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ABSTRACT 

 

A common weakness of local search metaheuristics, such as Simulated Annealing, in solving 

combinatorial optimisation problems, is the necessity of setting a certain number of parameters. 

This tends to make significantly increase the total amount of time required to solve the problem 

and often requires a high level of experience from the user. This paper is motivated by the goal of 

overcoming this drawback by employing “parameter-free” techniques in the context of 

automatically solving course timetabling problems. 

We employ local search techniques with “straightforward” parameters, i.e. ones that an 

inexperienced user can easily understand. In particular, we present an extended variant of the 

“Great Deluge” algorithm, which requires only two parameters (which can be interpreted as 

search time and an estimation of the required level of solution quality). These parameters affect 

the performance of the algorithm so that a longer search provides a better result - as long as we 

can intelligently stop the approach from converging too early. Hence, a user can choose a balance 

between processing time and the quality of the solution. The proposed method has been tested on 

a range of university course timetabling problems and the results were evaluated within an 

International Timetabling Competition. The effectiveness of the proposed technique has been 

confirmed by a high level of quality of results. These results represented the third overall average 

rating among 21 participants and the best solutions on 8 of the 23 test problems. 
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1. INTRODUCTION 

Local search metaheuristics have been among the most successful approaches to solving 

combinatorial optimisation problems over the last few years. Local search is the common name 

for a group of methods which (on the whole) iteratively repeat the replacement of a current 

solution s by a new one s*, until some stopping condition has been satisfied. The new solution is 

selected from a neighbourhood N(s) - the set of candidate solutions into which the current one can 

be transformed, usually by a single move. The quality of the solution is characterised by its 

fitness (cost function) f(s). The goal of the search process is to minimise the cost function. 

Variants of this typical basic local search approach differ by their mechanisms of accepting or 

rejecting the candidate solution from the neighbourhood, definitions of neighbourhood and 

stopping conditions. A description of the local search methods and their applications to different 

combinatorial optimisation problems can be found in [1]. 

1.1 Hill-Climbing 

The simplest local search algorithm is Hill-Climbing. This method was used for the timetabling 

problem as early as 1960 by Appleby et al. [4]. A candidate solution is accepted only if it has 

better or equivalent fitness than the current one. Hill-Climbing does not require the definition of 

any parameters and its behaviour is quite stable. It aims to converge very fast but often has a 

final solution of relatively poor quality as it tends to get trapped in local optima. 

1.2 Simulated Annealing 

Different extensions of Hill-Climbing allow the acceptance of worse solutions in order to 

eventually get better ones. These approaches widen the search space and can improve the quality 

of the result. One of the most widely studied local search metaheuristics is Simulated Annealing. 

It was proposed as a general optimisation technique in 1983 by Kirkpatrick et al. [18] and has 

been repeatedly applied to solve a wide range of problems. An overview of its different 

applications is given in [19]. 

Simulated Annealing is similar to Hill-Climbing but it accepts worse solutions with a probability: 

P=e -/�7 , where /  I�V
� - f(s) and the parameter T denotes the temperature (which is analogous 

to the temperature in the process of annealing). Originally it was suggested to start the search 

from a high temperature and reduce it to the end of a process by progression formula: Ti+1 = Ti - 



Ti * β (geometric cooling schedule). However, the cooling rate β and initial value of T are usually 

different for different problems and are often selected empirically. This uncertainty causes 

problems with the practical use of Simulated Annealing. This has been indicated in an early 

application of Simulated Annealing to the timetabling problem by Davis and Ritter in 1987 [10]. 

They reported that the manual enumeration of parameters took two weeks and therefore they 

developed a genetic algorithm especially for determination of the best values for the parameters. 

Different improvements of the basic Simulated Annealing algorithm have been suggested, such 

as: an adaptive cooling technique where the temperature is reduced or increased depending on the 

success of the move [11], running the algorithm several times starting from a random seed [2], 

cooling schedules with a variable cooling rate and reheating [3], making the temperature 

dependent on the absolute value of the cost function [21], and the “mean field annealing” 

technique, where the search space is approximated by a system of thermodynamical differential 

equations [14]. However, the question about the best values of the parameters still has no 

definitive answer. Moreover some of the proposed improvements introduce new parameters. 

