
ABSTRACT
This paper describes a methodology for designing Open
Implementations -- software modules that can adapt or change
their internals to accommodate the needs of different clients.
Analysis techniques are used for capturing domain knowledge,
user requirements, and domain properties that influence the
module's eventual implementation. Design techniques are used
for determining and refining the interfaces by which clients
control the modules implementation strategies. The methodology
has evolved over the past two years in several pilot projects.

Keywords: Software Design Methodology, Software Reuse, Open
Implementation, Framework, Metaobject Protocol

INTRODUCTION
This paper describes Open Implementation Analysis and Design
(OIA/D), a method for designing and implementing reusable
software modules. An Open Implementation (OI) of a software
module exposes facets of its internal operation to client control in
a principled way [Kic91, Kic96]. The key assumption behind
Open Implementation is that software modules can be more
reusable if they can be designed to accommodate a range of
implementation strategies. Since no one implementation strategy
is adequate for all clients, the module should support several
implementation strategies and allow clients to help select the
strategy actually used.

The Open Implementation approach has been applied in a wide
variety of domains, such as operating systems [Mae96], graphical
user interfaces [Rao91], object-oriented programming systems
[Kic91a], and (within Xerox) distributed document systems.
Although the approach provides many benefits, it is difficult for
software engineers to apply because it requires them to design
both modules that can effectively accommodate multiple
implementation strategies and interfaces that permit clients to
effectively use the modules. This paper addresses these
difficulties by describing a method that enables software

engineers to design effective Open Implementations in a
disciplined way. This OIA/D method is currently the only defined
approach available to help engineers apply the concepts of Open
Implementation. The method is a result of our previous work in
designing and building metaobject protocols [Kic91a, Mae96,
Rao91], and is currently in use in two pilot projects within
Xerox.

In this paper, we provide an overview of Open Implementation
by comparing the approach to other methods of achieving
reusable modules and by outlining the difficulties faced by a
software engineer designing an Open Implementation. We then
present an overview of the OIA/D method, followed by a detailed
description of the analysis and design phases of the method. An
example of the development of a block cache manager for a file
management system is used to illustrate the concepts of the
method. For further detail on the example, the reader is referred
to Maeda [Mae96].

RELATED WORK
Software reuse has long been a desired goal to reduce the time
and cost of developing and maintaining software systems.
Goguen has written that “[s]uccessful software reuse depends
upon the following tasks being sufficiently easy:

• finding old parts that are close enough to what you need,
• understanding those parts,
• getting them to do what you need now, and
• putting them all together correctly” [p. 160, Gog89].
The Open Implementation approach primarily helps engineers
address the third task listed above by enabling engineers to build
software modules1 that are configurable, and therefore usable (or
reusable), by a broad range of clients. The approach thus enables
code reuse.

Various mechanisms have been proposed to enable software
engineers to perform code reuse, including, among others,
program transformation [BD77, Bal81] and component
generation approaches [DFSS89, BSST93]. Unlike most existing
transformation and generation approaches to help engineers
configure existing software parts, the Open Implementation
approach does not require a specialized language, generator, or
environment. Rather, the concept is that a single module, often
created with an existing programming language, can support
multiple clients. For example, Lortz and Shin describe how Open

1 Similar to the definition given by Parnas [Par72], the term
module in this paper is used to refer to a work assignment.

Open Implementation Analysis and Design

Chris Maeda Arthur Lee Gail Murphy Gregor Kiczales

Xerox PARC Korea University University of British Columbia Xerox PARC

maeda@parc.xerox.com alee@psl.korea.ac.kr murphy@cs.ubc.ca gregor@parc.xerox.com

Copyright © 1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

Implementations may be used to create customized server objects
in a real-time database system in C++ [LS94]. In their approach,
clients can express the properties and behavior they desired from
a server as a string parameter passed to a server factory:2

MdartsArray<int> parts_list (“parts_list”,
“persistent; range_checked; sparse;
size=1000”);

The server factory object parses the second parameter to
determine the appropriate class of server to create and provide.
Passing a parameter with client information is just one way of
providing an Open Implementation. The range of mechanisms
that may be used to realize an Open Implementation module, and
the ramifications of the various mechanisms, are described
further by Kiczales and colleagues [KLLM96].

