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Abstract

For many Fortran90 and HPF programs performing dense matrix computations,

the main computational portion of the program belongs to a class of k ernels known

as stencils. Stencil computations are commonly used in solving partial di�eren tial

equations, image processing, and geometric modeling. The e�cien t handling of such

stencils is critical for achieving high performance on distributed-memory mac hines.

Compiling stencils into e�cient code is viewed as so important that some companies

have built special-purpose compilers for handling them and others ha ve added stencil-

recognizers to existing compilers.

In this paper we present a general compilation strategy for stencils written using

Fortran90 array constructs. Our strategy is capable of optimizing single or m ulti-

statement stencils and is applicable to stencils speci�ed with shift intrinsics or with

array-syntax all equally well. The strategy eliminates the need for pattern-recognition

algorithms by orchestrating a set of optimizations that address the overhead of both

intraprocessor and interprocessor data movement that results from the translation of

Fortran90 array constructs. Our experimen tal results show that code produced by this

strategy beats or matches the best code produced by the special-purpose compilers or

pattern-recognition schemes that are known to us. In addition, our strategy produces

highly optimized code in situations where the others fail, producing several orders of

magnitude performance impro vement, and thus provides a stencil compilation strategy

that is more robust than its predecessors.

Keyw ords: stencil compilation, shift optimization, comm unication unioning, state-

ment partitioning, High Performance Fortran
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1 Introduction

High-Performance Fortran (HPF)[14], an extension of Fortran90, has attracted considerable
attention as a promising language for writing portable parallel programs. HPF o�ers a simple
programming model shielding programmers from the intricacies of concurrent programming
and managing distributed data. Programmers express data parallelism using Fortran90 array
operations and use data layout directives to direct partitioning of the data and computation
among the processors of a parallel machine.

In many programs performing dense matrix computations, the main computational por-
tion of the program belongs to a class of kernels known as stencils. For HPF to gain accep-
tance as a vehicle for parallel scienti�c programming, it must achieve high performance on
this important class of problems. Compiling stencils into e�cient code is viewed as so im-
portant that some companies have built special-purpose compilers for handling them [4, 5, 6]
and others have added stencil-recognizers to existing HPF compilers [1, 2]. Each of these
previous approaches to stencil compilation had signi�cant limitations that restricted the
types of stencils that they could handle.

In this paper, we focus on the problem of optimizing stencil computations, no matter
how they are instantiated by the programmer, for execution on distributed-memory archi-
tectures. Our strategy orchestrates a set of optimizations that address the overhead of both
intraprocessor and interprocessor data movement that results from the translation of For-
tran90 array constructs. Additional optimizations address the issues of scalarizing array
assignment statements, loop fusion, and data locality.

In the next section we brie
y discuss stencil computations and their execution cost on
distributed-memory machines. In Section 3 we give an overview of our compilation strategy,
and then discuss the individual optimizations. In Section 4 we present an extended example
to show how our strategy handles a di�cult case. Experimental results are given in Section 5,
and in Section 6 we compare this strategy with other known e�orts.

2 Stencil Computations

In this section we introduce stencil computations and give an overview of their execution
cost on distributed-memory machines. We also introduce the normalized intermediate form
which our compiler uses for all stencils.

2.1 Stencils

A stencil is a stylized matrix computation in which a group of neighboring data elements
are combined to calculate a new value. They are typically combined in the form of a sum
of products. This type of computation is common in solving partial di�erential equations,
image processing, and geometric modeling. The Fortran90 array assignment statement in
Figure 1 is commonly referred to as a 5-point stencil. In this statement src and dst are
arrays, and C1{C5 are either scalars or arrays. Each interior element of the result array dst
is computed from the corresponding element of the source array src and the neighboring
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DST(2:N-1,2:N-1) = C1 * SRC(1:N-2,2:N-1)
& + C2 * SRC(2:N-1,1:N-2)
& + C3 * SRC(2:N-1,2:N-1)
& + C4 * SRC(3:N ,2:N-1)
& + C5 * SRC(2:N-1,3:N )

Figure 1: 5-point stencil computation.

