
Background for the Energy Cost Calculator 
 

The energy cost calculator is a simple tool for estimating constant and current 
dollar level annual costs of energy.  The following briefly reviews some of the 
essential concepts concerning the time value of money and the major components 
of an engineering economic analysis including fixed and variable costs and the 
effects of inflation or deflation.  Further information on the subject can be found 
in any engineering economics text.  The calculator employs what is known as a 
revenue requirements approach to determine the energy revenue ($/kWh) required 
to earn the desired rate of return.  The notes that follow give some background to 
the equations used by the calculator and discuss an example for a generic biomass 
power plant.  The values included here show as defaults when you link to the 
calculator from the main web page.  You can replace the defaults with your own 
values.  The calculator is a tool for making simple estimates only.  Please send 
any comments or questions to bmjenkins@ucdavis.edu. 
 
 
Cash flow equivalence: 
 
The investment of money is intended to generate additional money ("return").  
For example, money placed in a bank account ("loaned" to the bank) is expected 
to earn interest.  If the interest earned is reinvested (for example, left in the bank 
account), then interest is expected to be earned on the interest already earned.  
This is known as compounding.  Under compounding, cash flows of various types 
can be found to be equivalent.  A future sum of money resulting from the 
investment of a present sum of money is to be greater than the present sum 
(exclusive of inflation) due to the effects of interest.  A future sum, F ($) can be 
found from the present sum, P ($), known as the present worth or present value, 
given an interest rate, i (period-1), and a number of compounding periods, n, as 
 
 F = P(1+i)n        [1] 
 
The factor (1+i)n  is called the compound amount factor, F/P. 
 

The present worth of a future sum of 
money can be found from the inverse 
relationship as 
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P = F(1+i)-n  [2] 
 
where (1+i)-n is called the present 
worth factor, P/F. 
 
A cash flow diagram of the above 
relationships appears as in Figure 1.  
By convention, an arrow pointing 
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downwards represents an 
investment, an arrow pointing 
upwards represents a return.   
Note that for future amounts, an 
end of period convention is 
utilized, that is, formulas [1] and 
[2] apply to present worth at 
time "zero" with future amounts 
after the end of n periods.   
 
 
Another equivalence can be 
found between a present worth 
or a future worth and a uniform 
series of cash flows, designated 
A (for annuity, although the periods can be other than years).  The cash flow 
diagram appears as in Figure 2.  This is the typical case of the monthly payment 
on a house or car loan (the figure shows the bank's perspective).  The uniform 
series of cash flows begins at the end of period 1 in the following equations. 
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The equivalence between A and P is determined as 
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where the term in brackets is known as the capital recovery factor, A/P, or 
sometimes, CRF. 
 
For A and F, the equivalence is 
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and the term in brackets is known as the sinking fund factor, A/F. 
 
Note that A/P = A/F + i.  Also note that if n = ∞, then A/P = i.   
 
A number of other factors can be derived as well based on arithmetic and 
geometric gradients. 
 
The interest rate can be expressed in one of several ways.  The nominal  interest 
rate, r, is the annual interest rate not including compounding, expressed as 
 
 r = i m         [5] 
 



where m is the number of compounding periods per year.  The effective interest 
rate is the interest rate per year including compounding, expressed as 
 
 ie = (1+i)m - 1        [6] 
 
where i is the interest rate per interest period (= r/m.), as before.  Under 
continuous compounding, m = ∞, and ie = er - 1, where e is the base of the 
natural logarithms.   
 
Depreciation: 
 
Depreciation accounts for the loss in value of assets over time, due to wear-out, 
obsolescence, or economic management.  Accounting for depreciation is 
necessary to ensure that replacement assets can be purchased at the end of the 
useful life of the existing asset.  Depreciation is also an important tax deduction.  
A number of depreciation methods may be employed.  For tax purposes the tax 
code normally specifies the method to be used.  The three most common methods 
for calculating depreciation are straight line, sum of year's digits, and declining 
balance.  The latter two methods are said to be "accelerated" relative to straight 
line.  Accelerating the depreciation allowance is good for tax purposes if the 
business is profitable because it reduces the amount of tax early in the analysis 
and increases present worth.   
 
