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Abstract. Large classes of weak keys have been found for the block
cipher algorithm IDEA, previously known as IPES [2]. IDEA has a 128-
bit key and encrypts blocks of 64 bits. For a class of 223 keys IDEA
exhibits a linear factor. For a certain class of 235 keys the cipher has
a global characteristic with probability 1. For another class of 251 keys
only two encryptions and solving a set of 16 nonlinear boolean equations
with 12 variables is sufficient to test if the used key belongs to this class.
If it does, its particular value can be calculated efficiently. It is shown
that the problem of weak keys can be eliminated by slightly modifying
the key schedule of IDEA.

1 Introduction

At Eurocrypt ’90 the block cipher proposal PES (Proposed Encryption Stan-
dard) was presented [1]. At Eurocrypt ’91 the same authors presented a modifi-
cation of PES, called IPES (Improved PES) [2]. The reason for this modification
were new insights based on differential cryptanalysis [3]. IPES has become com-
mercialized under the name IDEA (International Data Encryption Algorithm).

IDEA is an iterated cipher consisting of 8 similar rounds and a single output
transformation. The building blocks of the round function are multiplication
modulo 216 +1, addition modulo 216 and bitwise XOR. IDEA has a 128-bit key
and encrypts/decrypts data in blocks of 64 bits.

With exception of the key schedule, the IDEA decryption process is the same
as its encryption process. The computational graph of the IDEA algorithm is
shown in Fig.1. The encryption round keys are 16-bit substrings of the global
key as specified in Table 1. The decryption round keys can be derived from the
encryption round keys.

2 Linearities in the Modular Arithmetic Operations

Let xi denote the i-th bit in the binary representation of the number X, i.e.
X =

∑

2ixi. The bits of Y = X + Z mod 2n are given by

yi = xi ⊕ zi ⊕ ci (1)
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Fig. 1. the encryption process of IDEA.
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r Z1 Z2 Z3 Z4 Z5 Z6

1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 105–120 121–8 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12 13–28
8 29–44 45–60 61–76 77–92 93–108 109–124
9 22–37 38–53 54–69 70–85 — —

Table 1. Derivation of the encryption round keys of the global 128-bit key. The key
bits are indexed starting from 0. The most significant bit (MSB) of the round keys are
the bits with the lowest global index.

with ci a carry bit that only depends on bits with indices smaller than i. The
LSB of Y (y0) is simply equal to x0 ⊕ z0. Propagation of the MSBs of X and Z
into Y is restricted to linear propagation (over ZZ

16
2 ) into the MSB of Y .

For the multiplication by −1 (0000 HEX) modulo 216 + 1 as defined in the
IDEA block cipher it can easily be checked that

−1¯A = Ā+ 2 mod 216 (2)

with Ā the bitwise complement of A. Therefore multiplication by −1 inherits
the linearity properties of the addition modulo 2n.

3 Classes of Weak Keys yielding Linear Factors

The use of multiplicative subkeys with value 1 or − 1 give rise to linear factors

[4] in the round function. In the context of this paper a linear factor is a linear
equation in key, input and output bits that holds for all possible inputs. The
linear factors can be revealed by expressing the sum (modulo 2) of LSBs of the
output subblocks of an IDEA round in terms of input and key bits.

As an example, we will express the XOR of the LSBs of the first and second
output subblock of a round: y1 ⊕ y2 (with the indices denoting the subblock
number). From Fig.1 it can be seen that y1 ⊕ y2 = (X1 · Z1)|0 ⊕ 1⊕ x3 ⊕ z3. If
Z1 = (−)1, i.e. if the 15 MSB bits of the Z1 are 0,

y1 ⊕ y2 = x1 ⊕ x3 ⊕ z1 ⊕ z3 ⊕ 1 . (3)

If the key bits are considered as (albeit unknown) constants, this linear factor can
be interpreted as the propagation of knowledge from x1⊕x3 to y1⊕ y2, denoted
by (1, 0, 1, 0)→ (1, 1, 0, 0). Similar factors and their corresponding conditions on
subkey blocks can be found for all 15 combinations of LSB output bits and are
listed in Table 2.
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linear factor Z1 Z4 Z5 Z6