1.3 The Threshold Acceptance Algorithm 

A deterministic variant of the Simulated Annealing, known as the Threshold Acceptance method, 

accepts every worse solution, when / does not exceed some threshold T. It was introduced by 

Dueck and Scheuer in 1989 [12]. They applied the algorithm to a Travelling Salesman Problem 

and claimed that their algorithm is superior to classical Simulated Annealing. Originally the 

authors suggested that the threshold should be decreased when the algorithm does not improve the 

solution for a long time. However, it is not clear when to do this and how much to decrease it by. 

Although the acceptance procedure was refined, it still involves a few parameters whose values 

are deduced empirically. The adaptive cooling scheme was introduced for the Threshold 

Acceptance method [17], but as in the previous case, it did not yield sensible practical benefits 

and this technique is not widely applied. 

1.4 Contribution 

In this paper we demonstrate the advantages of a new variant of local search metaheuristic for 

solving course timetabling problems with parameters which are easily understandable to the user. 

The description of this technique is given in Section 2. In Section 3 we define a problem instance 

and present the investigation of the algorithm’s properties and its comparison with other 

techniques. Section 4 includes a summary of our study and an outline of some future work. 



2. THE GREAT DELUGE ALGORITHM 

In [13] Dueck introduced an algorithm, which accepts every solution whose objective function is 

less than or equal to the upper limit (level) B. This method was called the “Great Deluge 

algorithm”. The value of B is monotonically decreased during the search and bounds the feasible 

region of the search space. Usually this algorithm converges when the level “outruns” a current 

solution. In order to prevent a premature convergence (encourage current solutions to return into 

the feasible region) and thus, to improve the performance of this method we propose to extend it 

by accepting all the candidate solutions which are better than the current one. The pseudocode of 

this extended algorithm is given in Figure 2.1. 

 

 

 

 

 

 

 

 

Figure 2.1 The extended Great Deluge algorithm 

The initial value of level B0 is equal to the initial cost function. This forestalls sharp descents and 

idle steps in the beginning of the search. Hence, only one input parameter ∆B, the decay rate at 

each step has to be specified. Although this parameter is not clearly understandable 

(straightforward) we show below in Section 3.2 that it can be interpreted as a function of 

expected search time and expected solution quality, which are relatively easy to specify. 

3. AN EVALUATION OF THE GREAT DELUGE ALGORITHM FOR COURSE 

TIMETABLING 

University course timetabling problems are known to be difficult real world problems that have 

been studied in some depth over the last few decades or so. The interested reader can see a more 

detailed description of the various approaches that have appeared over the years in the following 

recent survey/review papers: [6], [24]. Some research directions and some new approaches are 

discussed in [5]. 

Set the initial solution s 
Calculate initial cost function f(s) 
Initial level B0=f(s) 
Specify input parameter ∆B = ? 
While not some stopping condition do 
    Define neighbourhood N(s) 
    Randomly select the candidate solution  s* ∈ N(s) 
    If ( f(s*) ≤  f(s) ) or ( f(s*) ≤ B ) 
    Then accept  s* 
    Lower the level B = B –∆B 



3.1 Course Timetabling Problems 

University course timetabling involves the scheduling of lectures (courses) within a given number 

of timeslots (periods) and their allocation into available rooms (usually on a weekly basis) while 

satisfying certain constraints. Generally, the constraints are classified as either hard or soft. 

Satisfaction of the hard constraints is a strict requirement, i.e. in a feasible timetable they should 

not be violated under any circumstances. Soft constraints can be violated, but it is important to 

minimise those violations. Thus the cost function of every solution indicates the number of 

violated soft constraints under the assumption that all the hard ones are satisfied or alternatively 

it introduces a very high cost for the violation of a hard constraint. 

