
A First Order Theory of Planning, Knowledge, and Action

Leora Morgenstern

New York University

Deportment of Computer Science

New York, N.Y. 10012

ABSTRACT

Most AI planners work on the assumption that they have complete

knowledge of their problem domain and situation so that planning an action

consists of searching for an action sequence that achieves some desired goal.

In actual planning situations, we rarely know enough to map out a detailed

plan of action when we start out. Instead, we initially draw up a sketchy plan

and fill in details as we proceed. This paper presents a formalism based upon

a syntactic logic of knowledge which is expressive enough to describe this

flexible planning process.

99

100 SESSION 3

I. I n ~ u ~ o n

Most AI planners work on the assumption that they have complete knowledge of theh¢

problem domain and situation, so that planning an action consists of searching through a

pre-packaged list of action operators for an action sequence that achieves some desired goal

Real life planning rarely works this way, because we usually don't have enough information

to map out a detailed plan of action when we start out. Instead we initially draw up a

sketchy plan and fill in details as we galn more exact infonuation about the world.

A robust planning system must have sLrailar capabilities if it is to work ha a complex

domain. In particular, it needs a solid theory of knowledge, action, and communication, so

that it can produce a coherent plan even when its knowledge of the problem domain and

problem situation is incomplete. Some work has already been done in this field, most

notably by Robert Moore [Moore 1980], who has developed a theory of knowledge and

action in which it is possible, for example, for an agent who knows the combination of a safe

to reason that he knows how to open the safe. Due to the inherent limitations of Moore's

formalism, however, Moore cannot attack the problems of knowledge, action, and

communication in their full generality.

This paper presents a logic that is expressive enough to deal with the problems that

faced Moore;s system. In the next section of this paper, we review Moore's work on

knowledge and action and demonstrate its logical limitations. Afterwakds, we present an

alternate approach, discuss its power, and show how it can be integrated with Moore's work

on knowledge and action. Finally, we show how this logic of knowledge and action can be

extended to a more robust theory of planning, and demonstra~ solutions to a number of

A FIRST ORDER THEORY OF PLANNING, KNOWLEDGE, AND ACTION

probieras that cannot be handled by current theories of knowledge and action.

101

2. Moore's LoSe of Knowledge and Action

The bulk of Moore's work on knowledge and action is directed towards expl.lnln S how

knowledge affects action. Prior to Moore's pioneering work, researchers such as McCarthy

and Hayes [1969] had argued that a planning program needs to explicitly reason about its

ability to perform an action. These researchers suggested writing down explicit knowledge

precondition axioms for each action, so that a planning program could reason that it knew

how to do an action it the relevant knowledge precondition axioms were true.

Unfortunately, this approach leads to an explosion of knowledge precondition axioms and

unacceptably long proofs. This problem, which we will call the problem of knowledge

preconditions, is the one that Moore's system seeks to solve.

Moore uses a standard $4 modal logic of knowledge, with the following axiom

schemata:
MI: Axioms of ordinary propositional logic

IVI2: Know(A,P) = > P (veridicality)
M3: Know(A,P) = > Know(A,Know(A,P)) ~positive introspection)
M4: Know(A,P= >Q) = > (Know(A,P) ~- > Know(A,Q)) (consequential closure)

MS: If P is an axiom, then Know(A,P) is an axiom (necessRation)

The semantics for 'know' are given in terms of a Kripkean possible worlds semantics [Kripke

1963a&b, Hintikka 1962 & 1969]: an agent knows p in a particular world if and only if p is

true in all worlds that are knowledge equivalent to his world. By positing that 'know' is a

reflexive and transitive relation, we get the effect of M1-MS.

The notion of a rigid designator - something that denotes the same individual in all

possible worlds [Kripke 1972]. plays an important role in Moore's theory of knowledge and

action. According to Moore, we can in general say that we know who somebody is or what

something is if we know a rigid designator for that person or object. Similarly, says Moore,

we know what an action description is, and thus how to do the action, if we know of a rigid

designator for that action. Moreover, we know how to do an action if we know of an

102 SESSION 3

executable description of that action. Moore thus argues that a rigid designstor for an action

must be its exeoatable description.

