
NATURAL LANGUAGE INFORMATION RETRIEVAL IN DIGITAL LIBkARIES

Tomek Strzalkowski

GE Corporate Research & Development

P.O. BOX 8

Schenectady, NY 12301

Jose Pere%Carballo

School of Communication, Information and Library Studies

Rutgers University

New Brunswick, NJ 08903

Mibnea Marinescu

Courant Institute of Mathematical Sciences

New York University

New York, NY 10003

ABSTRACT

In this paper we report on some recent developments in joint

NYU and GE natural language information retrieval system.

The main characteristic of this system is the use of advanced

natural language processing to enhance the effectiveness of

term-based document retrieval. The system is designed around a

traditional statistical backbone consisting of the indexer module,
which builds inverted index files from pre-processed documents,

and a retrieval engine which searches and ranks the documents

in response to user queries. Natural language processing is used

to (1) preprocess the documents in order to extract content-

carrying terms, (2) discover inter-term dependencies and build a

conceptual hierarchy specific to the database domain, and (3)

process user’s natural language requests into effective search

queries. This system has been used in NIST-sponscx-ed Text

Retrieval Conferences (TREC), where we worked with approxi-

mately 3.3 GB ytes of text articles including material from the

Wall Street Journal, the Associated Press newswire, the Federal
Register, Ziff Communications’s Computer Library, Department

of Energy abstracts, U.S. Patents and the San Jose Mercury

News, totaling more than 500 million words of English. The

system have been designed to facilitate its scrdabili~y to deal

with ever increasing amounts of data. In particular, a random-

ized index-splitting mechanism has been installed which allows

the system to create a number of smaller indexes that can be

independently and efficiently searched.

INTRODUCTION

A typical (full-text) information retrieval (IR) task is to

select documents from a database in response to a user’s query,
and rank these documents according to relevance. This has been

usually accomplished using statistical methods (often coupled

with manual encoding) that (a) select terms (words, phrases, and

other units) from documents that are deemed to best represent
their content, and (b) create an inverted index file (or files) that

provide an easy access to documents containing these terms. A

subsequent search process will attempt to match preprocessed
user queries against term-based representations of documents in

Permission to make digitaliharrt copies of all or part of thb material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for prufa or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
gwen that copyright ia by permission of tbe ACM, Inc. To copy othenvisc,
to repubtish, to post on servers or to redistribute to lists, requires specific

each case determining a degree of relevance between the two

which depends upon the number and types of matching terms.

Although many sophisticated search and matching methods are

available, the crucial problem remains to be that of an adequate

representation of content for both the documents and the

queries.

In term-based representation, a document (as well as a
query) is transformed into a collection of weighted terms,

derived directly from the document text or indirectly through

thesauri or domain maps. The representation is anchored on

these terms, and thus their careful selection is critical. Since

each unique term can be thought to add a new dimensionality to

the representation, it is equally critical to weigh them properly

against one another so that the document is placed at the correct

position in the N-dimensional term space. Our goal here is to

have the documents on the same topic placed close together,

while those on different topics placed sufficiently apart. Unfor-

tunately, we often do not know how to compute terms weights.

The statistical weighting formulas, based on terms distribution

within the database, such as tfidf, are far from optimal, and the

assumptions of term independence which are routinely made are

false in most cases. This situation is even worse when single-

word terms are intermixed with phrasal terms and the term

independence becomes harder to justify.

The simplest word-based representations of content, while

relatively better understood, are usually inadequate since single

words are rarely specific enough for accurate discrimination, and

their grouping is often accidental. A better method is to identify

groups of words that create meaningful phrases, especially if

these phrases denote important concepts in the database domain.
For example, joint venture is an important term in the Wall

Street Journal (WSJ henceforth) database, while neither joint nor

venture is important by itself. In the retrieval experiments with

the training TREC database, we noticed that both joint and ven-

ture were dropped from the list of terms by the system because

their idf (inverted document j7equency) weights were too low. In

large databases, such as TIPSTER, the use of phrasal terms is
not just desirable, it becomes necessary.

An accurate syntactic analysis is an essential prerequisite

for selectio~ of phrasal terms. Various statistical methods, e.g.,

based on word co-occurrences and mutual information, as well

DL’96, Bethesda MD USA
01996 ACM &89791.83&4/96/03. .$3.50

permission andlor fee.
117

as partial parsing techniques, are prone to high error rates

(sometimes as high as 50%), turning out many unwanted associ-

ations. Therefore a good, fast parser is necessary, but it is by no

means sufficient. While syntactic phrases are often better indi-

cators of content than ‘statistical phrases’ — where words are

grouped solely on the basis of physical proximity (e.g., “college

junior” is not the same as “junior college”) — the creation of

compound terms makes term matching process more complex
since in addition to the usual problems of synonymy and sub-

sumption, one must deal with their structure (e.g., “college

junior” is the same as “junior in college”). In order to deal with

structure, the parser’s output needs to be “normalized” or “regu-

larized” so that complex terms with the same or closely related

meanings would indeed receive matching representations. This

goal has been achieved to a certain extent in the present work.

As it will be discussed in more detail below, indexing terms

were selected from among head-modifier pairs extracted from

predicate-argument representations of sentences.

Introduction of compound terms also complicates the task

of discovery of various semantic relationships among them,

including synonymy and subsumption. For example, the term

natural language can be considered, in certain domains at least,

to subsume any term denoting a specific human language, such

as English. Therefore, a query containing the former may be

expected to retrieve documents containing the latter. The same

can be said about language and English, unless language is in

fact a part of the compound term programming language in

which case the association language - Fortran is appropriate.