The prime hard constraint is caused by an obvious requirement that no one person can attend two 

lectures simultaneously. Therefore any two courses which clash (have common students) must 

not be placed into the same timeslot. Another usual hard constraint reflects a situation where not 

all of the rooms are suitable for particular courses. Therefore in a feasible solution, courses 

should be allocated into appropriate rooms, i.e. the facilities required for certain courses have to 

be available and the size of the room has to be big enough to accommodate all the students 

registered for the course. Course timetabling problems are often solved by different kinds of 

heuristic constructive techniques (e.g. [9], [20]) or constraint logic programming methods (e.g. 

[7], [15]). A description of a number of approaches is presented in [6]. 

Soft constraints usually differ from university to university. In our study we address the set of 

soft constraints which are described in the rules of the International Timetabling Competition 

organized by the EU Metaheuristics Network and sponsored by the Practice and Theory of 

Automated Timetabling IV (PATAT IV) conference in 2003. These constraints generate a 

penalty when: 

• a student has only one lecture in a day, 

• a student has more than three consecutive lectures in a day, 

• a student has a lecture in the last timeslot of a day. 

The objective function is calculated as the sum of the number of violations of these constraints. 

In addition to Simulated Annealing, various other metaheuristics have been applied to university 

course timetabling: tabu search (e.g. [16], [23]), genetic algorithms (e.g. [8], [25]) and their 

hybrids with Hill-Climbing (memetic algorithms) (e.g. [22]). 



3.2 The Progress Diagram 

As mentioned above, in our experiments we used the course timetabling data given in the 

International Timetabling Competition. It is located at [26], and comprises 23 problem instances. 

Each problem instance consists of 350-440 courses, 10-11 rooms and 200-350 students. The 

number of timeslots is the same for all the problems and is equal to 45. We have carried out 

experiments on all these problems and our method showed a similar behaviour on all of them. 

The investigation of the properties of the Great Deluge algorithm was started by generating 

progress diagrams such as that presented in Figure 3.1. The algorithm was implemented in 

Delphi 7 and run on a PC Celeron 2.2 GHz with OS Windows 98. The decay rate ∆B was 

defined as 5*10-5. Every 50 000 moves, the current cost FC and the number of moves Nmov were 

depicted as a point in the “time-cost” space. An example of a resulting diagram for the 1st 

problem instance is presented in Figure 3.1. 

 

Figure 3.1 The progress of Great Deluge algorithm 

This diagram shows two main properties of the Great Deluge algorithm: 

1. The profile of the process is explicit. The search rigidly follows the decreasing of the level. 

Fluctuations are visible only at the beginning but later on, all intermediate solutions lie close to 

the line FC = B0 - û%
1mov . 

2. The point of convergence is quite recognisable. When a current solution reaches the value, 

where any further improvement is impossible, the search rapidly converges and the diagram 

becomes level. This moment can be easily detected in order to terminate the search procedure. 



However, the point of convergence is uncertain and problem-dependent. Therefore if some 

information about the range of possible results is available, we suggest using it for reducing the 

number of idle steps. If we estimate the cost function of a desired result as f(s’) we can calculate 

∆B by formula (3.1). 

movN

sfB
B

)'(0 −=∆   (3.1) 

Usually such an approximation is quite possible. For example, in our following experiments we 

approximated f(s’) by employing the results of a simple Hill-Climbing algorithm. Obviously, the 

correct specification of a processing time and an expected value of the cost function can be 

provided by a timetabling officer (in contrast to temperatures and a cooling rate in the Simulated 

Annealing). 

3.3 Time-Cost Diagrams 

The influence of processing time on the performance of the method was investigated while 

running the algorithm several times for a different predefined number of moves. The results are 

presented as “time-cost” diagrams where every point corresponds to the final cost function and 

the processing time of a separate solution. The example of such a diagram for the 2nd problem 

instance is shown in Figure 3.2. 

 

Figure 3.2 Time-cost diagram of Great Deluge algorithm 

Even though the results are relatively scattered (which is not surprising), the clear tendency in this 

diagram can be observed: a longer search produces better results. The algorithm allows a user 

to improve the quality of the solution but he/she should pay a price for it with an increase in the 



amount of processing time. This is not valid for other metaheuristic approaches where the search 

can be stuck in a local optimum and no additional time can enable it to move out. 

