
This paper should be referenced as:

Dearle, A., Cutts, Q.I. & Kirby, G.N.C. “Browsing, Grazing and Nibbling Persistent Data
Structures”. In Persistent Object Systems, Rosenberg, J. & Koch, D.M. (ed), Springer-
Verlag (1990) pp 56-69.

Browsing, Grazing and
Nibbling Persistent Data Structures

A. Dearle, Q. Cutts and G. Kirby
University of St Andrews

ABSTRACT

Here we describe a browser that provides a two and a half dimensional viewing
mechanism for persistent data structures. The browser is an adaptive program
which learns about its environment; this knowledge is stored in the persistent
object store. It achieves this by making use of a compiler that is a dynamically
callable data object in the environment. Other novel features of the design of the
browser include the use of an event–driven software architecture in which all
applications are programmed in a passive object-oriented style.

1. INTRODUCTION

The requirement to examine data structures often arises in computer applications. This
requirement may be satisfied by a tool known as a browser. Such a tool, the PS-algol object
browser, is discussed in [4]. It has proved useful for traversing the data structures found in
persistent object stores, often permitting insight to be gained into the behaviour of complex and
highly dynamic systems. It has also been of great value in debugging data structures such as the
program graphs of the intermediate language, PAIL [3].

In this paper, after an initial discussion of the PS-algol object browser, a new object browser is
described. In addition to the functionality of the former, the latter is capable of displaying the
topology of complex data graphs. Like the PS-algol browser, the new one is an adaptive
program that learns about its environment incrementally. It does this by dynamically creating
programs, compiling them and linking them into the running program. The browser also utilises
an event–driven software architecture [2]; this architecture and the browser's interaction with it
are described fully below.

2. THE PS-ALGOL OBJECT BROWSER

The PS-algol object browser may be used to traverse arbitrary graphs. When the browser
encounters an object, it interrogates its rule base to see if it has a procedure capable of
displaying that kind of object. The interrogation of the rule base involves matching on type
using structural equivalence. If the browser finds such a procedure, it is applied to the object
supplied as a parameter. If, however, the browser does not find a rule for the object, it must
produce one. This is achieved by automatically generating the source of a browsing procedure
for that type of object. The source is then compiled using a compiler that is a first class data
object in the environment. The resultant procedure, keyed by the type of the object, may then be
added to the rule base. Finally, the procedure is applied as described above and the browsing
continues.

The procedures produced by the PS-algol object browser all present the user with a menu that
permits the fields of objects to be interrogated. Primitive objects, such as integers, are displayed
using procedures written at browser construction time. For example, if an object of the class:

structure x(int a ; string b ; pntr c)

is encountered, the menu shown in Figure 1 will be displayed on the user's screen.

x

a:int

b:string

c:pntr

Figure 1: A menu for a structure type.

The structure of the menu indicates to the user the shape of the encountered object. The fields of
the menu, namely "a:int","b:string" and "c:pntr", are all light-buttons. When "clicked" with the
mouse, the value associated with the corresponding field of the structure is displayed. In the
case of the pointer field, c, the menu is replaced on the screen by another which displays the
object referred to by field c of the original object. This process may be visualised by a stack of
menus being placed on the screen, with only the topmost menu being visible at any time. The
last light-button (marked "****") permits the user to return to the object that was displayed
immediately before the current one, or in the case of the first object to finish browsing. This
operation is akin to popping the stack of menus.

Such a menu may be produced by the (slightly simplified) segment of PS-algol code shown in
Example 1, which may be stored in the persistent store and used by any program. The
procedure takes a pointer to an instance of a structure of some class as a parameter; this class is
statically unspecified. In practice, the browser will ensure that this procedure is always supplied
with a pointer to the structure class declared in the first line of the procedure. The first line of
the procedure (after begin) merely serves to declare the relevant type, in the local context. The
procedure constructs two vectors, one of strings and one of procedures. These are supplied to
the procedure menu which generates a procedure that will place a menu on the screen at the co-
ordinates specified when it is called. The procedure returned by ‘menu’ is finally called in the
third to last line of the example, after checking that the pointer passed to the procedure is of the
expected class.

