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Abstract. We present an account of rippling with proof critics suitable
for use in higher order logic in Isabelle/IsaPlanner. We treat issues not
previously examined, in particular regarding the existence of multiple
annotations during rippling. This results in an efficient mechanism for
rippling that can conjecture and prove needed lemmas automatically as
well as present the resulting proof plans as Isar style proof scripts.

1 Introduction

Rippling [5] is a rewriting technique that employs a difference removal heuris-
tic to guide the search for proof. Typically, it is used to rewrite the step case
in a proof by induction until the inductive hypothesis can be applied. Within
the context of proof planning [4], this technique has been used in a variety
of domains including the automation of hardware verification [6], higher order
program synthesis [13], and more recently to automate proofs in nonstandard
analysis [14].
In this paper we describe a higher order version of rippling which has been

implemented for the Isabelle proof assistant [15] using the IsaPlanner proof
planner [9]. We believe this is the first time that rippling with a proof critics
mechanism has been implemented outside the Clam family of proof planners.
Our account bears similarity to that presented by Smaill and Green [19], but
uses a different mechanism for annotating differences more closely related to
rippling in first order domains. It also exposes and treats a number of issues
not previously examined regarding situations where multiple embeddings and
annotations are possible. This leads to an efficient implementation of rippling.
This work is also of particular interest to Isabelle users as it provides improved

automation and means of conjecturing and proving needed lemmas, as well as
automatically generating Isar proofs scripts [20].
The structure of the paper is as follows: in the next section, we give a brief

introduction to IsaPlanner. In Sections 3 and 4, we introduce static rippling
and dynamic rippling. In Section 5, we describe the version of rippling imple-
mented in IsaPlanner and then outline, in Section 6, a technique that combines
rippling with induction, and some proof critics. We present an example applica-
tion in the domain of ordinal arithmetic in Section 7, and some further results
in Section 8. Finally, Sections 9 and 10 describe related work and present our
conclusions and future work.



2 IsaPlanner

IsaPlanner1 is a generic framework for proof planning in the interactive theo-
rem prover Isabelle. It facilitates the encoding of reasoning techniques, which can
be used to conjecture and prove theorems automatically. A salient characteristic
of IsaPlanner is its derivation of fully formal proofs, expressed in readable Isar
style proof scripts as part of the proof planning process.
Proof planning in Isabelle/IsaPlanner is split into a series of reasoning

states which capture ‘snapshots’ of the planning process. Each reasoning state
contains the current partial proof plan, the next reasoning technique to be ap-
plied, and any appropriate contextual information. Reasoning techniques are
encoded as functions from a reasoning state to a sequence of reasoning states,
where each state in the resulting sequence represents a possible way in which
the technique can be applied. This encoding of techniques allows the reasoning
process to be decomposed into steps which are evaluated in a ‘lazy’ fashion.
The contextual information captures any knowledge that might be applicable

to the current proof process and can be modified during proof planning. Contex-
tual information also facilitates the design and definition of reasoning techniques
by providing a data structure to hold knowledge derived during proof planning.
Examples of such information include a conjecture database, annotations for
rippling, and a high level description of the proof planning process.
Proof planning is performed by searching through the possible ways a rea-

soning technique can be applied. It terminates when a desired reasoning state is
found, or when the search space is exhausted. Search mechanisms such as Depth
First, Iterative Deepening, Breadth First and Best First have been implemented
in IsaPlanner. Moreover, search strategies can be attached to a technique
and used locally within its application. This allows us to take advantage of the
heuristic measure given by rippling to choose the ‘most promising’ future state
by using best first search, for example.

3 An Introduction to Rippling

While there are many variations of rippling [5], the central principle is to remove
the differences between all or part of a goal and some defined skeleton constructed
from the inductive hypothesis or, in some cases, from another assumption or
theorem. Through the removal of this difference, the assumption or theorem
that was employed to construct the skeleton can then be used to solve the goal
in a process termed fertilisation. Thus rippling gives a direction to the rewriting
process.
The difference removal is facilitated by specialised annotations on the goal

known as wave fronts, wave holes, and sinks. More specifically, wave fronts in-
dicate difference between the skeleton and the goal while wave holes identify
subterms inside the wave fronts that are similar to parts of the goal. Sinks,

1 http://isaplanner.sourceforge.net/



for their part, indicate positions in the skeleton that correspond to universally
quantified variables and towards which wave fronts can be moved before being
eventually discarded. Fertilisation is possible when the wave fronts have been
removed from a subterm matching the skeleton, or placed in sinks appropriately.
Thus, there are two directions rippling can pursue:

rippling-out: tries to remove the differences, or move them to the top of the
term tree, thereby allowing fertilisation in a subterm.

rippling-in: tries to move the differences into sinks, as discussed above.

