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The “ideal” low-pass filter
Frequency response

|| G(s) ||dB

1 ⇒ 0 dB

ωωc

Using the Fourier transform, it can be shown that this transfer function leads to a nonphysical
transient response. The output signal must change before the input changes, and the response is
not causal. Hence, it is physically impossible to  construct a filter having this frequency response.

A practical low-pass filter
Frequency response

|| G(s) ||dB

ωωc

Peak  || G(s) ||dB 3 dB

Passband

Cutoff
frequency

Inside the passband, the magnitude response remains within 3 dB of the maximum value.

At the cutoff frequency, the magnitude is 3 dB below the maximum.

At frequencies greater than the cutoff frequency, the magnitude “rolls off”: the filter attenuates high-
frequency sinusoids.

Some properties of interest:

Flatness within passband

Fast rolloff

Amount of overshoot and ringing in step response

Phase response: constant time delay
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Comparison of Fourth-Order Filter Responses

|| G(s) ||dB

f/fc
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Im(s)

Re(s)– ωc

Real poles, critical damping

G(s) = 1
1 + s

ω0

n

G( jω) = 1

1 + ω
ω0

2
n
2

Note that the – 3 dB point occurs at ωc = ω0 only for n = 1. When n > 1, the – 3 dB point ωc is
given by the solution of

1
2

= 1

1 +
ωc
ω0

2
n
2

Solve for ωc (cutoff frequency) as a function of the corner frequency:

ωc = ω0 2
1
n – 1

When n > 1, ωc can be significantly less than ω0. For example, for n = 4, ωc = 0.435ω0. This leads
to a very gradual rolloff characteristic.

Obtaining a steeper rolloff requires use of complex poles.



Butterworth filter

G(s) = 1
B(s)

B(s) = Butterworth polynomial (below)

B(s) is a polynomial containing complex roots evenly spaced in the left half–plane around a circle
of radius ωc (for general formula, see Thomas and Rosa, 4th Edition, p. 691).

n B(s)

1 1 + s
ωc

2 1 + 2 s
ωc

+ s
ωc

2

3 1 + s
ωc

1 + s
ωc

+ s
ωc

2

4 1 + 0.7654 s
ωc

+ s
ωc

2
1 + 1.848 s

ωc
+ s

ωc

2

see Thomas and Rosa, 4th Edition, Table 14–1 on p. 694

Properties of the Butterworth filter

Maximally flat: in the order n Butterworth
filter, the first n derivatives of the
magnitude response are equal to
zero at ω = 0.

Faster roll-off than Bessel filter or real
poles

Step response exhibits overshoot and
ringing

A popular filter characteristic

Im(s)

Re(s)– ωc

jωc

–jωc

Fourth-order example:
pole location



Fourth-Order Butterworth Filter:
How the Complex-Conjugate Pole Pairs Combine

G(s) = 1

1 + 0.7654 s
ωc

+ s
ωc

2
1 + 1.848 s

ωc
+ s

ωc

2
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High-Q poles
Q = 1.307

Low-Q poles
Q = 0.5412

High-Q poles

Low-Q poles

Composite response

|| G(s) ||dB
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Chebyschev filter

G(s) contains complex poles spaced in the left half–plane around an ellipse inscribed inside the
Butterworth circle. The poles are "stagger–tuned": they occur at different frequencies (see T&R, p. 696).

n G(s)

1 1
1 + s

ωc

2 1
2

1

1 + 0.7654 s
0.8409 ωc

+ s
0.8409 ωc

2

3 1

1 + s
0.2980 ωc

1 + 0.3254 s
0.9159 ωc

+ s
0.9159 ωc

2

4 1
2

1

1 + 0.1789 s
0.9502 ωc

+ s
0.9502 ωc

2
1 + 0.9276 s

0.4425 ωc

+ s
0.4425 ωc

2

see Thomas and Rosa, fourth edition, Table 14– 2 on p. 698

Properties of the Chebyschev filter

Equal ripple in the passband: each complex
pole pair causes a hump in the
magnitude, varying from –3 dB to
0 dB.

Faster roll-off than Butterworth, Bessel,
or real poles

Step response exhibits overshoot and
ringing

Im(s)

Re(s)– ωc

jωc

–jωc

Fourth-order example:
pole location

Butterworth poles

Chebyschev poles
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High-Q poles
Q = 5.60, ω0 = 0.9502 ωc
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Properties of the Bessel filter

Good phase response: filter exhibits a nearly constant time delay to frequencies within the
passband

Gradual roll-off, but still faster than real poles

Step response exhibits negligible overshoot and ringing

Bessel filter

G(s) =
K0

Ben(
s

ω0
)

Ben(s) = Bessel polynomial (below)

K0 is chosen such that the dc gain is 1.

ω0 is chosen such that the desired cutoff frequency ωc is obtained.

Ben(s) is a Bessel polynomial generated as follows:

Be0(s) = 1

Be1(s) = 1 + s

Ben(s) = 2n – 1 Ben – 1(s) + s2Ben – 2(s)

n Ben(s) K0

1 1 + s 1

2 3 + 3s + s2 3

3 15 + 15s + 6s2 + s3 15

4 105 + 105s + 45s2 + 10s3 + s4 105
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Comparison of Fourth-Order Filter Responses
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A few additional points

To obtain a high-pass characteristic

Use inverted poles: replace (s / ωc) with (ωc /s).

To obtain a bandpass characteristic

Cascade low-pass and high-pass characteristics.

How to realize a circuit having a given filter characteristic:

Given a circuit, solve for its analytical transfer function.

Given the desired filter transfer function, find numerical values for the coefficients of the
denominator polynomial.

Equate the coefficients of the denominator polynomial in the desired filter transfer function
to the corresponding coefficients in the circuit analytical transfer function. Hence, select
element values.

Several op-amp circuits that produce complex poles

see  Thomas and Rosa, Section 14-3

Biquad circuit: see  supplementary course notes on block diagrams
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