tail) to be equally likely in both situations,
but in the case of an unknown coin, one should be
prepared to revise the judgment upon inspecting the

1 This paper is an extended version of a paper accepted at
the ECSQARU’05 conference. It has been adapted for the par-
ticular interests of the SIPTA community.

2 Some authors define ambiguity as the “uncertainty about
probability, created by missing information that is relevant and
could be known” [1, 4]. In this paper, we prefer to talk about
ignorance as a general term for missing information.

coin or doing some experiments. As a consequence, if
asked to bet money on tossing an unknown coin, peo-
ple tend to either ask to see the coin or reject the bet,
whereas betting on a fair coin is usually considered to
be “safe”. To know that the coin is fair provides thus
a more solid ground for conclusions or decisions.

Classical probabilistic approaches to uncertain rea-
soning are based on the Bayesian probability inter-
pretation, in which additive probabilities are used to
represent degrees of belief of rational agents in the
truth of statements. The problem is that probability
theory, if applied in the classical way, cannot convey
how much evidence one has. In the coin tossing exam-
ple, this means that the same probability 1

2 is assigned
in all cases, although the two situations are not the
same at all.

To remedy this problem, a number of techniques
has been developed, e.g. interval-valued probabili-
ties [15, 17, 26, 30], second-order probabilities [8, 16],
imprecise probabilities [27, 28, 29], Dempster-Shafer
Theory [3, 23], the Transferable Belief Model [25], the
Theory of Hints [13], and many more. What most of
these approaches have in common is that evaluating
the truth of a statement yields two values, not just
a single one like in classical probability theory. De-
pending on the context, the first value is either a lower
probability bound , a measure of belief , or a degree of
support , respectively, whereas the second one is either
an upper probability bound , a measure of plausibility ,
or a degree of possibility . In all cases, it is possible
to interpret the difference between the two values (i.e.
the length of the corresponding interval) as a measure
of ignorance relative to the hypothesis in question.

Alternatively, one can understand the two values to
result from sub-additive probabilities of provability (or
epistemic probabilities) [2, 7, 19, 20, 21, 24], for which
the two respective values for a hypothesis and its com-
plement do not necessarily sum up to one, i.e. where
the ignorance is measured by the remaining gap.



1.1 The Basic Idea

This paper will further explore the “probability of
provability” point of view. The idea is very simple.
Consider two complementary hypothesis H and Hc,
an let E denote the given evidence (what is known
about the world). Instead of looking at posterior
probabilities P (H|E) and P (Hc|E), respectively, we
will look at the respective probabilities that H and
Hc are known or provable in the light of E.3 Note
that under certain circumstances the evidence E may
not be informative enough to prove either of them,
i.e. we need to consider posterior probabilities of the
events “H is provable”, “Hc is provable”, and “Nei-
ther of them is provable”. Since these alternatives are
exclusive and exhaustive, it is clear that

P (H is provable|E) +
P (Hc is provable|E) +
P (Neither of them is provable|E) = 1.

Furthermore, since P (Neither of them is provable|E)
may be positive, which implies P (H is provable|E) +
P (Hc is provable|E) ≤ 1, it becomes clear where
the sub-additive nature of probabilities of provabil-
ity comes from. It is a simple consequence of apply-
ing classical probability theory to a special class of
so-called epistemic events [20, 21].

To illustrate this simple idea, suppose your friend
Sheila flips a fair coin and promises to organize a party
tomorrow night provided that the coin lands on head .
Sheila does not say anything about what she is do-
ing in case the coin lands on tail , i.e. she may or
may not organize the party. What is the probability
of provability that there will (or will not) be a party
tomorrow night?

The given evidence E consists of two pieces. The first
one is Sheila’s promise, which may be appropriately
encoded by a propositional sentence head → party.
The second one is the fact that the two possible out-
comes of tossing a fair coin are known to be equally
likely, which is encoded by a uniform distribution
P (head) = P (tail) = 1

2 .