This is a problem because (a) it is a standard practice to include

both simple and compound terms in document representation,

and (b) term associations have thus far been computed primarily

at word level (includlng fixed phrases) and therefore care must

be taken when such associations are used in term matching.

This may prove particularly troublesome for systems that

attempt term clustering in order to create “meta-terms” to be

used in document representation.

The system presented here computes term associations

from text at word and fixed phrase level and then uses these

associations in query expansion. A fairly primitive filter is

employed to separate synonymy and subsumption relationships

from others including antonymy and complementation, some of
which are strongly domain-dependent. This process has led to

an increased retrieval precision in experiments with both ad-hoc

and routing queries for TREC- 1 and TREC-2 experiments.

However, the actual improvement levels can vary substantially

between different databases, types of runs (ad-hoc vs. routing),
as well as the degree of prior processing of the queries. We

continue to study more advanced clustering methods along with
the changes in interpretation of resulting associations, as sig-
naled in the previous paragraph. In the remainder of this paper

we discuss particulars of the present system and some of the

observations made while processing TREC-3 data.

OVERALL DESIGN

Our information retrieval system consists of a traditional

statistical backbone (NIST’S PRISE system, Harmarr and

Candela, 1989) augmented with various natural language pro-
cessing components that assist the system in database processing

(stemming, indexing, word and phrase clustering, selectional

restrictions), and translate a user’s information request into an

effective query. This design is a careful compromise between

purely statistical non-linguistic approaches and those requiring

rather accomplished (and expensive) semantic analysis of data,

often referred to as ‘conceptual retrieval’.

In our system the database text is first processed with a

fast syntactic parser. Subsequently certain types of phrases are

extracted from the parse trees and used as compound indexing

terms in addition to single-word terms. The extracted phrases

are statistically analyzed as syntactic contexts in order to dis-

cover a variety of similarity links between smaller subphrases

and words occurring in them. A further filtering process maps

these similarity links onto semantic relations (generalization,

specialization, synonymy, etc.) after which they are used to

transform a user’s request into a search query.

The user’s natural language request is also parsed, and all

indexing terms occurring in it are identified. Certain highly

ambiguous, usually single-word terms may be dropped, provided

that they also occur as elements in some compound terms. For

example, “natural” is deleted from a query already containing

“natural language” because “natural” occurs in many unrelated

contexts: “natural number”, “natural logarithm”, “natural

approach”, etc. At the same time, other terms may be added,

namely those which are linked to some query term through

admissible similarity relations. For example, “unlawful activity”

is added to a query (TREC topic 055) containing the compound

term “illegal activity” via a synonymy link between “illegal”

and “unlawful”. After the final query is constructed, the data-

base search follows, and a ranked list of documents is returned.

There are several deviations from the above scheme in

the system that has been actually used in TREC-3, as well as

some important changes from TREC-2. First and foremost, we

have ‘graduated’ from the category B (exploratory systems,

about 1/4 of text data) to the category A (full participation)

mostly thanks to significant efficiency improvements in the NLP

module. In particular, the BBN’s part-of-speech tagger, which

we use to preprocess the input before parsing, has been

redesigned in time for TREC-3 so that it now adds no more

than 5% overhead to the parsing time. We have rdso installed a

new, more efficient version of NEST’s PRISE system which cut

the indexing time from days to hours. In order to keep memory
usage within the limits of our resources, as well as to prepare

the system to deal with practically unlimited amounts of data in

the future, we devised a randomized index splitting mechanism

which creates not one but several balanced sub-indexes. These

sub-indexes can be searched independently and the results can

be merged meaningfully into a single ranking. Finally, while the

query expansion via the domain map is an important part of our
system, it has not been used in TREC-3 runs. Our anatysis of

TREC-2 results revealed several problems with the query expan-
sion scheme and we were in process of redesigning it, however,

we were unable to test the revised approach in time for this

evaluation, and thus decided to leave it out of TREC-3. We plan

to have it in place for TREC-4.

Before we proceed to discuss the particulars of our sys-

tem we would like to note that all the processing steps, those

performed by the backbone system, and those performed by the
natural language processing components, are fully automated,

and no human intervention or manual encoding is required.

118

FAST PARSING WITH TTP PARSER

TIT (Tagged Text Parser) is based on the Linguistic

String Grammar developed by Sager (1981). The parser

currently encompasses some 400 grammar productions, but it is

by no means complete. The parser’s output is a regularized

parse tree representation of each sentence, that is, a representa-

tion that reflects the sentence’s logicrd predicate-argument struc-

ture. For example, logical subject and logicaf object are
identified in both passive and active sentences, and noun phrases

are organized around their head elements. The parser is

equipped with a powerful skip-and-fit recovety mechanism that

allows it to operate effectively in the face of ill-formed input or

under a severe time pressure. When parsing the TREC-3 collec-

tion of more than 500 million words, we found that theprrrser’s

speed averaged between 0.17 and 0.26 seconds per sentence, or

up to 80 words per second, on a Sun’s SparcStationlC1. In addi-

tion, l’TP has been shown to produce parse structures which are

no worse than those generated by full-scale linguistic parsers

when compared to hand-coded Treebank parse trees.

lTPis afull grammar parser, andinitially, it attempts to

generate acompleteanaiysis for each sentence. However, unlike

an ordinary parser, it has a built-in timer which regulates the

amount of time allowed for parsing any one sentence. If a parse
is not returned before the allotted time elapses, the parser enters

the skip-and-fit mode in which it will try to “fit” the parse.

