
Symbian OS C++ coding standards
Symbian DevNet
Jan 2003

These are the coding standards used by Symbian's own system developers. Some of the recommendations, such
as those relating to the inclusion of copyright notices in source and header files, are only relevant to Symbian OS
system developers, but most are relevant to all Symbian OS developers.

1. Naming conventions

1.1. General
• always use meaningful and carefully considered names

in general, first letter of words capitalized (exceptions noted explicitly)
• all words adjoined
• avoid the use of '_' <underscore> except in macros and resource IDs.

void TObject::PrepareForCommit();
class CGlobalText; // see note on class names and types
TInt elementOffset; // automatic variables begin in lowercase

(for further details and references see Ambler, 2000)

• use full English descriptors that accurately describe the variable/field/class/. For example, use names like
firstName, grandTotal, or CorporateCustomer. Although names like x1, y1, or fn are easy to type because
they’re short, they do not provide any indication of what they represent and result in code that is difficult to
understand, maintain, and enhance (Nagler, 1995; Ambler, 1998a).

• use terminology applicable to the domain. If your users refer to their clients as customers, then use the term
Customer for the class, not Client. Many developers will make the mistake of creating generic terms for
concepts when perfectly good terms already exist in the industry/domain

• use mixed case to make names readable. You should use lower case letters in general, but capitalize the first
letter of class names and interface names, as well as the first letter of any non-initial word (Kanerva, 1997)

• use abbreviations sparingly, but if you do so then use them intelligently. This means you should
maintain a list of standard short forms (abbreviations), you should choose them wisely, and you should use
them consistently. For example, if you want to use a short form for the word number, then choose one of nbr,
no, or num, document the one you choose (it doesn’t really matter which one), and use only that one

• avoid long names (less than 15 characters is a good idea). Although the class name
PhysicalOrVirtualProductOrService might seem to be a good class name at the time (an extreme
example) this name is simply too long and you should consider renaming it to something shorter, perhaps
something like Offering (NPS, 1996)

• avoid names that are similar or differ only in case. For example, the variable names persistentObject and
persistentObjects should not be used together, nor should anSqlDatabase and anSQLDatabase (NPS, 1996).

• capitalize the first letter of standard acronyms. Names will often contain standard abbreviations, such as SQL
for Standard Query Language. Names such as sqlDatabase for an attribute, or SqlDatabase for a class, are
easier to read than sQLDatabase and SQLDatabase.

1.2. Automatic variables
• first letter lowercase
• do not declare automatics until required; (avoid the K&R C-style of declaring all the automatics used in a

routine at the top of that routine)
• always try to initialize variable when they are declared rather than assigning values to them
• never initialize or instantiate multiple items on the same line

TInt first=0;
TInt second=0;

Explanation: having the first letter of automatic variable lowercase is simply a convention to help reviewers and
maintainers to follow your code
• the main reason for not declaring automatics until required is because they may not be required; declaring

them at the start of a routine is therefore inefficient in terms of execution speed and use of stack space
• for lengthy routines, declaring automatics as close as possible to the point of use can also help people to

understand code fragments without having to refer back to the top
• initializing variables when they are declared is more efficient (smaller and faster code) and avoids the risk of

using the variable in an uninitialized state
• declaring multiple items on the same line can lead to errors such as:

TText* data1, data2;
TInt int1, int2 = 0;

when the programmer meant:

TText* data1;
TText* data2;
TInt int1=0;
TInt int2=0;

1.3. Global variables
• use of global variables is discouraged
• start names with a capital letter. In cases where confusion might be caused (for instance, if the capital letter in

question is an H or a T or a C, and there's no obvious alternative name) you may use a small g prefix, e.g.
gWhatever

• non-const global data is not supported in DLLs; better to use thread local storage (TLS).