As an example consider the skeleton ∀b. a+b = b+a, then the term Suc(a)+

b = Suc(b + a) can be annotated as: Suc(a)
↑

+ bbc = Suc(bbc+ a)
↓

. The

boxes indicate the wave fronts, and the underlined subterms are the wave holes.
The up and down arrows indicate rippling outward and inward respectively, and
the annotations bbc indicate that b is at the location of a sink.
To provide rippling with a direction and to ensure its termination, a measure

is used that decreases each time the goal is rewritten. The measure is a pair
of lists of natural numbers that indicates the number of wave fronts (outward
and inward) at each depth in the skeleton term. The outward list is obtained by
counting the number of outward wave fronts from leaf to root and the inward
list by tallying the inward ones from root to leaf. For example, the term tree for
the annotation shown earlier is as follows:

Out In
= 0 0

+ Suc(. . .+ . . .)
↓

0 1

Suc(a)
↑

bbc bbc a 1 0

which results in the measure ([1, 0, 0], [0, 1, 0]). Such measures are compared lex-
icographical as if they were a single list starting with the outward elements. This
provides a mechanism that allows wave fronts to move from out to in but not
visa-versa.

3.1 Static Rippling

We will refer to the rippling mechanism described by Bundy et al. [5], as static

rippling. In this, measure decreasing annotated rewrite rules, called wave rules,
are generated from axioms and theorems before rippling is performed. These
wave rules are then applied blindly to rewrite the goal. If, at some point in the
proof, no wave rules apply and the goal cannot be fertilised, then the goal is
said to be blocked. This typically indicates that some backtracking is required,
or that a lemma is needed.
In static rippling, annotations are expressed at the object level by inserting

object level function symbols (identity functions) for wave fronts and wave holes.



For example, the function symbols wfout, wfin and wh may be used to represent
outward wave fronts, inward wave fronts and wave holes respectively. The anno-

tated term p( g(c)
↑

), for instance, can be represented using p(wfout(g(wh(c)))).

Many wave rules can be created from a single theorem - in general, an exponen-
tial number on the size of the term. However, once wave rules are generated, fast
rule selection can be performed by using discrimination nets [7], for example.
We now present a simple example of static rippling that considers the step

case in an inductive proof of the commutativity of addition (a + b = b + a) in
Peano arithmetic. We will use the following wave rules:

Suc(X)
↑

+ Y ⇒ Suc(X + Y )
↑

(1)

X + Suc(Y )
↑

⇒ Suc(X + Y )
↑

(2)

A rippling proof of the step case uses the inductive hypothesis as the skeleton
with which to annotate the goal:

Suc(a)
↑

+ bbc = bbc+ Suc(a)
↑





y
Ripple using wave rule: 1

Suc(a+ bbc)
↑

= bbc+ Suc(a)
↑





y
Ripple using wave rule: 2

Suc(a+ bbc)
↑

= Suc(bbc+ a)
↑





y
Fertilise using the inductive hypothesis.

Suc(b+ a) = Suc(b+ a)

This shows how rippling can be used to guide a proof by induction. A formal
account for static rippling in first order logic has been developed by Basin and
Walsh [1]. They observe that if the normal notion of substitution is used, then it
is possible for rewriting to produce strange annotations that do not correspond to
the initial skeleton. The resulting effect is that rippling may no longer terminate
but, even if it does so successfully, due to the changed skeleton, fertilisation may
not be possible.
For an example of incorrect annotation consider the following:

1. A wave rule: g( f(X, c)
↑

) ⇒ h(X, g(X))
↑

2. A goal, g( f(k( g(z)
↑

), c))

↑

) which has the skeleton g(k(z)))



3. The goal rewrites to h(k( g(z)
↑

), g(k( g(z)
↑

)))

↑

, which does not even

have a well defined skeleton.