While in the skip-and-fit mode, the parser will attempt to forci-

bly reduce incomplete constituents, possibly skipping portions of

input in order to restart processing at a next unattempted consti-

tuent. In other words, the parser will favor reduction to back-

tracking while in the skip-and-fit mode. The result of this stra-

tegy is an approximate parse, partially fitted using top-down

predictions. The fragments skipped in the first pass are not

thrown out, instead they are analyzed by a simple phrasal parser

that looks for noun phrases and relative clauses and then

attaches the recovered material to the main parse structure. Full

details oflTPparser have been described inthe TRE(2-1 report

(Strzalkowski, 1993a), as well as in other works (Strz,afkowski,

199~Strzalkowski &Scheyen, 1993).

As may be expected, the skip-and-fit strategy will only be

effective if the input skipping can be performed with a degree

of determinism. This means that most of the lexical level ambi-

guity must be removed from the input text, prior to parsing. We

achieve this using a stochastic parts of speech tagger to prepro-

cess the text (see TREC-1 report for details).

WORD SUFFIX TRIMMER

Word stemming has been an effective way of improving

document recall since it reduces words to their common mor-
phological root, thus allowing more successful matches. On the

other hand, stemming tends to decrease retrievaf precision, if

care is not taken to prevent situations where otherwise unrelated

words are reduced to the same stem. In our system we replaced

a traditional morphological stemmer with a conservative

dictionary-assisted suffix trimmer. 1 The suffix trimmer performs

I ~eahng with ~Efixes is a more complicated matter, since they

may have quite strong effect upon the meaning of the resulting term,
e.g., un- USuallYintroduces expticlt negation.

essentially two tasks: (1) it reduces inflected word forms to their

root forms as specified in the dictionary, and (2) it converts

nominalized verb forms (e.g., “implementation”, “storage”) to

the root forms of corresponding verbs (i,e,, “implement”,

“store”). This is accomplished by removing a standard suffix,

e.g., “stor+age”, replacing it with a standard root ending (“+e”),

and checking the newly created word against the dictionary, i.e.,

we check whether the new root (“store”) is indeed a legaf word.

Below is a small example of text before and after stemming.

While serving in South Vietnam, a number of U.S. Soldiers
were reported as having been exposed to the defoliant Agent
Orange. The issue is veterans entitIernmt, or the awarding
of monetary compensation and/or medicat assistance for
physicat darnagescaused by Agent Orange.

serve south vietnam number U.S. soldier expose defoliant
agent orange veteran entitle award monetary compensate
medicat assist physicat damage agent orange

Please note that proper names, such as South Vietnam and

Agent Orange are identified separately through the name extrac-

tion process described below. Note also that various “stop-

words” (e.g., prepositions, conjunctions, articles, etc.) are
removed from text.

HEAD-MODIFIER STRUCTURES

Syntactic phrases extracted from TIT parse trees are

head-modifier pairs. The head in such a pair is a central element

of a phrase (main verb, main noun, etc.), while the modifier is

one of the adjunct arguments of the head. In the TREC experi-

ments reported here we extracted head-modifier word and

fixed-phrase pairs only. While TREC databases are large enough

to warrant generation of larger compounds, we were unable to

verify their effectiveness in indexing, mostly because of the

tight schedule.

Continuing the example from the previous section, the

following additional terms are extracted:

agent+orauge ail+child assist+medlcal award+compensate
bom+child cause+aihrmrt csnrse+damage damage+physical
entitle+veteran obtain+compensate south+vietnam

The parse tree for the first sentence of this fragment is given

below:

[[be], [[verb, [report]],

[subject,anyone],

[object, [np,[n,soldier], [t_pos,several], [name,[’ u.s.’]]]],

[sa-wh,[as,[[perf, [have]],

[[be, [verb, [expose]],[subject,myone], [object,pro],
[to,[np,[name,[agent, orrmge]],[t_pos,the],

[adj,defoliant]]]]]]]]]],

[while, [[verb,[serve]], [subject, anyone],

[in,[np,[name,[south, Vietnam]]]]]]]].

NOMINAL COMPOUNDS

The notorious ambiguity of nominal compounds remains
a serious difficulty in obtaining head-modifier pairs of highest
accuracy. In order to cope with this, the pair extractor looks at

the distribution statistics of the compound terms to decide

whether the association between any two words (nouns and

119

adjectives) in a noun phrase is both syntactically valid and

semantically significant. For example, we may accept

language+ natural and processing +language from natural

language processing as correct, however, case+ trading would

make a mediocre term when extracted from insider trading

case. On the other hand, it is important to extract

trading+ insider to be able to match documents containing

phrases insider trading sanctions act or insider trading activity.

Phrasal terms are extracted in two phases. In the first phase,

only unambigu~tts head-modifier pairs are generated, while all

structurally ambiguous noun phrases are passed to the second

phase “as is”. In the second phase, the distributional statistics

gathered in the first phase are used to predict the strength of

alternative modifier-modified links within ambiguous phrases.

For example, we may have multiple unambiguous occurrences

of insider trading, while very few of trading case. At the same
time, there are numerous phrases such as insider trading case,

insider trading legislation, etc., where the pair insider trading
remains stable while the other elements get changed, and

significantly fewer cases where, say, trading case is constant

and the other words change.

The disambiguation procedure is performed after the first

phrase extraction pass in which all unambiguous pairs

(noun+noun and noun+adjective) and all ambiguous noun

phrases are extracted. Any nominal string consisting of three or

more words of which at least two are nouns is deemed stmctur-

ally ambiguous, Inthe Tipster corpus, about 8070 of all ambigu-

ous nominals were of length 3 (usually 2 nouns and an adjec-

tive), 19% were of length 4, and only 1% were of length 5 or

more. The algorithm proceeds in three steps, as follows:

(1)

(2)

(3)

Assign scores to each of the crsndidate ptirsxi+xj where

i>j from the ambiguous noun phrase xl “ “ “ Xn. The

score assigned to a candidate pair is the sum of the

scores for each occurrence of this pair in any compound

nominal within the training corpus. For each occurrence,

thescoreismstximum when the wordsxi ~dxj are the

only words in the phrase, i.e., we have unambiguous

nominal xjxi, in which case the score is 1. For longer

phrases, for non-adjacent words, and for pairs anchored at

words toward the left of the compound, the score

decreases proportionately.