The reasonable balance between time and cost depends on the user’s opportunities and 

preferences. In some cases the user requires results quickly but in other situations it is more 

preferable to spend much more time to search for a high quality solution. In the case of 

timetabling, very fast but relatively poor results cannot be considered as a best choice. In most 

situations the calculation of the solution is just part of the process, which includes the preparation 

of input data and the administering of the results of the software. Commonly it takes several days 

(if not weeks). The renewing of data is infrequent (because a course timetable is normally 

produced once or twice a year). However, the high quality of the solution is very important as the 

timetable affects a high number of people. In this environment a searching procedure, which can 

last several hours, seems to be quite acceptable. 

3.4 Comparison with Other Techniques 

A comparison of our method with Simulated Annealing for the 3rd problem instance is shown in 

Figure 3.3 where the diagram for Simulated Annealing is marked by “SA” and the diagram for 

Great Deluge is marked by “GD”. The Simulated Annealing algorithm was run several times with 

variations of the initial temperature from 10-2 to 2*104 (our results confirmed that this is an 

appropriate interval). In order to get approximately the same execution time in both algorithms, 

the cooling rate β was varied from 5*10-8 to 2*10-5. 

 

Figure 3.3 Comparison of Simulated Annealing and Great Deluge algorithms 

The Simulated Annealing diagram shows a substantially higher scatter of results than the Great 

Deluge algorithm. A greater number of poor quality solutions are generated though the use of 



inappropriate parameter values. The superiority of the Great Deluge algorithm is obvious from 

these diagrams. Although both methods have approximately the same values of the cost function 

for the best results (in the given execution time), Simulated Annealing can reach it only with 

properly defined parameters, while Great Deluge does it always. 

The employment of “straightforward” parameters significantly improves the effectiveness of the 

search. The deriving of the best cooling schedule requires several runs of the Simulated Annealing 

algorithm. Therefore its total processing time (from input to output) is several times longer than 

the processing time of a single run. With the Great Deluge approach all this time is spent in a 

single run (and it gets better results). Hence, with respect to the total time of the solving process, 

the performance of the Great Deluge is substantially better. Similar results are evident from the 

time-cost diagrams for the other problem instances. 

The same comparison was carried out with the Threshold Acceptance algorithm. For the 8th 

problem instance the initial threshold was varied in the interval: 1-1000 and the rate of its 

decreasing was 10-8 - 10-3. The resulting diagrams are presented on Figure 3.4, which shows the 

same behaviour as for Simulated Annealing (the diagram for Threshold Acceptance method is 

marked by “TA”). 

 

Figure 3.4 Comparison of Threshold Acceptance and Great Deluge algorithms 

In the experiments on Hill-Climbing the time-cost diagrams were produced with a very short 

search time. The search time of Hill-Climbing depends on the stopping condition. We used the 

given number of idle steps as the stopping condition and it was varied in the range of 1-50000. 

The results for the 6th problem instance are presented in Figure 3.5 (the diagram for Hill-

Climbing is marked by “HC”). 



 

Figure 3.5 Comparison of Hill-Climbing and Great Deluge algorithms 

Both diagrams have the same distribution of points at the beginning. However, the behaviour of 

those techniques in the right hand sides of the diagrams became different. If the chosen number of 

idle steps is too high – Hill-Climbing wastes this additional time, but Great Deluge uses it for 

improving the solution. 

3.5 Evaluation of the Proposed Approach within an International Timetabling Competition 

The participants in the competition submitted results without any information about the other 

participants. Also, all the solutions had to be obtained within the same time interval. In order to 

synchronise the time intervals on different hardware, a special test program was provided by the 

organising committee. In particular, on a PC Celeron 2.2GHz the processing time was limited to 

726 seconds. Besides this, all submitted results were verified by the organising committee. In 

total, 21 participants (individual researchers and research teams) submitted solutions to all 20 

problem instances. A comparison of the results of the 7 leading participants (including our 

results) is presented in Table 3.1. The best submitted results are shown in bold. 