To avoid these problems, Basin and Walsh provide and use a modified notion
of substitution for their calculus of rippling. If such an approach were taken when
working in a theorem prover such as Isabelle or HOL, where any extra-logical
work must be verified within the logical kernel, then rippling steps would have
to be repeated by the theorem prover once rippling is successful.

4 Dynamic Rippling with Embedding

An alternative approach to annotations for rippling is taken by Smaill and
Green [19], and used to automate proofs in the domain of ordinal arithmetic
by Dennis and Smaill [8]. Their approach avoids the need for a modified notion
of substitution by recomputing the possible annotations each time a rule is ap-
plied. We call this dynamic rippling. The key feature of dynamic rippling is that
the annotations are stored separately from the goal and are recomputed each
time the goal is rewritten.
The central motivation for dynamic rippling, as noted by Smaill and Green,

arises from problems with object level annotations when working in the lambda
calculus. In particular:

– object level annotations are not stable over beta reduction. In particular, if
the wave fronts are expressed at the object level, then it is not possible to
use pre-annotated rules as they may not be skeleton preserving after beta
reduction.

– in a context with meta variables, incorrect annotations can accidentally be
introduced by unification.

In the setting of the lambda calculus, it is not clear how beta reduction
could be redefined to get the desired properties for rippling. Furthermore, we
are interested in a generic approach to rippling that can be used across logics
without redefining substitution.

4.1 Embeddings for Annotating Difference

Smaill and Green use embedding trees to represent the difference annotations
used in rippling [19]. However, their work leaves a number of open questions
regarding what direction to give wave fronts in an embedding, and what to do
when the skeleton can be embedded into the goal in more than one way.
Additionally, we observe that the embedding of a bound variable is not re-

stricted by its associated quantifier. For example, an embedding is possible from
the term ∀x.∃y.P (x, y) into ∀a.∃b.∀c.P (a, c), where the y is existentially quan-
tified in the skeleton, but embedded into c which is universally quantified. We



believe that this is due to the lack of a well defined relationship between the
annotations for difference and the underlying semantics. However, in practice
this is rarely an issue and we have not found any domains where this causes a
problem.
Nonetheless, if rippling is to be used in a domain with many different quan-

tifiers then it may be worthwhile to impose further restrictions on embeddings.
For example, by requiring, for each quantified variable being embedded, that the
quantifier in the skeleton and the goal should be identical, or that the quantifier
in the skeleton should embed into the quantifier in the goal. Such constraints
would prune the search space and bring a closer semantic relationship between
the embedding of bound variables and their quantifiers.

5 Rippling in IsaPlanner

We now describe our version of rippling and its treatment of multiple annota-
tions. We use dynamic rippling which avoids redefinition of substitution and is
suitable for use in higher order logics. Before rippling starts, theorems and ax-
ioms are added to a wave rule set which will be used during the process. We
do not use all theorems and axioms during rippling for reasons described in
Section 5.2.
Given a wave rule set, our version of rippling is composed of three parts:

1. Setup: Rippling is given a skeleton with which to create an initial list of
possible annotations. We use the contextual information of IsaPlanner to
store the annotations for rippling and keep track of the associated goal. This
information also facilitates the later development of proof planning critics
that can use the annotations to patch failed proof attempts, as described in
the work of Ireland and Bundy [12].

2. Ripple Steps: Theorems in the wave rule set are used to perform a single
step of rewriting on the goal. Note that the order in which the rules are ap-
plied is irrelevant as the rewriting process is guided by the rippling measure.
After each successful rule application, the goal is beta-reduced and a new set
of annotations is created. If this set is empty then the rewrite is considered
to be an invalid ripple step and another rule is tried.

3. Fertilisation: When no more rules apply, rippling has either completed suc-
cessfully, allowing fertilisation, or failed. Upon failure, our version of rippling
either applies a proof critic, discussed in Section 6.1, or backtracks and tries
rippling with different wave rules.