In comparison to existing software development methods, such as
structured design [YC79], Booch [Boo91] , OMT [RBPFL91] and
Shlaer-Mellor [MS88], that are intended to help a software
engineer create a software system from a set of requirements, the
OIA/D method focuses on helping an engineer design a specific,
or small set, of software modules that are intended to be used as
part of several systems. Instead of being a replacement for
existing software development, then, the OIA/D method is a
companion method. An engineer may use an existing---typically
object-oriented---method to help model a problem domain and
eventually implement the system. The engineer may then later
apply the OIA/D method to help reanalyze and redesign modules
that are found to be potentially reusable.

THE OI PROBLEM
The goals of any Open Implementation (OI) are to ensure that
suitable implementation strategies are available for a range of
clients, to ensure that the appropriate strategy may be selected
for or by a client, and to ensure that the benefits associated with
black-box abstraction are not unreasonably compromised. The

2 This example is from Lortz and Shin [p. 457, LS94].

designers and builders of an OI must take the client’s perspective
and determine:

• the facets of client behavior that are relevant to the OI
module,

• means of determining those facets of client behavior,
• the strategies to be implemented in the OI module, and
• a means of selecting a strategy for a particular client

behavior profile.
The ease with which each of these issues can be determined has
a strong effect on both the design of the interfaces and on the
internals of the OI module. For instance, if it is hard to measure
client behavior, then the OI module might need an interface that
lets the client supply explicit information about its behavior. On
the other hand, if it is difficult to determine the right
implementation strategy to implement, the OI module might
provide an interface that lets clients specify new implementation
strategies.

Any OI module implements a set of implementation strategies
(we call this set S) and must select the appropriate strategy for
each client usage profile (from the set C of all possible client
usage profiles). We model an OI as a function f: C → S that
selects a strategy from S for each client usage profile from C.

There are two complications with this model that the engineer
must resolve. First, since the space of possible user behavior is
infinite, the engineer must determine a subset C’ of discernible
client behaviors which covers some region of C and must
partition the subspace of all behaviors into the elements of C’.
Second, since the space of possible implementation strategies S
is also very large, the engineer must also determine a subset S’
of implementation strategies that will be supported by the
module. The designer must then provide mechanisms in the OI
module to enable the selection of the implementation strategy
from S’ that is best suited to the current user profile from C’.
Returning to the model above, the OI module must support the
function f’: C’ → S’.

Figure 1 shows the different kinds of interfaces that an OI might
provide to allow clients to control its implementation strategies.3

The Black-Box interface in Figure 1 is how clients access the
functionality of the module. Every OI must provide a Black-Box
interface with a default implementation strategy. By observing
the client’s behavior at the Black-Box interface, an OI might
select an appropriate implementation strategy for the client’s
usage profile. Sometimes, however, selecting an appropriate
strategy based on observations of client behavior may not be
enough. For these cases, the OI may provide an optional
interface, the Supply Client Profile interface in Figure 1, to
permit the client to provide information about its future behavior.
Since it is often difficult for clients to know detailed information
about their own behavior, the OI may also provide an optional
interface, the Select Strategy interface, that allows clients to
simply select or describe the appropriate strategy. Other times, it
is not possible for the OI to provide the appropriate range of
strategies. In these cases, an optional interface may be provided

3 We describe the access to the module as separate interfaces to
emphasize that the interfaces are not, in some sense, equal. A
client need not understand or use all interfaces that may be
provided to an OI module. This use of multiple interfaces is
described in further detail by Kiczales [Kic96].

{ S' }

Supply
Client
Profile

Select
Strategy

Implement
New

Strategy

Interfaces to an Open Implementation

{C'}

f'

Black-Box
Interface

Figure 1: An OI module may provide multiple interfaces for
the client to influence the internals of the module.

that allows clients to describe or provide code that implements
the appropriate strategy. This interface is labeled as the
Implement New Strategy interface in Figure 1.

OIA/D OVERVIEW
The OIA/D method consists of two phases for determining the
facets of a module’s internals that need to be exposed to client
control, and how those facets may be controlled in a disciplined
way. As shown in Figure 2, the analysis phase consists of
techniques for building a model of the module’s internals
(Internals Model), and for determining the set of usage profiles
and strategies that will be supported by the OI (Strategy
Selection Table). The design phase consists of techniques to
transform the internals model into a design, and to apply the
usage profile and strategy information to define interfaces by
which clients can control the module’s internals. Throughout the
process, the techniques rely on a corpus of domain knowledge
that describes how the module will be used and how clients
would like the module to behave.