DST = C1 * CSHIFT(CSHIFT(SRC,-1,1),-1,2)
& + C2 * CSHIFT(SRC,-1,1)
& + C3 * CSHIFT(CSHIFT(SRC,-1,1),+1,2)
& + C4 * CSHIFT(SRC,-1,2)
& + C5 * SRC
& + C6 * CSHIFT(SRC,+1,2)
& + C7 * CSHIFT(CSHIFT(SRC,+1,1),-1,2)
& + C8 * CSHIFT(SRC,+1,1)
& + C9 * CSHIFT(CSHIFT(SRC,+1,1),+1,2)

Figure 2: 9-point stencil computation.

RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
T = U + RIP + RIN
T = T + CSHIFT(U,SHIFT=-1,DIM=2)
T = T + CSHIFT(U,SHIFT=+1,DIM=2)
T = T + CSHIFT(RIP,SHIFT=-1,DIM=2)
T = T + CSHIFT(RIP,SHIFT=+1,DIM=2)
T = T + CSHIFT(RIN,SHIFT=-1,DIM=2)
T = T + CSHIFT(RIN,SHIFT=+1,DIM=2)

Figure 3: Problem 9 from the Purdue Set.

elements of src on the North, West, South, and East. A 9-point stencil that computes all
grid elements by exploiting the cshift intrinsic might be speci�ed as shown in Figure 2.

In the previous two examples the stencils were speci�ed as a single array assignment
statement, but this need not always be the case. Consider again the 9-point stencil above.
If the programmer attempted to optimize the program by hand, or if the stencil was pre-
processed by other optimization phases of the compiler, we might be presented with the code
shown in Figure 31.

A goal of our work is to generate the same, highly-optimized code for all stencil computa-
tions, regardless of how they have been written in HPF. For this reason, we have designed our
optimizer to target the most general, normalized input form. All stencil and stencil-like com-
putations can be translated into this normal form by factoring expressions and introducing
temporary arrays. In fact, this is the intermediate form used by several distributed-memory
compilers [18, 23, 3]. The normal form has several distinguishing characteristics:

� cshift intrinsics and temporary arrays have been inserted to perform data movement
needed for operations on array sections that have di�erent processor mappings.

1This example was taken from Problem 9 of the Purdue Set [21] as adapted for Fortran D benchmarking
by Thomas Haupt of NPAC.
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ALLOCATE TMP1, TMP2, TMP3, TMP4
TMP1 = CSHIFT(SRC,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(SRC,SHIFT=-1,DIM=2)
TMP3 = CSHIFT(SRC,SHIFT=+1,DIM=1)
TMP4 = CSHIFT(SRC,SHIFT=+1,DIM=2)
DST(2:N-1,2:N-1) = C1 * TMP1(2:N-1,2:N-1)
& + C2 * TMP2(2:N-1,2:N-1)
& + C3 * SRC (2:N-1,2:N-1)
& + C4 * TMP3(2:N-1,2:N-1)
& + C5 * TMP4(2:N-1,2:N-1)
DEALLOCATE TMP1, TMP2, TMP3, TMP4

Figure 4: Intermediate form of 5-point stencil computation.

� Each cshift intrinsic occurs as a singleton operation on the right-hand side of an array
assignment statement and is only applied to whole arrays.

� The expression that actually computes the stencil operates on operands that are per-
fectly aligned, and thus no communication operations are required.

For example, given the 5-point stencil computation presented in Figure 1, the CM Fortran
compiler would translate it into the sequence of statements shown in Figure 4.

For the rest of this paper we assume that all stencil computations have been normalized
into this form, and that all arrays are distributed in a block fashion. And although we
concentrate on stencils expressed using the cshift intrinsic, the techniques presented can
be generalized to handle the eoshift intrinsic as well.

2.2 Stencil Execution

The execution of a stencil computation on a distributed-memory machine has two major
components: the data movement associated with a set of cshift operations and the calcu-
lation of the sum of products.

In the �rst phase of a stencil computation, all data movement associated with cshift

operations is performed. We illustrate the data movement for a single cshift using an
example. Figure 5 shows the e�ects of a cshift by -1 along the second dimension of a
two-dimensional block-distributed array. When a cshift operation is performed on a
distributed array, two major actions take place:

1. Data elements that must be shifted across processing element (PE) boundaries are sent
to the appropriate neighboring PE. This is the interprocessor component of the shift.
In Figure 5, the dashed lines represent this type of data movement, in this case the
transfer of a column of data between neighboring processors.