In practice, continues Moore, most action types are rigid functions which map rigid

designators onto rigid designators, or are axiomatically defined in terms of other rigid

functions. Thus if an agent knows rigid designators for the parameters of such an action, he

knows a rigid designator for the action itself, and thus knows how to do the action.

Moore has thus characterized the knowledge preconditions for all actions with one

principle. He has effectively dealt with the problem of knowledge preconditions while

presenting a cogent explanation of what it m~r~s for an agent to know how to do an action.

2.1. Criticisms of M(mre~s System

Unfortunately, Moore's system is beset by a host of problems. In the first place, it is

intuitively implausible that an executable description of an action can serve 8s a rigid

designator for that action. Rather, an executable description of an action seems to be a

property of that action that varies among different possible worlds. For exarnFle, in 1950 the

executable description of dial(911) was a sequence of rotate-diM movements, while in 2050,

if dial phones will be obsolete, the executable description of that same action might be a

sequence of push-button movements. Given any executable description of an action, we can

imagine some possible world in which that executable description would not work.

Secondly, Moore's assumptions regarding an agent's knowledge seem excessively

strong. In his system all agents know all axioms. This implies that all agents have the same

level of procedural knowledge, so that all an agent might not know is some of the slot fillers

in some action. Yet there are dearly many situations in which an agent cannot do an action

because he has no idea how to do the general procedure. Moore's system admits of no such

possibility, since all general procedures for action are known. Moreover, it is impossible in

Moore's system to relax the requirement that all axioms are known by all agents; this is a

direct consequence of the possible worlds semantics on 'know.'

A FIRST ORDER THEORY OF PLANNING, KNOWLEDGE, AND ACTION

Thirdly, Moore's system is simply not expressive enough to handle a lot of our

statements about knowledge. This criticism in fact applies to any standard first order modal

logic of knowledge. Because we cannot quantify over sentences, we cannot formulate such

sentences as 'John knows that Bill knows something that he doesn't know.' Assuming that

knowledge about actions is in the form of statements, we also cannot express 'John knows

that Bill knows how to fire a gun' unless lohn hlm~elf knows how to fire a gun.

Finally, we note that Moore's system deals with only one of the many issues that must

be addressed by a complete theory of knowledge and action. An agent must not only be able

m reason about whether he knows how to do an action at a particular time, but should also

be able to reason about whether he might eventually know how to do that action, how he can

learn to do the action, and whether he can delegate the action to some subordinate agent.

103

3. An Alternate Approach: 'Know' as a Syntactic Predicate

Our first task in developing a theory of knowledge and action is choosing a formalism

for our theory. We reject first order modal logic, since that turns out to be insufficiently

expressive for our needs. A move to a higher order modal logic [e.g., Gallin 1975] is

likewise rejected because we would no longer have a complete proof procedure, and a higher

order modal logic with possible worlds semantics would still entail that kll agents know all

axioms. Instead, we turn to a first order predicate logic with quotation, where 'know' is a

syntactic predicate that ranges over names of sentences. Such an approach allows us to

formulate the examples of the last section that gave Moore's system so much trouble. For

example, 'John knows that Bin knows something that he doesn't know' can be formulated as

Know(Iohn,'Exists x (Know(Bill,x) and "Know(John,x))'). Although we are effectively

quantifying over sentences, our system rem,in~ first order because we are really quantifying

over names of sentences, which are just strings or numbers.

Unfortunately, treating 'know' as a syntactic predicate leads to severe difficulties

[Montague 1963]. In their simplest form, these difficulties manifest themselves as the

104 SESSION 3

Knower Paradox ~Monlague ~ad Kaplan 1960]: If ~know ~ is a s y n d i c ~ l i c ~ , we

co~tna~ a sentence $ such that S ~f Kaow(a:'S')o Ass~ in8 vefidic~lity, conscquentia]

closure, and necessi~tion on these two principle, S is inconsistent.