1.4. Macros
• all capitalized
• an underscore separates words

IMPORT_C
__TEST_INVARIANT
__ASSERT_ALWAYS

1.5. Pointer and reference types
• specifier placed next to type; not next to name

TText* data;
void TDemo::Append(const TDesC& aData);

TEntry* TDemo::Entry() const;

1.6. Class names
• 'C', 'R', 'T', 'M' class types only (the first letter of the class name). The class naming distinction helps reinforce

valuable programming idioms
• structs are 'T'; structs with attitude
• static classes have no prefix letter
• exceptionally, driver classes known by the kernel are 'D' classes. See Symbian Developer Library for more

information.

class CBase;
class TTypefaceInfo;
class RFont;
class MLaydoc;
class User; // static class
class EikUtils; // static class
class Time; // static class

1.7. Function names
• general rules apply
• Setters are typically SetThing().
• Getters are typically Thing() if the function returns the item.

void TObject::PrepareForCommit()
 {DoPrepareForCommit();}
void SetOffset(TInt aOffset);
TInt Offset() const;
TInt offset=Offset()

• 'Get' used for functions that set values into reference arguments.

TCharFormat format;
GetCharFormat(format);

• Trailing 'L' means function may leave; lack of trailing ‘L’ means it does not leave
• Trailing 'C' means function places an item on the cleanup stack
• Trailing 'D' means the object in question will be destroyed

CStoreMap* map=CStoreMap::NewLC(); // map returned on cleanup stack

1.8. Member data
• preceding 'i' lowercase; for instance data.

class TObject
 {
 TType iType;
 TInt iElementOffset;
 TPtrC iComponentValue;
 };

1.9. Function arguments
• preceding 'a' lowercase; for argument data
• do not use 'an' before a vowel

void TObject::TObject(TType aType,TInt aElementOffset)
 {
 iType=aType;
 iElementOffset=aElementOffset;
 }

1.10. Constants
• preceding 'K', uppercase.

const TInt KMaxNameLength=0x20;
const TUid KEditableTextUid={268435548}

1.11. Enumerations
• should be scoped within the relevant class
• do not pollute the global name space
• must have a meaningful, unambiguous name
• enumerations are types; therefore 'T' classes
• uppercase 'E' for enum members
• class-specific constants can be implemented as enums and in that case are ‘K’

class TDemo
 {
public:
 enum TShape {EShapeRound, EShapeSquare};
 enum TFruit
 {// Fruit definitions
 EFruitOrange,
 EFruitBanana,
 EFruitApple
 }
 }
TDemo::TShape shape=TDemo::EShapeSquare;

2. Header files

2.1. General
• never leave commented out code in production code, especially in published headers
• do not include more headers than are needed; use forward references
• in the project source…

public headers kept in the ..inc directory
private headers kept in the relevant source directory.

• use standard anti-nesting mechanism to avoid multiple inclusion of headers
• use standard headers, giving standard information; be consistent; for example:

// EXAMPLE.H
// Copyright (c) 2003 Symbian Ltd. All rights reserved.
//
// Example module header
//

Copyright messages
The example above shows the type of copyright message that should appear at the top of source files. Where a file
has been part of the source for some time, the year in the header can be given as a range in the form:

// Copyright (c) 1997-2003 Symbian Ltd. All rights reserved.

The start year should be the year that the component was started. However, this is not vital - the important bit is
asserting copyright.

Components that include source files which are partially copyrighted by third parties should ensure that a Symbian
copyright message is added to any files modified. Typically, such files have a large block of comments at their head
detailing the copyrights. The addition of the following line to that block is sufficient to assert copyright to the code
added by Symbian:

// Portions Copyright (c) 1997-2003 Symbian Ltd. All rights reserved.

2.2. Class design
2.2.1. Declaring functions: parameters and return values
• use references in preference to pointers - if none of the criteria for using pointers apply; (see below)
• pay attention to const; use const for parameters and return values if the data is not to be modified
• encourage generality; use the least derived class possible

void Foo(const CArrayFix<X>& aX);
rather than
void Foo(const CArrayFixFlat<X>& aX);

2.2.2. When to use which form of parameter/return
• by const value const X
- don't do this; it only restricts the code in the implementation, but has no impact on clients.

• by value X
- for return values or arguments that are concrete data types or are small (< 8 bytes)
- for return values where the object has to be built (i.e., cannot return a reference to one we have already); Note for
large classes it is preferable to use a reference argument to get a value, as this reduces stack usage.