In the remainder of this paper we present the OIA/D method by
describing the analysis and design phases. Although we describe
each phase sequentially, the real-world application of these
techniques is generally iterative. We illustrate the techniques
comprising the method by describing their use in developing a
block cache manager for the file management service of an
operating system.

ANALYSIS
The method’s analysis phase has two goals. The first goal is to
understand what the module is intended to provide to clients.
The second goal is to understand the clients desired use of the

module from two points of view: understanding the range of
client usage profiles that will be accommodated by the OI, and
knowing the implementation strategy that is most suited for each
usage profile. The first step toward meeting these goals is to
acquire the appropriate domain knowledge.

Acquiring Domain Knowledge
To design an effective OI, the designer must have two kinds of
domain knowledge: an understanding of the service provided by
the module and an understanding of how different clients use the
service. While effective techniques for capturing domain
knowledge are essential to the successful use of OIA/D, the
formality of the techniques necessary for capturing domain
knowledge depends on the size and experience of the design
team. We have found that an informal approach is often
sufficient when working with a small team whose members are
experienced in both the domain and the method. In this approach,
the team simply relies on their knowledge of the problem domain
without formally capturing the knowledge. For instance, in the
file system example we use in this paper, the OI designer relied
on his knowledge of the literature on the implementation
strategies [Den71, Lef89, Cus93] and performance bottlenecks
[Pat88, Sto81] of file management systems. The designer also
examined the source code of several different clients of file
systems to determine how the clients used the system and where
there was a mismatch between the needs of each application and
the services provided by the file system.

With a larger team, or a team whose members are inexperienced
in the method, more formal approaches are generally needed. In
this situation, one approach that we have found useful is to
imagine conversations between the clients of the module and its
implementers. (Real conversations with the real clients may also
be used.) The topics of the conversations are the behavior of the
clients, what the clients would like the module to do in different
cases, and how the clients would like the module to behave.

We use this technique to capture domain knowledge by writing
down the sentences of these conversations. For example, we
captured domain knowledge in one of our pilot projects by asking
the design team what the software should do but does not, and
how the clients would most naturally communicate the right
behavior to the module. The responses were used later in the
analysis and design phases to understand what parts of the
software module needed to be opened up and what form the
control interfaces should take.

Modeling the Module
Trying to understand the internals of a module before the module
is implemented or even designed may sound peculiar. However,
we have found that most modules have what we call an inherent
internal structure because of fundamental properties of the
solution domain. (Recall that the OIA/D method is used once
modules are selected using other software development
techniques---most often OOA/D techniques, so we are dealing
with modules in the solution, rather than the problem, domain.)
For example, performance-critical applications that make heavy
use of files must inherently deal with file caching issues because
of the performance mismatch between disks and microprocessors
in today’s hardware architectures. These fundamental properties

Strategy
Selection

Table

IIS ISD

BBI

Internals
Model

BBI

Module
Design

Strategy
Control
Interface

Domain
Knowledge

Design
Knowledge

Strategy
Control

Refinement

The OIA/D Process

Analysis Techniques Design Techniques
BBI: Black Box Interface
IIS: Inherent Implementation Structure
ISD: Implementation Strategy Dilemmas

Figure 2: The analysis and design techniques of the OIA/D
method.

of the solution domain of the module have a profound effect on
the implementation of the module. Early recognition of these
properties can help an engineer design an appropriate and
effective OI of the module.

To construct a model of the module, we use the domain
knowledge to determine three facets of the module: the Black-
Box Interface (BBI), the Inherent Implementation Structure (IIS),
and the Implementation Strategy Dilemmas (ISD). The Black-
Box Interface is the simplest abstract interface to the module that
captures the module’s functionality independent of the
implementation. The Inherent Implementation Structure consists
of the internal components and structure common to any
implementation of the Black-Box interface given the solution
space. The Implementation Strategy Dilemmas are decisions that
require knowledge of client usage patterns in order to be made
optimally. These three facets can be thought of as partitioning the
old notion of a software module as a black box into three parts.