Providin 8 some resolu~on to the Knower Paradox is thus a prercquisi~ to any synt~tct~¢

theory of knowledge° We first observe that the Knower Paradox is just a variant of the Liar

Paradox: if we allow 'true' to tm a syntactic predicate in a classical logical language, we can

construct a sentence such as P iff "rrue('P'), which is of course inconsistent. To avoid this

paradox, Tarski suggested that we have a hierarchy of languages and a hierarchy of trulll

predicat.es, one truth l~edicat¢ per language. In no case is a language allowed to contain its

own truth predicate, so we cannot construct paradoxical statements. Konolige [1981] has

suggested constructing a hierarchy of know predicates to avoid the Knower Paradox, but we

reject this approach because of various unsaOsfying features of Tarski's hierarchy of

predicates ~Kripke 1975]: In the first place, it is implausible that people are consciously aware

of using different truth predicates when they speak. Secondly, we often do not know which

truth predicate to use when we utter a particular statement. Finally, it is impossible, in

Tarski's approach to construct a pair of sentences, each of which refers to the truth value of

the other, although such sentences may make perfect sense. Suppose, for example, that Iohn

Dean says 'All of Nixon's utterances about Watergate are false' and that Ntxon says

'Everything Dean says about Watergate is false.' If both Dean and Nixon have made some

trivial but true statement about Watersate , both statements will be false, but will certainly

make sense. Moreover, the truth values of statements such as these often depend on

empirical facts about the world, not on the syntactic structure of the statements.

These problems have led Kripke [1975] to develop a theory of truth which avoids both

the Liar Paradox and the unattractive features of Tarski's approach. Our strategy will be to

examine Kripke's construction and adapt it to a theory of knowledge which avoids the

Knower Paradox.

Faipke's basic idea is that not every sentence is assigned a value of true or false;

A FIRST ORDER THEORY OF PLANNING, KNOWLEDGE, AND ACTION

viciously self-referential statements whether paradoxical or non-paradoxical get an

indeterminate truth value, the third value in a three valued logic. Kripke's three valued logic

is based on Kleene'~ [1952]: a or b is true if a is true or b is true, false if both a and b are

false, of indeterminate value otherwise; forall x P(x) is true if P(x) is true for all x, false if P

is false for at least one x, and undetermined otherwise.

Like Tarski, Kripke considers a hierarchy of languages, but only one truth predicate

T(x). He starts out wit.h a language £0 which contalns only sentences that do not involve the

concept of truth. The language at the next level £i contains all the sentences of L o, plus

those sentences which talk about the truth or falsity of sentences in £0. This process

continues as we ascend the hierarchy and is deemed for every £= where ct is an ordinal. In

general, at successor levels we take the truth predicates over the previous level; at limit levels

we take the union of all sentences declared true or false at previous levels. At some level £a

we will no longer be able to assign truth values to any more statements no matter how much

higher we ascend the hierarchy. We call those statements that have been assigned a truth

value in Lc, grounded; all other statements are called ungrounded and take on the third,

indeterminate truth value of the three valued logic. Moreover, we can show that viciously

self referential statements such as the Liar Sentence are ungrounded in such a construction.

3.1. Relevance of Krlpke's Work to a Logic of Knowledge

Our strategy for avoiding the Knower Paradox will be to construct a language in which

sentences like S iff Know(a,"S') as well as the Liar and Truthtener sentences are not

grounded. Like Kripke, wc win construct a hierarchy of languages, building up towards a

language which contains its own truth and knowledge predicates. We will be expl~inlng

knowledge as true belief, though for the purposes of this construction we could as wen have

taken knowledge to be justified true belief; the former strategy is adopted purely for reasons

of simplicity. We start off with a classical first order language L, which comes with a fixed

set of predicates and relations, including the relation Iklieve(a,p). Believe(a,p) is a wen