We note that in general, the open problems with dynamic rippling arise be-
cause there are many ways to embed a skeleton in a goal and, for each embedding,
there are a number of ways in which it can be annotated. Thus each goal is as-
sociated with a set of annotations, rather than a single annotation, as was the
case in static rippling. Further problems arise when rippling inward, computing
the measure, and when deciding which rules to use for rippling. In the follow-
ing subsections we describe how our version of dynamic rippling addresses these
issues.



5.1 Depth for Measures and Inward Rippling

To avoid a large number of possible annotations, inward wave fronts are typi-
cally restricted to being placed above a subterm that contains a sink. However,
in higher order abstract syntax (HOAS) the idea of ‘above’ or ‘below’ is not
immediately obvious as function symbols are leaf nodes in the term tree. We
address this by defining a suitable notion of depth which removes the need for
product types as used by Smaill and Green [19]. An advantage of our approach
is that users are free to use a curried representation with a notion of measure
similar to that used in first order static rippling.
The central idea is to treat depth in the following way: If x has depth d in

the term u, then x has depth d in λy.u and app(u, v) (the HOAS application of
u to v), and in app(v, u), x has depth d + 1. This ‘uncurries’ the syntax in the
way we would expect: no height ordering is given to different curried arguments
of a function. For example, the term Suc(a) + b, expressed in the HOAS as
app(app(+, app(Suc, a)), b), gives a depth of 0 to +, 1 to Suc and b, and 2 to a.
In contrast, the usual notion of depth in HOAS is 1 for b, 2 for +, and 3 for Suc
and a.

5.2 Selection of the Wave Rule Set

It is often cited as one of the advantages of rippling that the annotation process
provides a means of ensuring termination and that therefore all resulting rules
can be added to the set of wave rules. In static rippling, only measure decreasing
wave rules are created. This avoids rewrites which have no valid annotation such
as x ⇒ 0 + x.
However, recall that in dynamic rippling, theorems are used to rewrite the

goal and then the possible annotations are checked in order to avoid goals where
the measure does not decrease. Unfortunately, this approach can causes rules
that are not beneficial but frequently applicable, such as x ⇒ 0 + x, to slow
down search.
To avoid this, we filter the possible ways a theorem can be used to write a

goal, removing those with a left hand side that is identical to a subterm of the
right, such as x ⇒ x + 0. We also remove any rewrites that would introduce a
new variable, such as 1 ⇒ x0. While this solution does not correspond exactly
to the first order case, it works well in practice.

5.3 A Richer Representation of Annotations

Smaill and Green represent annotations using embeddings. However, this does
not correspond directly to the first order account of rippling annotations given

by Basin and Walsh. In particular, annotations such as f( g(x)
↓

)

↑

cannot be

expressed with their embedding representation.
In order to maintain a flexible and efficient mechanism for annotated terms,

we use a different representation (shown in Fig 1) that holds more information



aterm = aAbs(type, aterm, annot)

| aApp(aterm, aterm, annot)

| aConst(Const, annot)

| aV ar(V ar, annot)

| aBound(Bound, annot)

Fig. 1. A datatype to express annotated terms (aterm). The types: annot expresses
an annotation, which is typically either in, out or none; type is the type of a bound
variable; Const is a constant, V ar is a variable, and Bound is a bound variable using
de Bruijn indices.

than the embedding trees used by Smaill and Green2. This allows multiple ad-
jacent wave fronts with different orientations. Using our annotations, the above
example would then be expressed as

aApp(aConst(f,out),(aApp(aConst(g,in),aVar(x,none),in)),out).

The extra information held in this representation provides an easy way to
experiment with different measures and mechanisms for annotation. Addition-
ally, combined with the depth mechanism described in the previous section, our
version of annotated terms produces the measures similar to first order rippling
even when working with curried style functions.

5.4 Choices in the Direction of Wave Fronts

Whether using Smaill and Green’s embedding mechanism or our annotated
terms, one still has to worry about the direction of wave fronts. Initially, they
are always outward but after applying a rule there is a choice of direction for
each wave front.

For example, returning to the proof the commutativity of addition, the initial

annotated goal is Suc(a)
↑

+ bbc = bbc + Suc(a)
↑

, but after applying the

theorem Suc(x) + y = Suc(x+ y) from left to right, there are two possible ways
the new goal can be annotated:

Suc(a+ bbc)
↑

= bbc+ Suc(a)
↑

(3)

Suc(a+ bbc)
↓

= bbc+ Suc(a)
↑

(4)

2 Note that IsaPlanner uses a more efficient but more complex datatype that main-
tains the same information as the one presented here.