let traversex = proc(pntr p)
begin

structure x(int a ; string b ; pntr c) ! Declare the structure class
! which this procedure

displays.
let return = proc() ; {} ! An empty procedure

let strings = @1 of string ["a:int", ! Declare a vector of strings
"b:string", ! with lower bound 1
"c:pntr" , ! for the menu entries.
"****"]

! Next declare a vector of procedures - the menu actions.
let procs = @1 of proc() [proc() ; write p(a), ! Display the integer a.

proc() ; write p(b), ! Display the string b.
proc() ; Trav(p(c)) , ! Browse the object c
return] ! Return - do nothing.

let this.menu = menu("x", ! The title.
strings, ! The entries - a vector of strings
procs) ! The actions - a vector of procedures.

if p is x
then this.menu(20,20) ! Display menu at source position 20,20.
else Error() ! Take some error action.

end

Example 1: A procedure to display objects of class x.

3. EXPERIENCE WITH THE PS-ALGOL OBJECT BROWSER

The PS-algol browser was originally designed to aid the debugging of abstract program graphs.
Since then it has proved an indispensable tool for navigating around the persistent object graph.
However, it does have one major drawback, namely the limitation of only displaying one object
at a time. The PS-algol object browser may, therefore, be considered to give a one dimensional
view of two dimensional data structures. This has the additional undesirable consequence that,
using the browser, it is impossible to discern the difference between the data structures shown
in Figure 2. When viewed by the PS-algol object browser, both these data structures will cause
a potentially infinite list of menus of the form shown in Figure 3 to be placed on the screen.

cell

1

Figure 2(a): A data structures.

cell cell

1 1

Figure 2(b): Another data structure.

ce l l

a:int

b:pntr

Figure 3: The menu for the data structure in Figure 2.

A more desirable situation would be to present the user with diagrams similar to the ones shown
in Figures 2 showing the topology of the graphs being browsed, whilst still retaining the ability
to "click" on fields to discover the values associated with them. A new browser, which is the
subject of this paper, has been constructed which satisfies these requirements. Before
describing this browser, we first describe the event–driven software architecture which the
browser uses heavily.

4. AN EVENT–DRIVEN SOFTWARE ARCHITECTURE

The Event-Driven Software Architecture [2] provides the applications programmer with a
number of tools useful for programming applications for a bitmapped workstation. From a
user's (as opposed to a programmer's) point of view the most obvious of these is the window
manager. The window manager provides typical window services to the applications
programmer. Another module, the interactive window manager, provides users with a menu-
based interface to these services.

The architecture also provides applications programmers with an event-driven scheduling
mechanism. This allows applications to be programmed in a passive style, each application
being suspended until being re-awakened by some external event. The event distribution
mechanism is described below.

4.1. Notifiers

The notifier concept is fundamental to the design of the architecture. A notifier can be thought of
as an event distribution procedure. An event, which may be a mouse button selection, mouse
movement or key depression, is passed to a notifier, which then determines whether the thread
of control should be passed to any one of a number of registered applications.

In most systems, programs are written as active objects. Specifically, they read input by

continually polling the keyboard and mouse until an event is received. In a notifier system,
however, applications are passive, in that they are called by the notifier when an event occurs
which concerns them. If all applications are written in this style, they will never be trapped in
busy loops. As all applications are input-driven, a radically different style of programming is
required. It should be noted that some applications are not well suited to this paradigm – for
example, procedures that get some input, process it, and return a result.

Any application wishing to run in the system must first register with a notifier by passing it two
procedures. These two procedures constitute a notification. The first, called examineEvent,
determines whether an event is relevant to the application; the second, called processEvent, is
the action required when such an event occurs. A notifier will pass the thread of control to the
second procedure if an event is deemed important to the application by the first procedure.
When a notification is submitted to a notifier, a third procedure is returned which, when called,
will remove the notification from the notifier.

A notifier is comprised of two procedures: an addNotification procedure that allows new
notifications to be registered with a notifier, and a distributeEvent procedure which takes an
event as a parameter. The distributeEvent procedure permits events to be passed into a notifier.
Since the distributeEvent procedure of a notifier and the processEvent procedure of a
notification both have the same type, notifiers may be arranged into a notification hierarchy.