105

106 SESSION 3

defined function on all strings p.[1] Our first language L 0 contains only sentences that do not

involve the concepts of truth or knowledge. As we ascend the hierarchy, more and more of

these sentences will get truth values. In general, at any (successor) leve! i, we say that

Know(a,p) is true in Lz if p has a positive truth value in £1-t and a believes p; Know(a,p) is

false if p has a negative truth value in Lt_ I, or if p is true in Lt_ 1 but a does not believe p;

and that Know(a,p) is undefined otherwise. T(x) and Know(a,x) have truth values at a llmit

level iff they have truth values at a lower level. We can show that this construction is

monotonic: that as we ascend the hierarchy the extensions of T(x) and Know(a,x) increase,

and that we eventually reach a fixed point L, such that the extension of T(x) and U a

Know(a,x) remain the same for L o and £o+I. As before, we call a sentence grounded if it

has been assigned a truth value at L~,; otherwise it is ungrounded. It is easy to see that

sentences like the Knower sentence as well as the Liar and Truthtcller sentences are

ungrounded in such a construction. We have thus successfully resolved the Knower Paradox

and have dealt with the primary objection to a logic that treats 'know' as a syntactic

predicate.J2]

4. Plmmlng, Knowledge, and Aetlon

We can now proceed to develop our theory of knowledge and action. In this section,

we expand Moore's solution to the problem of knowledge preconditions and integrate it with

a first order theory of knowledge and action. The resulting theory can handle Moore 's

benchmark problems: agents can reason that they know how to perform an action or

sequence of actions, and they can obtain knowledge as the result of an action. We then

extend our theory so that we can dead with more complex planning problems. We show that

1-To avoid the Believer Paradox that such a move entails, we reject the 'assumption of arrogance':
BeHeve(a,'Bel.ieve(a,p) => p').
2-k should be noted that this logic is not classical. In particular the law of the excluded middle does
not hold for ungrounded sentences. Thus the axiom schemata T('x') => x, x ->T('x'), Know(a,'x')
- > x do not hold for ungrounded sentences. We do however, have the classical inference rules
T('x')/x, x/T('x'), Know(a,'x')/x, and can demonstrate that classical logic does hold for grounded
statemems. For attempts to resolve the paradoxes within classical two valued logic, see Perl/s 1981,
Oupta 1982, I-Ierzberger 1982, Asher & Kamp, 1986. (These systems all lose the classical inference
rules.)

A FIRST ORDER THEORY OF PLANNING, KNOWLEDGE, AND ACTION

we can deal with an agent who plans to learn how to cook by enrolling in cooking classes,

~ i ~n agent who accomplishes a task that he is incapable of doing by assitming it to

su'oordinate agents.

107

4,1. The Bule Theory

We start by giving a brief description of our language. We will be using a first order

language L and a temporal logic which is loosely based on the work of McDermott [1982]. L

comes with a set of (possibly partially) interpreted predicates, functions, constants, and

variables. The distinguished variable s ranges over situations. A collection of consecutive

situations is known as an interval. Actions and events are collections of intervals; an action

and an agent map onto an event. All predicates are qualified by a situation or interval. Wen

formed form~as are built up in the usual way out of the basic building blocks of L using the

standard logical connectives v and " and the universal quantifier forall. Given a wff x, we

can apply the godelization function G to obtain the string that represents x. In general, we

write G(x) as 'x'. G is invertible; given any string we can recover the formula it represents.

Assuming a model M, we now give the semantics for True and Know:

(1) M I = T(p) M I = O- l (p)

(2) M [= Know(a,p,s) iff M [= T(p) and M [= Believe(a,p,s)

Note that (1) implies that T(a v b) iff T(a) v T(b) and T('a) iff "T(a).

We note that the quoting mechanism is opaque in many respects so that saying things

correctly becomes quite complicated. To facilitate writing down axioms, we introduce two

syntactic abbreviations: a name-of operator @, where @ applied to an object yields the name

of that object, and an antiquote operator" ", where"" applied to a string variable p yields the

string that p stands for.