(0, 0, 0, 1)→ (0, 0, 1, 0) - (−)1 - (−)1
(0, 0, 1, 0)→ (1, 0, 1, 1) - - (−)1 (−)1
(0, 0, 1, 1)→ (1, 0, 0, 1) - (−)1 (−)1 -
(0, 1, 0, 0)→ (0, 0, 0, 1) - - - (−)1
(0, 1, 0, 1)→ (0, 0, 1, 1) - (−)1 - -
(0, 1, 1, 0)→ (1, 0, 1, 0) - - (−)1 -
(0, 1, 1, 1)→ (1, 0, 0, 0) - (−)1 (−)1 (−)1
(1, 0, 0, 0)→ (0, 1, 1, 1) (−)1 - (−)1 (−)1
(1, 0, 0, 1)→ (0, 1, 0, 1) (−)1 (−)1 (−)1 -
(1, 0, 1, 0)→ (1, 1, 0, 0) (−)1 - - -
(1, 0, 1, 1)→ (1, 1, 1, 0) (−)1 (−)1 - (−)1
(1, 1, 0, 0)→ (0, 1, 1, 0) (−)1 - (−)1 -
(1, 1, 0, 1)→ (0, 1, 0, 0) (−)1 (−)1 (−)1 (−)1
(1, 1, 1, 0)→ (1, 1, 0, 1) (−)1 - - (−)1
(1, 1, 1, 1)→ (1, 1, 1, 1) (−)1 (−)1 - -

Table 2. Linear factors in the round function with conditions on the subkeys.

Multiple-round linear factors can be found by combining linear factors where
the involved intermediate terms cancel out. For every round this gives conditions
on subkeys that can be converted to conditions on global key bits using Table
1. An example is given in Table 3 for the global linear factor (1, 0, 1, 0) →
(0, 1, 1, 0). The global key bits whose indices are given in this table must be
0. Since key bits with indices in 26-28, 72-74 or 111-127 don’t appear, there
are 223 global keys that have this linear factor. This is called a class of weak

keys since membership can easily be checked by observing some corresponding
plaintext-ciphertext combinations.

round input term Z1 Z5

1 (1, 0, 1, 0) 0–14 -
2 (1, 1, 0, 0) 96–110 57–71
3 (0, 1, 1, 0) - 50–64
4 (1, 0, 1, 0) 82–96 -
5 (1, 1, 0, 0) 75–89 11–25
6 (0, 1, 1, 0) - 4–18
7 (1, 0, 1, 0) 36–50 -
8 (1, 1, 0, 0) 29–44 93–107
9 (0, 1, 1, 0) - -

Table 3. Conditions on key bits for linear factor (1, 0, 1, 0)→ (0, 1, 1, 0)
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4 Classes of Weak Keys yielding Characteristics with

Probability 1

In this section differential cryptanalysis [3] is applied where ‘difference’ is defined
by bitwise XOR. The use of multiplicative subkeys with value 1 or −1 gives rise
to characteristics with probability 1 in the round function.

A round is executed for a pair of inputs X and X∗ with a given XOR X ′ =
X ⊕X∗. Let ν be the 16-bit block 8000 (HEX), i.e. the MSB is 1 and all other
bits are 0.

Suppose X and X∗ only differ in the MSB bit of the 4-th subblock, hence
X ′

1 = X ′

2 = X ′

3 = 0 and X ′

4 = ν. If Z4 = (−)1 this will still be the case after
the application of Z1 to Z4. The left input to the MA structure is the same
for X and X∗. The right input differs by ν. This XOR propagates unchanged
through the top right (TR) addition to the bottom right (BR) multiplication by
Z6. If this is equal to (−)1, the output XOR is again ν. This difference propagates
unchanged through the BL addition and the XORs to the 4 subblocks. The
output difference Y ′ of the round is equal to (ν, ν, ν, 0). Hence if the 15 MSB
of both Z4 and Z6 are 0, the input XOR (0, 0, 0, ν) gives rise to the output
XOR (ν, ν, ν, 0) with probability 1, denoted by (0, 0, 0, ν)⇒ (ν, ν, ν, 0). A similar
analysis can be made for any other of the 15 possible nonzero input XORs where
only the MSB bits of the subblocks are allowed to be 1. The results are listed in
Table 4.