Returning to the file system example, our designer determines
that the Black-Box abstraction of a file is quite simple – a file
may be modeled as a persistent, named, and ordered sequence of
bytes. The Black-Box interface to the abstraction is also
straightforward. Files may be opened and closed. When a file is
opened, the client provides the name of a file and receives an
open file descriptor (ofd) in return. An ofd is conceptually a tuple
consisting of a file and a numerical offset which is the client’s
current position in the file. Several operations are defined on
ofd’s: read, write, seek, offset, and close. Read
returns one or more bytes of the file starting at the offset. Write
stores one or more bytes at the file starting at the offset. Seek
changes the current position. Offset returns the current position.
Close frees the ofd.

Understanding the inherent implementation structure is more
difficult. From his knowledge of the literature, the designer
knows that file management implementations have an inherent
solution structure that is due to the characteristics of the
underlying hardware (Figure 3). Since files are persistent, they
must be stored on mass-storage devices like magnetic disks,
optical disks, or flash memory. Mass-storage devices tend to be
one or more orders of magnitude slower than RAM and CPU in
terms of both latency and throughput. As a result, there are two
standard techniques for implementing file management services
[Den71]:

• Store data in blocks to amortize the fixed cost of an I/O
operation over many bytes.

• Keep blocks in an in-memory cache to avoid and/or mask
the cost of I/O operations.

The concept of blocks and caches are used to form the inherent
implementation structure.

Finally, the designer must determine the implementation strategy
dilemmas. Again based on his domain knowledge, the designer
knows that the implementation strategy dilemmas in a file
management system center around how the block buffers in the
cache are allocated among several concurrent clients and how
each client’s allocation is managed. The different file access
behaviors of clients mean that a given cache management
strategy will often have excellent performance for one client and
dismal performance for another. In addition, the fact that several
clients must share the block cache concurrently means that a
given strategy might work well when the system is lightly loaded
but might work poorly under heavy load.

Since the block allocation module manages a physical resource
(block buffers in physical memory), the block allocation module
must be implemented as part of the operating system kernel in
order to preserve system integrity. The cache management
module may be implemented by each client because it manages
blocks that have already been allocated to the client by the block
allocation module.

Together, the BBI, IIS, and ISD provide a model of the module,
including both its interface and its internal structure. In the
design phase, we will see how this model is used to derive the
initial design of the module. The file system example described
in this section relied on implicit domain knowledge. If, instead,
the domain knowledge is in the form of statements from
conversations, each statement can be analyzed to determine if it
provides information about the Black Box Interface to the
module, the Inherent Implementation Structure of the module, or
the Implementation Strategy Dilemmas of the module.

Analyzing Usage Profiles
The model of the module the designer creates starts to elicit the
client behaviors (C) and implementation strategies (S) that the
OI might support. To build the OI, though, the designer must still
determine the relevant subset C’ of user behaviors, the relevant
subset S’ of implementation strategies, and the mapping from
elements of C’ to elements of S’ (f’) that the OI will realize

Similar to the development of the model of the module, a
designer determines this information by applying domain
knowledge. Specifically, the designer uses the domain
knowledge to construct a Strategy Selection Table. This table
has a set of entries for each Implementation Strategy Dilemma
identified in the model. Figure 4 shows the Strategy Selection
Table for the file system example. For each dilemma, the
designer has determined the possible ways to resolve the
dilemma and which clients will like this decision. For instance,
the designer has recorded that the “Cache Fetching” dilemma has
three possible strategies and that the fetch on demand strategy is
useful for program executable files (the first line of the table).
When the Strategy Selection Table is complete, the “Who likes it
column” provides the subset of relevant user behavior (C’), the
“Decision” column provides the subset of strategies (S’), and the

File
System

Block Cache

Open Files
(OFD's)

Cache
Management

Figure 3: The inherent structure of a file management
system.

two columns together provide the mapping from user profiles to
strategies (f’).

We have found that a group brainstorming activity is a useful
way of constructing the Strategy Selection Table. Keeping the
contents of the table updated as discussion proceeds lets it serve
as a kind of organizational memory for the discussion.
Furthermore, recording this information in tabular format makes
it easy to use the information during the design phase.

DESIGN
As a result of the analysis phase, a designer produces two things:
the Internals Model and the Strategy Selection Table. The
Internals Model captures the abstract functionality of the module,
the inherent domain properties that determine how it is
implemented, the design decisions that require information about
client behavior in order to implement well. The Strategy
Selection Table tells the designer how “open” the module must
be; that is, the range of user behaviors that it must support and
the range of strategies that must be implemented to support this
user behavior.

In this section we discuss techniques for designing the internals
and interfaces to the OI. We start by describing techniques for
transforming the Internals Model into a preliminary design.
Then, we describe how to design the interfaces that control the
module internals.