We are now ready to present some axiom schemata that capture our basic intuitions on

knowledge. Not surprisingly, these schemata are rather similar to Moore's MI-M5; whether

we treat 'know' as a modal operator or as a syntactic predicate, our basic intuitions on

108 SESSION 3

knowledge remain the same. h should be noted that the schemata below, particularly K2-K4,

hold only for grounded statements.

KI: Axioms of ordinary predicate logic (see tMendclson 1964], Section 2.3)
YJ.: Know(a,p,s) = > p (veridicality)
K3: Know(a,p,s) => Know(a,'Know(@a:p',@s)',s)) (positive introsl~CfiOn)
K4: Agents know the rules of inference:

(i) Know(a,'implies(Ap',^q')',s) and Know(a,p,s) = > Know(a,q,s)
(Modus Ponens)

(ii) Kd0w(a,'p',s) = > Znow(a,'Forall x (p)',s)
(Generalization)

KSa:I.f p is an axiom of predicate logic then Know(a,p,s) for any s
KSb:Know(a,KI-KSb,s) for any s

h will be noticed that Ki-K5 differ from M1-M5 in two hnportant ways:

(1) K1 and K4 are quite a bit stronger than their counterparts, M1-M4. M1 and M4 lust

specify that all axioms of propositional logic are in the system and that agents can and do us©

the rule of inference Modus Ponens. Thus, the system supports only hfferences made via the

rules of propositional logic, and assumes that agents are llmited to these inferences as well.

In contrast, K1 specifies that all axioms of predicate logic are in the system, and K4 posits

that agents can and do reason with the wales of inference of predicate logic. [3] Our system is

thus considerably more powerful. Traditionally, modal logic has restricted itself to the

propositional calculus since the introduction of quantifiers poses so many problems ([Marcus

1971], [Kaplan 1971], [Hughes and Cresswell 1968]). Of course, not much can be said

without predicate calculus; Moore's system, however, lets in predicate calculus through the

back door since the actual proofs of theorems are carried out in the first order theory of

possible worlds. We, on the other hand, have to explidfly assert all the axioms of predicat~

calculus and assume that all agents can and do reason with these prindples. These axioms are

strong enough to prove that all agents know all logical consequences of their knowledge, and

th~..t they thus behave like 'perfect reasoners.'

(2) On the other hand, FJ is a good deal weaker than M5. As we h~ive said previously,

3- Of course, ~ e axioms and inference rules are not fixed; we may decide to use a diff~ent set, such
as is presented in [Kleene 1955], or choose a natural deduction system, as in [Mates 1972], where there
are no logical axioms, but more ruAes of irfference, For ease of presentation, we have chosen a system
with the minimal number of inference rules.

A FIRST ORDER THEORY OF PLANNING, KNOWLEDGE, AND ACTION

we do not wish to assume that all agents know all axioms, since there are many axioms on

the world that agents simply axen't aware of. We do, however, wish to assume that all

agents know all axioms of logic and the basic axioms of knowledge. KSa and KSb capture

these constraints, thus avoidin$ the overly strong assumptions on knowledge that modal

logics and possible worlds semantics entail.

109

As the first step in an in.grated theory of knowledge and action, we must provide a

solution to Moore's problem: when can we say that an agent knows how to do an action?

Much of Moore's work on this subject is insightful, and it plays a major role in our

theory. R is indeed trite that an agent knows how to do an action if he knows an executable

description for that action. It also seems clear that if an agent knows the general procedure

for some parameterized action type and knows in a particular case what the parameters of the

action axe, that he knows an executable description for that particular action. We contend,

however, that it is not in general true that agents know the general procedures for all action

types. Instead, we divide the class of actions into primit/ve action types, which are very basic

actions such as Put-on and Lift, and complex action types such as Bake-Cake and Drive,

which axe themselves axiomatically defined in terms of primitive actions. We argue that all

agents do know the general procedures for the primitive action types. However, because

agents in our system do not necessarily know how complex action types are composed out of

primitive actions, an agent knows the process for a complex action type only if he knows how

that action type is composed out of primitive action types.

