
A Guide to the Rochester PL/0 Compiler ∗

Michael L. Scott

Computer Science Department

University of Rochester

Revised August 2004

Rochester’s PL/0 compiler attempts to illustrate the characteristics of a “real” compiler
on a modest scale. It runs on Unix systems and generates MIPS I assembler for the spim

simulator. (An alternative code generator, for the x86, should be ready in time for this fall’s
code generation assignment.) Unlike many pedagogical compilers, it has multiple passes,
employs a table-driven scanner and parser, performs high-quality syntax error repair, and
issues well-formatted diagnostic messages. It does not perform code improvement, though
this may be added at some point in the future. For now, it generates very poor code.

1 The PL/0 Language

The PL/0 compiler is small (about 5400 lines of C++ and about 400 lines of grammar
source) mainly because it compiles a very small input language. PL/0 was defined by
Niklaus Wirth (the inventor of Pascal and Modula) as part of an extended example in his
1976 book, Algorithms + Data Structures = Languages (pp. 307–347). It is essentially a
subset of Pascal, with nested procedures, but without parameters; functions; case, for, or
repeat statements; else clauses; or any types other than integer. The reference version
of the PL/0 compiler implements the language exactly as defined by Wirth, with four
extensions: comments, primitive numeric I/O, output of constant strings, and value/result
parameters. Students may be given a version of the compiler that implements less than
this.

1.1 Tokens

Case is insignificant in PL/0. The PL/0 tokens are:

• keywords
begin, call, const, do, end, if, in, odd, out, procedure, then, var, while.

• identifiers
Any other string of letters and digits beginning with a letter.

• strings
As in C: delimited by double quotes. May contain quotes, backslashes, or newlines only

∗Copyright c© 1994–2004 Michael L. Scott

1

if escaped by a backslash. Backslashes also introduce escape sequences for nonprinting
characters.

• numbers
A string of (decimal) digits.

• operators, relations, and punctuation marks
+, -, *, /, =, #, <, >, <=, >=, (,), ,, ;, ., :=.

Comments are also as in C: bracketed by /* and */, or by // and end-of-line. Comments
may not nest, but either kind of comment can be used to “comment out” the other.

1.2 Syntax

In the EBNF below, typewriter font is used for tokens and italicized font is used for non-
terminals. Bold parentheses are used for grouping. The vertical bar is used for alternation
(“or”). Bold curly brackets indicate an optional item. A Kleene star (*) indicates that
the preceding item can be repeated zero or more times. Epsilon (ε) denotes the empty
string. White space (spaces, tabs, and newlines) is required in PL/0 programs to separate
characters that could otherwise be considered part of the same token. Otherwise, input is
“free format”: indentation and additional white space are irrelevant.

program −→ block .

block −→ { CONST identifier = number (, identifier = number)* ; }
{ VAR identifier (, identifier)* ; }
(PROCEDURE identifier { (param list) } ; block ;)*
statement

param list −→ mode identifier (, mode identifier)*

mode −→ in out in out ε

statement −→ identifier := expression

identifier := string

CALL identifier { (expr list) }
BEGIN statement (; statement)* END

IF condition THEN statement

WHILE condition DO statement

ε

expression −→ fragment ((+ - * /) fragment)*

fragment −→ identifier number (+ -) fragment (expression)

condition −→ ODD expression

expression (= # < > <= >=) expression

expr list −→ expression (, expression)*

1.3 Semantics

PL/0 is simple enough that semantic issues generally amount to common sense. The checks
performed by the PL/0 compiler are listed in section 4.5 below. Constants, variables, and
procedures declared within a block are local to that block, and cannot be referenced outside

2

it. Procedure paremeters, likewise, are local to the block that comprises the procedure’s
body.

Parameters are passed by value/result. In parameters are copied into the procedure at
call time. Out parameters are copied back to the caller when the procedure returns. In

out parameters are copied at call time and when the procedure returns. Arguments passed
as out or in out parameters must be l-values. A parameter with no specified mode is
implicitly passed by value (in).

The arithmetic operators associate left-to-right. Precedence is as follows: unary + and
- group most tightly, followed by binary * and /, and then binary + and -. Conditions
(comparisons) are above the level of expressions in the grammar, effectively giving them
the lowest precedence of all. The symbol # means “not equal”.