From Model to Design
A variety of design techniques could be used to transform the
Internals Model into a module design. Generally, we perform this
transformation by mapping each element of the solution structure
into an object in the design. Furthermore, we map each
Implementation Strategy Dilemma into an object in the design so
that changes to an implementation strategy will be localized in an
object.

In the case of the file system, it is relatively straightforward to
derive a design from the solution structure described earlier that
consisted of a blocked file system on persistent storage and an in-
memory block cache. The designer simply transforms each
element of the solution structure and each implementation

1: Locate block
at offset

2: Manage cache
(gets, puts).

3: Return slot
number

4: Access data
at slot

File

Block Manager

Cache
File System

Block Allocator
(Inside OS Kernel)

0: Allocate block
buffers to cache

Figure 4: An object diagram for the file management system.
The numbers show the order in which objects are invoked.

Dilemma Strategy Who likes it
Cache Fetching Fetch “on demand” – when a desired block

is not in the cache.
Program executable files that have locality due to loops and
unpredictable reference patterns due to branching.

Sequential read-ahead – fetch next blocks in
file when a given block is referenced.

Programs that read and write data files, for example most
command line utility programs.

Custom – client provides information about
its future reference pattern that is used to
select blocks for prefetching.

Programs with well-known reference patterns that appear
random to the operating system, such as table indices in
relational databases.

Cache Flushing Flush on fetch – flush a block when another
block is about to be fetched. The flushed
block is recycled to hold the fetched block.

Executables and data files that are reused by several
processes. This strategy enables these files to remain cached
over multiple program invocations.

Flush on finish – flush a block when a
program has finished with it.

Good for data files that are unlikely to be reused for when a
program needs to limit the size of its cache footprint.

Custom strategy – client says when it needs
blocks to be flushed.

Databases and other programs that need to guarantee
persistence.

Cache Allocation Best effort – give cache blocks to currently
running program.

Programs with small working set size – performance
degrades linearly with cache allocation.

Guarantees – provide strict cache allocation.
Clients may negotiate cache allocation sizes.

Programs like databases with larger working sets that can
tailor their algorithms to their working set size.

Figure 5: The Strategy Selection Table for the cache management subsystem of file management system.

strategy into an object such that the design consists of five
objects: the file system, ofd’s, cache, block allocation strategy,
and block management strategy. Figure 4 shows a design
diagram, based on a Booch object diagram [Boo91] of these
objects and their interactions.

The Block Allocation module, which is inside the operating
system and encapsulates the Cache Allocation strategy, allocates
block buffers to the cache from the physical memory pool. Once a
cache has been allocated buffers, the Block Manager, which
encapsulates the Cache Fetch and Flush strategies, determines
how these buffers are managed. The interaction in Figure 4
shows what happens when the client reads an open file through
an ofd object.

Other transformation strategies may also be applicable to create
the initial design from the Internals Model, such as the fine-
grained module composition approach described by VanHilst and
Notkin [VN96], but have not yet been investigated.

Designing the Interfaces
Once we have the initial module design, the missing pieces are
the control interfaces that allow clients to control implementation
strategies in use. The Black-Box interface developed as part of
the Internals Model presents only the functionality of a module,
hiding all implementation issues. The engineer is now faced
with the design of additional Strategy Control interfaces to
provide the necessary control. The design of these interfaces
proceeds as two steps. First, the engineer selects appropriate
styles of interfaces given the strategies outlined in the Strategy
Selection Table. This step is largely independent of the domain.
Second, the engineer refines the interfaces based on the domain
information acquired earlier.

Selecting an Interface Style
Kiczales and colleagues have outlined a number of interface
styles available to realize an OI [KLLMM96]. These interface

styles are summarized briefly in Figure 7. Each of these styles
has different associated costs and benefits. To ease the selection
of an appropriate style, we have determined a domain-
independent mapping from properties of the OI to these interface
styles. Figure 6 shows the design space defined by the properties
of the OI. The three axes of the design space are the ease or
difficulty of determining the set of client usage profiles C’, the
set of implementation strategies S’, and the function f’ mapping
usage profiles to strategies. We have divided the design space
into eight regions which roughly correspond to whether each of
these questions is easy or hard. As shown in Figure 8, each
region has a certain interface style that is most suited for it. The
data in Figure 8 can be summarized by the following decision
rule:

If determining S’ is hard, use Style D
else if determining f’ is hard, use Style C
else if determining C’ is hard, use Style B
else use Style A.

hard

U'

S'

f'

1

2

3

4

5

6

7

8
easy hard

hard
Figure 6: The difficulty of determining the sets C’ and S’,
and the function f’ defines the design space of the OI module.
Each region of the design space (numbered 1 through 8) has
a certain interface style that works best.