2. Data elements shifted within a PE are copied to the appropriate locations in the
destination array. This is the intraprocessor component of the shift. The solid lines in
Figure 5 represent this data movement.

Following data movement, the second phase of a stencil computation is the execution
of a loop nest to calculate a sum of products. The loop nest for a stencil computation is
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Figure 5: DST = CSHIFT(SRC,SHIFT=-1,DIM=2)

constructed during compilation in two steps. First the compiler applies scalarization [24] to
replace Fortran 90 array operations with a serial loop nest that operates on individual data
elements. Next, the compiler transforms this loop nest into SPMD code [8]. The SPMD
code is synthesized by reducing the loop bounds so that each PE computes values only for
the data it owns. A copy of this transformed loop nest, known as the subgrid loop nest,
executes on each PE of the parallel machine.

Due to the nature of stencils which make many distinct array references, these subgrid
loops can easily become memory bound. In such loops, the CPU must often sit idle while it
waits for the array elements to be fetched from memory.

3 Compilation Strategy

In this section we start with an overview of our compilation strategy, and then present the
individual component optimizations.

Given a stencil computation in normal form (as described in Section 2.1), we optimize
it by applying a sequence of four optimizations. The �rst addresses the intraprocessor data
movement associated with the cshift operations, eliminating it when possible. The second
rearranges the statements into separate blocks of computation operations and communica-
tion operations. This optimizes the stencil by promoting loop fusion for the computation
operations and it prepares the communication operations for further optimization by the
following phase. Next, the interprocessor data movement of the cshift operations is opti-
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mized by eliminating redundant and partially-redundant communication. Finally, loop-level
transformations are applied to optimize the computation.

3.1 Optimizing Intraprocessor Data Movement

Intraprocessor data movement associated with shift intrinsics is completely eliminated when
possible. This is accomplished by an optimization we call o�set arrays [15]. This optimization
determines when the source array (src) and the destination array (dst) of the cshift can
share the same memory locations. If this is the case only the interprocessor data movement
needs to occur. We exploit overlap areas [11] to receive the data that is copied between
processors. After this has been accomplished, appropriate references to the destination
array can be rewritten to refer to the source array with indices o�set by the shift amount.

The principal challenge then is to determine when the source and destination arrays can
share storage. We have established a set of criteria to determine when it is safe and pro�table
to create an o�set array. These criteria, and an algorithm used to verify them are described
in detail elsewhere [15, 22]. In general, our approach allows the source and destination arrays
of a shift operation to share storage between destructive updates to either array when the
shift o�set is a small constant.

Once we have determined that the destination array of an assignment statement DST =

CSHIFT(SRC,SHIFT,DIM) may be an o�set array, we perform the following transformations
on the code. These transformations take advantage of the data that may be shared between
the source array src and destination array dst and move only the required data between
the PEs.

First we replace the shift operation with a call to a routine that moves the o�-processor
data of SRC into an overlap area: CALL OVERLAP SHIFT(SRC,SHIFT,DIM). We then replace
all uses of the array dst, that are reached from this de�nition, with a use of the array src.
The newly created references to src carry along special annotations representing the values
of shift and dim. Finally, when creating subgrid loops during the scalarization phase, we
alter the subscript indices used for the o�set arrays. The array subscript used for the o�set
reference to src is identical to the subscript that would have been generated for dst with
the exception that the dim-th dimension has been incremented by the shift amount.

The algorithm that we have devised for verifying the criteria and for performing the
above transformations is based upon the static single assignment (SSA) intermediate repre-
sentation [9]. The algorithm, after validating the use of an o�set array at a shift operation,
transforms the program and propagates that information in an optimistic manner. The prop-
agation continues until there are no more references to transform or one of the criteria has
been violated. When a criterion has been violated, it may be necessary to insert an array copy
statement into the program to maintain its original semantics. The inserted copy statement
performs the intraprocessor data movement that was avoided with the overlap shift.

Due to the o�set array algorithm's optimistic nature, it is able to eliminate intraprocessor
data movement associated with shift operations in many di�cult situations. In particular,
it can determine when o�set arrays can be exploited even when their de�nition and uses are
separated by program control 
ow. This allows our stencil compilation strategy to eliminate
intraprocessor data movement in situations where other strategies fail.