Two special “variables” are pre-defined: The variable input, when read, yields the next
integer from the standard input stream. The variable output, when assigned an integer
expression, prints the value of that expression (with trailing linefeed) on the standard output
stream. One can also assign a string to output; it is printed without appending a linefeed.
(NB: when running under spim, output is not flushed until a linefeed appears.)

2 Tools

Construction and operation of the PL/0 compiler are assisted by a number of tools, as
illustrated in figure 1.

2.1 Scanner and Parser Generators

Scangen and fmq are scanner and parser generators, respectively. They were written by
students of Charles Fischer at the University of Wisconsin around about 1980, and are
described in detail in appendices B, C, and E of Fischer and LeBlanc’s book, Crafting a

Compiler.1 Scangen takes as input a set of regular expressions, and produces DFA tables
(file tables) to drive a scanner for the tokens described by the regular expressions. Fmq

takes as input a context free grammar, and produces tables (file ptablebin) to drive an
LL(1) parser for that grammar. Fmq takes its name from the Fischer/Milton/Quiring syntax
error repair algorithm, for which it also generates tables (file etablebin).

Both scangen and fmq produce numeric tables, in contrast to the C code produced by
Unix’s standard lex and yacc, or the similar Gnu flex and bison. (Scangen produces
tables in ascii. Fmq can produce tables in either ascii or binary; the PL/0 compiler uses
the binary option.) These numeric tables are turned into initialized data structures by the
tools makescan and makeparse. The C++ output files, scantab.cc and parsetab.cc are
then compiled by the GNU C++ compiler, g++, along with the other C++ source files. The
files scantab.h and parsetab.h contain definitions for variables exported by scantab.cc

and parsetab.cc respectively.

2.2 Mungegrammar

Several source files for the PL/0 compiler contain redundant information about the PL/0
syntax. These include the input to scangen and fmq (scangen.in and fmq.in, respec-

1Note that fmq is referred to as LLgen in the book. In the standard tool distribution, llgen is a version

of fmq without error repair.

3

scangen.in

scangen

tables

makescan

scantab.cc

source files
other C++

PL/0 source program
foo.0 compiler

pl0 MIPS assembler program
foo.s

etablebinptablebin

tokens.h actions.cc

g++

spim

output

input

makeparse

parsetab.cc

grammar

fmq.in

fmq

mungegrammar

Figure 1: Construction and operation of the PL/O compiler.

4

tively), semantic action routine numbers (switch statement labels in actions.cc), and dec-
larations of token numbers used in semantic analysis (tokens.h). To free the programmer
from the need to keep these files mutually consistent, they are all generated automatically
by a preprocessor named mungegrammar. The input to mungegrammar is roughly a merger
of the input expected by scangen and fmq, with some syntactic changes necessary to make
the merger work and to simplify the specification of long productions and action routines.
The grammar file distributed with the PL/0 compiler contains extensive self-descriptive
comments. Read them carefully before making any changes. Principal features include the
following:

• Tokens are declared in a single list that includes alphabetic token names, optional
character string images (for error messages), insertion and deletion costs (for syntax
error repair), and lexical definitions (regular expressions). A token may have variants,
which will all appear the same to the parser, but may be distinguished by semantic
action routines. Variants are output as tokens with matching major token numbers
in scangen.in. Note that the semicolon that terminates a token definition must be
the last thing on its input line (other than white space or a comment).

• Two special token names must appear: IDENT and SPACE. Reserve words must match
the lexical definition of IDENT, but appear in the token list with a double-quoted
character string definition, rather than a regular expression. SPACE is the only token
recognized by the scanner but not passed to the parser.

• Semantic action routines can be embedded directly in productions, delimited by double
square brackets ([[. . .]]). The code in actions.cc will look better if you leave the
square brackets on lines by themselves, but this is not required.

• Second and subsequent lines of multi-line productions do not begin with ellipsis (...),
as they do in fmq.in. First lines of productions, however, must begin in column 1,
and second and subsequent lines must not do so.

• Ada-style (double dash through end-of-line) comments are allowed anywhere in the
grammar file, except within semantic action routines.