• by const reference const X&
- do not do this for concrete (built-in) types, especially enumerations, as the GCC compiler will fault (current as of
July 1997).
- use for larger arguments (> 8 bytes)
- if in doubt pass all class arguments using this form.

• by reference X&
- to allow a function to return values through these arguments, or modify the contents of them.

- for return values, where the object exists and can be modified by the caller; Note, the lifetime of the object being
returned must extend beyond the scope of the function.

• By const pointer const X*
- Const for items which can be used (but not modified) by the recipient; e.g. a buffer
- if a NULL (non-existent) object is meaningful (so const X& cannot be used); i.e. the argument/return value is
optional; if this is the case consider using a function overload instead - one taking a reference and one taking no
arguments - if it makes the API clearer.

• By pointer X*
- for a modifiable (non-const) object that is optional; again, consider an overload if it makes the interface more
intuitive.
- to imply transfer of ownership, rather than just available for use (owns vs. uses); the recipient of the object is now
responsible for deleting the object.

2.2.3. What to export
• when writing a Symbian OS library, attention must be given to which functions are defined as EXPORT_C
• do not export (const) data; rather, export a function returning a reference/pointer to the data.
• only export private functions if…

- they are accessed via public inline members.
- They are virtual and the class is intended for derivation outside the library.

• For public or protected members…

- do not export functions that are not designed for use outside the library
- do not export pure virtual functions
- do not export inline functions.

2.3. Class Layout
• always write access control specifiers; removes all ambiguity
• list the public methods first, with special member functions at the top
• list public member data before private member data (otherwise changing the private data would break binary

compatability)
• use explicit access specifiers at the start of each class section…

friend classes
public methods
protected methods
private methods
public data
protected data
private data

• heed binary compatibility issues with respect to promoting functions' access control specifiers; (if you change
the access for something after an API freeze, you may have to leave it in exactly the same place as before).

• use white space to group related functions and improve readability
• function arguments are named in the function declaration (as well as the definition). Improves readability
• obey the indentation conventions.

2.3.1. Virtual functions
• virtual functions that replace inherited behaviour should be grouped together (inside the groupings defined

above) in the header, with a comment documenting which class the behaviour is inherited from

• it is not necessary to specify the virtual keyword for these functions
• do not make virtual functions inline; it is difficult to know exactly how a compiler treats these, and can lead to

code bloat. Exception; a virtual inline destructor is okay.

2.3.2. Inline functions
• specify inline explicitly for inline functions.
• do not leave it to the compiler.
• do not provide the inline implementation in the class definition; this confuses and pollutes the header, making it

less readable.
• provide inline implementations at the bottom of the header or in a separate .inl file.

2.3.3. Header layout
Note that this header is an illustration only; it will not compile as there is no definition of MEmptyable available

// DEMHEADR.H
// Copyright (C) Symbian LTD, 1998
//
// Example header layout
//
#ifndef __DEMHEADR_H__
#define __DEMHEADR_H__
#include <e32std.h>
#include <e32base.h>
//
// Illustrates coding conventions for header layout
class CContainer; // forward reference avoids header inclusion
class CShape : public CBase, public MEmptyable
// CShape class representation of a shape to draw on the screen
// also implements MEmptyable so that CWhangDoodle can control it.
 {
public:
 enum TShape
 {
 EShapeCircle,
 EShapeSquare,
 EShapeTriangle
 }
public:
 IMPORT_C static CShape* NewL(TShape aValue);
 IMPORT_C static CShape* NewLC(TShape aValue);
 IMPORT_C virtual ~CExample();
 inline CContainer* Container() const;
 inline void SetContainer(CContainer* aContainer);
 //
 // MEmptyable implementation
 IMPORT_C void Empty(); // virtual specifier unnecessary
private:
 CShape(TInt aShape);
 void ConstructL();
 CContainer* iContainer;
private:
 TInt iValue;
 };

#include <demheadr.inl>

#endif // __DEMHEADR_H__

Explanation: Symbian's convention for generating unique names for the #define guards in header file is simply to
replace the dot in the filename with an underscore and use double underscores as prefixes and suffixes on the
resulting variable name.

Note: The #ifndef XXX form of the guard against multiple inclusion is significantly quicker than the apparently
equivalent #if !defined(XXX) form. The latter is optimized by the compiler in such a way that the inclusion of
the other header files e32std.h and e32base.h don't have to be guarded themselves.