For each set Xj={~i+~jlfori>j} of candidate pairs

rank alternative pairs by their scores.

Disambiguate by selecting the top choice from each set

such that its score is above an empirically established

global threshold, it is significantly higher than the second

best choice from the set, and it is not significantly lower

than the scores of pairs selected from other sets Xi.

The effectiveness of this algorithm can be measured in

terms of recall (the proportion of all valid head+modifier pairs

extracted from ambiguous nominals), and precision (the propor-

tion of valid pairs among those extracted). The evaluation was
done on a small sample of randomly selected phrases, and the

algorithm performance was compared to manually selected
correct pairs. The following numbers were recorded: recall 66%

to 71%; precision 88% to 91%, depending on the size of the
training sample. In terms of the total number of pairs extracted

unambiguously from the parsed text (i.e., those obtained by the
procedure described in the previous section), the disambiguation

step recovers an additional 10% to 1590 of pairs, all of which

were previously thrown out as unrecoverable. A sample set of

ambiguous phrases and extracted head+modifier pairs is shown

in Table 1.

croatian wartime cabinet Icroatian cabinet

wartime cabinet

national enviromental watchdog gronp national group

environmentalgroup

watchdog gronp

current export subsidy program current progmtn

export subsidy

subsidy program

gas operating and maintaining expenses **gas operating

operating expenses

maintaining expenses

Table 1. Ambiguous notninnls and extracted pairs

EXTRACTING PROPER NAMES

Proper names, of people, places, events, organizations,

etc., are often critical in deciding relevance of a document.

Since names are traditionally capitalized in English text, spot-

ting them is relatively easy, most of the time. Many names are

composed of more than a single word, in which case all words

that make up tbe name are capitalized, except for prepositions

and such, e.g., The United States of America. It is important that

all names recognized in text, including those made up of multi-

ple words, e.g., South Africa or Social Security, are represented

as tokens, and not broken into single words, e.g., South and

Africa, which may turn out to be different names altogether by

themselves. On the other hand, we need to make sure that vati-

ants of the same name are indeed recognized as such, e.g., U.S.

President Bill Clinton and President Clinton, with a degree of

confidence. One simple method, which we use in our system, is

to represent a compound name dually, as a compound token and

as a set of single-word terms. This way, if a corresponding full
name variant camot be found in a document, its component

words matches can still add to the document score. A more

accurate, but arguably more expensive method would be to use
a substring comparison procedure to recognize variants before

matching.

In our system names are identified by the parser, and

then represented as strings, e.g., south+ a$-ica. The name recog-

nition procedure is extremely simple, in fact little more than the

scanning of successive words labeled as proper names by the
tagger (np and nps tags). Single-word names are processed just

like ordinary words, except for the stemming which is not

120

applied to them. We also made no effort to assign names to

categories, e.g., people, companies, places, etc., a classification

which is useful for certain types of queries (e.g., To be relevant

a document must identlfi a specljic generic drug company). A

more advanced recognize is planned for TREC-4 evaluation.

In the TREC-3 database, compound names make up ubout 8%

of all terms generated.

TERM CORRELATIONS FROM TEXT

Head-modifier pairs form compound terms used in data-

base indexing. They also serve as occurrence contexts for

smaller terms, including single-word terms. If two terms tend to

be modified with a number of common modifiers and otherwise

appear in few distinct contexts, we assign them a similarity

coefficient, a real number between O and 1. The similarity is

determined by comparing distribution characteristics for both

terms within the corpus: how much information content do they

carry, do their information contribution over contexts vary

greatly, are the common contexts in which these terms occur

specific enough? In general we will credit high-contrx-rt terms

appearing in identical contexts, especially if these contexts are

not too commonplace.z

To cluster terms into similarity classes, we used a

(revised) variant of weighted Jaccard’s measure described in

(Grefenstette, 1992):

~liV(W([x ,att]),W(@ ,att])

‘ZM(X’’X2) = fiAX(W([x,att]), W(~ ,att])
att

with

W([.X ,y]) = GEW(x)*log (jX,y)

(
& * log

-. 1]&

1 nY
GEW(X) = 1 +~ “y —

Y
log (N)

In the above, ~X ,Y stands for absolute frequency of pair [x ,y],

ny is the frequency of term y, and N is the number of single-

word terms.

In order to generate better similarities, we require that
words x ~ and x z appear in at least M distinct common con-

texts, where a common context is a couple of pairs [x 1,y] and

[x2,y], or ~ ~ ~] and ~ J2] such that they each occurred at

least three times. Thus, banana and Baltic will not be con-

sidered for similarity relation on the basis of their occurrences

in the common context of republic, no matter how frequent,

unless there is another such common context comparably fre-

quent (there wasn’t any in TREC’S WSJ database). For smaller

or narrow domain databases A4=2 is usually sufficient. For

large databases covering a rather diverse subject matter, like

2 It would not be appropriate to predict similarity between
language and logarithm on the basis of their co-occurrence with natural.