Table 3.1 The results, of the International Timetabling Competition 

Place 1 2 3 4 5 6 7 

Instance P.Kostuch 
B.Jaumard 

et al. 
Our 

results 
L.Di Gaspero 
and A.Shaerf 

H.Arntzen and 
A.Lokketangen 

A.Dubourg 
et al. 

G.Toro and 
V.Parada 

1 45 61 85 63 132 148 178 

2 25 39 42 46 92 101 103 

3 65 77 84 96 170 162 156 

4 115 160 119 166 265 350 399 

5 102 161 77 203 257 412 336 

6 13 42 6 92 133 246 246 

7 44 52 12 118 177 228 225 

8 29 54 32 66 134 125 210 

9 17 50 184 51 139 126 154 

10 61 72 90 81 148 147 153 

11 44 53 73 65 135 144 169 

12 107 110 79 119 290 182 219 

13 78 109 91 160 251 192 248 

14 52 93 36 197 230 316 267 

15 24 62 27 114 140 209 235 

16 22 34 300 38 114 121 132 

17 86 114 79 212 186 327 313 

18 31 38 39 40 87 98 107 

19 44 128 86 185 256 325 309 

20 7 26 0 17 94 185 185 

In addition to the submitted results, the organising committee checked the performance of 

participants’ algorithms on three unseen problem instances. For one of these instances our 

algorithm produced the best solution among all the other participant’s algorithms. The results on 

unseen instances are given in Table 3.2 where again the best ones are shown in bold. 



Table 3.2 The results, produced on unseen instances 

Unseen 
instance 

P.Kostuch 
B.Jaumard 

et al. 
Our 

results 
L.Di Gaspero 
and A.Shaerf 

H.Arntzen and 
A.Lokketangen 

A.Dubourg 
et al. 

G.Toro and 
V.Parada 

1 100 86 329 97 145 132 161 

2 6 8 3 9 23 51 22 

3 72 105 84 103 94 159 173 

Among the given participants P.Kostuch used Simulated Annealing with a variation of the 

neighbourhood. All other participants used different variations of tabu search. The detailed 

descriptions of the applied techniques can be found in [26]. 

Although the processing time was relatively short (with longer available time our algorithm 

reached results with an even better cost value), our results were the best among all participants in 

8 from the 23 problems. Moreover, among all the registered participants only our algorithm has 

provided a solution with a zero value of the objective function for problem instance 20 and hence 

has reached the global optimum of the problem. The competition procedures ranked the 

participants according to an average value. It is interesting to note that although our algorithm 

performed the best on 8 of the 23 problems it performed the worst on two of the problems (among 

the leading 7 participants). Indeed, it performed particularly poorly on problem 16. The reason 

why our algorithm fluctuated from the best to the worst is an area that is currently under 

investigation. We note that, in terms of the number of best solutions achieved, our algorithm 

comes second rather than third in the competition. Taking into account that our approach does not 

require additional time for tuning algorithmic parameters the results in Tables 3.1 and 3.2 

confirm the high effectiveness of the presented technique. 

4. CONCLUSIONS AND FUTURE WORK 

This paper introduced an extended variant of the Great Deluge local search algorithm for course 

timetabling. The advantage of this method is that it requires the definition of only two parameters 

that correspond to search time and an estimation of desired solution quality. These parameters are 

problem-independent and have an obvious “real-world” meaning (thus they can be considered to 

be easily understood by university administration). 

Our algorithm shows the clear trade-off between search time and the quality of the overall result, 

namely a longer search produces better solutions. This property allows the user to choose an 

acceptable processing time for each particular problem. The experiments with benchmark course 



timetabling problem instances confirm the effectiveness of the presented technique. For 8 out of 

23 datasets, the Great Deluge algorithm achieved the best results among 21 compared algorithms. 

Our future work will include evaluation of the algorithm in other domains. Additional issues will 

be investigated: how to choose good initial solutions, how to define non-linear level functions, 

hybridisation of the Great Deluge with other metaheuristics, etc. We should notice that the first 

and second place participants paid more attention to neighbourhood structures. Indeed, this is one 

of the most promising ways of improving the performance of timetabling algorithms and can be 

considered as an important direction of our future research. 
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