Note that the static account of rippling only allows inward wave fronts where
there is a sink below the wave front (in the term structure). Without this re-
striction, as needed by some of the proof critics in λClam, there are many more
possible annotations.

We observe that in order to manage the multitude of annotations, only a
single measure needs to be stored. We call this the threshold measure. Initially,
this is the highest measure in the ordering. After a rule is applied, the new
annotations are analysed to yield the highest measure lower than the current
threshold. This becomes the new threshold. If no such measure can be found
then search backtracks over the rules application. This strategy ensures that all
possible rippling solutions are in the search space.

5.5 Managing Multiple Annotations

While only a single measure is needed to represent all annotations, we observe
that the mere existence of multiple annotations for a goal can result in rippling
applying unnecessary proof steps. For example, when trying to prove a+ 0 = a

in Peano arithmetic, we arrive at an annotated step case of Suc(a)
↑

+ 0 =

Suc(a)
↑

, which we will rewrite with the theorem Suc(X) + Y = Suc(X + Y ),

named add Suc:

Suc(a)
↑

+ 0 = Suc(a)
↑

Measure : ([1, 1, 0], [0, 0, 0])




y
Ripple using add Suc from left to right

Suc(a+ 0)
↑

= Suc(a)
↑

Measure : ([0, 2, 0], [0, 0, 0])




y
Ripple using add Suc from right to left

Suc(a)
↓

+ 0 = Suc(a)
↑

Measure : ([0, 1, 0], [0, 0, 1])




y
Ripple using add Suc from left to right

Suc(a+ 0)
↓

= Suc(a)
↓

Measure : ([0, 0, 0], [0, 2, 0])




y
Fertilise using the inductive hypothesis.

Suc(a) = Suc(a)

This redundancy in rewriting steps is an important inefficiency for a number
of reasons: the search space will be larger, the proofs found will be less readable,
the proofs may be more brittle (have unnecessary dependencies), and when being
used for program synthesis [13], for example, inefficient programs may be created.



While the number of redundant proof steps is smaller if inward wave fronts
are restricted to occurring above a sink, the problem still manifests itself when
there are multiple sinks and wave fronts.

In the following section, we describe a general inefficiency with rippling, and
then present a solution that prunes the search space and thereby addresses the
problem described in this section and the more general inefficiency.

5.6 Avoiding Redundant Search in Rippling

A simple observation which can be made during rippling is that it is often possible
to ripple many different parts of a goal independently, and thus it is of no
help to backtrack and try a different order. For example, in the proof of the
commutativity of addition presented earlier, either the right hand side or the
left hand side can be rippled out first.

In IsaPlanner, the goal terms during rippling are cached (without anno-
tation), so that the same rippling state is not examined more than once. This
removes symmetry in the search space, and thus provides an efficiency improve-
ment. By using this mechanism to keep the shortest possible proof (in terms
of ripple steps) we also significantly reduce the problems with redundant steps
in rippling. This mechanism is provided by a generic search space caching in
IsaPlanner.

5.7 Implementation Details

Rippling is encoded in IsaPlanner in two parts: a module, called the ripple

state, that holds annotations associated with a goal, and the rippling technique

which is defined in terms of the ripple state module. The notion of embedding is
defined in a generic way in terms of Isabelle’s HOAS. Embeddings are used by
the ripple state and transformed into a set of possible annotations. The ripple
state module has two main functions: firstly, to set up a new state from a goal
and skeleton that has an initial set of annotations, and secondly, to update a
state given a new goal.

The abstract interface for a ripple state allows us to use different annotation
mechanisms without changing any of the code for the rippling technique. To
implement a new form of rippling, only a new implementation of the ripple state
module needs be created. Furthermore, IsaPlanner supports multiple versions
of rippling simultaneously. This provides us with a framework to test and easily
create variations of the technique.

IsaPlanner provides an interactive interface that can be used to trace
through the proof planning attempt. We remark that this was particularly use-
ful for debugging the rippling technique as well as understanding the rippling
proofs.