Straight line depreciation 
 
The depreciation allowance to be taken in each year by the straight line method 
can be found as 
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where  B =  Book value at the beginning of the year 
 S =  Salvage value of asset  
 l =  remaining useful life at the beginning of the year 
 
The straight line method in this form will depreciate the asset to its salvage value.  
The book value is the value of the asset, equal to the first cost less accumulated 
depreciation.   Commonly, the value Dn  is the same in each year and computed as 
(P - S)/N  where  
 
 P  = first cost (or purchase cost) of the asset 
 N  =  total useful or economic life of the asset 
 



Sum of the year's digits depreciation 
 
The sum-of-the-year’s digits depreciation allowance taken in each year is  
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 SOYD = sum of year's digits = 1 + 2 + 3 + ... + N  = 
N
2

(N +1)  

 
Note that this method will also depreciate to the salvage value. 
 
Declining balance depreciation 
 
The declining balance depreciation allowance taken in each year is 
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where φ  = decline rate.  Typically, double (or 200%) declining balance is used, 
in which case, φ  = 2.   The book value at the end of n years, (the beginning of 
n+1 years), is P(1 - φ /N)n, so that 
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Only by coincidence will declining balance depreciate to the salvage value.  At 
some point, the depreciation allowance by declining balance may fall below that 
by straight line or SOYD based on the remaining book value and life.  The 
depreciation method can be switched at that point to maintain the highest 
depreciation allowance in each year. 
 
Tax depreciation procedures will normally specify the schedule of depreciation, 
including how to handle salvage, although they are usually based on one or more 
of the above methods (e.g., double declining balance switching to straight line, 
possibly with restrictions on the amount of depreciation allowed in the first year).  
The federal modified accelerated cost recovery system (MACRS) uses 
depreciation schedules as specified in the tax code. 
 



Taxes: 
 
Taxes are fees assessed on income, generally determined as 
 
 T = (t)(It)        [11] 
 
where T = taxes  ($) 
 t  = tax rate (--) 
 It = taxable income ($) 
 
and taxable income is gross income adjusted by deductions,  
 
 It = Ig - E - Dt -  Di       [12] 
 
 Ig = gross income ($) 
 E = expenses ($) 
 Dt = depreciation for tax purposes ($) 
 Di = interest on debt ($) 
 
For federal purposes, state tax is a deduction, but federal tax is not normally 
considered a deduction for state tax purposes.  A combined tax rate, t, can be 
computed as 
 
 t = tF (1 - tS) + tS       [13] 
 
 tF = federal tax rate (--) 
 tS = state tax rate (--) 
 



Escalation and Inflation: 
 
Inflation results in an increase in the cost of a good or service over time, and is 
generally modeled in a manner similar to interest rate.  Under inflation (or 
deflation), a so-called "real" interest rate can be determined as  
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where i' is the real interest rate (accounting for the effect of inflation), i  is the 
apparent (or quoted) interest rate, as above, and f is the inflation rate (period-1).  
Note that the apparent interest rate is 
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Under inflation, a future amount of money, F, will not have the same purchasing 
power as if there had been no inflation.  Expressed in the same value units as 
when the investment was made, that is, in year zero units, the year zero adjusted 
future value is 
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where n  is the number of periods into the future.  The present worth of Fo is then 
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and P is related to F  in the same manner as before (compare equation [2]) 
 
Current and Constant Dollar Analysis, Level Annual Cost 
 
The consideration of inflation in an economic analysis leads to the concepts of 
current and constant dollar analysis.  A current dollar analysis includes the effect 
of inflation, while a constant dollar analysis attempts to adjust for the effect of 
inflation so that economic values may be compared on an equivalent basis (e.g., 
comparisons of the cost of alternative fuel resources in the future to the present 
cost of existing resources, exclusive of general inflation in the economy).  
Consider, for example, that the cost of fuel, C, over time is expected to escalate at 
the apparent rate, e, as 
 
 Cn = Co(1+e)n       [18] 
 
where Co is the present cost of fuel. 
 



The present worth of Cn is  
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in which k  = (1+e)/(1+i).  The total present worth of the fuel cost over the entire 
analysis time is  
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Factoring k in [20], 
 

 n
N

n
o

k
kC
P 1

1
1

−

=
Σ+=        [21] 

 
which together with [20] yields 
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The level annual cost, or LAC, is sometimes found to be a useful measure for 
comparing fuels and and other forms of energy.  The current dollar LAC is found 
simply as 
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The constant dollar LAC adjusts for inflation by using the "real" values of the 
escalation and interest rates in equation [23].  In the constant dollar case, k is 
computed as 
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The value of k’ can be inserted in equation 22 in place of k.  However, from 
equations [24], [25], and [14], the value of k' can be seen to be identical to k, as 
required by the invariance of the present worth (P) in equation 22.  The essential 
difference between the current and constant dollar analyses is the use of the "real" 
interest and escalation rates in the constant dollar analysis.  More complex 
economic analyses may be solved for current and constant dollar results in the 
same manner.  
 