3. Source modules

3.1. Writing good code
• build code that gives 0 compiler warnings and 0 link errors; it is dangerous to ignore compiler warnings, and

these are highly likely to generate errors on other compilers. Complacency regarding compiler warnings leads
to important new compiler warnings not being noticed among a pile of familiar warnings

• be consistent in the use of programming conventions
• strive to write tight, efficient code
• minimize on stack usage
• minimize on the number of calls to the allocator
• always ask... what would happen if this code were to leave?
• avoid hard-coding magic numbers; use constants or enumerations.

3.2. Basic types
e32def.h defines concrete types; use them.

TInt32 integer;

... and not...

long int integer;

3.3. String and buffer classes
Use the Symbian OS descriptor classes, such as TPtr, TDesC and TBuf<n>; instead of ‘native’ text string classes
or hand-crafted buffer classes. This results in code that is much more easily converted between wide-character and
narrow-character builds, and also has gains in efficiency and robustness over other string classes.

3.4. Date classes
Use the Symbian OS date and time classes, such as TDateTime, instead of hand-crafted alternatives.

3.5. Indentation
• indentation is performed using 4 space tabs, not spaces
• opening braces are indented to align with the code that follows; they are not aligned with the preceding code;

i.e. braces form part of the indented code.

void CItem::Function()

 {
 Foo();
 }
...and not...

void CItem::Function()
{
 Foo();
}

3.6. Class types
• it is strongly recommended that you use direct initialization for class types
• the use of copy initialization is deprecated.

Explanation: If you declare a class type using the copy constructor = like this:

TParsePtrC parser=TPtrC(FileName);

…then the initialization of TParsePtrC effectively requires a call to TParsePtrC::TParsePtrC(const
TPtrC&) followed by a call to TParsePtrC's copy constructor TParsePtrC::TParsePtrC(const
TParsePtrC&).

This is significantly more expensive than directly initalizing the class type, which is done like this:
TParsePtrC parser((TPtrC(FileName)));

and eliminates the redundant call of the copy constructor.

Note that you need the extra set of brackets round (TPtrC(FileName)) in order to allow the compiler to
recognize that you are instantiating an object of type TParsePtrC and not declaring a function that returns
something of type TParsePtrC. The brackets serve to disambiguate the code.

4. Recurring code patterns

4.1. Two-phase construction
• complex objects (typically those deriving from CBase) require two-phase construction:

- trivial constructor
- non-trivial construction - allocation of resources

• object only fully initialized when both phases have completed
• static factory functions can wrap both phases into a single call.

4.1.1. Trivial constructor
• default C++ constructor or custom constructor - cannot leave
• use the C++ member initializer list (applies to simple 'T' classes also)

CComplexObject::CComplexObject(TInt aValue,TInt aLength))
// c'tor
//
:iValue(aValue),iLength(aLength)
 {}

4.1.2. Non-trivial construction
• implemented by ConstructL() members (and overloads) - may leave

void CComplexObject::ConstructL()
// This will complete initialization of the object
//
 {
 iResource=new(ELeave) CResource;
 }

4.1.3. Static factory construction
CComplexObject* CComplexObject::NewL(TInt aLength,TInt aValue)

//
// return a handle to a new fully initialised instance of this class
//
 {
 CComplexObject* self=new(ELeave) CComplexObject(aLength,aValue); // calls c'tor
 CleanupStack::PushL(self);
 self->ConstructL();
 CleanupStack::Pop(self);
 return self;
 }

4.2. Protect your objects
Catch programming and run-time errors early by using pre- and post-conditions in functions i.e., assert that those
conditions required for correct execution hold true. Two mechanisms support this programming style:

__ASSERT_ALWAYS / __ASSERT_DEBUG class invariants

Both these mechanisms must be used. They catch programming errors early and aid in communicating the design
and purpose of the class.

4.2.1. Assertions
__ASSERT_ALWAYS to catch run-time invalid input
__ASSERT_DEBUG to catch programming errors

4.2.2. Class invariants
Define class invariants for non-trivial classes using…

• __DECLARE_TEST
Specifies the allowed stable states for that class.