Interface Style Strategy Selection Tradeoffs
Style A – No custom control interface Module selects implementation

strategies by observing client’s use
of the Black-Box Interface.

Same as Black-Box Abstraction.

Style B – Client provides declarative information
about its usage pattern. For example, when opening
a file, the client can provide a description of its
behavior, such as “sequential file scan,” that the
module can use to select strategies.

Module selects strategy by
matching usage pattern information
from client to the best available
strategy.

Client specifying information about its
usage pattern doesn’t constrain the
implementation. Difficult for client to
know how it is influencing module
internals.

Style C – Client specifies the implementation
strategy the module should use, such as “LRU cache
management” for the file cache example.

Module adopts the strategy
specified by client.

Easy to select strategy. However, client
might be uninformed or wrong about best
strategy to use.

Style D – Client provides the implementation
strategy to use. For example, client might provide a
pointer to an object that implements some cache
management protocol when opening a file.
Subsumes Style C if module provides predefined
strategies.

Module adopts the strategy
provided by client.

Easy to select strategy. Engineering
module to support replaceable strategies
might be difficult. For client, engineering
a new strategy implementation might be
expensive.

Figure 7: Open Implementation interface styles (from [KLLMM96]).

An engineer starts to apply the mapping by determining whether
it is ‘easy’ or ‘hard’ to determine the provided client usage
profiles (C’), whether it is ‘easy’ or ‘hard’ to determine the set of
provided implementation strategies (S’), and whether it is easy
or hard to find a solution to the function f’: C’ → S’. The
answers to these questions determine the region of design space
in Figure 6 which dictates the best interface strategy as shown in
Figure 8.

To return the file management example we described previously,
the lifetime of an operating system (10-20 years) spans several
generations of computer hardware (1-2 years per generation).
Each new generation is more powerful than the last (due to
Moore’s Law) and enables a new and more powerful set of
applications previously unforeseen. As a result, it is difficult for
the designer to determine the sets C’ and S’ and the function f’
because doing so would require predicting implementation
strategies suitable for the behavior of applications several years
in the future. The file management system is very much at region
8 of the design space in Figure 6.

The file management example uses Interface Style D for the
Block Manager module. Interface Styles A, B, or C are used for
the Block Allocation module because the Block Allocation
module is part of the operating system (runs in the operating
system kernel) and is shared by all instances of the Block
Manager. Since the Block Allocation module cannot run
unprotected client code without compromising the integrity of the
operating system, Style D cannot be used.

Refining the Custom Control
Using the Interface Style Selection Table of Figure 8, the
engineer can choose the appropriate kind of Custom Control
interfaces for the OI. But, the engineer must still select a
particular style and design the contents of the interface. We have
developed a set of techniques to help an engineer with this
design that is based on the treatment of the interface(s) as a
language; each use of the interface corresponds to a statement in
the language.

An engineer starts applying the technique by taking the
conversations between the module implementer and the module
clients from the domain knowledge acquisition stage and re-
expressing each statement as a statement in the language of the
Custom Control Interface. The engineer then iteratively refines
the Interface by making changes to the language and re-
expressing each statement in the new language until the desired
expressiveness in the language is reached. The statements are
analyzed using the framework described in Figure 9. Each
statement is analyzed to determine its Subject, Vocabulary,
Scope, and Binding Time. Changes to the Interface language are
made by changing one of these features and are evaluated by re-
expressing each statement in the new language to see if they are
more natural.
For example, imagine two different interface languages for
controlling the disk caching behavior of a file system. In the first
language, the vocabulary is in terms of the Black-Box abstraction
of a file while the second language deals with the underlying
blocks that make up the cache. In the first language, the client
might make a statement like, “I’m going to read this file from

Region # C’ S’ f’ Interface Style
1 Easy Easy Easy Style A – OI is not necessary; module can simply observe client behavior and

dynamically adjust strategy to suit.
2 Easy Hard Easy Style D – it is difficult to choose which strategies to implement but easy to

determine client behavior and map it to the appropriate strategy. An OI might
let clients dynamically extend the range of strategies implemented. Since
selecting the strategy is easy, clients can handle it.