In this simple situation, we can look at head as a
defeasible or hypothetical proof (or an argument) for
party, and because it’s the only such proof, we con-
clude that P (party is provable|E) = P (head) = 1

2 .
This means that the chance of being in a situation
in which the party is certain to take place is 50%.
On the other hand, because the given evidence does
not allow any conclusions about ¬party, there is no

3 We will later give a precise definition of what is meant
with “the probability that H (or Hc) is provable given E”. An
illustrative example is given below.

hypothetical proof for ¬party, and we conclude that
P (¬party is provable|E) = 0. It means that noth-
ing speaks against the possibility that the party takes
place, or in other words, the party is entirely plausible
or possible.

1.2 Goals and Overview

This paper introduces a new theory of uncertain rea-
soning under ignorance that deals with probabilities
of provability. We will refer to it as the theory of
probabilistic argumentation, in which probabilities of
provability are alternatively called degrees of sup-
port . It turns out that probabilistic argumentation
includes the two classical approaches to formal rea-
soning, namely logical and probabilistic reasoning, as
special cases. To show how to link or unify logical and
probabilistic reasoning is one of the primary goals of
this paper. The key issue is to realize that the prov-
ability or the probability of a hypothesis are both de-
generate cases of probabilities of provability. They re-
sult as opposite extreme cases, if one considers differ-
ent sets of so-called probabilistic variables (see Sect. 4
for details).

The organization of this paper is bottom-up. We will
start with discussing the basic concepts and proper-
ties of logical and probabilistic reasoning in Sect. 2
and 3, respectively. The goal is to emphasize the sim-
ilarities and differences between these distinct types
of formal reasoning. Probabilistic argumentation is
introduced in Sect. 4. We will demonstrate that logi-
cal and probabilistic reasoning are contained as spe-
cial cases. Finally, based on the notion of degrees of
support, Sect. 5 describes uncertainty and ignorance
as orthogonal aspects of our limited knowledge about
the world.

2 Logical Reasoning

Logic has a long history in science dating back to the
Greek philosopher Aristotle. For a long time, logic has
primarily been a philosophical discipline, but nowa-
days it is also an important research topic in mathe-
matics and computer science. The idea is to express
knowledge by a set of sentences Σ which forms the
knowledge base. The set L of all possible sentences is
the corresponding formal language.

If another sentence h ∈ L represents a hypothesis of
interest, we may want to know whether h is a logical
consequence of Σ or not. Formally, we write Σ |= h if
h logically follows from Σ, and Σ 6|= h otherwise. In
other words, logical reasoning is concerned with the
provability of h with respect to Σ.

If ¬h denotes the complementary hypothesis of h (the



sentence ¬h is true whenever h is false and vice versa),
then it is possible to evaluate the provability of ¬h in-
dependently of the provability of h. As a consequence,
we must distinguish the following four cases:4

• LI: Σ 6|= h, Σ 6|= ¬h,
⇒ Σ does not allow any conclusions about h;

• LT: Σ |= h, Σ 6|= ¬h,
⇒ h is true in the light of Σ, i.e.¬h is false;

• LF: Σ 6|= h, Σ |= ¬h,
⇒ h is false in the light of Σ, i.e.¬h is true;

• LC: Σ |= h, Σ |= ¬h,
⇒ the knowledge base is inconsistent or contra-
dictory, i.e. Σ |= ⊥.

Note that a definite answer is only given for LT or LF,
whereas LI corresponds to a situation in which we are
ignorant with respect to h. This means that the avail-
able information is insufficient to prove either h or its
complement ¬h. In the particular case of Σ = ∅, this
happens for all possible hypotheses h 6= >. It reflects
thus an important aspect of logical reasoning, namely
that the absence of information does not allow mean-
ingful conclusions. Finally, LC appears only if the
knowledge base Σ is inconsistent . Inconsistent knowl-
edge bases are usually excluded, and we will therefore
consider them as invalid .