In addition to generating scangen.in and fmq.in, mungegrammar collects action rou-
tines into the arms of a large switch statement, which it then embeds in a C++ function
named do action in file actions.cc. The parser calls do action when it reaches the ap-
propriate point in the right-hand side of a production. Finally, mungegrammar generates
file tokens.h, containing a definition (#define) for every major and minor token number.
Major token numbers distinguish non-terminals in the context-free grammar understood
by the parser. Minor token numbers distinguish token variants. For example, in PL/0 the
multiplication and division operators play identical roles in the grammar, and are there-
fore defined as variants of a single token named MULOP. Tokens.h defines the symbol
MAJ MULOP to contain the major token number for MULOP. The two variants of MULOP
are named TIMES and SLASH, with minor token numbers MIN TIMES and MIN SLASH, re-
spectively in tokens.h. The character string image for MULOP is “*”, which the syntax
error repair routines will use in error messages when they insert a MULOP. If an image is
not provided, the repair routines will use the token name.

5

With the exceptions noted above, the token definitions (regular expressions) and pro-
ductions in the grammar file conform to the syntax expected by scangen and fmq. Note that
concatenation within tokens is indicated with a dot (.) rather than juxtaposition; alterna-
tion within tokens is indicated with a comma (,) rather than a vertical bar (the vertical
bar is used to separate to token variants).

Two potentially confusing features are the NOT() operator and the {TOSS} annotation
in regular expressions. NOT() generates the complement (with respect to the entire char-
acter alphabet) of the (comma-separated) list of characters inside the parentheses. {TOSS}
indicates that the preceding character or NOT() expression will not be important to the rest
of the compiler, and may be discarded by the scanner. In general, characters of comments,
whitespace, and tokens that represent only a single possible string (e.g. :=) can safely be
tossed; characters of tokens for which there are many possible strings (e.g. IDENT or NUMBER)
should not be tossed. If you want you can keep some characters and toss the rest.

Please note that mungegrammar is currently implemented as a simple-minded script.
Syntactic errors in the grammar file will usually pass through mungegrammar undetected,
leading to error messages from scangen or fmq. If this happens you may need to read the
scangen.in or fmq.in files to figure out what’s going on. Remember, though, to make any
necessary changes in the grammar file, not in the files created from it.

2.3 RCS

The PL/0 distribution uses RCS (the Revision Control System, developed by Walter Tichy
of Purdue University) for version control. As you make changes over time you should “check
them in” to RCS, which will keep track of all the old versions of all your files, in an organized
and space-efficient way. Read the man pages for ci, co, rcs, rlog, and rcsdiff, in that
order.

2.4 The Makefile

Creation of the PL/0 compiler is automated by a Makefile. You should read the Makefile

and figure out how it works. You should also learn to use the extra rules it provides, in
addition to make pl0. In particular, you will want to use the following:

make depend The Makefile “includes” an auxiliary file named makefile.dep, which in-
corporates knowledge of which files #include which others. If you add or alter inclu-
sions anywhere in the compiler, you will want to re-run make depend, which rebuilds
makefile.dep.

make tags This rule creates cross-reference indices (files tags and TAGS), which are used by
editors like vi and emacs to assist in source perusal. Typing the appropriate command
to the editor will cause the cursor to move to the file and line at which the identifier
is declared. In vi, the command is :ta tag name, or control-] when the cursor is
positioned on the identifier. In emacs, the command is meta-x find-tag tag-name,
or meta-. tag-name. If the cursor is on or near an identifier, emacs will supply it as
a default when prompting for tag-name. To pop back to the previous tag in vi, type
control-t. To pop back in emacs, type meta-- meta-x find-tag, or meta-- meta-..
Note that the algorithm used to build the tag cross-reference database is heuristic;
tags work most of the time but not always. Vi keeps track of a single location for

6

each tag. Emacs keeps track of several possibilities, and jumps to the most “likely”
one first. If you don’t like that one and want to try the next, type control-u meta-..

In addition to creating cross-references for identifiers, make tags creates cross-refer-
ences for action routines, grammar symbols, and production numbers. Tag search
for a grammar symbol moves the cursor to a production in the grammar in which
that symbol appears on the left hand side. Tag search for R37 (and similarly Rn for
any appropriate n) moves to the 37th (nth) action routine. This is useful for finding
syntax errors in action routines, since the C++ compiler produces error messages for
the file actions.cc, not for grammar. Tag search for P37 (in general Pn) moves to
the 37th (nth) production in the grammar. You may want to try this after looking
at a parse trace, generated by pl0 -Dparse or pl0 -Pparse.

make sources This rule simply prints the names of all the source files required to build
the compiler. It is useful when embedded in backward quotes in the argument lists of
other programs. For example,

grep foobar ‘make sources‘

will find all occurrences of foobar in the source of the compiler. Similarly,

ls -l ‘make sources‘ | grep "^-rw"

will list all source files that are currently writable. If you use RCS with strict locking,
these will be the files that you have checked out to make modifications. If you don’t
want the long version of the listing,

ls -l ‘make sources‘ | grep "^-rw" | sed -e "s/.*:.. //"

will print just the names of the checked-out files. You may want to create aliases
for these, e.g. llrw and lsrw. I frequently type rcsdiff ‘lsrw‘ to find out what
changes I’ve made recently, and ci -u ‘lsrw‘ to check them all in.