We thus say an agent knows how to do an action if

a) the action type is primitive and he knows what the parameters of the action are (knows

constants for those parameters) or if

b) he knows how the action is built up out of simpler actions and he knows how to perform

those simpler actions.

In particular, an agent knows how to do a sequence of actons tl, . . . , ta if he knows how

110 SESSION 3

to do tl and completing any action fi in the sequence results in his knowing how to perform

the next action. Thus in out system, as in Moore's, an agent need not be able to perform an

entire action sequenc~ when he starts to do the action.

It is useful to distinguish between the concepts of knowing how to perform an s~on and

being able to perform that action. An agent who knows how to perform an action in a

particular situation may still be unable to actually perform that action in that situation,

because certain other conditions are not satisfied. For example, an agent who knows how to

drive a car in $1 may be unable to drive in S1 ff no car is available or if the roads are icy. In

general, we say that an agent can-perform an action in a situation if he knows how to

perform the action, if the physical preconditions for the action are satisfied, and - in the case

of an action which involves more than one agent - if certain social protocols governing the

behavior of agents arc satisfied.

Often, an agent is more interested in being able to achieve some goal than in being able

to perform a particular action. For such situations, we introduce the predicate know-how-to-

achieve. We say that an agent knows-how.to-achieve a situation with a desired property if he

knows of some action that will achieve the desired situation and he can-perform that action.

These threa concepts - know-how-to-perform, c~:-perform, and know-how*to-achieve -

are the building blocks of our theory of knowledge and action. Using them, we can solve all

of the bcnclunark problems that Moore's system solved. But these problems - which

involved a single agent reasoning about his ability to do an action or sequence of actions, and

which demonstrated the knowledge an agent might obtain by performing an action - represent

only a small portion of the problems that a robust theory of planning should handle. In a

real world situation, agents who do not know how to perform some action do not simply give

up, but reason about whether they can obtain the information they need from some other

agent, or delegate the action to other more knowledgeable agents. Moore's system could not

d~cribe such ~ n a r i o s since the logic he used was not expressive enough to describe an

agent's partial knowledge of another agent's knowledge. Our theory, on the other hand, is

A FIRST ORDER THEORY OF PLANNING, KNOWLEDGE, AND ACTION

suffidenfly expressive for these needs, and we can thus apply ourselves to developing a

hhcory which can handle the aforementioned problems.

111

4.2. Extens|on~ to Pl~umah~g

We begin by formally introducing the concept of a plan. Typically, AI planning

theories (e.g. [Sacerdofi 1977, McDermott 1985]) have considered only plans constructed out

of actions done by a single agent. This concept of planning suffices for simple blocks-world

type planning domains, and for restricted classes of problems in simplified multi-agent

domains. It does not, however, work well in reasonably complex multi-agent doma;ns in

which agents rely upon other agents' actions as they plan. Consider, for example, my plan to

get to the airport: Do(I, hailCtaxi)) ; DoCdriverCtaxi),driveCtaxi,airport)) ; Do(I,

pay(driver(taxi)). The taxi driver's action is an essential part of my plan. We thus define a

plan as a structure of events constructed according to specified formation rules, where an

event can be any action done by an agent or an 'actorless' event such as a thunderstorm or

tornado, and the formation rules correspond to the control structures given in standard real

time concurrent programming languages, such as described in ['Davis 1984].