Suppose now that we are interested in a graded mea-
sure of provability and let’s call it degree of support
dsp(h) ∈ [0, 1] ∪ {undefined}. Intuitively, the idea
of dsp(h) is to express quantitatively the strength in
which the available knowledge supports h. Provided
that Σ is consistent, the support is maximal if h is a
logical consequence of Σ, and it is minimal if Σ does
not allow to infer h. In the light of this remark, we
can define degree of support for logical reasoning in
the following way:

dsp(h) :=


0, if Σ 6|= h and Σ 6|= ⊥,

1, if Σ |= h and Σ 6|= ⊥,

undefined, if Σ |= ⊥.

(1)

To further illustrate this, consider a set V = {X, Y }
of variables, corresponding sets ΘX and ΘY of pos-
sible values, and an appropriate formal language LV

that includes statements about the variables X and
Y . Vectors x = 〈x, y〉 ∈ NV with NV = ΘX×ΘY

are then the possible interpretations of the language
LV , and logical reasoning can be understood in terms
of sets of interpretations instead of sets of sentences.

4 L stands for “Logical Reasoning”, T for “True”, F for
“False”, I for “Ignorant”, and C for “Contradictory”.

With NV (ξ) ⊆ NV we denote the set of all interpreta-
tions for which the sentence ξ ∈ LV (or all sentences
of a set ξ ⊆ LV ) is true. The elements of NV (ξ)
are also called models of ξ. Instead of Σ and h we
will now work with the corresponding sets of models
E := NV (Σ) and H := NV (h), respectively. By do-
ing so, the consequence relation Σ |= h translates into
E ⊆ H. This allows us to define degree of support for
logical reasoning in the following form:

dsp(H) :=


0, if ∅ 6= E 6⊆ H,

1, if ∅ 6= E ⊆ H,

undefined, if E = ∅.
(2)

With such a graded measure of provability in mind,
we can think of the four different cases of logical rea-
soning according to Fig. 1. The inconsistent case LC
is shown outside the unit square to indicate that de-
gree of support is undefined.

LT
LI

dsp(Hc)

dsp(H)

Σ |= ⊥

0 1

0

1

LCLF

Figure 1: The four cases of logical reasoning.

Note that logical reasoning requires a sub-additive
measure of provability, because LI is characterized
by dsp(H) = dsp(Hc) = 0, which implies dsp(H) +
dsp(Hc) = 0. Hence, sub-additivity turns out to be a
natural property of logical reasoning, whereas proba-
bilistic reasoning declines it (see Sect. 3).

Another important remark is to say that logical rea-
soning is monotone with respect to the available
knowledge. This means that adding new sentences to
Σ will never cause a transition from LT to LF or vice
versa, i.e. if something is known the be true (false), it
will never become false (true). The complete transi-
tion diagram for logical reasoning is shown in Fig. 2.

Note that human reasoning is not monotone at all.
In fact, monotonicity is considered to be one of the
major drawbacks of logical reasoning. This has led to
the development of numerous non-monotone logics.
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Figure 2: Logical reasoning is monotone.

3 Probabilistic Reasoning

The history of probability theory is not as old as the
history of logic, but it also dates back to the 17th
and 18th century. The goal is to measure the possible
truth of a hypothesis H by a corresponding posterior
probability

P ′(H) = P (H|E) =
P (H ∩ E)

P (E)
(3)

for some observed evidence E. P ′(H) = 1 means
that H is true in the light of E, whereas P ′(H) = 0
implies that H is false. Intermediate values between
0 and 1 represent all possible graded judgments be-
tween the two extremities. Probability theory is
based on Kolomogorov’s axioms [14], which, among
other things, stipulates additivity . This means that
P ′(H) + P ′(Hc) = 1 for all hypotheses H.

Usually, probabilistic reasoning starts with a multi-
variate model that consists of a set of variables V and
a prior probability distribution P(V ). A vector x that
assigns a value to every variable of V is called atomic
event . The hypothesis H and the evidence E are sets
of such atomic events. With NV we denote the set
of all atomic events. P(V ) can thus be regarded as
an additive mapping that assigns values P (x) ∈ [0, 1]
to all elements x ∈ NV .5 With P′(V ) = P(V |E)
we denote the corresponding posterior distribution for
some given evidence E 6= ∅. Note that P ′(x) = 0 for
all atomic events x /∈ E. The posterior distribution is
undefined for E = ∅.