WSJ, we used ~ 25.3 This, however, turned out not to be

sufficient. We would still generate fairly strong similarity links

between terms such as aerospace and pharmaceutical where 6

and more common contexts were found. In the example at hand

the following common contexts were located, all occurring at

the head (left) position of a pair (at right are their global

entropy weights (GEW) and frequencies with aerospace and

pharmaceutical, respectively):4

CONTEXT GEW freq/aerospace freqlpharmaceutical

firm 0.58 9 22

industry 0.51 84 56

sector 0.61 5 9

concern 0.50 130 115

analyst 0.62 23 8

division 0.53 36 28

giant 0.62 15 12

Note that while some of these weights are quite low (less than

0.6 — GEW takes vafues between O and 1), thus indicating a

low importance context, the frequencies with which these con-

texts occurred with both terms were high and balanced on both

sides (e.g., concern), thus adding to the strength of association.

We are now considering additional thresholds to bar low impor-

tance contexts from being used in similarity calculation.

It may be worth pointing out that the similarities are cal-

culated using term co-occurrences in syntactic rather than in

document-size contexts, the latter being the usual practice in

non-linguistic clustering (e.g., Sparck Jones and Barber, 1971;

Crouch, 1988; Lewis and Croft, 1990), Although the two

methods of term clustering may be considered mutually comple-

mentary in certain situations, we believe that more and stronger

associations can be obtained through syntactic-context cluster-

ing, given sufficient amount of data and a reasonably accurate

syntactic parser.5

QUERY EXPANSION

Similarity relations are used to expand user queries with

new terms, in an attempt to make the final search query more

comprehensive (adding synonyms) and/or more pointed (adding

specializations),~ It follows that not all similarity relations will

3 For example banana and Dominican were found to have two
common contexts: republic and plant, although thk second occurred in

app~ntfy different sensesin Dominican planr and banana planr.

4 Other common contexts, such as company or market, have al-
ready been rejected because they were paired with too many different
words (a high dispersion ratio).

5 Non-syntactic contexts cross sentence boundaries with no fuss.

which is helpful with short, succinct documents (such as CACM
abstracts), but less so with longer texts; see afso (Grishman et al., 1986).

6 Qnery expansion (in the sense considered here. though not quite
in the same way) has been used in information retrieval research before
(e.g., Sparck Jones and Tait, 1984; Hartnan, 1988), usually with mixed
results. An alternative is to use term clusters to create new terms, “meta-
terms”, and use them to index the database instead (e.g., Crouch, 1988;

121

be equally useful in query expansion, for instance, complemen-

tary and anonymous relations like the one between Australian

and Canadian, accept and reject, or even generalizations like

from aerospace to industry may actually harm system’s perfor-

mance, since we may end up retrieving many irrelevant docu-

ments. On the other hand, database search is likely to miss

relevant documents if we overlook the fact that vice director can

also be deputy director, or that takeover can also be merge,

buy-out, or acquisition. We noted that an average set of simi-

larities generated from a text corpus contains about as many

“good” relations (synonymy, specialization) as “bad” relations

(antonymy, complementation, generalization), as seen from the

query expansion viewpoint. Therefore any attempt to separate

these two classes and to increase the proportion of “good” rela-

tions should result in improved retrieval. This has indeed been

confirmed in our experiments where a relatively crude filter has

visibly increased retrieval precision.

In order to create an appropriate filter, we devised a glo-

bal term specificity measure (GTS) which is calculated for each
term across rdl contexts in which it occurs. The generaf philoso-

phy here is that a more specific wordlphrase would have a more

limited use, i.e., a more specific term would appear in fewer

distinct contexts. In this respect, GTS is similar to the standard

inverted document ji-equency (idfl measure except that term fre-

quency is measured over syntactic units rather than document

size units.’ Terms with higher GTS values are generrdly con-

sidered more specific, but the specificity comparison is only

meaningful for terms which are already known to be similar.

The new function is crdculated according to the following for-

mula

[

ZCL (w) * ZCR (W) if ~@j. exist

GTS (W) = ZCR (W) if only ZCR (w) exists

ICL (W) otherwise

where (with nw, dW > O):

Ic~(w) = Zc([w ,_]) = ‘w
dW (nW +dW –1)

lc~(w)= lc([_,w]) = d ~n::dw_l)
w

For any two terms w, and W2, and a constant 8>1, if

GTS (W2) 26 * GTS (w 1) then w z is considered more

specific than w 1. In addition, if SL14nom(w1,Wz) = c > %
where El is an empirically established threshold, then w z can be

added to the query containing term w I with weight 6.8 For

example, the following were obtained from the WSJ training
database:

Lewis and Croft, 1990). We found that the query expansion approach
gives the system more flexibility, for instance, by making room for
hypertext-style topic exploration via user feedback.

7 we ~lieve that memufing term specificity over document-size

contexts (e.g., Sparck Jones, 1972) may not be appropriate in thk case.
In particular, syntax-based contexts atlow for processing texts without
any intemat document stmctore.

s For TREC-2 we used G = 0.2; ~ varied between 10 and 100.

GTS (takeover) = 0.00145576

GTS (merge) = 0.00094518

GTS (buy –out) = 0.00272580

GTS (acquire) = 0.00057906

with

SIM (takeover ,merge) = 0.190444
S1kf (takeover ,buy –out) = o.15741o

SlJ4(takeover ,acquire) = 0.139497

SIM(merge ,buy –out) = 0.133800

SHVl(merge ,acquire) = 0.263772
SA14(buy –out ,acquire) = 0.109106

Therefore both takeover and buy-out can be used to specirdize

merge or acquire. With this filter, the relationships between

takeover and buy-out and between merge and acquire are either

both discarded or accepted as synonymous. At this time we are

unable to tell synonymous or near synonymous relationships

from those which are primarily complementary, e.g., man and

woman.