6



3.2 Statement Reordering

We follow the o�set array optimization with our context partitioning optimization [17].
This optimization partitions a set of Fortran90 statements into groups of congruent array
statements2, scalar expressions, and communication operations. This assists the compilation
of stencils in the following two ways:

1. First, by grouping congruent array statements together, we ensure that as subgrid
loops are generated, via scalarization and loop fusion, as much computation as possible
is placed within each loop without causing the loops to be over-fused [22]. Loops
are over-fused when the code produced for the resulting parallel loops exhibits worse
performance than the code for the separate parallel loops. Also, the structure of the
subgrid loops produced is very regular. These characteristics increase the chances that
loop transformations performed later are successful in exploiting data reuse and data
locality.

2. Second, by grouping together communication operations, we simplify the task of re-
ducing the amount of interprocessor data movement, which we discuss in the next
subsection.

To accomplish context partitioning, we use an algorithm proposed by Kennedy and
McKinley [16]. While this algorithm was developed to partition parallel and serial loops
into fusible groups, we use it to partition Fortran90 statements into congruence classes.
The algorithm works on the data dependence graph (ddg)which must be acyclic. Since we
apply it to a set of statements within a basic block, our dependence graph contains only
loop-independent dependences and thus is acyclic. A complete description of our context
partitioning algorithm is available elsewhere [17, 22], along with a discussion of its advan-
tages for both SIMD and MIMD machines.

Context partitioning is key to our ability to optimize multi-statement stencils as fully as
single-statement stencils. No other stencil compilation strategy has this capability.

3.3 Minimizing Interprocessor Data Movement

Once intraprocessor data movement has been eliminated and we have partitioned the state-
ments into groups of congruent operations, we focus our attention on the interprocessor data
movement that occurs during the calls to cshift. Due to the nature of o�set arrays, we
are presented with many opportunities to eliminate redundant and partially redundant data
movement. We call this optimization communication unioning [22], since it combines a set
of communication operations to produce a smaller set of operations.

There are two key observations that allow us to �nd and eliminate redundant inter-
processor data movement. First, shift operations, including overlap shift, are commuta-
tive:

CSHIFT(CSHIFT(SRC,+1,1),-1,2) � CSHIFT(CSHIFT(SRC,-1,2),+1,1)

2Array statements are congruent if they operate on arrays with identical distributions and cover the same
iteration space.
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Thus, for arrays that are shifted more than once, we can order the shift operations in any
manner we like without a�ecting the result. Second, since all overlap shifts move data
into the overlap areas of the subgrids, a shift of a large amount in a given direction and
dimension may subsume all shifts of smaller amounts in the same direction and dimension.
More formally, an overlap shift of amount i in dimension k is redundant if there exists
an overlap shift of amount j in dimension k such that jjj � jij and sign(j) = sign(i).
Since we have already applied our context partitioning optimization to the program, we can
restrict our focus to the individual groups of calls to overlap shift.

To eliminate redundant data movement using communication unioning, we �rst use the
commutative property to rewrite all the shifts for multi-o�set arrays such that the over-
lap shifts for the lower dimensions occur �rst and are used as input to the overlap shifts
for higher dimensions. We then reorder all the calls to overlap shift, sorting them by
the shifted dimension, lowest to highest. We now scan the overlap shifts for the low-
est dimension and keep only the largest shift amount in each direction. All others can be
eliminated as redundant.

Communication unioning then proceeds to process the overlap shifts for each higher
dimension in ascending order by performing the following three actions:

1. We scan the overlap shifts for the given dimension to determine the largest shift
amount in each direction.

2. We look for source arrays that are already o�set arrays, indicating a multi-o�set array.
For these, we use the annotations associated with the source array to create an RSD to
be used as an optional fourth argument in the call to overlap shift. The argument
indicates those data elements from the adjacent overlap areas that should also be moved
during the shift operation. Mapping the annotations to the RSD is simply a matter of
adding the annotations to the corresponding RSD dimension; the annotation is added
to the lower bound of the RSD if the shift amount is negative, otherwise it is added to
the upper bound. As with shift amounts, larger RSDs subsume smaller RSDs.

3. We generate a single overlap shift in each direction, using the largest shift amount
and including the RSD as needed { all other overlap shifts for that dimension can
be eliminated.