Evaluation of Alternatives: 
 
Alternative energy technologies or strategies may be compared economically 
using any of a number of different rational methods, all of which are equivalent 
and yield the same decision if employed properly.  Table 1 presents the major 
methods for evaluating alternatives.   
 
Other techniques, such as simple payback analysis, are not generally performed in 
a rational manner and so do not yield proper economic decisions.  Payback is 
useful when the rapid recovery of capital investment is required, however, it will 
not necessarily select the alternative that maximizes the amount of money made 
over the economic life (more precisely, that maximizes net present worth or 
NPW).   
 
Net Present Worth, Level Cash Flow, and Benefit/Cost analysis assume an 
interest rate (or discount rate).  Rate of return analysis computes the interest rate 
earned on investment (equal to that rate which makes NPW=0).   
 
 



Table 1.  Common rational economic accounting methods for comparing 
alternatives. 

 
Method Objective 
Present Worth Compute net present worth (present 

worth of benefits less present worth of 
costs) of alternatives. 
Maximize Net Present Worth (NPW) 

Uniform (Level) Cash Flow Compute net level (typically annual) 
cash flow  (level benefits less level 
costs) of alternatives. 
Maximize Net Level Benefits 
(Minimize Net Level Costs) 

Rate of Return (ROR) Find i = ROR  such that NPW=0 
For feasible alternatives  with ROR ≥ 
Minimum attractive rate of return 
(MARR), compute incremental ROR 
(∆ROR) between alternatives: 
If ∆ROR≥MARR, choose higher cost 
alternative. 
If ∆ROR<MARR, choose lower cost 
alternative. 

Benefit-Cost Ratio (B/C) Find feasible alternatives with ratio of 
present worth of benefits (PWB) to 
present worth of costs (PWC) greater 
than unity, i.e., PWB/PWC ≥ 1. 
Compute incremental B/C (∆B/C) 
between feasible alternatives.    
If ∆B/C≥1, choose higher cost 
alternative. 
If ∆B/C<1, choose lower cost 
alternative. 

 



Revenue Requirements Method 
 
An approach similar to the Level Cash Flow method is the Revenue Requirements 
method.  A revenue requirements analysis attempts to determine the necessary 
energy price to yield the desired rate of return. The revenue requirements fall 
generally into four categories: 
 
 Capital repayment 
 Return on investment 
 Expenses 
 Taxes 
 
Capital repayment recovers the capital cost of the project over the economic life.  
The return represents the interest earned on the investment over the life.   
 
Because the revenue requirements method specifies the rate of return to be 
earned, taxes, which are part of the revenue requirement, are computed in a 
special way, rather than directly as if the revenues were known already.   
 
By equation [11], the tax payment in each year of the analysis is found by: 
 
 T = (t)(It)        [11] 
 
and the taxable income, It,  is 
 It = Ig - E - Dt -  Di       [12] 
 
The revenue requirements, Ig, are the sum of the four items above, 
 
 Ig = Cr + Ir + T + E       [26] 
 
where Cr = capital (principal) repayment ($) 
 Ir = return on investment ($) 
 
The taxes are 
 
 T  = t(Cr+ Ir  + T + E - Dt -E - Di)      [27] 
  = t(Cr + Ir  + T  - Dt  - Di)  
 
which is solved for T as 
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The term Ir -  Di , the difference between the total return on the unrecovered 
investment and the interest on debt, is simply the return on equity.  Defining the 
debt ratio, rD (--), as the fraction of the cost of the project covered by debt (as 



opposed to equity), and C as the unrecovered investment to date, the total return 
at rate of return, i, is  
 
 Ir = iC          [29] 
 
while the interest or return on debt is 
 
 Di =iDrDC        [30] 
 
where iD is the interest rate on debt.  Then 
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and equation [28] becomes 
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Example Cost Calculation: 
 
An example of the revenue requirements methodology is given below.  Table 2 
includes definitions of the primary terms used in the analysis.  The example 
analyzes the current and constant dollar revenue requirements for electricity 
generated by a biomass fueled power plant.  The basic assumptions of the analysis 
and some intermediate calculations are listed in Table 3.   
 