4.1.1. Events

An external event can currently take two forms:

1. structure mouse(cint X.pos, Y.pos ; c*cbool the.buttons)

which is the structure returned by the PS–algol locator function, and,

2. structure Chars(string chars)

which is used to encapsulate keyboard events.

Instances of the structure class "mouse" are used to encapsulate events relating to mouse
movement. The fields of this structure class permit the position of the mouse and the state of the
buttons to be obtained. The second structure class "chars" is used to encapsulate keyboard
events. This class is provided so that keyboard events may be injected into the PS-algol infinite
union pntr.

4.2. The event monitor

The event monitor is the only active application in the architecture and provides events to the
top-level notifier of the notification hierarchy. An event monitor is a simple loop which gathers
all events and passes them to the distributeEvent procedure of the notifier at the top level of the
notification tree. The procedure that generates an event monitor takes two parameters: the first is
a procedure which returns a boolean value, determining whether the event monitor should
terminate, and the second is the distributeEvent procedure of the top-level notifier.

Once a top-level notifier has been initialised, and some applications have been registered with it,
the event monitor passes any input to it using its distributeEvent procedure. Subsequently, any
registered applications, when called, may add extra elements to the list within the notifier, or
remove themselves from it.

4.3. The window manager

The window manager is responsible for controlling a collection of overlapping windows. When
the window manager is initialised, a package of procedures is returned which create and
manipulate windows within the system. An interactive window manager is also available,
which provides a convenient user interface to the window system.

In the system, a window manager is an instance of a structure containing procedures to create
windows, delete them, manipulate them within the window manager display area (e.g. move
them around, bring them to the front or the back), and resize them. The window manager also
allows windows to be iconised, opened (de-iconised), and made current.

Unlike most window managers, the window manager does not manage a physical device but a
window. This allows window managers to be created inside windows being managed by
another window manager. In order to instantiate this sequence, a function is provided to create a
window for a physical device. Although this feature sounds rather esoteric, we will show its
utility in the construction of the browser.

When the window creation procedure is called, an instance of a window is returned. The
window structure contains procedures that allow the manipulation of: the size of the window,
its title, the application associated with the window, the style and position of the icon associated
with the window, the cursor associated with it, and the graphical contents of the window.

Windows contain a default application — an empty procedure — when they are created; this
procedure may be changed later. The system has a notion of a current window, which will
normally take all character input, and only the application therein will be active. The current
window is the only one whose application has an entry in the notifier; when another window is
made current, the previous entry is removed from the notifier, and the new application
registered. This prevents the notifier's internal list of notifications from becoming too long.

4.4. The interactive window manager

The interactive window manager provides an interface to the procedures made available by the
window manager package. For manipulating windows when partially obscured, a background
menu is provided. This contains the following options :

Delete removes the window clicked on, and its associated application.
Move moves the window around until another click occurs.
Push/Pop brings a window to the front if it is not there already; if it is, then

it is put to the back.
Quit quits the interactive window manager.

4.5. The tile manager

The architecture also provides a tile manager which may be used to manage windows. A tile
manager has similar functionality to a window manager, the difference between them being that
tiles, unlike windows, may not overlap. The panel items briefly discussed below all make use
of tile managers to manage the graphical resources they use.

4.6. Panel items

A number of panel items such as light-buttons, choices, sliders, menus, etc. are available as
predefined applications. In the browser, we will only make use of light-buttons and sliders. A
light-button associates an area of a window with a procedure. When a light-button is selected,
the user receives visual feedback: the button is highlighted, and the associated procedure is

executed. Sliders also associate an area of a window with a procedure. However, they permit
real values to be chosen from within a specified continuous range.

4.7. Menus

The architecture provides a procedure that generates pop-up menus. However, like the
procedure supplied by the PS-algol system, this menu only remains on the screen whilst one of
the procedures registered with it is active. In the browser, a menu is required that will stay on
the screen indefinitely. This kind of menu may be constructed using windows and light-
buttons.

5. A 2™D OBJECT BROWSER

Let us assume that the browser is called with a pointer to the data structure shown in Figure 2.
Initially, two objects are displayed to the user: a panning tool and a menu representing the first
object in the data structure.

step size

Figure 4: The panning tool.