TERM WEIGHTING ISSUES

Finding a proper term weighting scheme is critical in

term-based retrieval since the rank of a document is determined

by the weights of the terms it shares with the query. One popu-

lar term weighting scheme, known as tf.idf, weights terms pro-

portionately to their inverted document frequency scores and to
their in-document frequencies (tf). The in-document frequency

factor is usually normalized by the document length, that is, it is

more significant for a term to occur 5 times in a short 20-word

document, than to occur 10 times in a 1000-word article.g

In our official TREC runs we used the normalized tf.idf

weights for all terms alike: single ‘ordinary-word’ terms, proper

names, as well as phrasal terms consisting of 2 or more words.

Whenever phrases were included in the term set of a document,

the length of this document was increased accordingly. This had

the effect of decreasing tf factors for ‘regular’ single word

terms.

A standard tf.idf weighting scheme (and we suspect any
other uniform scheme based on frequencies) is inappropriate for

mixed term sets (ordinary concepts, proper names, phrases)

because

(1) It favors terms that occur fairly frequently in a document,

which supports only general-type queries (e.g., “all you

know about ‘star wars’ “). Such queries are not typical in
TREc.

(2) It attaches low weights to infrequent, highly specific

terms, such as names and phrases, whose only
occurrences in a document often decide of relewawe.

Note that such terms cannot be reliably distinguished

using their distribution in the database as the sole factor,

and therefore syntactic and lexical information is

required.

9 This is not always tree, for example when all occurrences of a
term are concentrated in a single section or a paragraph rather than
spread around the afiicle. See the following section for more dkcussion.

122

(3) It does not address the problem of inter-term dependen-

cies arising when phrasal terms and their component

single-word terms are all included in a document

representation, i.e., launchi-satellite and satellite are not
independent, and it is unclear whether they should be

counted as two terms.

In our post-TREC-2 experiments we considered (1) and

(2) only. We changed the weighting scheme so that the phrases

(but not the names which we did not distinguish in TREC-2)

were more heavily weighted by their idf scores while the in-

document frequency scores were replaced by logarithms multi-

plied by sufficiently large constants. In addition, the top N

highest-idf matching terms (simple or compound) were counted

more toward the document score than the remaining terms. This

‘hot-spot’ retrieval option is discussed in the next section.

Schematically, these new weights for phrasal and highly

specific terms are obtained using the following formula, while

weights for most of the single-word terms remain unchanged:

weight (Ti)=(C I *lOg (tf)+C~* ct(IV,i))*idf

In the above, fx(ll ,i) is 1 for i @ and is O otherwise. The

selection of a weighting formula was partly constrained by the

fact that document-length-normalized f weights were precom-

puted at the indexing stage and could not be altered without re-
indexing of the entire database. For more discussion of this

weighting scheme the reader is referred to (Strzalkowski,, 1995).

The table below illustrates the problem of weighting

phrasal terms using topic 101 and a relevant document
(WSJ870226-O091).

Topic 101 matches WSJ870226-O091

duplicate terms not shown

TERM TF.IDF

sdi 1750

ens 3175

star 1072

wars 1670

laser 1456

weapon 1639

missile 87’2

space+base 2641

interceptor 2075

exoatmosphenc 1879

system+defense 2846

reentry+vehicle 1879

initiative+defense 1646

system+interceptor 2526

NEW WEIGHT

1750

3175

1072

1670

1456

1639

872
2105

2075

3480

2219

3480

2032

3118

DOC RANK 30 10

Changing the weighting scheme for compound terms, alcmg with
other minor improvements (such as expanding the stopword list

for topics, or correcting a few parsing bugs) has lead to the

overall increase of precision of nearly 2070 over our official

TREC-2 ad-hoc results. This weighting scheme was again used
in TREC-3 runs.

SUMMARY STATISTICS

We have processed the total of 3334 MBytes of text dur-

ing TREC-3. The first 2162 MBytes were data from the
Tipster/TREC disks 1 and 2 of which 550 Mbytes (Wall Street

Journal subcollection) were previously processed for TREC-~

however, even this portion had to be partially reprocessed. The

remaining 1172 MBytes were documents from the Tipster~EC

disk 3 of which about 300 Mbytes of San Jose Mercury articles

were previously processed for TREC-2. In TREC-4 only about

500 MB of new data needed processing.

Two types of retrieval have been done: (1) previously
unseen topics were run in the ad-hoc mode against the archival

database (Tipster disks 1 and 2 in TREC-3, and disks 2 and 3 in

TREC-4) and (2) old topics used in previously TRECS were run

in the routing mode against a new database. In each category 2

official runs were submitted to NIST for evahtation. Summary

statistics for ad-hoc runs in TREC-3 and TREC-4 are shown in

Tables 6 and 7, respectively. We note that there is a significant

(20%) improvement in precision, as well as a visible increase in

recall over the base statistical run when phrasal terms are used.

The major difference for TREC-4 is the length of the queries,

which are still shorter and less specific than TREC-3 topics, and

thus manual “flesh-out” expansion was tried.

An example TREC-3 ad-hoc topic is shown below:

sop>

<nur@ Numbe~ 189

~itle> Topic: Rest Motives for Murder

<desc> Description:

Document must identify a murderer’s motive for Kllting a

person or persons in a true case.

cnam Narrative:

Most relevant would be a description of an intentionat

murder with a statement of the murderer’s motive. An

unintentional murder, such as in a charge of second-degree

homicide, would be relevant if a motive is stated for an

action which clearly led to the victim’s death.

.dtop>

The reader familiar with previous TREC evaluations may notice

that this query lacks the manually derived <con> field which

listed important concepts relevant to the topic, some of which

had not even occurred in the actual query. Performance com-

parison in database search performed during TREC-2 showed

that search queries built from the concepts fields outperformed

the queries based on narrative sections of the topics by as much

as 25?io to 3070 in precision and up to 10% in recall. Nonethe-

less, it was felt that the results obtained with the use of the

<coo field in the queries did not reflect accurately the capabili-

ties of automatic IR systems in dealing with unprocessed input,

therefore the field was dropped in TREC-3.