The power plant of the example is assumed to convert biomass with a net 
electrical capacity of 25 MWe and a capacity factor of 88%.  The cost of the plant 
is covered by both debt and equity funds, with 75% as debt (75% borrowed from 
the bank, 25% equity supplied from the owner).  The rate of return on equity is 
assumed to be 15%.  The debt interest rate is 12%.   As part of the financing plan, 
the owner is required to place an amount equal to one year of debt repayment in a 
savings account in case technical problems cause a suspension of plant operations 
and revenue is not generated.  This "debt reserve" account earns simple interest, 
which is available to the plant as revenue.  The plant also receives a payment for 
"capacity," that is, a payment made to the facility for guaranteeing to supply 
power, not just energy.  This payment and the interest on the debt reserve reduce 
the amount of revenue required to cover the cost of generating the electrical 
energy.  A MACRS depreciation schedule based on double declining balance 
switching to straight line is used for tax purposes (a 5 year method that extends 
over 6 years due to a half-year convention in the first year).  Negative taxes are 
permitted under the assumption that the owner company is large, and negative 
taxes merely reduce the tax burden of the company as a whole.  If this is not the 
case, then negative taxes would not be allowed.  Fuel costs and expenses are 
assumed to escalate at 5% annually, with inflation also running at 5%.  Taxes can 
only be paid in current dollars.  Sample calculations are listed in Table 4 with 
results shown for the first year.  Current and constant dollar level revenue 
requirements are given in Table 5.  Note that the current dollar level cost of power 
is $0.0924 kWh-1 over the 20 year period.  With the effect of general inflation 
removed, the cost is $0.0641 kWh-1, which may be compared with existing costs 
of alternative sources in the same base year.  
 
Sensitivity Analysis 
 
Sensitivity analysis is commonly employed to understand how the economic 
feasibility varies as changes are made to the input assumptions.  Figure 3 displays 
the sensitivity of the energy revenue requirements for the example as fuel cost, 
capital cost, availability, MARR, and thermal efficiency are varied independently, 
all other parameters constant.  In this way, an assessment can be made as to how 
sensitive the results are to any parameter of the analysis, and where attention 
should be focused to improve the economic performance.  For example, Figure 3 
shows that the solution is particularly sensitive to reductions in capacity factor 
(availability) and efficiency, and increases in capital costs.   



 
Table 2.  Nomenclature for revenue requirements example. 

  units 
 
Mp  plant capacity or size  variable, e.g., kW 
n life of plant (or duration of analysis) y 
h annual operating hours h y-1 
η thermal efficiency -- 
Qf fuel heating value kJ kg-1 
 
Cost: 
Cp  capital cost of plant (total) $ 
Kp capital cost per unit energy output e.g., $ kW-1 
Cf fuel cost $/physical unit,  
   e.g., $ t-1 
Cr non-fuel operating costs $/unit output,  
   e.g., $ kWh-1 
Rd debt reserve in account $ 
 
Tax: 
tF federal tax rate -- 
tS state tax rate -- 
t combined tax rate -- 
 
Income: 
Ic non-energy income variable 
ira interest rate earned on reserve accounts -- 
 
Escalation/Inflation: 
f general economic inflation rate -- 
ef escalation rate on fuel cost -- 
ec escalation rate on other expenses -- 
 
Financial: 
ie rate of return on equity capital -- 
iD interest rate on debt -- 
rD debt ratio -- 
Dn depreciation allowance in year n -- 
P present value of money $ 
A/P capital recovery factor -- 
LAC level annual cost $ 
 
 
 
 



Table 3.  Assumptions and computed results for the revenue requirements 
example. 

Capital Cost ($/kW) Kp 2,800
Net Plant Capacity (kW) Mp 25,000
Capacity Factor (%) h/8760 88
Thermal Efficiency (%) 100η 20
Fuel Heating Value (kJ/kg) or 
Fuel Heating Value (Btu/lb) 

Qf 18,608
8,000

Fuel Consumption Rate (metric 
tons/h)--computed 

mf = 3.6Mp/(ηQf) 24

Fuel Consumption Rate (short tons/h)-
-computed 

 26.5

Fuel Cost ($/short ton) Cf 20
 
EXPENSES 

 

Labor Cost ($/kWh)  0.01038
Maintenance Cost ($/kWh)  0.00778
Insurance/Property Tax ($/kWh)  0.00726
Utilities ($/kWh)  0.00104
Ash Disposal ($/kWh)  0.00052
Management/Administration ($/kWh)  0.00104
Other Expenses ($/kWh)  0.00208
Total Expenses ($/kWh)--computed Cr 0.03010
 
TAXES 

 

Federal Tax Rate (%) 100tF 34
State Tax Rate (%) 100tS 9.6
Combined Tax Rate (%)--computed 100t 40.34
 