Analogous to the concept of can-perform for actions, we introduce the notion of can-

execute for plans. An agent a can execute plan p in situation s if he knows in s that he will

be able to perform all the actions in the plan for which he is an agent, and can predict that all

other events in the plan occur in their proper order. [4] Using this concept, we can now say

that an agent can-plan-to-perform an action if he knows of some plan that he can execute

which will bring him to a state where he can perform that action. This ~ ; - o l o g y allows us

to des~be a situation where, for example, John can plan to call Mary on the phone by

asklng his friend Bill to tell him her phone number. Likewise, an agent can plan to learn

how to make a souffle by registering for classes in a cooking school. Again, an essential part

of the agent's plan is his ability to predict the occurrence of the cooking lessons.

4- Note that according ¢o this broad definition, agents can-execute plans that ate independently
predictable events, such as the sun rising each morning or the president s annual State of the Union
address.

112 SESSION 3

Often, an agent who does not know how to do a particular action ~ l l be able to

delegate the action to another suborcfinate agent. To forma]ize this concept, we Lutroduc~ the

predicate 'con~oP, where control(a,b,0 means that agent a ~n~o~ agent b with respect to a

task, or actlon, t. The t e n . e l predicam in~oducea a rather intricate structure on the

relationships among agents. To visualize this struaure, we can construct a graph by

assigning a unique node to each agent, a unique color to each ~ask, and drawing a directed

edge of a particular color between two nodes if one agent controls the other with respect to

that particular task. Note that while the complete graph is quite complex, the structure that

we obtain by considering edges of only one color is simply a forest of trees: a purely

hierarchical structure.

We now posit that an agent who controls another agent with respect to a particular task

can delegam that task to the controlled agent, and furthermore, that an agent who has been

delegated a task will do the task if he possibly can. We can now describe a situation where a

supervisor can plan to get an action done by delegating it to his subordinates. Note that he

need not know how to do the task that he delegates; he merely must be able to reason that

his subordinates know how to do the task. F~n~!ly, to integrate the concept of delegation

with our theory of planning, we say that an agent can-plan to get an action performed if he

either can plan to perform the action hlmself, or can plan to delegate the action to another

agent.

$. Conclusion

. J

We have thus far constructed the foundations for a logic of planning, knowledge, and

action. We have demonstrated that our theory solves Moore's benchmark problems (see

[Morgenstern 1986] for details) and have begun to extend our theory so that it can deal with

more complex planning problems. Although we are still a long way from completing work

on a robust theory of knowledge, action, and communication, we believe that our current

logic is flexible and expressive enough to provide the basis for such a theory. There are

several reasons to believe this to be true:

[I]

[2]

[3]

A rmsv ORDER THEORY OF PLANNING, KNOWLEDGE, AND ACTION

Agents in out theory have genuinely differing leveh of procedural knowledge.

Agents in out theory can reason about other agents' knowledge. This h true even when

an agent has only a vague idea of what the more knowledgeable agent knows.

Strings are a natural and important part of out theory. This will prove useful in

developing any theory of communication, since so many communicative actions operate

primarily on strings. Moreover, since an agent's knowledge about actions is in the form

of strings, it should be easy to describe how an agent teaches another agent to do an

action.

In sum, our observations suggest that we will be able to extend out current theory to

one that is considerably more complex.

113

Acknowledgements: I'd like to thank Ernie Davis for his ideas, suggestions, and guidance,

and for all the weekly discussions that led up to this paper. Thanks also to Phil Cohen, Jeff

Finger, Jerry Hobbs, David Israel, Kurt Konolige, Bob Moore, Stan Rosenschein, and

Moshe Vardi for helpful discussions and criticisms.