This procedure eliminates all redundant o�set-shift communication, including partially re-
dundant data movement associated with accessing \corner elements" of stencils.

This algorithm is unique in that it is based upon the understanding and analysis of the
shift intrinsics, rather than being based upon pattern-matching as is done in many stencil
compilers. This optimization eliminates all communication for a shifted array, except for a
single message in each direction of each dimension. The number of messages for the stencil
is thus minimized.

As an example, consider again the 9-point stencil computation that we presented in
Figure 2. The original stencil speci�cation required twelve cshift intrinsics. After apply-
ing communication unioning, only the four calls to overlap shift shown in Figure 6 are
required.

Figures 7{10 display the data movement that results from these calls. The �gures contain
a 5 � 5 subgrid (solid lines) surrounded by its overlap area (dashed lines). Portions of the
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CALL OVERLAP SHIFT(SRC,-1,1)
CALL OVERLAP SHIFT(SRC,+1,1)
CALL OVERLAP SHIFT(SRC,-1,2,[0:N+1,*])
CALL OVERLAP SHIFT(SRC,+1,2,[0:N+1,*])

Figure 6: Result of communication unioning for 9-point stencil.

Figure 7: First half of 9-point stencil com-
munication

Figure 8: Result of communication oper-
ations

adjacent subgrids are also shown. Figure 7 depicts the data movement speci�ed by the �rst
two calls. The result of that data movement is shown in Figure 8, where the overlap areas
have been properly �lled in. The data movement of the last two calls is shown in Figure 9.
Notice how the last two calls pick up data from the overlap areas that were �lled in by the
�rst two calls, and thus they populate all overlap area elements needed for the subsequent
computation, as shown in Figure 10.

Figure 9: Second half of 9-point stencil
communication

Figure 10: Result of communication op-
erations
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3.4 Optimizing the Computation

Finally, after scalarization has produced a subgrid loop nest, we can optimize it by applying
a set of loop-level transformations designed to improve the performance of memory-bound
programs. These transformations include unroll-and-jam, which addresses memory refer-
ences, and loop permutation, which addresses cache references. Each of these optimize the
program by exploiting reuse of data values. These optimizations are described in detail
elsewhere [7, 19] and are not addressed in this paper.

4 An Extended Example

In this section, we trace our compilation strategy through an extended example. This detailed
examination shows how our strategy is able to produce code that matches or beats hand-
optimized code. It also demonstrates how we are able to handle stencil computations that
cause other methods to fail.

For this exercise, we have chosen to use Problem 9 of the Purdue Set [21], as adapted for
Fortran D benchmarking by Thomas Haupt of NPAC [20, 13]. The program kernel is shown
in Figure 3. The arrays T, U, RIP, and RIN are all two-dimensional and have been distributed
in a (block,block) fashion. This kernel computes a standard 9-point stencil, identical to
that computed by the single-statement stencil shown in Figure 2. The reason it has been
written in this fashion is to reduce memory requirements. Given the single-statement 9-point
stencil, most Fortran90 compilers will generate 12 temporary arrays, one for each cshift.
This greatly restricts the size of the problem that can be solved on a given machine. In
contrast, the Problem 9 speci�cation can be computed with only 3 temporary arrays since
the live-ranges of the last 6 cshifts do not overlap. This reduces the temporary storage
requirements by a factor of four! Additionally, the assignments of the cshifts into RIP and
RIN perform a common subexpression elimination, removing four duplicate cshifts from
the original speci�cation of the stencil.

Figure 11 shows a comparison of execution times for the single-statement cshift stencil
in Figure 2 and the multi-statement Problem 9 stencil in Figure 3. The programs were
compiled with IBM's xlhpf compiler and executed on a 4-processor SP-2 for varying problem
sizes. As can be seen, the single-statement stencil speci�cation exhausted the available
memory for the larger problem sizes, even though each PE had 256Mbytes of real RAM.

4.1 Program Normalization

We now step through the compilation of the stencil code in Figure 3 using the strategy
presented in this paper. Figure 12 shows the stencil code after normalization. The six
cshifts that are subexpressions in the assignment statements to array T are hoisted from
the statements and assigned to compiler-generated temporary arrays. Since the live ranges
of the temporary arrays do not overlap, a single temporary can be shared among all the
statements. Alternatively, each cshift could receive its own temporary array { that would
not a�ect the results of our stencil compilation strategy.
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Figure 11: Comparison of two 9-point stencil speci�cations.

RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
T = U + RIP + RIN
ALLOCATE TMP
TMP = CSHIFT(U,SHIFT=-1,DIM=2)
T = T + TMP
TMP = CSHIFT(U,SHIFT=+1,DIM=2)
T = T + TMP
TMP = CSHIFT(RIP,SHIFT=-1,DIM=2)
T = T + TMP
TMP = CSHIFT(RIP,SHIFT=+1,DIM=2)
T = T + TMP
TMP = CSHIFT(RIN,SHIFT=-1,DIM=2)
T = T + TMP
TMP = CSHIFT(RIN,SHIFT=+1,DIM=2)
T = T + TMP
DEALLOCATE TMP

Figure 12: Problem 9 after normalization.

4.2 O�set Array Optimization

Once all shift operations have been identi�ed and hoisted into their own assignment state-
ments, we apply our o�set array optimization. For this example, our algorithm determines
that all the shifted arrays can be made into o�set arrays. As can be seen in Figure 13, all
the cshift operations have been changed into overlap shift operations, and references
to the assigned arrays have been replaced with o�set references to the source array U. All
intraprocessor data movement has thus been eliminated.

In addition, notice how the temporary arrays, both the compiler-generated TMP array
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CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)
T = U + U<+1;0> + U<�1;0>

CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2)
T = T + U<0;�1>

CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2)
T = T + U<0;+1>

CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=-1,DIM=2)
T = T + U<+1;�1>

CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=+1,DIM=2)
T = T + U<+1;+1>

CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=-1,DIM=2)
T = T + U<�1;�1>

CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=+1,DIM=2)
T = T + U<�1;+1>

Figure 13: Problem 9 after o�set array optimization.

CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2)
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2)
CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=-1,DIM=2)
CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=+1,DIM=2)
CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=-1,DIM=2)
CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=+1,DIM=2)
T = U + U<+1;0> + U<�1;0>

T = T + U<0;�1>

T = T + U<0;+1>

T = T + U<+1;�1>

T = T + U<+1;+1>

T = T + U<�1;�1>

T = T + U<�1;+1>

Figure 14: Problem 9 after context partitioning optimization.

and the user-de�ned RIP and RIN, are no longer needed to compute the stencil. If there are
no other uses of these arrays in the routine, they need not be allocated. This reduction in
storage requirements allows for larger problems to be solved on a given machine.

4.3 Context Partitioning Optimization

After o�set array optimization, we apply our context partitioning algorithm. This al-
gorithm begins by determining the congruence classes present in the section of code. In
this example there are only two congruence classes: the array statements, which are all
congruent, and the communication statements. The dependence graph is computed next.
There are only two types of dependences that exist in the code: true dependences from the
overlap shift operations to the expressions that use the o�set arrays, and the true and
anti-dependences that exist between the multiple occurrences of the array T. Since all the
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CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2,[0:N+1,*])
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])
T = U + U<+1;0> + U<�1;0>

T = T + U<0;�1>

T = T + U<0;+1>

T = T + U<+1;�1>

T = T + U<+1;+1>

T = T + U<�1;�1>

T = T + U<�1;+1>

Figure 15: Problem 9 after communication unioning optimization.

dependences between the two classes are from statements in the communication class to
statements in the congruent array class, the context partitioning algorithm is able to parti-
tion the statements perfectly into two groups. The result is shown in Figure 14. Since the
array statements are now adjacent, scalarization will be able to fuse them into a single loop
nest. Similarly, the communication statements are adjacent and communication unioning
will be successful at its task.

4.4 Communication Unioning Optimization

We now turn our attention to the interprocessor data movement speci�ed in the over-
lap shift operations. As described in Section 3.3, we �rst exploit the commutativity
of overlap shift operations and rewrite multi-dimensional overlap shifts so that the
lower dimensions are shifted �rst. No rewriting is necessary for this example since all the
dimension 1 shifts occur �rst, as can be seen in Figure 14.