A feature of using IsaPlanner is that it allows encoded techniques to auto-
matically generate readable, executable proof scripts of the Isabelle/Isar style.



This is particularly beneficial when lemmas are speculated and proved as it pro-
vides a form of automatic theory formation. For an example of a generated proof
script see Section 7.

6 A Technique Combining Induction and Rippling

As mentioned earlier, the most common use of rippling is to guide inductive
proof. Moreover, rippling is particularly suited to the application of proof crit-
ics as the annotations provide additional information that can be used when
searching for a way to patch a failed proof attempt. Indeed, we found that a
combination of induction with rippling, Ireland’s lemma calculation critic [12],
and Boyer-Moore style generalisation [3] provides a powerful tool for automa-
tion. The technique starts an inductive proof and uses rippling to solve the step
case(s). When rippling becomes blocked, the lemma speculation and generalisa-
tion critics are applied. The base cases are tackled using Isabelle’s simplification
tactic which is also combined with the lemma speculation and generalisation
critics.
The induction technique selects and applies an induction scheme based on

the inductively defined variables in the goal. Although there are various ways to
select the variable for induction, such as ripple analysis [17], we found that search
backtracks quickly enough for the choice of variable to be largely insignificant in
the domains we examined. This is partially due to the caching mechanism that
allow proof planning to use a significant portion of the failed proof attempt.
For example, when proving i(j+k) = ij · ik in Peano arithmetic, wrongly trying
induction on i results in the proof of 3 of the 4 needed lemmas, and the only
additional lemma to prove is the trivial theorem x+ 0 = x.
This technique combining induction and rippling is similar to that used by

Dennis and Smaill [8] in λClam. The main differences are within rippling, where
we use a different mechanism for annotation, and provide a number of efficiency
measures. Additionally, we make use of Isabelle’s induction and simplification
tactics as well as provide some further optimisation to lemma speculation as
described below. In Section 8, we briefly compare our implementation with that
in λClam.

6.1 Efficient Lemma Conjecturing and Proof

We have attached a lemma speculation and generalisation critic to rippling and
incorporated the following efficiency measures into the speculation and proof of
lemmas:

– if a conjecture is proved to be false, then the search space of possible alterna-
tive proofs should be pruned. Additionally, the search space of any conjecture
of which the false one is an instance should also be pruned. At present our
rippling technique does not use any sophisticated means of detecting false
conjectures, although we intend to make use of Isabelle’s refutation and
counter example finding tools in future work.



– if the search space for the proof of a conjecture is exhausted, then it seems
reasonable (and is useful in practice) to avoid making the same conjecture
at a later point in proof planning.

– when a lemma is successfully proved, but later the proof of the main goal
fails, it will not help to find alternative proofs for the lemma. This suggests
that when a lemma is proved, the search space for other proofs of the lemma
(or an instance of it) should be pruned.

These are available in a generic form in IsaPlanner and can be used in
any technique that speculates and tries to prove lemmas. We remark that using
a global cache of proved lemmas is difficult in systems such as λClam where
backtracking removes derived information.

7 A Brief Case Study in Ordinal Arithmetic

We now briefly describe a formalisation in Isabelle/IsaPlanner of ordinal arith-
metic similar to that developed in λClam by Dennis and Smaill [8]. Ordinal
notation is defined using the following datatype:

ordinal = 0 | Suc of ordinal | Lim (nat → ordinal)

A feature of Isabelle is that the transfinite induction scheme for the ordinal
notation is automatically generated by the datatype package [18]. The induction
scheme is then automatically used by the induction technique in IsaPlanner.
The arithmetic operations on ordinals are defined using Isabelle’s primitive

recursive package. For example, addition is defined as follows:

primrec
ord_add_0 : "(x + 0) = (x :: Ord)"

ord_add_Suc : "x + (Suc y) = Suc (x + y)"

ord_add_Lim : "x + (Lim f) = Lim (λn. x + (f n))"