INCOME other than energy 

 

Capacity Payment ($/kW-y) I'c 166
Interest Rate on Debt Reserve (%) 100ira 7
 
ESCALATION/INFLATION 

 

General Inflation (%) 100f 5
Escalation--Fuel (%) 100ef 5
Escalation--Other (%) 100ec 5



 
 
FINANCE 

 

Debt ratio (%) 100rD 75
Equity ratio (%) 100(1-rD) 25
Interest Rate on Debt (%) 100iD 12.00
Economic life (y) N 20
Cost of equity (ROR, %) 100ie 15.00
Cost of Money (%)--computed 100i = 100(rDiD + (1-rD)ie) 12.75
Total Cost of Plant ($)--computed Cp = KpMp 70,000,000
Total Equity Cost ($)--computed (1-rD)Cp 17,500,000
Total Debt Cost ($)--computed rDCp 52,500,000
Capital Recovery Factor (Equity) --
computed 

(A/P)e 0.1598

Capital Recovery Factor (Debt) --
computed 

(A/P)D 0.1339

Capital Recovery Factor (Total) --
computed 

(A/P) 0.1402

Annual Equity Recovery ($/y) --
computed 

(1-rD)Cp(A/P)e 2,795,826

Annual Debt Payment ($/y) --
computed 

rDCp(A/P)D 7,028,636

Debt Reserve ($) Rd 7,028,636
Annual Debt Reserve Interest ($/y) --
computed 

Rdira 492,005

Annual Capacity Payment ($/y) --
computed 

I'cMp 4,150,000

 
Tax depreciation schedule (ACRS): 

 

Year 1 D'1 0.2000
Year 2 D'2 0.3200
Year 3 D'3 0.1920
Year 4 D'4 0.1152
Year 5 D'5 0.1152
Year 6 D'6 0.0576
Total tax depreciation--computed ΣD'n 1.0000
 
Annual Production (kWh) --computed

 
hMp 192,720,000

Annual Hours--computed h 7,709
 
 



Table 4.  Sample calculations for year 1. 
 

Year n 1
Equity Recovery ER n= (1-rD)Cp(A/P)e 2,795,826
Equity Interest EIn = ieCe,n-1 2,625,000
Equity Principal Paid EP n= (1-rD)Cp(A/P)e - ieCe,n-1 170,826
Unrecovered equity1 Ce,n = Ce,n-1 - EPn 17,329,174
Debt Recovery DRn = rDCp(A/P)D 7,028,636
Debt Interest2 DIn = iDCD,n-1 6,300,000
Debt Principal Paid DPn = rDCp(A/P)D - iDCD,n-1 728,636
Unrecovered Debt CD,n = CD,n-1 - DPn 51,771,364
Fuel Cost  Fn = hmfCf(1+ef)n-1 4,110,628
Non-fuel Expenses NFn = MphCr(1+ec)n-1 5,800,872
Debt Reserve Rd = DR1 in first year only 7,028,636
Depreciation (tax) Dn = CpD'n 14,000,000
Capacity Income Ic = I'cMp 4,150,000
Interest on Debt Reserve Ira = Rdira 492,005
Taxes3 Tn (t/(1-t))(ERn + DPn - Dn) -7,082,015
 
Energy Revenue Required4 

RRn = (ER+DR+F+ 
  NF+T+Rd-Ic-Ira)n 15,040,579

Present Worth (time 0) RRn(1+i)-n 13,339,759
1Ce,0 = (1-rD)Cp.    2CD,0 = rDCp    3Capital repayment = EPn + DPn, return on 
investment = EIn + DIn    4revenue required to cover the cost of energy is reduced 
by revenue received as capacity payments and interest on the debt reserve. 



Table 5.  Current and constant dollar level annual costs. 
 

Total Present Worth ($) P =ΣPn 127,013,294
 
Capital Recovery Factor (current) 

(A/P = 
(i(1+i)n)/((1+i)n-1) 0.1402

Level Energy Revenue Requirements ($) P(A/P) 17,809,771
LAC per unit production ($ kWh-1) P(A/P)/(Mph) 0.0924
 
Real Cost of Money 

 
i' = (1+i)/(1+f)-1 0.0738

 
Capital Recovery Factor (constant) 

(A/P)' = 

(i'(1+i')n)/((1+i')n-1) 0.0972
Constant Level Revenue Requirements ($) P(A/P)' 12,346,433
LAC in constant dollars ($ kWh-1) P(A/P)'/(Mph) 0.0641
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Figure 3.  Sensitivity analysis. 

 
 