BIBLIOGRAPHY

Appelt, Douglas: Planning Natural Language Utterances to Satisfy Multiple Goals, SRI
International Technical Note 259, 1982
Asher, Nicholas and Hans Kmnp: 'The Knower Paradox and the Logic of Attitudes,' Prec.
Conf. on Theoretical Aspects of Reasoning about Knowledge, Monterey, 1986 (this volume)
Davis, Ernest: 'A High Level Real-Time Progr~mln$ Language,' NYU Technical Report,
1984
Fikes, R.E. and Nits Nilsson: 'STRIPS: a New Approach to the Application of Theorem
Proving to Problem Solving,' Artifwial Intelligence, Vol 2, 1971
Gallin, Daniel: lntenslonal and Higher Order Modal Logics, American Elsevier, New York,
1975
Gupta, Anll: 'Truth and Paradox,' Journal of Philosophical Lo&ic Vol. 11, No. 1, 1982
Herzberger, Hans: 'Notes on Naive Semantics,' Journal of Philosophical Logic Vol. 11, No.
1, 1982
Hlntlklm, Jaakko: Knowledge and Belief, Cornell University Press, Ithica 1962
Hintikka, Jaakko: 'Semantics for Propositional Attitudes,' in Leonard Linsky, ed. Reference
and Modality, 1971

114 SESSION 3

Hobb#, Jerry ~ d Ro~rt Mare: For~7~ T~or~a of tk~ Comnw~ense WorM, Ablex
Publishing Co., Norwood, 1985
Hughes, G.E. and M,J. Cr~sweH: An l n t r ~ c ~ n to Modal Logic, Methuen, London, 1968
Kaplan, David and Richard Montague: 'A Paradox Regained,' Notre Dame $ournal of
Formal Logic, vol.1 no.3, pp.79-90, 1960. Also Chapter 9 in Richmond Thoma~onp c~I:
Formal Philosophy
Kaplan, David: 'Quantifying In,' in Leonard Lln~ky, yd. Reference and Modality
Kleene, Stephen C.: Introduction to Metamathematics, Van Nostrand, New York, 1952
KonoHge, Kurt: 'A FAst Order Formalization of Knowledge and Action for a Multi-agent
Planning System' in J.E.Hays and D.Michie, eds. Machine Intelligence 10, 1982
Krlpke, Saul: Naming and Necessity, Harvard University Press, Cambcidge, 1972
Krlpke, Saul: 'OutLine of a Theory of Truth,' Journal of Philosophy, Vol 72, pp. 690-716,
1975.
Krlpke, Saul: 'Semantical Analysis of Modal Logic,' Zeitachrifl fur Mathematische Logik und
Grundlagen der Mathematik, Vol. 9, 1963
Krlpke, Saul: 'Semantical Considerations on Modal Logic,' Acta Phiiosophica Fennica, fast.
16, pp.83-94, 1963. Also in Leonard Linsky, ed: Reference and Modality

Llnsky, Leonard, ed: Reference and Modality, Oxford University Press, London 1971

Marcus, Ruth Barcan: 'Exteasionality' m Leonard Llnsky, ed. Reference and Modality
Mates, Benson: Elementary Logic, Oxford University Press, 1972
McCarthy, John and Patrick Hayes: 'Some Philosophical Problems from the Standpoint of
Artificial Intelligence' in Bernard Meltzer, ed: Machine Intelligence 4, 1969
McDermott, Drew: 'A Temporal Logic for Reasoning About Processes and Plans,' Cognitive
Science, 1982
McDermott, Drew: 'Reasoning About Plans' in Hobbs and Moore, eds. Formal Theories of
the Commonsense World, 1985
Meudelson, Eliot: Introduction to Mathematical Logic, Van Nostrand, Princeton, 1964
Montague, Richard: 'Syntactical Treatments of Modality with Corollaries on Reflexion
Principles and Finite Axiomatizability' in Acta Philosophica Fennica, fasc. 16, pp. 153-167
1963. Also in Richmond Thomasen, ed: Formal Philosophy
Moore, Robert: Reasoning About Knowledge and Action, SRI Technical Note 191, 1980
Morgenstern, Leora: 'preliminary Studies Toward a Logic of Knowledge, Action, and
Communication,' NYU Technical Note, 1986
Perils, Don: Language, Computation, and Reality, unpublished manuscript, 1981
Sacerdotl, Earl: A Structure for Plans and Behavior, American Elsevier, New York 1977
Thomason, Richmond, ed: Formal Philosophy: Selected Papers of Richard Monta&ue, Yale
University Press, New Haven 1974