Call the invariant at the start of all public methods (where feasible) using…

• __TEST_INVARIANT
Ensures the object is in a stable state prior to executing the function.
Calls are compiled out in release software builds.

For non-const methods call the invariant at the end of the method. This ensures the object has been left in a stable
state after executing the method:

void CComplexTextObject::Delete(TInt aPos,TInt aLength)
//

// Removes text content, commencing at position aPos, over aLength number of
characters
//
 {
 __TEST_INVARIANT;

 __ASSERT_ALWAYS(aPos>0,Panic(EPosOutsideTextObject));
 __ASSERT_ALWAYS(aLength>=0,Panic(EDeleteNegativeLength);

 iTextBuffer->Delete(aPos,aLength);

 __TEST_INVARIANT;
 }

4.3. Cleanup stack
Use the cleanup stack properly…
• where appropriate use it in preference to TRAP harnesses as it is quicker and more efficient
• use the checking methods of CleanupStack::Pop to check that the PushL and Pop are balanced if possible
• use CleanupStack::PopAndDestroy if you are finished using the object

Standard usage
For CBase'd heap-created objects, push and pop the pointer to the object, e.g:

CObject* object = CObject::NewL();
CleanupStack::PushL(object);
object->LeavingFunctionL();
CleanupStack::PopAndDestroy(object);

RClasses
For RClass objects that define a Close method use CleanupClosePushL where applicable

RObject object;
object.Open();
CleanupClosePushL(object);
object.LeavingFunctionL();
CleanupStack::PopAndDestroy(&object);

This may not be suitable for all RClass objects. For instance it may not be suitable for RPointerArray if you have
already added objects to the array. Calling Close in that instance could orphan the added objects unless they are
also on the CleanupStack.

If you wanted to call non-leaving functions after LeavingFunctionL, then it is preferable to leave the object on the
CleanupStack rather than calling CleanupStack::Pop and then the non-leaving function as it results in less code.

TCleanupItems
Some classes or methods will require more complicated cleanup. Use a TCleanupItem and provide a function to
call that does the required cleanup. Declare these functions as either local functions or static class functions:

void RObject::ReleaseOnCleanup(TAny* aObject)
// Allows correct cleanup of specified objects by
// using the cleanup stack instead of a trap harness.
 {
 reinterpret_cast(aObject)->Release();
 }

RObject* object=GetObject();// may increase share on a reference counted object
CleanupStack::PushL(TCleanupItem(ReleaseOnCleanup,object));
iContainer->AddL(object);
CleanupStack::Pop(object); // Pop the TCleanupItem::iPtr

Heap allocated arrays
Use CleanupArrayDeletePushL() when pushing an array of objects onto the cleanup stack. This ensures that
PopAndDestroy() will call delete[] to delete the array correctly

TObject objectArray = new(ELeave) TObject[numberOfElements];
CleanupArrayDeletePushL(objectArray);
...
CleanupStack::Pop(objectArray);

4.4. Private inheritance
Avoid private inheritance: use composition instead. Inheritance should be restricted to cases when the relationship
really is a kind of.

4.5. Multiple inheritance
In general…
• M.I. is fine; only 'M' classes (mixins) are inherited
• Mixins specify interface only, not implementation
• inherit from CBase-derived class first; achieve correct layout of the v-table
• inherit from only one CBase-derived class; other super-classes must be mixins
• refer to the Symbian Developer Library for further information

class CGlobalText : public CPlainText, public MLayDoc, public MFormatText
 {
 ...
 };

5. Casting
• casts may indicate questionable code, always use with caution
• use the correct casting operator as this improves readability and removes ambiguity
• always use the C++ casts
• avoid using C-style casts.

Note: be aware that, for historical reasons, Symbian OS provides the following macros to encapsulate the C++ cast
operators.

 REINTERPRET_CAST
 STATIC_CAST
 CONST_CAST
 MUTABLE_CAST

These are historical and should not be used in any new code. These used to be needed because some older
compilers did not fully support all the C++ casts. Always use the standard C++ casts in any new code e.g.
static_cast<>()

6. Test code
An essential part of all software development…
• must be kept up to date.
• as a general rule, if you have no test code to test a specific code area, that code WILL be bugged.
• testing is not 100% proof of bug-free code.