characteristic Z1 Z4 Z5 Z6

(0, 0, 0, ν)⇒ (ν, ν, ν, 0) - (−)1 - (−)1
(0, 0, ν, 0)⇒ (ν, 0, 0, 0) - - (−)1 (−)1
(0, 0, ν, ν)⇒ (0, ν, ν, 0) - (−)1 (−)1 -
(0, ν, 0, 0)⇒ (ν, ν, 0, ν) - - - (−)1
(0, ν, 0, ν)⇒ (0, 0, ν, ν) - (−)1 - -
(0, ν, ν, 0)⇒ (0, ν, 0, ν) - - (−)1 -
(0, ν, ν, ν)⇒ (ν, 0, ν, ν) - (−)1 (−)1 (−)1
(ν, 0, 0, 0)⇒ (0, ν, 0, 0) (−)1 - (−)1 (−)1
(ν, 0, 0, ν)⇒ (ν, 0, ν, 0) (−)1 (−)1 (−)1 -
(ν, 0, ν, 0)⇒ (ν, ν, 0, 0) (−)1 - - -
(ν, 0, ν, ν)⇒ (0, 0, ν, 0) (−)1 (−)1 - (−)1
(ν, ν, 0, 0)⇒ (ν, 0, 0, ν) (−)1 - (−)1 -
(ν, ν, 0, ν)⇒ (0, ν, ν, ν) (−)1 (−)1 (−)1 (−)1
(ν, ν, ν, 0)⇒ (0, 0, 0, ν) (−)1 - - (−)1
(ν, ν, ν, ν)⇒ (ν, ν, ν, ν) (−)1 (−)1 - -

Table 4. XOR propagation in the round function with conditions on the subkeys.

The propagation of a given XOR for multiple rounds can be easily studied by
letting the output XOR be the input XOR to the following round. The conditions
on the subkeys can be read in Table 4.

Appeared in Advances in Cryptology – CRYPTO 1993, Lecture Notes in Computer
Science 773, D. R. Stinson (ed.), Springer-Verlag, pp. 224–231, 1993.

c©1993 Springer-Verlag



6

An example for the plaintext XOR (0, ν, 0, ν) is given in Table 5. It can be
seen that for keys with only nonzero bits on positions 26–40, 72–76 and 108–
122 the output XOR must be equal to (0, ν, ν, 0). This is the largest class we
found, comprising a total of 235 keys. Membership can be checked by performing
2 encryptions where the plaintexts have a chosen difference and observing the
difference in the ciphertexts. A similar table can be constructed for any input
XOR consisting of ν and 0.

round input xor Z4 Z5

1 (0, ν, 0, ν) 48–62 -
2 (0, 0, ν, ν) 41–55 57–71
3 (0, ν, ν, 0) - 50–64
4 (0, ν, 0, ν) 2–16 -
5 (0, 0, ν, ν) 123–9 11–25
6 (0, ν, ν, 0) - 4–18
7 (0, ν, 0, ν) 84–98 -
8 (0, 0, ν, ν) 77–91 93–107
9 (0, ν, ν, 0) - -

Table 5. Propagation of plaintext XOR (0, ν, 0, ν) in IDEA.

5 Expanding Classes of Weak Keys

Classes of weak keys can sometimes be significantly expanded at the cost of some
more effort in the checking for membership. Omitting in Table 5 the conditions
for the subkeys of round 8 gives rise to the class of 251 keys with nonzero bits
on positions 26–40, 72–83 and 99–122. We will show that both checking for
membership and calculation of the specific key can be performed efficiently.