3 Creating and Running Your Copy of the Compiler

The root directory of the PL/0 distribution contains a copy of the source for the PL/0
compiler, together with a Makefile, a README file, and a NEWUSER script. The README file
explains how to use the NEWUSER script. This script will copy the source, create an RCS
archive of it, run make to build the compiler, and create a test directory.

The Makefile places the final PL/0 compiler in a file named pl0 . The compiler reads
a PL/0 source program from standard input or from a file named in its command-line
arguments. In the latter case, the name must end with “.0”. The compiler prints error
messages and diagnostics to standard output (fatal errors to standard error), and writes
MIPS I assembler target code to a file whose name is created by replacing the “.0” in the
source file name with “.s” or, if compiling standard input, to a file named plzero.s .

The assembler output is intended for execution by James Larus’s MIPS interpreter,
spim, from the University of Wisconsin. To compile and run a PL/0 program under spim,
type:

7

pl0 foo.0

spim -file foo.s

You might want to create the following shell alias:

alias run ’spim -file \!^.s | tail +6’

Then you can type

pl0 foo.0

run foo

Note of course, that pl0 must be on your PATH. If it’s in the current directory (or if
you’re in the test directory with a symlink), you can type ./pl0.

The pl0 compiler accepts several additional arguments:

-C Include PL/0 source lines in the target code as comments. This makes it easier for you
to read and understand the output.

-v Print summary statistics at end of compilation (verbose).

-Dscan Dump all tokens to standard output, as they are recognized by the scanner.

-Dparse Dump a trace of parser activity to standard output: predictions, matches, and
calls to action routines. -Dscan and -Dparse are mutually exclusive.

-Dast Dump the abstract syntax tree to standard output immediately after parsing.

-Dsymtab Dump the contents of the symbol table to standard output at the end of compi-
lation.

-Pphase Stop compilation after a given intermediate phase, where phase is one of scan

(scanning), parse (parsing), ast (abstract syntax tree construction), or seman (se-
mantic analysis). -Pscan implies -Dscan. -Pparse implies -Dparse. -Past implies
-Dast. -Pseman implies -Dsymtab.

4 PL/0 Compilation Phases

The PL/0 compiler consists of about 5,400 lines of heavily-commented C++, plus automatic-
ally-generated scanner and parser tables, and 400 lines of grammar source. Constants in the
code are printed entirely in capital letters, with sub-words separated by underscores, e.g.
SCRATCH REG. Most other identifiers are printed entirely in lower case, with sub-words sepa-
rated by underscores. User-defined type and class names end with t, e.g. token attrib t.

4.1 Source Buffering and Diagnostic Messages

Files inpbuf.[h,cc]

The compiler reads its source on demand, and keeps it all buffered in a linked list
within an object of class input buffer t. Together with each line, the input buffer keeps
a list of diagnostic messages associated with that line. Buffering allows messages to be
generated out of order, but printed in order. The later phases of the compiler keep track,

8

for each syntactic construct, of the location (line and column) at which that construct began.
Messages pertaining to that construct can then be issued at the appropriate location.

Each diagnostic has a key letter in column 2 that indicates what kind of a message it is.

• S means syntax repair.

• W means warning.

• E means semantic error.

Semantic errors inhibit code generation; syntax repairs and warnings do not.

4.2 Scanner

Files scantab.[h,cc], scanner.[h,cc]
The scanner is a straightforward finite automaton. It keeps a copy of tokens whose

characters are significant (were not {TOSS}ed in the grammar file). Its main entry point
is the function token get, called by the parser. The only tricky part of the scanner is
the mechanism for backtracking, employed when one token in the language is a prefix of
another, but more than one character of lookahead is required to distinguish between the
two. (For example, consider 3.1459 and 3..14 in Pascal, or DO5I=1,10 and DO5I=1.10 in
Fortran.) No such tokens occur in PL/0, but they could easily be added, and the scanner
will support them.

If it encounters a mal-formed token, the scanner issues a warning message and skips
ahead to the next point at which it can recognize a token.