Prior distributions are often specified with the aid of
Bayesian networks [19], in which the variables of the
model correspond to the nodes of a directed acyclic

5 If some or all variables of V are continuous, then density
functions are needed to specify the prior distribution. The
discussion in this paper will be limited to discrete variables,
but this is not a conceptual restriction.

graph. The benefits of Bayesian networks are at least
twofold: first, they provide an economical way of spec-
ifying prior distributions for large sets V , and second,
they play a central role for computing posterior prob-
abilities efficiently.

For a given prior distribution P(V ), it is possible to
compute prior probabilities P (H) by

P (H) =
∑
x∈H

P (x). (4)

Similarly, corresponding posterior probabilities are
obtained for E 6= ∅ by

P ′(H) =
∑
x∈H

P ′(x) = k ·
∑

x∈H∩E

P (x). (5)

With k = P (E)−1 we denote the normalization con-
stant. For the particular case of V = {X, Y }, Fig. 3
illustrates the relationship between prior and poste-
rior distributions.

E

P
′(X,Y ) = P(X,Y |E) P(X,Y )

X

Y

H

Figure 3: The relationship between prior and poste-
rior distributions.

In order to make an analogy to the discussion of log-
ical reasoning in Sect. 2, we can also distinguish four
cases of probabilistic reasoning:6

• PU: E 6= ∅, 0 < P ′(H) < 1,
⇒ P(V ) and E do not allow a final judgment;

• PT: E 6= ∅, P ′(H) = 1,
⇒ H is true in the light of P(V ) and E;

• PF: E 6= ∅, P ′(H) = 0,
⇒ H is false in the light of P(V ) and E;

• PC: E = ∅, P ′(H) = undefined,
⇒ the evidence is invalid.

6 P stands for “Probabilistic Reasoning”, T for “True”, F
for “False”, U for “Uncertain”, and C for “Contradictory”.



Note that there is a one-to-one correspondence be-
tween the cases PT and LT, PF and LF, and PC and
LC. In the sense that both PU and LI do now allow
a final judgment with respect to H, they can also be
considered as similar cases. But they differ from the
fact that LI, in contrast to PU, represents a state of
total ignorance.

To further illustrate the analogies and differences be-
tween logical and probabilistic reasoning, all possible
pairs of values P ′(H) and P ′(Hc) are shown in the
picture of Fig. 4. In accordance with the discussion
about logical reasoning in Sect. 2, posterior probabili-
ties P ′(H) and P ′(Hc) will now be considered as (ad-
ditive) degrees of support dsp(H) and dsp(Hc), re-
spectively.

As a consequence of the additivity requirement and
for E 6= ∅, all possible pairs dsp(H) and dsp(Hc)
lie on the diagonal between the upper left and the
lower right corner of the unit square shown in Fig. 4.
Case LI and logical reasoning in general are thus
not covered by probabilistic reasoning. On the other
hand, logical reasoning does not include PU. That’s
the fundamental difference between logical and prob-
abilistic reasoning.

PF

PT

PU

PCdsp(Hc)

dsp(H)

0 1

0

1
E = ∅

Figure 4: The four cases of probabilistic reasoning.

In comparison with logical reasoning, an important
benefit of probabilistic reasoning is the fact that it
is non-monotone with respect to the available knowl-
edge. Except for dsp(H) = 0 and dsp(H) = 1, degree
of support may thus increase or decrease when new
evidence is added. As a consequence, even if a hy-
pothesis is almost perfectly likely to be true (false), it
may later turn out to be false (true). Figure 5 illus-
trates the possible transitions of degrees of support in
the context of probabilistic reasoning.

0 1

0

1

Figure 5: Probabilistic reasoning is non-monotone.