Next we look at the shifts across the �rst dimension. Since there is only a single shift
of distance one in each direction, there is no redundant communication to eliminate. In
the second dimension we again �nd only shifts of distance one. However, we discover four
multi-o�set arrays. Examining the annotations of the o�set arrays, we create RSD's that
summarize the overlap areas that are necessary. We generate the two calls to overlap shift

that include the RSD's and then eliminate all other overlap shift calls for the second
dimension. The resulting code is shown in Figure 15. Communication unioning has reduced
the amount of communication to a minimum: a single communication operation for each
dimension in each direction.

4.5 Scalarization and Memory Optimizations

Figure 16 shows the code after scalarization. The code now contains only 4 interprocessor
communication operations, and no intraproceesor data movement is performed. Final trans-
formations re�ne the loop bounds to generate a node program that only accesses the subgrids
local to each PE. Our strategy has generated a single loop nest which, due to the nature
of stencil computations, is ripe with opportunities for memory hierarchy optimization. We
hand the �nal code to an optimizing node compiler that performs loop-level transformations
such as scalar replacement and unroll-and-jam.
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CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2,[0:N+1,*])
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])
DO i=1,N

DO j=1,N
T(i,j) = U(i,j) + U(i+1,j) + U(i-1,j)
T(i,j) = T(i,j) + U(i,j-1)
T(i,j) = T(i,j) + U(i,j+1)
T(i,j) = T(i,j) + U(i+1,j-1)
T(i,j) = T(i,j) + U(i+1,j+1)
T(i,j) = T(i,j) + U(i-1,j-1)
T(i,j) = T(i,j) + U(i-1,j+1)

ENDDO
ENDDO

Figure 16: Problem 9 after scalarization.

It is important to note that our strategy also produces the exact same code when given
the single-statement 9-point stencil from Figure 2. This example shows how our stencil com-
pilation algorithm is capable of fully optimizing stencils, no matter how they are instantiated
by the programmer.

5 Experimental Results

To measure the performance boost supplied by each step of our stencil compilation strategy,
we ran a set of tests on a 4-processor IBM SP-2. We started by generating a naive translation
of the Problem 9 test case into Fortran77+MPI. This is considered our \original" version.
We then successively applied the transformations as outlined in the preceding section and
measured the execution time. The results are shown in Figure 17.

Before analyzing the results in Figure 17, it is worthwhile to compare them to the results
shown in Figure 11 for the Problem 9 code. The performance of our \original" MPI version
of the code for this example is already an order of magnitude faster than the code produced
by IBM's xlhpf compiler: 0.475 seconds versus 4.77 seconds for the largest problem size.

After applying our o�set array optimization to the Fortran77+MPI test case as shown
in Figure 13, execution time improves by 45%, equivalent to a speedup of 1.80. Next, after
applying context partitioning, as shown in Figure 14, scalarization was able to merge all of
the computation into a single loop nest, improving execution time an additional 31%. At
this point, we have reduced the execution time of the original program by 62%, a speedup
of 2.64.

As shown in Figure 15, our communication unioning optimization eliminates four com-
munication operations, which reduces the execution time by 41% when compared to the
context-optimized version. Applying memory optimizations such as scalar replacement and
unroll-and-jam further reduce the execution time another 14%. The execution time of the
original program has been trimmed by 81%, equivalent to a speedup of 5.19. Comparing our
code to the code produced by IBM's xlhpf compiler shows a speedup by a factor of 52!

Lest someone think that we have chosen IBM's xlhpf compiler as a straw man, we have
collected some additional performance numbers. We generated a third version of a 9-point
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Figure 17: Step-wise results from stencil compilation strategy on Problem 9 when executed
on an SP-2.

stencil computation, this one using array syntax similar to the 5-point stencil shown in
Figure 1. This 9-point stencil computation only computes the interior elements of the matrix;
that is, elements 2:N-1 in each dimension. A graph comparing its execution time to the other
two 9-point stencil speci�cations is given in Figure 18. The IBM xlhpf compiler was used
in all cases. It is interesting to note that for the array syntax stencil the xlhpf compiler
produced performance numbers that tracked our best performance numbers for all problem
sizes except the largest, where we had a 10% advantage.

It is important to note that the stencil compilation strategy that we have presented
handles all three speci�cations of the 9-point stencil equally well. That is because our
algorithm is based upon the analysis and optimization of the base constructs upon which
stencils are built. Our algorithm is designed to handle the lowest common denominator { a
form into which our compiler can transform all stencil computations.