In contrast, a TREC-4 topic is typically one line informa-

tion requesti

sop>

<mum Numbec 203

<desc> Description:
What is the economic impact of recycling tires?

4top>

123

Zun abase nyuge3 mbase nyuge4 ibase inlp

)ueries 49 49 49 49 49 49

~

Tot number of dots over all queries

Tot number of dots over all queries

m<et

<el

{elRet

%chg

==I’_==Xet

?el

RelRet

%chg

50000

9805

5978

+1 1.0

9805 I 9805

5398 5978

+11.0 Recall

0.7377

0.5130

0.4022

0.3304

0.2756

0.1982

0.1363

0.0944

0.0558

0.0201

0.0034

0.7447

0.4650

0.3724

0,2997

0.2494

0.1714

0.1270

0.0913

0.0509

0.0141

0.0030

0.8761

0.5773

0.4464

0.3625

0.3054

0,2391

0.1669

0.1082

0.0499

0.0183

0.0006

0.6646

0.3733

0.2737

0.1971

0.1641

0.1094

0.0824

0.0505

0.0233

0.0007

0.000o

0.5296

0.3339

0.2586

0.1939

0.1585

0.1073

0.0831

0.0531

0.0253

0.0058

0.0000

0.8103

0.5423

0.4077

0.3233

0.2740

0.2073

0.1417

0.0968

0.0462

0.0111

0.0006

Recall 0.00
0.10
0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.7653

0.5420

0.4465

0.3763

0.3271

0.2608

0.2031

0.1522

0.0990

0.0339

0.0029

0.7639

0.5429

0.4523

0.3814

0.3281

0.2613

0.2033

0.1519

0.0989

0,0332

0.0029

0.6710

0.4444

0.3784

0.3298

0.2821

0.2274

0.1684

0.1112

0.0699

0.0147

0.0000

0.00
0.10

0.20

0.30

0.40

0.50

060

0.70

0.80

0.90

1.00 Average precision over all rel dots
! 1,

Average precision over all rel dots 4vg 0.1394 0.1501 0.2082 0.2272 0.2356 0.2605

%chg +7.7 +49.0 +63.0 +69.0 +87.0Avg 0.2271 0.2722 0.2735

?bchg +20.0 +20.0 Precision at

0.3755 0.4286 0.5020

0.3408 0.3918 0.4510

0.3088 0.3619 0.4082

0.2857 0.3276 0.3745

0.2483 0.2939 0.3503

0.1624 0.1802 0.2451

0.1211 0.1315 0.1804

0.0745 0.0770 0.1069

0.0502 0.0509 0.0696

5 dots

10 doc

15 doc

‘O doc

O doc

00 do

:00 do

~00do

000 d

0.5469

0.4735

0.4354

0.4163

0.3735

0.2545

0.1912

0.1125

0.0722

0.5837

0.5510

0.4857

0.4429

0.4014

0.2624

0.1869

0.1107

0.0709

0.6571

0.5898

05333

0.4847

0.4333

0.2794

0.2024

0.1189

0.0753

Precision at

0.5880

0.5580

0.5253

0.5070

0.4827

0.3644

0.2907

0.1832

0.1196

5 dots

10 dots

5 dots

!0 dots

10dots

00 dots

!00 dots

00 dots

.000 dots

0,5160

0.4680

0.4427

0.4280

0.4113

0.3138

0.2489

0.1623

0.1080

0.5960

0.5480

0.5280

0.5060

0.4793

0.3650

0.2902

0.1832

0.1196 RelRet)R-Precision (after I
lxact 0.1966 0.2088 0.2619 0.2780 0.2834 0.3033R-Precision (after RelRet)

3xact 0.2807 0.3232 0.3231

%chg +15.0 +15.0

%Chg +6.2 +33.0 +41.0 +44.0 +54.0

Table 7. TREC-4 ad-hoc runs with queries 202-250: (1) abase - au-

tomatic run with statisticrd terms only; (2) rryuge3 - automatic mn with

phrases and names; (3) mbase - run with queries manurdly expanded, but

no phrases; (4) nyuge4 - official manual run with phrases; (5) ibase - in-

teractive mn, no phrases; (6) inlp - interactive run with phrases.

CONCLUSIONS

We presented in some detail our natural language infor-

mation retrieval system consisting of an advanced NLP module

and a ‘pure’ statistical core engine. While many problems
remain to be resolved, including the question of adequacy of

Table 6. Automatic ad-hoc runs for queries 151-200 against Tlpster

Disks-l &2 database (1) base - statistical terms only; (2) nyuirl -

phrases, names, with the new weighting scheme; (3) nyrtir2 - same as 2

with different parameters on the weighting scheme.

124

term-based representation of document content, we attempted to

demonstrate that the architecture described here is nonetheless

viable. In particulm, we demonstrated that natural language pro-

cessing can now be done on a fairly large scale anti that its

speed and robustness has improved to the point where it can be

applied to real IR problems. We suggest, with some caution
until more experiments are run, that natural language processing

can be very effective in creating appropriate search queries out

of user’s initial specifications which can be frequently imprecise

or vague.