4 Probabilistic Argumentation

So far, we have tried to point out the similarities and
differences between logical and probabilistic reason-
ing. In a nutshell, logical reasoning is sub-additive
and monotone, whereas probabilistic reasoning is ad-
ditive and non-monotone. Our goal now is to define a
more general formal theory of reasoning that is sub-
additive and non-monotone at the same time. In other
words, the idea is to build a common roof for logical
and probabilistic reasoning. We are thus interested in
sub-additive and non-monotone degrees of support,
which means that the judgment of a hypothesis may
result in any point within the triangle shown in Fig. 6.

dsp(Hc)

dsp(H)

0 1

0

1
Σ |= ⊥

Figure 6: Sub-additive and non-monotone degrees of
support.

In order to build such a unifying theory, we must
first try to better understand the origin of the dif-
ferences between logical and probabilistic reasoning.
The key point to realize is the following: probabilistic
reasoning presupposes the existence of a probability
distribution over all variables, whereas logical reason-
ing does not deal with probability distributions at all,
i.e. it presupposes a probability distribution over none



of the variables involved. If we call the variables over
which a probability distribution is known probabilis-
tic (or exogenous), we can say that a probabilistic
model consist of probabilistic variables only, whereas
all variables of a logical model are non-probabilistic
(or endogenous). From this point of view, the main
difference between logical and probabilistic reasoning
is the number of probabilistic variables. This simple
observation turns out to be crucial for understand-
ing the similarities and differences between logical and
probabilistic reasoning.7

With this remark in mind, building a more general
theory of reasoning is straightforward. The idea is
to allow an arbitrary number of probabilistic vari-
ables. More formally, if V = {X1, . . . , Xn} is the
set of all variables involved, we will use A ⊆ V to
denote the subset of probabilistic variables. P(A)
is the corresponding prior distribution over A. In
the “Party Example” of Sect. 1, we can think of two
Boolean variables Coin and Party with a given (uni-
form) prior distribution over Coin. This implies
V = {Coin, Party} and A = {Coin}.

Clearly, logical reasoning is characterized by A = ∅
and probabilistic reasoning by A = V , but we are
now interested in the general case of arbitrary sets of
probabilistic variables. We will refer to it as the the-
ory of probabilistic argumentation.8 The connection
between probabilistic argumentation and the classical
fields of logical and probabilistic reasoning is depicted
in Fig. 7.

Percentage of
Probabilistic
Variables100%0%

Logic Probability 
Theory

Probabilistic 
Argumentation

Figure 7: Different sets of probabilistic variables.

In the general context of arbitrary sets of probabilis-
tic variables, the goal is to define degree of support as
a sub-additive and non-monotone measure of uncer-
tainty and ignorance. We suppose that our knowledge
or evidence is encoded by a set of sentences Σ ⊆ LV ,
which determines then a set of possible atomic events
E := NV (Σ) ⊆ NV . It is assumed, that the true state
of the world is exactly one element of E. A quadruple

7 The literature on how to combine logic and probability
is huge, but the idea of distinguishing probabilistic and non-
probabilistic variables seems to be a new one.

8 Previous work on probabilistic argumentation focuses on
propositional languages LP , see [12, 9, 10].

A = (V,A,P(A),Σ) is called probabilistic argumenta-
tion system. In the following, we will focus on sets E
of atomic events rather than sets Σ of sentences. Ac-
cordingly, we will consider hypotheses H ⊆ NV rather
than corresponding sentences h ∈ LV .

The definition of degree of support will be based on
two observations. The first one is the fact that the
set E ⊆ NV , which restricts the set of possible atomic
events relative to V , also restricts the atomic events
relative to A. The set of all atomic events with re-
spect to A is denoted by NA. Its elements s ∈ NA

are called scenarios. P (s) denotes the correspond-
ing prior probability of a scenario s. By projecting E
from NV to NA, we get the set E↓A ⊆ NA of possi-
ble scenarios that are consistent with E. This means
that exactly one element of E↓A corresponds to the
true state of the world. All other scenarios s 6∈ E↓A

are impossible. This allows us to condition P(A) on
E↓A, i.e. we need to replace the prior distribution
P(A) by a posterior distribution P′(A) = P(A|E↓A).
This is illustrated in Fig. 8 for the particular case of
V = {X, Y } and A = {X}.