3 Hard Easy Easy Style B – it is hard to measure the client usage profiles although it is easy to
determine the strategy once the usage profile is known. Clients should supply
the usage profile which can easily be used to decide the strategy. Style C is
also possible if the set of possible strategies is relatively static.

4 Hard Hard Easy Style D – it is hard to determine the client usage profiles and the set of
possible strategies. With Style D, the client can specify the strategy to use and
can also provide a new strategy if the current set is inadequate.

5 Easy Easy Hard Style C – it is easy to determine client usage profiles and the set of possible
strategies. However, the difficulty of selecting a strategy for a given usage
profile requires the client to specify the right strategy. Measure and decide
strategies.

6 Easy Hard Hard Style D – while it is easy to determine the set of client usage profiles, it is
difficult to determine the set of implementation strategies and to select a
strategy for a given usage profile. Style D allows the client to specify a strategy
or to supply a new strategy if necessary.

7 Hard Easy Hard Style C – client should select strategy since it is difficult to determine the
client usage profile and to select the right strategy given the usage profile.

8 Hard Hard Hard Style D – client tells module what to do.

Figure 8: Determining an Interface Style for each region of the design space.

beginning to end.” In the second language, the same statement
would be expressed as, “When I access block x of this file, the
next block I access will be block x+1.” The second language has
more expressive power because it can be used to express
complex access patterns. The first language is less powerful but
probably easier to use because certain access patterns, such as
“beginning to end,” are easy to express. The C’ and S’ subsets
determined in the analysis phase can tell whether the candidate
interface language is sufficiently powerful to express all the
elements of C’ and S’, or whether it needs further refinement.To
see how the refinement techniques work, let us examine some
statements that client programmers would say. For the file
system example, two of those statements could be:

1. “I am going to scan this file from beginning to end.”
2. “I am going to repeatedly access the first block and

randomly the others.”
While the subject of both statements is the behavior of the client,
Statement 1 uses the vocabulary of the Black-Box Interface
language (i.e. “file” and “beginning to end”) while Statement 2
uses the vocabulary of the Inherent Implementation Structure
(i.e. “block”). We would like both statements to have identical
language features; in this case, a common vocabulary. Let us try
to rephrase the first statement in the vocabulary of the second
statement.

1’. “I am going to read the blocks in order.”
This translation was easy and natural as long as “order” is a
concept in the vocabulary of the IIS. On the other hand, it is
difficult to translate Statement 2 into the vocabulary of Statement
1 because there is no concept of “block” in the language of the
Black-Box Interface. Our goal is to arrive at a common language
for expressing all of the statements clearly and easily. This
common language defines the syntax and semantics of the
Custom Control Interface between the OI module and its clients.
In this example, we will end up with statements 1’ and 2 and use
this language for the Custom Control Interface.

STATUS AND CONCLUSIONS
The OIA/D method is a way of designing high-performance,
highly reusable software modules using existing technology. The
method applies once a module has been selected and targeted for
reuse, and thus is compatible with existing software development
methods. The analysis phase of the OIA/D method consists of
techniques for constructing a model of the module’s internals and
interfaces, and for understanding the user profiles and
implementation strategies that should be supported. The design

phase consists of techniques for transforming the analysis module
into a design and for designing the interfaces that allow clients to
control the module’s internals.

The method is still young and its techniques are still evolving. In
particular, we would like to have a better understanding of the
relation between the regions of the design space and the interface
styles most for suited for each. Also, the cache management
example showed that a certain style of interface was not suitable
when shared resources were being managed. This may be an
additional dimension in the design space that needs to be
explored.

To date we have used the method in Xerox for pilot projects in
distributed document services. Our experiences show that OIA/D
is useful for recognizing the design decisions that must be left to
client control early in the lifecycle. Additional studies of the
methodology are underway at Korea University.

REFERENCES
[Bal81] Balzer, R. Transformational implementation: An
example. IEEE Transactions on Software Engineering, SE-
7(10):3-14, 1981.

[BD77] Burstall, R. and Darlington, J. A transformation system
for developing recursive programs. Journal of the Association for
Computing Machinery 24 (1):44-67, 1977.

[Boo91] Booch, G. Object-oriented design with applications,
Benjamin/Cummings, 1991.