4.3 Parser and Syntax Error Repair Routines

Files parsetab.[h,cc], parser.[h,cc]
The parser is a straightforward LL(1) pushdown automaton, augmented with error re-

pair routines and with markers to support action routines and automatic management of
space for attributes (see below). The error repair routines employ a locally least cost tech-
nique due to Fischer, Milton, and Quiring. Basically, they calculate the “cheapest” set of
insertions and/or deletions that will allow the parser to consume one more token of real
input. Insertion and deletion costs are specified in the grammar file. The choice among
alternative repairs can be tuned by changing the relative costs of various insertions and
deletions. Generally speaking, it should be easy to insert or delete tokens that a program-
mer is likely to forget or to type by mistake, and hard to insert or delete tokens that require
matching constructs later in the program, since incorrect repairs of this type are guaranteed
to lead to future errors. When defining new tokens, use the existing insertion and deletion
costs as a guide. The compiler will work correctly whatever costs you give it, but it will do
a better job of avoiding spurious, cascading errors if the costs are reasonable.

4.4 Syntax Tree Construction

Files attributes.[h,cc]

The semantic action routines in the grammar file do one thing only: construct an abstract
syntax tree. They perform no symbol table manipulations, nor do they check for any error
conditions. Space for attributes is maintained in a so-called “attribute stack”, which is

9

pushed and popped automatically at appropriate times in the parse. At any particular
point in time, the attribute stack contains a vertical slice of the parse tree: one record for
each symbol in each production between the current node and the root. The full parse
tree is never in memory at once. When the parser predicts a production, it calls into the
attribute manager to push records onto the attribute stack for all the symbols on the right-
hand side (RHS). It also pushes a marker onto the parse stack. The marker allows it to tell
when it has popped all the RHS symbols off the parse stack, at which point it calls into the
attribute manager to pop the RHS symbols off the attribute stack.

Each element of the attribute stack may contain the synthetic attributes of a token from
the scanner, a pointer to a syntax tree node, a list of syntax tree nodes, and/or a source
code location (or, often, nothing at all). The purpose of the action routines in the grammar
is to pull the token information out of the attribute stack, construct appropriate pieces of
the syntax tree, and hang them off of records in the attribute stack that will be available
to routines later in the parse (higher in the parse tree). When parsing is completed, the
root of the complete syntax tree is found in the attribute record of the goal symbol, the last
remaining record on the attribute stack.

4.5 Semantic Checks

File semantics.cc

The semantic checker enters identifiers into the (scoped) symbol table, and performs all
static semantic checks. For PL/0, the only checks are the following:

• is every identifier declared before use?

• is no identifier declared more than once in the same scope?

• is every left-hand side of an assignment a variable?

• is every identifier in an expression a variable or constant?

• is every called identifier a subroutine?

• are strings assigned only into output?

• does every subroutine call have the right number of arguments?

• is every argument passed as an out or in out argument an l-value (i.e. a variable or
a parameter)?

In addition, the PL/0 compiler performs the following “sanity checks”, and issues warn-
ings (not error messages) if they fail:

• is every variable both written and read?

• is every constant read?

• is every subroutine called?

• is the program non-empty?

There is no separate semantics.h file. File semantics.cc contains nothing but the
check semantics methods of descendants of syntax tree t, as declared in attributes.h.

10

4.6 Code Generation

Files codegen.[h,cc], mips.[h,cc]
There are two sub-phases to code generation. The first assigns frame pointer offsets

for local variables, and allocates registers; the second generates code. Register allocation is
extremely naive: the registers of the target machine not reserved for any other purpose are
used as a LIFO evaluation stack. Most programs use nowhere near the full register set. Any
program requiring more than the available number of registers produces a fatal compiler
error. A good compiler (with a code improver and a smart register allocator) would keep
many variables in registers much of the time, spilling them to memory only when absolutely
necessary.

For the purposes of code generation, additional fields are required in both the nodes
of the syntax tree and the records of the symbol table. These fields are maintained in
separate records so that they need not be visible to the early phases. They are declared in
codegen.h.

File codegen.cc, at just over 1000 lines, is the largest in the PL/0 compiler. It contains
definitions for

• the allocate registers and generate code methods of descendants of syntax tree t;
and

• the allocate space and generate data methods of descendants of symbol entry t,
as declared in symtab.h.

The routines in mips.[h,cc] encapsulate the MIPS assembler syntax by overloading
the function mips op.