At the same time it is important to keep in minci that the

NLP techniques that meet our performance requirements (or at

least are believed to be approaching these requirements) are still

fairly unsophisticated in their ability to handle natural language

text. In particular, advanced processing involving conceptual

structuring, logicrd forms, etc., is still beyond reach, lcomputa-

tionally. It may be assumed that these advanced techniques will

prove even more effective, since they address the problem of

representation-level limits; however the experimental evidence is

sparse and necessarily limited to rather small scale tests,

ACKNOWLEDGEMENTS

We would like to thank Donna Harman of NIST for mak-

ing her PRISE system available to us. Will Rogers provided

vahtable assistance in installing updated versions of PRISE at

NYU. We would also like to thank Ralph Weischedel and Con-

stantine Papageorgiou of BBN for providing and assisting in the

use of the part of speech tagger. This paper is based upon work

supported by the Advanced Research Projects Agency under

Tlpster Phase-2 Contract 94-F157900-OO0, and the National Sci-

ence Foundation under Grant IRI-93-02615.

REFERENCES

Broglio, John and W. Bruce Croft. 1993. “Query Processing

for Retrieval from Large Text Bases,” Proceedings of

ARPA HLT Workshop, March 21-24, Plainsboro, NJ.

Church, Kenneth Ward and Hanks, Patrick. 1990. “Word asso-

ciation norms, mutual information, and lexicography. ” Com-

putational Linguistics, 16(1), MIT Press, pp. 22-29.

Crouch, Carolyn J. 1988. “A cluster-based approach to

thesaurus construction. ” Proceedings of ACM SIGIR-88,
pp. 309-320.

Grefenstette, Gregory. 1992. “Use of Syntactic Context To
Produce Term Association Lists for Text Retrieval.”

Proceedings of SIGIR-92, Copenhagen, Denmark. pp. 89-97.
Grishman, Ralph, Lynette Hirschman, and Ngo T. Nhan. 1986.

“Discovery procedures for sublanguage selectional patterns:

initial experiments”. Computational Linguistics, 12(3), pp.

205-215.

Grishman, Ralph and Tomek Strzalkowski. 1991. “Information

Retrieval and Natoral Language Processing.” Position paper

at the workshop on Future Directions in Natural Language
Processing in Information Retrieval, Chicago.

Harman, Donna. 1988. “Towards interactive query expansion.”

Proceedings of ACM SIGIR-88, pp. 321-331.

Harman, Donna and Gerald Candela. 1989. “Retrieving

Records from a Gigabyte of text on a Minicomputer Using

Statistical Ranking.” Journal of the American Society for
Information Science, 41(8), pp. 581-589.

Hindle, Donald. 1990. “Noun classification from predicate-

argument structures.” Proc. 28 Meeting of the ACL, Pitts-
burgh, PA, pp. 268-275.

Kwok, K. L., L. Papadopoulos and Kathy Y.Y. Kwan. 1993.

“Retrieval Experiments with a Large Collection using

PIRCS.” Proceedings of TREC- 1 conference, NIST special

publication 500-207, pp. 153-172.

Lewis, David D. and W. Brnce Croft. 1990. “Term Clustering

of Syntactic Phrases”. Proceedings of ACM SIGIR-90, pp.

385-405.

Meteer, Marie, Richard Schwartz, and Ralph Weischedel. 1991.

“Studies in Part of Speech Labeling.” Proceedings of the 4th

DARPA Speech and Natural Language Workshop, Morgan-

Kaufman, San Mateo, CA. pp. 331-336.

Sager, Naomi. 1981. Natural Lunguage Information Process-

ing. Addison-Wesley.

Sparck Jones, Karen. 1972. “Statistical interpretation of term

specificity and its application in retrieval. ” Journal of Docu-

mentatio~ 28(l), pp. 11-20.

Sparck Jones, K. and E. O. Barber. 1971. “What makes

automatic keyword classification effective?” Journal of the

American Society for Information Science, May-June, pp.

166-175.

Sparck Jones, K. and J. 1. Tait. 1984, “Automatic search term

variant generation.” Journal of Documentation, 40(1), pp.

50-66.

Strzrrlkowski, Tomek and Barbara Vauthey. 1991. “Fast Text

Processing for Information Retrieval.” Proceedings of the

4th DARPA Speech and Natural Language Workshop,

Morgan-Kaufman, pp. 346-351.

Strzalkowski, Tomek and Barbara Vauthey. 1992. “Information

Retrieval Using Robust Natural Language Processing,”

Proc. of the 30th ACL Meeting, Newark, DE, June-July. pp.

104-111.

Strzalkowski, Tomek. 1992. <‘TTI? A Fast and Robust Parser

for Natural Language.” Proceedings of the 14th Intern-

ational Conference on Computational Linguistics (COLING),

Nantes, France, July 1992. pp. 198-204.

Strzalkowski, Tomek. 1993. “Natural Language Processing in

Large-Scale Text Retrieval Tasks.” Proceedings of the First

Text REtrieval Conference (TREC- 1), NIST Special Publica-

tion 500-207, pp. 173-187.

Strzalkowski, Tomek. 1993. <‘Robust Text Processing in

Automated Information Retrieval.” Proc. of ACL-sponsored

workshop on Very Large Corpora. Ohio State Univ.

Columbus, June 22.

Strzalkowski, Tomek and Jose Perez-Carballo. 1994. “‘Recent
Developments in Natural Language Text Retrieval.”

Proceedings of the Second Text REtrieval Conference

(TREC-2), NEST Special Publication 500-215, pp. 123-136.

Strzalkowski, Tomek. 1995. “Natural Language Information

Retrieval” Information Processing and Management, vol.

31, no. 3, pp. 397-417. Pergamon/Elsevier.
Strzalkowski, Tomek, and Peter Scheyen. 1993. “An Evrrhration

of TIT Parse~ a preliminary report. ” Proceedings of Inter-

national Workshop on Parsing Technologies (IWPT-93), Til-

burg, Netherlands and Durbuy, Belgium, August 10-13.

125