6 Related Work

One of the �rst major e�orts to speci�cally address the compilation of stencil computations
for a distributed-memory machine was the stencil compiler for the CM-2, also known as the
convolution compiler [4, 5, 6]. The compiler eliminated intraprocessor data movement and
optimized the interprocessor data movement by exploiting the CM-2's polyshift communica-
tion [10]. The �nal computation was performed by hand-optimized library microcode that
took advantage of several loop transformations and a specialized register allocation scheme.

Our general compilation methodology produces the same style code as this specialized
compiler. We both eliminate intraprocessor data movement and minimize interprocessor
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Figure 18: Comparison of three 9-point stencil speci�cations.

data movement. Finally, our use of a loop-level optimizer to perform the unroll-and-jam
optimization accomplish the same data reuse as the stencil compiler's \multi-stencil swath".

The CM-2 stencil compiler had many limitations however. It could only handle single-
statement stencils. The stencil had to be speci�ed using the cshift intrinsic; no array-syntax
stencils would be accepted. Since the compiler relied upon pattern matching, the stencil had
to be in a very speci�c form: a sum of terms, each of which is a coe�cient multiplying a
shift expression. No variations were possible. And �nally, the programmer had to recognize
the stencil computation, extract it from the program and place it in its own subroutine to
be compiled by the stencil compiler.

Our compilation scheme handles a strict superset of patterns handled by the CM-2 sten-
cil compiler. In their own words, they \avoid the general problem by restricting the domain
of applicability." [6] We have placed no such restrictions upon our work. Our strategy
optimizes single-statement stencils, multi-statement stencils, cshift intrinsic stencils, and
array-syntax stencils all equally well. And since our optimizations were designed to be incor-
porated into an HPF compiler, they bene�t those computations that only slightly resemble
stencils.

There are also some other commercially available compilers that can handle certain styl-
ized, single-statement stencils. The MasPar Fortran compiler avoids intraprocessor data
movement for single-statement stencils written using array notation. This is accomplished
by scalarizing the Fortran90 expression (avoiding the generation of cshifts) and then us-
ing dependence analysis to �nd loop-carried dependences that indicate interprocessor data
movement. Only the interprocessor data is moved, and no local copying is required. How-
ever, the compiler still performs all the data movement for single-statement stencils written
using shift intrinsics. This strategy is shared by many Fortran90/HPF compilers that focus
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on handling scalarized code. As with the CM-2 stencil compiler, our methodology is a strict
superset of this strategy.

Gupta, et al. [12], in describing IBM's xlhpf compiler, state that they are able to reduce
the number of messages for multi-dimensional shifts by exploiting methods similar to ours.
However, they do not describe their algorithm for accomplishing this, and it is unknown
whether they would be able to eliminate the redundant communication that arises from
shifts over the same dimension and direction but of di�erent distances.

The Portland Group's pghpf compiler, as described by Bozkus, et al. [1, 2], performs
stencil recognition and optimizes the computation by using overlap shift communication.
They also perform a subset of our communication unioning optimization. However, they are
limited to single-statement expressions in both cases.

In general, there have been several di�erent methods for handling speci�c forms of stencil
computations. Our strategy handles a more general form of stencil computations than these
earlier methods.

7 Conclusion

In this paper, we presented a general compilation scheme for compiling HPF stencil com-
putations for distributed-memory architectures. The strategy optimizes such computations
by orchestrating a unique set of optimizations. These optimizations eliminate unnecessary
intraprocessor data movement resulting from cshift intrinsics, rearrange the array state-
ments to promote pro�table loop-fusion, eliminate redundant interprocessor data movement,
and optimize memory accesses via loop-level transformations. The optimizations are general
enough to be included in a general-purpose HPF/Fortran90 compiler as they will bene�t
many computations, not just those that �t a stencil pattern.

The strength of these optimizations is that they operate on a normal form into which
all stencil computations can readily be translated. This enables us to optimize all stencil
computations regardless of whether they are written using array syntax or explicit shift in-
trinsics, or whether the stencil is computed by a single statement or multiple statements.
This approach is signi�cantly more general than stencil compilation approaches in previous
compilers. Even though we focused on the compilation of stencils for distributed-memory
machines in this paper, the techniques presented are equally applicable to optimizing sten-
cil computations on shared-memory and scalar machines (with the exception of reducing
interprocessor movement).
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