E

P
′(X) = P(X|E↓{X}) P(X)

X

Y

Figure 8: Prior and posterior distributions over prob-
abilistic variables.

The second observation goes in the other direction,
that is from NA to NV . Let’s assume that a certain
scenario s ∈ NA is the true scenario. This reduces the
set of possible atomic events with respect to V from
E to

E|s := {x ∈ E : x↓A = s}. (6)

Such a set is called conditional knowledge base or con-
ditional evidence given the scenario s. It contains all
atomic events of E that are compatible with s. This
idea is illustrated in Fig. 9 for V = {X, Y }, A = {X},
and three scenarios s0, s1, and s2. Note that we have
E|s 6= ∅ for every consistent scenario s ∈ E↓A, e.g.
for s1 and s2. Otherwise, as in the case of s0, we have
E|s = ∅



E H

s2s1s0

E|s1

E|s2

X

Y

Figure 9: Evidence conditioned on various scenarios.

Consider now a consistent scenario s ∈ E↓A for which
E|s ⊆ H. This means that H is a logical consequence
of s and E, and we can thus see s as a defeasible
or hypothetical proof for H in the light of E. We
must say defeasible, because it is unknown whether s
is the true scenario or not. In other words, H is only
supported by s, but not entirely proved. The set of all
supporting scenarios is denoted by

SP (H) := {s ∈ E↓A : E|s ⊆ H}
= {s ∈ NA : ∅ 6= E|s ⊆ H}. (7)

In the example of Fig. 9, the hypothesis H is sup-
ported by s2, but not by s0 or s1 (s0 is inconsistent).
Note that SP (∅) = ∅ and SP (NV ) = E↓A. Some-
times, the elements of SP (H) and SP (Hc) are also
called arguments and counter-arguments of H, respec-
tively. This is where the name of this theory originally
comes from.

The set of supporting scenarios is the key notion for
the definition of degree of support. In fact, because
every supporting scenario s ∈ SP (H) contributes to
the possible truth of H, we can measure the strength
of such a contribution by the posterior probability
P ′(s), and the total support for H corresponds to the
sum

dsp(H) := P ′(SP (H)) =
∑

s∈SP (H)

P ′(s) (8)

over all elements of SP (H). Note that dsp(H) de-
fines an ordinary (additive) probability measure in the
classical sense of Kolmogorov, that is P ′(SP (H)) +
P ′(SP (H)c) = 1 holds for all H ⊆ NV . However, be-
cause the sets SP (H) and SP (Hc) are not necessarily
complementary, we have dsp(H)+dsp(Hc) ≤ 1 as re-
quired. Degrees of support should therefore be under-
stood as sub-additive posterior probabilities of prov-
ability . Provided that E 6= ∅, they are well-defined for
all possible hypotheses H ⊆ NV , that is even in cases

in which the prior distribution P(A) does not cover all
variables. This is a tremendous advantage over clas-
sical probabilistic reasoning, which presupposes the
existence of a prior distribution over all variables.

An alternative to considering degrees of support
of complementary hypotheses is to define so-called
degrees of possibility by dps(H) := 1 − dsp(Hc).
Hypotheses are then judged by a pairs of values
dsp(H) ≤ dps(H). Note that there is a strong connec-
tion to Bel(H) and Pl(H) in the context of Dempster-
Shafer Theory [10].

To complete this section, we will briefly investigate
how the classical fields of logical and probabilistic rea-
soning fit into this general theory of probabilistic ar-
gumentation.

Logical Reasoning is characterized by A = ∅. This
has a number of consequences. First, it implies that
the set of possible scenarios NA = {〈〉} consists of a
single element 〈〉, which represents the empty vector of
values. This means that P (〈〉) = 1 is the only possible
prior distribution. Second, if we assume E 6= ∅, we get
E↓A = {〈〉} = NA and thus P ′(〈〉) = 1. Furthermore,
we have E|〈〉 = E, which allows us to rewrite (7) as

SP (H) =

{
{〈〉}, for ∅ 6= E ⊆ H,

∅, otherwise.
(9)

Finally, P (〈〉) = 1 implies dsp(H) = 1 for ∅ 6= E ⊆ H,
dsp(H) = 0 for ∅ 6= E 6⊆ H, and dsp(H) = undefined
for E = ∅. This corresponds with the definition of
degree of support for logical reasoning in (2).