5.1. The panning tool

Using the browser, the user's screen represents a view onto a conceptually infinite surface.
Visual representations of objects are placed on this surface by the browser. The panning tool,
common to many applications of this kind, permits users to move the view port around the
surface. The panning tool may be considered to be attached to the viewport since it does not
itself move when the view changes. The panning tool permits the view to be panned in one of
eight directions. A slider is provided in the panning box controlling the distance traveled across
the surface each time one of the arrows is clicked.

5.2. The first menu

The other object on the screen immediately after calling the browser is a representation of the
object passed to the browser as a parameter. In the case of the data structure shown in Figure
2(b), the menu will look like the one shown in Figure 5.

ce l l

a:int

b:pntr

Figure 5: First menu for the data structure shown in Figure 2(b).

Unlike the menus provided by the first PS-algol object browser, this menu will remain on the
screen until explicitly deleted. Like the panning tool, this menu has the functionality of a
window and may be pushed and popped, moved, and deleted. These functions are provided by
the interactive window manager initiated by the browser. The title bar of the menu also provides
access to these functions via the first, second, and third mouse buttons, respectively.

The other fields of the menu are implemented by light-buttons. If the field marked "b:pntr" is
clicked, a new menu will appear on the screen showing the object referred to by field b of the
object. This change is shown in Figure 6.

ce l l

a:int

b:pntr

c e l l

a:int

b:pntr

Figure 6: Two menus being displayed showing object references.

5.3. Object placement

At this point in the design of the browser, a problem was encountered, namely where should
new objects be placed on the screen. This problem was solved with reference to that paragon of
good interface design – MacDraw [4]. In MacDraw, when an object is selected, like so,

it is possible to duplicate it. By default, this causes a copy of the object to be placed to the right
and down from the original object like so:

If, however, the duplicated object is moved to another position and another duplication
performed, the next object will be placed relative to the new object in the same position as the
second object was placed relative to the first.

This object placement strategy is used for displaying objects in the browser. The user may at
any time move objects to any position he or she chooses; alternatively if the screen becomes too
cluttered, objects may be removed from the screen.

5.4. Discovering relationships

Another design decision that emerged was how the browser should actually behave. Consider
the graph for the data structure in Figure 2(b), shown partially displayed in Figure 6 and in its
final form in Figure 7. The dilemma concerns whether or not to show relationships between
objects already on the screen and new objects. In the case of this example, whether to draw a
line showing the relationship between the second object and the first when the second is object
is displayed.

ce l l

a:int

b:pntr

c e l l

a:int

b:pntr

Figure 7: Two menus being displayed showing all object references.

The decision made in the browser was to allow relationships only to be displayed by discovery.
The browser does not display object references unless the user has clicked the field that makes
the reference. As a consequence of this decision, the user may easily see where he or she has
been already.

5.5. Universes

The need to provide separate universes was recognised early in the design of the browser.
Consider a universe populated by three objects called "Graham", "Quintin" and "Al".

Suppose we want to look at all the objects referenced by "Graham", "Quintin" and "Al",
respectively. Viewing all these objects at the same level of visual abstraction may lead to
confusion, with the user unable to discern which objects are associated with which. Such a
situation is likely to arise if the user's screen is too cluttered. This situation may be viewed as

shown in Figure 8.

Graham Al
Quintin

Figure 8: Shared internal references.

A more desirable situation would be for the data structures referenced by each of the objects to
be displayed in a new, logically separate universe. Figure 9 shows such a separation, and here
it is clear which objects are referenced by "Graham","Quintin" and "Al" respectively.
Presenting objects in separate universes makes it easier to compare data structures and provides
the user with the ability to logically partition the view space in any way he or she chooses.

Al
Quintin

Graham

Figure 9: Internal references in separate universes.

In the 2™D object browser, each universe is represented by a window. Like the whole display,
this window may be thought of as a viewport onto an infinite surface on which objects are
placed. Objects displayed in this new universe may, of course, open up yet more new

universes. Figure 10 shows a snapshot of the browser just after a new universe has been
opened onto the original data structure shown in Figure 2(b).

cell

ce l l

a:int

b:pntr

c e l l

a:int

b:pntr

step size

Figure 10: Separate universes in separate windows.