5.1 The Membership Test

The input XOR of round 8 is equal to the output XOR of round 7 and is
guaranteed to be equal to (0, 0, ν, ν) by the conditions on the subkeys of the first

7 rounds. Using the fact that Z
(9)
3 , consisting of global key bits 54–69 is 0000 for

these keys it can easily be derived that

Y ′

3 ⊕ ν = (Z
(9)
1

−1
· Y ∗

1 )⊕ (Z
(9)
1

−1
· Y1) . (4)

This can be verified by inspecting Fig.2. In (4) only Z
(9)
1 is unknown. This subkey

consists of global key bits 22–37. For the given class only the 12 LSB may differ
from 0. If the global key does not belong to the class of weak keys, the probability
that (4) has a solution is 1/16. Additional encryptions can be performed to

eliminate these solutions. Every pair of encryptions yields an equation for Z
(9)
1

similar to (4).
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Fig. 2. XOR propagation of X ′ = (0, ν, 0, ν) through the last round of IDEA for keys
with only nonzero bits on positions 26–40, 72–83 and 99–122. The XORs are indicated
in boxes.
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5.2 The Determination of the Key

The value of the 12 unknown bits of Z
(9)
1 are already determined by the mem-

bership test. The following step is the determination of the 3 unknown bits of

Z
(9)
2 , the 12 unknown bits of Z

(9)
4 and the 7 unknown bits of Z

(8)
4 . A consistency

check can be executed on these bits in the following way. Suppose Z
(9)
2 and Z

(9)
4

are known. In this case it is possible to calculate the difference that is denoted
by K in Fig.2. For this value K there must be a vector A (with MSB 0) such
that

K = (Z
(8)
4 ·A)⊕ (Z

(8)
4 · (A⊕ ν)) = (Z

(8)
4 ·A)⊕ ((Z

(8)
4 ·A) + (Z

(8)
4 · 215)) (5)

For a given vector K it is easy to find the possible values of Z
(8)
4 . Only values

of Z
(8)
4 with the 9 LSB equal to 0 are valid. This information can be calculated

in advance for every value of K and stored in an array of 216 lists. The average

number of possible Z
(8)
4 per K value turns out to be smaller than 1. Through

this table, the observed value of K specifies a set of possible Z
(8)
4 values. If the

set is empty, the chosen values for Z
(9)
2 and Z

(9)
4 must have been wrong. If the

set is not empty, the K value resulting from another pair of encryptions (with
input XOR at round 8 equal to (0, 0, ν, ν) ) can be observed. The correct value

for Z
(8)
4 must be in the list for both observed values of K. This can be repeated

until there is no value for Z
(8)
4 left. The correct values for Z

(9)
2 and Z

(9)
4 are

found if there is a value for Z
(8)
4 that is consistent for all the (say a maximum

of 8) encryption pairs. Now 34 bits are fixed. The remaining 17 bits can easily
be found by exhaustively trying all remaining 217 possibilities and comparing it
with any plaintext-ciphertext pair obtained during the attack.

The complete workload of the key determination is 16 chosen plaintext-
difference encryptions, about 215 modular additions, multiplications and table-
lookups and 217 key search encryptions.

6 A Modified IDEA Without Weak Keys

In the present specification of IDEA the conditions for weak multiplicative round
keys are converted to the condition that global key bits must be 0. In Table 3
and 5 it can be seen that many global key bits appear more than once in the
conditions.

Now let Ẑ
(r)
i = α⊕Z

(r)
i with α a fixed nonzero binary vector. If in IDEA the

subkeys Z
(r)
i are replaced by Ẑ

(r)
i , the conditions for weak multiplicative keys are

converted to the condition that some global key bits must be 0 and some must
be 1. The vector α must be chosen such that for all potential multiple-round
linear factors and characteristics, the conditions on the subkeys give conflicting
conditions on global key bits. Because of the large overlap between subkeys, the
exact value of α is not critical. For instance, for α = 0DAE (HEX) no weak keys
were found.
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7 Conclusions

Large classes of weak keys have been found for the block cipher IDEA. These
keys are weak in the sense that it takes only a very small amount of effort to
detect their use. It is possible to eliminate the weak key problem by slightly
modifying the key schedule of IDEA.
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