4.7 Symbol Table

Files symtab.[h,cc]

The symbol table has a wide interface (many methods in scope t and symbol entry t),
but a simple internal structure. There is a single main hash table, keyed by {name, scope}
pairs, and a stack of open scopes. To look up an element, the symbol table routines traverse
the open scope stack from top to bottom, probing the hash table at each level to see if the
desired name was declared in that scope. Faster schemes are possible, but this one is simple,
works well, and is not outlandishly slow.

5 Compiler Classes

5.1 Syntax Tree Nodes

Every node in the attributed syntax tree is an object belonging to one of the concrete
subtypes of the abstract type syntax tree t. Figure 2 shows the hierarchy of PL/0 syntax
tree classes.

Each subclass of syntax tree t must implement the following methods:

• constructor (in attributes.cc)

• check semantics (in semantics.cc)
Checks the semantics of the node and of its children, if any.

11

Concrete Class

Abstract Class

syntax_tree_t

st_token_t

st_block_t

st_identifier_t

st_operator_t

st_number_t

st_binary_op_t

st_unary_op_t

st_string_t

st_statement_t

st_call_t

st_if_t

st_while_t

st_assignment_t

st_declaration_t

st_procedure_t

st_variable_t

st_constant_t

Figure 2: Syntax tree classes.

12

Abstract Class

Concrete Class

symbol_entry_t se_variable_t

se_constant_t

se_procedure_t

Figure 3: Symbol table classes.

• allocate registers (in codegen.cc)
Allocates any registers used by the node and lets its children also allocate their needed
registers. Returns a pointer to its syntax code t structure, which details register
usage and indicates where the node’s parent can locate any results generated by the
node.

• generate code (in codegen.cc)
Generates any assembly code needed to implement the node and its children, and
dumps it to the output file using the mips op functions.

• debug dump (in attributes.cc)
Dumps all useful debugging information about a syntax tree node to stdout.

Several subclasses implement additional functions, mostly accessors (get field and put

field). Perhaps the trickiest routine is st identifier t::generate lcode, which generates
code to store a value to a variable, load a variable’s address into a register, or write a value
to OUTPUT.

No destructor is needed for syntax tree t; once created, syntax tree nodes remain
allocated through the end of the compiler run.

5.2 Symbol Table Entries

All entries in the symbol table must be members of a concrete type derived from the abstract
type symbol entry t. Figure 3 shows the PL/0 symbol table entry classes.

Each subclass of symbol entry t must implement the following methods:

• constructor (in symtab.cc)

• allocate space (in codegen.cc)
Allocates any space either in the stack frame or globally which will be needed to
represent the symbol in the compiled program.

• generate data (in codegen.cc)
Outputs any pseudo-symbols or other code for creating the symbol in the output
assembly file. For example, global variables output the pseudo-opcode “.dword 0”.

13

• debug dump (in symtab.cc)
Dumps all useful debugging information about a symbol table entry to stdout.

In addition, the symbol entry t base class has a generate code method (in codegen.cc)
that is called from various places to generates the code to access a symbol.

No destructor is needed for symbol entry t; once created, symbol table entries remain
allocated through the end of the compiler run.

Acknowledgments

Michael Scott wrote the original version of the PL/0 compiler (and the makeparse and
makescan tools) in Pascal in the summer of 1992. He borrowed some of the code from
his compiler for the Lynx programming language, which in turn contained pieces of his
undergraduate compiler course project from the University of Wisconsin. He based the
general structure of the parser and error repair routines on code written by Jon Mauney
to accompany the distribution of fmq. In the fall of 1993 Micha l Cierniak replaced the
original code generator (which produced a subset of C) with code to generate MIPS as-
sembly language. Galen Hunt re-wrote the compiler in C++ in the fall of 1994, intro-
ducing the symbol entry t and syntax tree t class hierarchies, substantially simplifying
code generation via overloaded functions, and introducing a variety of other improvements.
Michael Scott created the mungegrammar tool in the summer of 1995, replacing an earlier
pre-processor that did not produce tokens.h or scangen.in. Additional changes in the
summers of 2000, 2002, and 2004 introduced namespaces for the various compiler modules,
improved debugging output, and converted most of the code (pretty much everything other
than the parser) to good object-oriented form. Thanos Papathanasiou added value/result
parameters in the fall of 2004, and extracted the pedagogical subset. Bijun He built the
x86 code generator.

14