The other arithmetic operations are defined and named similarly. Using these
definitions, the induction and rippling technique is able to derive and produce
automatically Isabelle/Isar proof scripts for all the theorems proved in the work
of Dennis and Smaill. The theorem that takes longest to prove is the following:

theorem "x ^ (y * z) = (x ^ y) ^ z"

proof (induct "z")

show "x ^ (y * 0) = (x ^ y) ^ 0" by (simp)

next
fix Ord :: "Ord"

assume ind_hyp1: "x ^ (y * Ord) = (x ^ y) ^ Ord"

have "x ^ (y * Ord + y) = x ^ (y * Ord) * x ^ y" by (rule auto_lemma_0)

hence "x ^ (y * Ord + y) = (x ^ y) ^ Ord * x ^ y" by (rwstep sym[OF ind_hyp1])

hence "x ^ (y * Ord + y) = (x ^ y) ^ Suc Ord" by (rwstep ord_exp_Suc)

thus "x ^ (y * Suc Ord) = (x ^ y) ^ Suc Ord" by (rwstep ord_mul_Suc)

next



fix f :: "nat => Ord"

assume ind_hyp1: "!!xa. x ^ (y * f xa) = (x ^ y) ^ f xa"

have "Lim (λn. (x ^ y) ^ f n) = Lim (λn. (x ^ y) ^ f n)" by (simp)

hence "Lim (λn. x ^ (y * f n)) = Lim (λn. (x ^ y) ^ f n)" by (rwstep ind_hyp1)

hence "Lim (λn. x ^ (y * f n)) = (x ^ y) ^ Lim f" by (rwstep ord_exp_Lim)

hence "x ^ Lim (λn. y * f n) = (x ^ y) ^ Lim f" by (rwstep ord_exp_Lim)

thus "x ^ (y * Lim f) = (x ^ y) ^ Lim f" by (rwstep ord_mul_Lim)

qed

where ord exp Suc, ord exp Lim, ord mul Suc and ord mul Lim are the names
of the defining equations in the recursive definitions for exponentation and mul-
tiplication. Also note that the following needed lemmas are all automatically
conjectured and proved:

lemma auto_lemma_5: "g0 + (g2 + g1) = g0 + g2 + g1"

lemma auto_lemma_4: "g1 * g2 + g1 * g0 = g1 * (g2 + g0)"

lemma auto_lemma_3: "g1 * g0 * x = g1 * (g0 * x)"

lemma auto_lemma_1: "g1 = 0 + g1"

lemma auto_lemma_0: "x ^ (g0 + y) = x ^ g0 * x ^ y"

As a final remark, note that in the automatically generated Isar script above,
the tactic rwstep simply applies a single step of rewriting with the given theorem.

8 Results

We have applied our technique with depth first search to over 300 problems in a
mixture of first and higher domains, including a theory of lists, Peano arithmetic,
and ordinal arithmetic. A table highlighting some of the results is given in Fig 2.

To distinguish the automation provided by the rippling technique from that
gained by working in the richly developed theories of Isabelle, the tests were
carried out in a formalisation without any auxiliary lemmas. All needed lemmas
were automatically conjectured and proved. To get an idea of the improved
automation, we note that none of the theorems shown in Figure 2 are provable
using Isabelle’s existing automatic tactics, even after the manual application of
induction.

As a comparison with λClam we observe that:

– λClam has specialised methods for various domains, such as non-standard
analysis [14], which provide it with the ability to prove some theorems not
provable by IsaPlanner’s default rippling machinary.

– IsaPlanner makes use of Isabelle’s configurable tactics such as the sim-
plifier which is user configurable and can be used to provide conditional
rewriting for the base cases of inductive proofs. This can provide IsaPlan-

ner with automation not possible in λClam.

– IsaPlanner executes the proof plan, ensuring soundness of the result, where
λClam is currently not interfaced to an object level theorem prover.



Time Lemmas
Domain Theorem (in seconds) Proved

Properties length l = length(rev l) 0.2 1
of Lists length(xs @ ys) = length(xs) + length(ys) 0.3 1

rev(map f xs) = map f rev(xs) 0.3 1
rev(rev(xs)) = xs 1.0 1

Peano a · b = b · a 0.1 3
Arithmetic (a · b) · c = a · (b · c) 1.6 8

a(b+c) = (ab) · (ac) 2.0 11
a · (b · c) = b · (a · c) 2.5 15

Ordinal x · (y + z) = (x · y) + (x · z) 0.8 1
Arithmetic (a · b) · c = a · (b · c) 1.0 2

x(y+z) = xy · xz 1.6 4

x(y·z) = (xy)z 2.0 5

Fig. 2. Some results using the induction and rippling technique in IsaPlanner showing
the theorem proved, the time taken, and number of lemmas conjectured and proved
automatically. The timings were obtained from a 2GHz Intel PC with 512MB of RAM,
and using Isabelle2004 with PolyML.