The light-buttons in the menus permit three choices to be made with the three mouse buttons (on
the Sun workstations being used to develop the current version). They correspond to: viewing
the object referenced by the field in the same universe, viewing it in a new universe and deleting
it.

6. CONSTRUCTION OF THE BROWSER

The browser is entirely implemented in PS-algol. It may be considered to be implemented in
three pieces: the man-machine interface, the transient visual object manager and the adaptive
persistent knowledge base. Each of these parts is orthogonal to the others and will be dealt with
separately.

6.1. The man-machine interface

All of the man–machine interface is provided using the event-driven software architecture
(EDSA). Most of the components are "off the shelf", that is they are provided by the
architecture as predefined applications. The only exceptions to these are the menus and the
panning tool. The menus are implemented as windows containing a tile manager which
manages the menu entries. This permits menus to be implemented which may overlap, be
moved around, pushed and popped etc.

Although the window manager provided by EDSA manages windows and permits line drawing
on windows, it does not support the infinite plane concept described earlier. Therefore, a data
structure must be maintained by the browser to manage the positions of on-screen objects and

the relationships between them.

6.2. The visual object manager

The visual object manager (VOM) is responsible for maintaining information on: the position of
all objects on the screen; the known interdependences between objects on the screen; the
relationship between screen objects and objects from the data structure being traversed. Notice
that this problem is very similar to the problems encountered in constructing a Persistent Object
Management System [5].

The objects managed by VOM are arbitrary pointers and windows. It is not obvious how these
objects may be sorted, so they are stored unsorted. This means that all the searches for objects
are linear. This does not represent a problem since the number of objects in a universe should
never be too large. VOM therefore maintains a list of the following structures:

structure keeper(pntr object, window, refersTo, referredToBy)

where

object is a pointer to the data structure object being represented on screen
window is a window (menu) on screen representing the object
refersTo is a list of windows referred to by this window
referredToBy is a list of windows that refer to this one

The VOM provides a number of functions that maintain and operate on this data structure.
These include:

WinOnScreen which returns the window associated with an object,
ObjOnScreen which returns an object associated with a window,
addObject which provides the manager with information about a new object,
removeObject which removes an object from the manager, and
ObjectIsReferenced which returns true if one object refers to another.

6.3. The adaptive knowledge base

The 2™D object manager, like the PS-algol object browser, is an adaptive program [7]. That is,
it learns about the object universes in which it operates. The reason for this approach is that in
most programming and database systems, there are a potentially infinite number of types which
may occur in the system. This represents a problem when writing a program to browse over
them. In general, one cannot write a static program to anticipate all of the types that may occur
without resorting to some magic or a second level of interpretation. Generally, object-oriented
programming languages avoid this problem by resorting to a combination of conventions and
dynamic typing. For example, one solution to this problem would be for every instance of a
class to have a print method. This is not a safe solution to the problem since a print method may
be overwritten by a method which performs a completely different function.

The browser maintains and uses a table which is used to store the procedures that display
particular classes. This table contains procedures, each of which is capable of displaying a
different type of object. A representation of this type is used to index the table. Whenever a
suitable display procedure cannot be found by the browser, a procedure is called to generate the
necessary compiled code. Since the class of any object may be discovered, it is easy (but not
trivial!) to synthesize a procedure to display an object of that class. Such a procedure was
shown in Example 1. This procedure may be compiled using the callable compiler provided by
PS-algol, and the resulting code entered into the table for future use. This stage is a combination
of dynamic linking and memoising.

In a conventional programming system, the scheme described would be very expensive. The
traversal program would have to recreate the traversal procedures in every invocation. In a
persistent programming language, the table may reside in the persistent store and therefore any
changes made to the table will exist as long as they are accessible. This has the effect that the
browser never has to recompile traversal procedures. The program in effect learns about new
data structures. It does so in a lazy manner, as it only learns how to display the classes that it is
actually required to display.

6.4. Overall construction

The three parts of the browser, described above, are largely orthogonal to each other. The
interface between the programs stored in the knowledge base and the man-machine interface
procedures may be entirely encapsulated in a single procedure — the menu procedure. The
menu procedure, which is passed as a parameter to the object display functions, must be
dynamically bound to a particular window manager.