Probabilistic Reasoning is characterized by A =
V . This means that the sets NA and NV are identical,
and it implies

E|s =

{
{s}, for s ∈ E,

∅, otherwise.
(10)

From this it follows that SP (H) = H∩E, and it allows
us to rewrite (8) as

dsp(H) =
∑

s∈H∩E

P ′(s) =
∑
s∈H

P ′(s), (11)

which corresponds to the definition of for degrees of
support (posterior probabilities) in the case of proba-
bilistic reasoning, see (5).

5 Uncertainty vs. Ignorance

The previous section has pointed out the crucial role
of the probabilistic variables in the context of prob-
abilistic argumentation. We can consider them as
representatives for atomic sources of uncertainty for



which further details are supposed to be inaccessi-
ble. The corresponding prior distribution P(A) sum-
marizes or quantifies the uncertainty stemming from
them. In other words, the best we can expect to know
about an atomic source of uncertainty is a prior dis-
tribution. Tossing a fair coin, for example, is such an
atomic source of uncertainty. It is a complex physical
process whose exact details are inaccessible. But with
P (head) = P (tail) = 1

2 it is possible to summarize the
uncertainty involved.

As a consequence of using prior probabilities as a ba-
sic ingredient of probabilistic argumentation, the best
we can expect from evaluating a hypothesis H are ad-
ditive degrees of support for H and Hc, respectively.
Such a situation corresponds to the case of ordinary
posterior probabilities. Because we cannot expect
more than this, we can say that our ignorance with re-
spect to H is minimal for dsp(H)+dsp(Hc) = 1 (true
for PU, PT, PF, LT, and LF). On the other hand,
dsp(H) = dsp(Hc) = 0 reflects a situation in which
our ignorance with respect to H is maximal (true for
LI), that is H as well as Hc are totally unsupported
by the given knowledge. Note that ignorance is al-
ways relative to a hypothesis: it may well be that the
available knowledge is very informative with respect
to a hypothesis H, whereas another hypothesis H ′ is
not affected at all. In the light of these remarks, we
can formally define degree of ignorance by

dig(H) := 1− dsp(H)− dsp(Hc), (12)

which allows to characterize PU, PT, PF, LT, and LF
by dig(H) = 0 and LI by dig(H) = 1. Note that the
the evaluation of a hypothesis H may result in any
intermediate degree of ignorance. We can thus use
dig(H) to gradually measure the amount of the avail-
able knowledge that is relevant for the evaluation of
H. In this sense, dig(H) also quantifies various levels
of more or less complete knowledge bases. Figure 10
illustrates this idea.

As one would expect, dig(H) typically decreases when
new evidence arrives, but in general degree of igno-
rance is non-monotone. This is due to the fact that
new information may independently affect the two
sets SP (H) and SP (Hc), as well as the normalization
constant and therewith the posterior distribution.

Independently of the actual degree of ignorance, we
can argue that the uncertainty with respect to a hy-
pothesis H is maximal , whenever dsp(H) = dsp(Hc).
This reflects a case in which H and Hc are equally
supported by the given knowledge and the prior dis-
tribution. The two extreme cases of maximal uncer-
tainty are dsp(H) = dsp(Hc) = 0 (maximal igno-
rance) and dsp(H) = dsp(Hc) = 0.5 (minimal igno-
rance). On the other hand, the uncertainty is minimal

dsp(Hc)

dsp(H)

0 1

0

1
Σ |= ⊥

Figure 10: Various levels of ignorance.

if H is known to be either true or false. Various levels
of (un-) certainty are depicted in Fig. 11. The case
of maximal uncertainty corresponds to the diagonal
from the lower left corner to the center of the unit
square.

dsp(Hc)

dsp(H)

0 1

0

1
Σ |= ⊥

Figure 11: Various levels of uncertainty

To make this point more clear, consider four different
situations of tossing a coin: a) the coin is known to be
fair; b) the coin is known to be faked with heads on
both sides; c) the coin is known to be faked with tails
on both sides; d) the coin is unknown. In each case,
we consider two possible hypotheses H = {head} and
Hc = {tail}. Corresponding probabilistic argumenta-
tion systems will then produce the following results:

a) dsp({head}) = dsp({tail}) = 0.5;

b) dsp({head}) = 1, dsp({tail}) = 0;

c) dsp({head}) = 0, dsp({tail}) = 1;

d) dsp({head}) = 0, dsp({tail}) = 0.