– Higher order rippling in IsaPlanner is appears to be exponentially faster
than in λClam. Simple theorems are solved in almost equivalent time but
those with more complex proofs involving lemmas are significantly quicker to
plan and prove in IsaPlanner. For example, the ordinal theorem x(y·z) =
(xy)z takes over five minutes in λClam compared to 2 seconds in IsaPlan-

ner. We believe that this is largely due to the efficiency measures described
in this paper.

– The resulting proof plans from IsaPlanner are readable and clear whereas
those produced by λClam are difficult to read. For example, at present the
proof plan generated by λClam for the associativity of addition in Peano
arithmetic is 12 pages long (without any line breaks). The proof script gen-
erated by IsaPlanner is one page long and in the Isar style.

– Upon failure to prove a theorem, λClam does not give any helpful results,
whereas IsaPlanner is able to provide the user with proofs for useful aux-
iliary lemmas. For example, upon trying to prove x(y·z) = (xy)z in Peano
arithmetic, IsaPlanner conjectures and proves 13 lemmas, including the
associativity and distributivity rules for multiplication.

We remark that many of the automatically conjectured and proved lemmas
can be obtained by simplification from previously generated ones. This shows
a certain amount of redundancy in the generated lemmas. In future work, we
intend to prune these and identify those which are of obvious use to the simplifier.
Future work will also include support for working with theorems that do not
contain equalities.



9 Related Work

Boulton and Slind [2] developed an interface between Clam and HOL. Unlike our
approach which tries to take advantage of the tactics in Isabelle, their interface
did not use the tactics developed in HOL as part of proof planning. Additionally,
problems were limited to being first order, whereas our approach is able to derive
proof plans for higher order theorems.
A general notion of annotated rewriting has been developed by Hutter [10]

and extended to the setting of a higher order logic by Hutter and Kohlhase [11].
They develop a novel calculus which contains annotations. This is a mixture
between dynamic and static rippling as after each rewrite skeleton preservation
still needs to be checked, but the wave rules can be generated beforehand.
A proof method that combines logical proof search and static rippling has

been implemented for the NuPrl system by Pietntka and Kreitz [16]. Their im-
plementation is as a tactic without proof critics and focuses on the incremental
instantiation of meta variables. They employ a different measure based on the
sum of the distances between wave fronts and sinks.

10 Conclusions & Further Work

We have presented an account of rippling, based on the dynamic style described
by Smaill and Green and extended it to use annotations that bear a closer sim-
ilarity to the account of static rippling within first order domains. Additionally,
we have exposed and treated important issues that affect the size of the search
space. This has lead to an efficient version of rippling.
We have implemented our version of rippling in IsaPlanner for use in the

higher order logic of Isabelle. This provides a framework for comparing and
experimenting with extensions to rippling, such as the addition of proof critics
and the use of modified measures. We believe that this is an important step in
the development of a unified view of this proof planning technique.
Our version of rippling, combined with induction, lemma speculation, and

generalisation gives improved automation in Isabelle, can generate Isar proof
scripts and is able to conjecture and prove needed lemmas. This work also serves
as a test-bed for the IsaPlanner framework and facilitates the application of
proof planning techniques to interactive higher order theorem proving.
There are many ways in which this work can be extended. It would be in-

teresting to experiment with various mechanisms for annotation and develop a
complete picture of the effect of the design choices for dynamic rippling. This
would work towards a complete and formal account of dynamic rippling for a
higher order setting. In terms of proof automation, there are many proof critics
that could be added to our implementation and compared. This would provide
further automation and test the flexibility of our framework. It would also be
interesting to compare rippling with the existing simplification package in Is-
abelle. Additionally, we would like to examine the automation that rippling can
provide to the various large ‘real world’ theory developments in Isabelle.
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