An instance of the VOM must be created for every new universe which is placed on the screen,
including the first one. This knowledge is transient and is discarded when a universe is
removed from the screen. On the other hand, the procedures stored in the knowledge base are
stored in the persistent store and will be kept indefinitely.

7. CONCLUSIONS & FUTURE PLANS

Database systems are notoriously hard to manage. Part of this difficulty stems from the lack of
good tools to manage them. Persistent data stores commonly contain complex data structures
which cannot be described adequately using textual notations. Tools that permit these complex
data structures to be viewed graphically are seen as being a viable alternative. A graphical view
of a complex data structure may be used to assist managers of data to visualise the effect of
change upon that structure.

Similarly, tools are required to allow data managers to change complex data structures. Writing
code to make changes is error prone and expensive. It also requires a high degree of training on
the part of the manager. As described in this paper, the browser does not provide any facilities
for altering data structures. However this browser is merely a prototype, and it is easy to see
how the strategy described in this paper could be extended to permit what might loosely be
described as "data structure engineering". We expect to start experiments on this in the near
future, constructing programs to change data structures directed by user gesture. This may be
achieved using the callable compiler in a manner similar to techniques used in the browser. The
data structures required to do this are already maintained by the 2™D object browser.

Software engineering environments also suffer from a preponderance of textual interface tools
[6]. In a persistent environment, such as that being constructed to support the language Napier
[8], the browser is expected to be one mechanism with which a user may navigate a universe of
potentially useful code. With a browser, the user may position him(her)self in an environment
containing code to be reused. The provision of the first class compiler will permit the user to
construct and compile new code which is bound to the code discovered in the database.

ACKNOWLEDGEMENTS

We would like to thank Fred Brown who co-designed the PS-algol object browser, the
inspiration for this new browser; Tony Davie for his motivating comments that led us to start
work on this browser; Richard Connor for his part in designing the notifier hierarchy and
finally to Ron Morrison for his suggestions on, amongst other things, universes.

REFERENCES

1. Cockshott P. & Brown A.L. "CPOMS – The Persistent Object Management System in C",
PPRR-13, Universities of St Andrews and Glasgow, Scotland, 1985.

2. Cutts Q. & Kirby G. "An Event–driven Software Architecture", PPRR-48, Universities of
St Andrews and Glasgow, Scotland, 1987.

3. Dearle A. "A Persistent Architecture Intermediate Language", PPRR-35, Universities of
Glasgow and St Andrews, Scotland, 1987.

4. Dearle A. & Brown A.L. "Safe Browsing in a Strongly Typed Persistent Environment",
The Computer Journal, 31,6 December 1988, pp. 540-544.

5. Inside Macintosh. Apple Computer Inc. Addison Wesley, (1986).

6. Marlin C.D. "Language-specific editors for block-structured programming languages", The
Australian Computer Journal, 18,2, May 1986, pp.46-54.

7. Morrison R., Dearle A. and Marlin C.D. "Adaptive Data Stores", Australian Joint Artificial
Intelligence Conference – Proc. AI’88 Adelaide, Australia, November 1988, pp 135-145.

8. Morrison, R., Brown, A.L.,Connor, R.C. & Dearle, A. "The Napier88 Reference
Manual", PPRR-77, Universities of Glasgow and St Andrews, Scotland, 1989.

	ABSTRACT
	1. INTRODUCTION
	2. THE PS-ALGOL OBJECT BROWSER
	3. EXPERIENCE WITH THE PS-ALGOL OBJECT BROWSER
	4. AN EVENT–DRIVEN SOFTWARE ARCHITECTURE
	4.1. Notifiers
	4.1.1. Events

	4.2. The event monitor
	4.3. The window manager
	4.4. The interactive window manager
	4.5. The tile manager
	4.6. Panel items
	4.7. Menus

	5. A 2™D OBJECT BROWSER
	5.1. The panning tool
	5.2. The first menu
	5.3. Object placement
	5.4. Discovering relationships
	5.5. Universes

	6. CONSTRUCTION OF THE BROWSER
	6.1. The man-machine interface
	6.2. The visual object manager
	6.3. The adaptive knowledge base
	6.4. Overall construction

	7. CONCLUSIONS & FUTURE PLANS
	ACKNOWLEDGEMENTS
	REFERENCES