Note that these are the four extreme cases of proba-
bilistic argumentation: the ignorance is minimal for



a), b), and c), and maximal for d), whereas the un-
certainty is minimal for b) and c) and maximal for a)
and d).

This discussion demonstrates that uncertainty and
ignorance should be considered as distinct phe-
nomenons. In fact, as illustrated by Fig. 10 and
Fig. 11, uncertainty and ignorance are orthogonal
measures and reflect different aspects of our limited
knowledge about the world. This important obser-
vation has been widely disregarded by probabilistic
reasoning or Bayesianism in general.

What are the benefits of properly distinguishing be-
tween uncertainty and ignorance using a sub-additive
measure of support? First, by taking into account
the possibility of lacking knowledge or missing data,
it provides a more realistic and more complete pic-
ture with regard to the hypothesis to be evaluated
in the light of the given knowledge. Second, if rea-
soning deals as a preliminary step for decision mak-
ing, a proper measure of ignorance is useful to decide
whether the available knowledge justifies an immedi-
ate decision. The idea is that high degrees of igno-
rance imply low confidence in the results due to lack
of information. On the other hand, low degrees of
ignorance result from situations where the available
knowledge forms a solid basis for a decision. There-
fore, decision making should always consider the addi-
tional option of postponing the decision until enough
information is gathered.9 The study of decision theo-
ries with the option of further deliberation is a current
research topic in philosophy of economics [5, 11, 22].
Apart from that, decision making under ignorance is
a relatively unexplored discipline. For an overview
of attempts in the context of Dempster-Shafer theory
we refer to [18]. A more detailed discussion of such
a general decision theory is beyond the scope of this
paper.

6 Conclusion

This paper introduces the theory of probabilistic ar-
gumentation as a general theory of reasoning under
ignorance. The key concept of the theory is the no-
tion of degree of support, a sub-additive and non-
monotone measure of uncertainty and ignorance. De-
grees of support are (posterior) probabilities of prov-
ability. Obviously, this includes the notion of prov-
ability from logical reasoning, as well as the notion

9 It’s like in real life: people do not like decisions under ig-
norance. In other words, people prefer betting on events they
know about. This psychological phenomenon is called ambigu-
ity aversion and has been experimentally demonstrated by Ells-
berg [6]. His observations are rephrased in Ellsberg’s paradox ,
which is often used as an argument against decision-making on
the basis of subjective probabilities.

of probability from probabilistic reasoning. The two
classical approaches to automated reasoning – logical
and probabilistic reasoning – are thus special cases
of probabilistic argumentation. The parameter that
makes them distinct is the number of probabilistic
variables. Probabilistic argumentation is more gen-
eral in the sense that it allows any number of proba-
bilistic variables.

The significance and the consequences of this paper
are manyfold. In the field of automated reasoning, we
consider probabilistic argumentation as a new founda-
tion that unifies the existing approaches of logical and
probabilistic reasoning. This will have a great impact
on the understanding and the numerous applications
of automated reasoning within and beyond AI. An
important basic requirement for this is a generalized
decision theory that takes into account the possibil-
ity of lacking information or missing data. Because
probabilistic argumentation generally clarifies the re-
lationship between logic and probability theory, it will
also put some new light on topics from other areas
such as philosophy, mathematics, or statistics. In fact,
promising preliminary work shows that looking at sta-
tistical inference from the perspective of probabilis-
tic argumentation helps to eliminate the discrepan-
cies between the classical and the Bayesian approach
to statistics.
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