7. Code reviews
Every software author is responsible for having their own code reviewed.

8. Code examples
Complex conditionals
if (conditionA && conditionB)
 {
 DoSomethingA(); // even a single line requires braces
 }
else
 {
 DoSomethingB();
 DoSomethingC();
 }

1) brackets round single lines are essential as anyone who's tracked down a missing bracket bug knows. It's even
more necessary if you want to do automatic transforms on your source code (say adding some logging prints).
Much easier if you don't have to explicitly deal with single-line ifs. Remember, it's not your source, it's the next
reader's source. And they will want to add ‘just one more line’.

2) source differencing and merging is easier - the source differences will just contain the added lines of code (the
essential complexity) and not any added braces (accidental complexity).

Case statements
switch(type)
 {
case(KValueA):
case(KValueB):
 SomeActionA();
 SomeActionB();
 break;
case(KValueC):
 SomeActionC();
 break;
default:
 SomeActionD();
 }

Conditionals
Testing for NULL handles
// aHandle!=NULL is not required

if (aHandle)
 ActionA();
else
 ActionB();

Testing for zero values
// if (aLength) --> this is unconventional
if (aLength>0)
 ActionA();
else
 ActionB();

Nested ifs
if (aScore>80)
 degree=1;
else if (aScore>70)
 degree=2;
else
 degree=3;

9. References
1. Ambler, S.W. (1998a). Building Object Applications That Work: Your Step-By-Step Handbook for

Developing Robust Systems with Object Technology. New York: Cambridge University Press.
2. Ambler, S.W. (2000). Writing Robust Java code http://www.ambysoft.com/javaCodingStandards.pdf
3. Kanerva, J. (1997). The Java FAQ. Reading, MA: Addison Wesley Longman Inc.
4. Nagler, J. (1995). Coding Style and Good Computing Practices.

http://wizard.ucr.edu/~nagler/coding_style.html
5. NPS (1996). Java Style Guide. United States Naval Postgraduate School.

http://dubhe.cc.nps.navy.mil/~java/course/styleguide.html

Want to be kept informed of new articles being made available on the Symbian Developer Network?
Subscribe to the Symbian Community Newsletter.
The Symbian Community Newsletter brings you, every month, the latest news and resources for Symbian OS.

Symbian licenses, develops and supports Symbian OS, the platform for next-generation data-enabled mobile phones. Symbian is
headquartered in London, with offices worldwide. For more information see the Symbian website, http://www.symbian.com/.

Trademarks and copyright
'Symbian', 'Symbian OS' and other associated Symbian marks are all trademarks of Symbian Ltd. Symbian acknowledges the trademark rights
of all third parties referred to in this material. © Copyright Symbian Ltd 2002. All rights reserved. No part of this material may be reproduced
without the express written permission of Symbian Ltd.

http://www.ambysoft.com/javaCodingStandards.pdf
http://wizard.ucr.edu/~nagler/coding_style.html#http://wizard.ucr.edu/~nagler/coding_st
http://dubhe.cc.nps.navy.mil/~java/course/styleguide.html#http://dubhe.cc.nps.navy.mil/~java/cour
http://www.symbian.com/developer/newsletter.html
http://www.symbian.com/

	Naming conventions
	General
	Automatic variables
	Global variables
	Macros
	Pointer and reference types
	Class names
	Function names
	Member data
	Function arguments
	Constants
	Enumerations

	Header files
	General
	Class design
	Declaring functions: parameters and return values
	When to use which form of parameter/return
	What to export

	Class Layout
	Virtual functions
	Inline functions
	Header layout

	Source modules
	Writing good code
	Basic types
	String and buffer classes
	Date classes
	Indentation
	Class types

	Recurring code patterns
	Two-phase construction
	Trivial constructor
	Non-trivial construction
	Static factory construction �CComplexObject* CComplexObject::NewL(TInt aLength,TInt aValue)

	Protect your objects
	Assertions
	Class invariants

	Cleanup stack
	Private inheritance
	Multiple inheritance

	Casting
	Test code
	Code reviews
	Code examples
	References