[BSST93] Batory, D., Singhal, V., Sirkin, M. and Thomas, J.
Scaleable software libraries. In Proceedings of the First ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, October 1993.

[Cus93] Custer, H. Inside Windows NT, Microsoft Press, 1993.

[Den71] Denning, P. J. Third Generation Computer Systems.
Computing Surveys 3(4):175-216, 1971.

[DFSS89] Dubinsky, E. Freudenberger, S., Schonberg, E. and
Schwartz, J.T. Reusability of design for large software systems:
An experiment with the SETL optimizer. In Software
Reusability: Concepts and Models (Volume 1), edited by T.
Biggerstaff and A. Perlis, chapter 11, ACM Press, New York,
1989.

[JF88] Johnson, R.E. and Foote, B. Designing reusable classes.
Journal of Object-Oriented Programming, 1 (2): 22-25, 1988.

Language Feature Description
Subject Whether the statement describes the client’s or the implementation’s behavior.

Vocabulary Whether the words in the statement are in terms of Black-Box Interface or of the implementation structure?

Scope What elements of the implementation does the statement apply to? (For example, a single instance of the
module versus all instances of the module.)

Binding Time Can the statement be made at design time, compile time, link time, or run time. This feature helps
determines whether static or dynamic implementation mechanisms can be used.

Figure 9: Elements of the Interface Languages.

[Gog84] Goguen, J. Parameterized programming. IEEE
Transactions on Software Engineering SE-10(5):528-543, 1984.

[Gog89] Goguen, J. Principles of parameterized programming. In
Software Reusability: Concepts and Models (Volume 1), edited
by T. Biggerstaff and A. Perlis, chapter 7, ACM Press, New
York, 1989.

[Kic91] Kiczales, G. Towards a new model of abstraction in
software engineering. In Proceedings of the 1991 International
Workshop on Object Oriented in Operating Systems, IEEE
Computer Society Press, Los Alamitos, CA, p. 127-8.

[Kic91a] Kiczales, G., des Rivières, J., and Bobrow, D. G. The
Art of the Metaobject Protocol, MIT Press, 1991.

[Kic96] Kiczales, G. Beyond the black box: Open
Implementation. IEEE Software, 13(1): 8,10-11, 1996.

[KLLMM96] Kiczales, G., Lamping, J., Lopes, C.V.,
Mendhekar, A. and Murphy, G. Open implementation design
guidelines. Submitted to the 19th International Conference on
Software Engineering, 1996.

[Lef89] Leffler, S. J., McKusick, M. K., Karels, M. J., and
Quarterman, J. S. The Design and Implementation of the
4.3BSD UNIX Operating System, Addison-Wesley, 1989.

[LS94] Lortz, V.B and Shin, K.G. Combining contracts and
exemplar-based programming for class hiding and customization.
In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, ACM
Press, New York, 1994, p. 453-467.

[Mae96] Maeda, C. “A Metaobject Protocol for Controlling File
Cache Management.” Proceedings of ISOTAS’96 (International
Symposium on Advanced Technologies for Object Software),
Kanazawa, Japan, 1996.

[MS88] Mellor, S.J. and Shlaer, S. Object oriented systems
analysis: modeling the world in data, Prentice Hall, 1988.

[Par72] Parnas, D. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053-1058, 1972.

[Pat88] Patterson, D., Gibson, G., Katz, R. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In Proceedings
of the 1988 ACM Conference on Management of Data
(SIGMOD), 109-116, 1988.

[Rao91] Rao, R. Implementational Reflection in Silica. In
Proceedings of European Conference on Object-Oriented
Programming (ECOOP) (1991), P. America, ed., vol. 512 of
Lecture Notes in Computer Science, Springer-Verlag, 251-267.

[RBPEL91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.
and Lorensen, W. Object-oriented modeling and design, Prentice
Hall, 1991.

[Sto81] Stonebraker, M. Operating System Support for Database
Management. Communications of the ACM, 24(7):412-418,
1981.

[VN96] VanHilst, M. and Notkin, D. Decoupling change from
design. To appear in Proceedings of the Fourth ACM SIGSOFT
Symposium on Software Engineering, October 1996.

[YC79] Yourdon, E. and Constantine, L.L. Structured design:
Fundamentals of a Discipline of Computer Program and System
Design Prentice Hall, Englewood Cliffs, N.J.,

