
UMLTM Profile for CORBATM

Specification

Version 1.0
April 2002

Copyright 2000, Data Access Corporation
Copyright 2000, DSTC Pty Ltd
Copyright 2000, Genesis Development Corporation
Copyright 2000, Telelogic AB
Copyright 2000, UBS AG

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG® and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . iii

1. Overview . 1-1
1.1 Goal . 1-1

1.2 Scope . 1-2

1.3 Specific Design Decisions . 1-3
1.3.1 Namespace Containment 1-3
1.3.2 Using Associations to Represent

User-Defined Types . 1-3

2. Profiles and Virtual Meta Models . 2-1
2.1 General Definition of a UML Profile 2-1

2.2 Virtual Metamodel of Stereotypes 2-2
2.2.1 Background Facts . 2-2
2.2.2 Using UML Notation for Virtual Metamodeling 2-3
2.2.3 Constraints . 2-3

3. CORBA Profile Definition. 3-1

3.1 Introduction . 3-1

3.2 Structure of the Profile . 3-1

3.3 Identified Subset of UML. 3-2

3.4 The Virtual Metamodel . 3-3

3.5 The CORBA Type Representations 3-10
3.5.1 CORBA Basic Types . 3-11
3.5.2 CORBA User-defined Types 3-12
3.5.3 CORBA Structured Types. 3-15
April 2002 UML Profile for CORBA, v1.0 i

Contents
3.5.4 Module Declaration . 3-16
3.5.5 CORBA Object Types . 3-18
3.5.6 Interface . 3-19
3.5.7 Value Types . 3-22
3.5.8 CORBA Wrapper Types 3-25
3.5.9 Typedef. 3-27
3.5.10 Boxed Value Types . 3-28
3.5.11 Constant Declaration . 3-30
3.5.12 Constructed Types . 3-32
3.5.13 Struct . 3-33
3.5.14 Discriminated Union . 3-35
3.5.15 Enum . 3-38
3.5.16 Exception . 3-39
3.5.17 Indexed Types. 3-42
3.5.18 Sequence. 3-45
3.5.19 Array . 3-48
3.5.20 Fixed Type . 3-51
3.5.21 Operation . 3-53
3.5.22 Attribute . 3-57

4. Complete Example . 4-1
4.1 Introduction . 4-1

4.2 Approach . 4-1

4.3 Class Diagrams . 4-2
4.3.1 The Class Diagrams for the OMG

Task & Session Service 4-2

4.4 Task & Session IDL . 4-11
4.4.1 The OMG Task & Session IDL (dtc/99-08-05). 4-11

Appendix A - Conformance Issues . A-1
ii UML Profile for CORBA, v1.0 April 2002

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 600 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.
April 2002 UML Profile for CORBA, v1.0 iii

OMG Documents

The OMG documentation is organized as follows:

OMG Modeling

• Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

• Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.

• OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes
the conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object and
the client. IDL is a strongly typed declarative language that is programming language-
independent. Language mappings enable objects to be implemented and sent requests
in the developer’s programming language of choice in a style that is natural to that
language. The OMG has an expanding set of language mappings, including Ada, C,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.
iv UML Profile for CORBA, v1.0 April 2002

These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such as Collection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such as Internationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

• CORBA Business: Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

• CORBA Transportation: Comprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.
April 2002 UML Profile for CORBA: About the Object Management Group v

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Data Access Corporation

• DSTC

• Genesis Development Corporation

• Hewlett Packard

• Inline Software Corporation
vi UML Profile for CORBA, v1.0 April 2002

• International Business Machines Inc.

• Lucent Technologies, Inc.

• Open IT

• Persistence Software

• Sintef

• Telelogic AB

• UBS AG

• Unisys Corporation
April 2002 UML Profile for CORBA: Acknowledgments vii

viii UML Profile for CORBA, v1.0 April 2002

Overview 1
Contents

This chapter contains the following topics.

This specification is based on Rational’s “Rose CORBA,” which is part of Rational
Rose 98i Enterprise. The specification enhances the Rose CORBA specification by
aligning it with the UML metamodel and with the working definition of a UML Profile
provided by the OMG Business Object Initiative.

1.1 Goal

The UML Profile for CORBA specification was designed to provide a standard means
for expressing the semantics of CORBA IDL using UML notation and thus to support
expressing these semantics with UML tools.

When one wishes to represent a CORBA type via UML notation, the usual approach is
to model it as a Classifier and to stereotype the Classifier to indicate whether it
represents an interface, or a valuetype, or a struct, or a union, etc. This is a legitimate
approach, since a Stereotype is one of UML’s official extension mechanisms. Up to
now, however, there has been no standard set of extensions of UML for this purpose.

Topic Page

“Goal” 1-1

“Scope” 1-2

“Specific Design Decisions” 1-3
April 2002 UML Profile for CORBA, v1.0 1-1

1

1.2 Scope

The UML Profile for CORBA described in this specification permits the expression of
OMG IDL:

interface A {};
interface B
{

attribute A myA;
};

It is not possible to express via OMG IDL whether the actual value of myA may ever
be empty.

Now consider the UML class diagrams Figure 1-1 and Figure 1-2, both of which use
the stereotype <<CORBAInterface>> defined later in this document. Both of these
class diagrams map to the OMG IDL shown above, yet they do not have the same
semantics, since one says that an empty value for myA is permitted and the other says
it is not.

Figure 1-1 Empty Value Permitted

Figure 1-2 Empty Value Not Permitted

Unless ruled out by explicit constraints, all properties of UML metamodel elements
contained in the UML Profile may be used to express an object model that conforms to
the profile. For example, it is permissible to use UML facilities for expressing
aggregation properties of Associations. The modeler may specify invariants for Classes
and pre and postconditions of Operations.

The submitters’ vision is that such permitted semantic specifications that go beyond
what is expressible in OMG IDL will be considered normative aspects of future official
OMG specifications.

B
<<CORBAInterface>>

A
<<CORBAInterface>>

0..1

+myA

0..1

B
<<CORBAInterface>>

A
<<CORBAInterface>>

1

+myA

1

1-2 UML Profile for CORBA, v1.0 April 2002

1

1.3 Specific Design Decisions

1.3.1 Namespace Containment

In CORBA declarations are always contained in some namespace scope with nesting
that allows some declarations to be contained by a container that is in turn contained,
and so on. An anonymous global scope is available for declarations that are not inside
a module. The two main Namescopes are modules that act purely as a container and
may be nested arbitrarily deep, and interfaces that act as a unit of functionality
represented at runtime by a CORBA Object as well as a container for data type
declarations. Interfaces may not contain other interfaces. Constructed data types
(structs and unions) also act as namespaces for their member elements, which may in
turn be in-line declarations of nested (contained) constructed data types.

In UML, Namespace is an abstract meta-Class inherited by many other meta-Classes
that need to contain other named ModelElements. The Namespaces that concern us for
modeling CORBA are Package (from Model Management) and Classifier (from Core).
The notation used to depict Namespace containment in UML is the “circle-plus,”
(UML 1.3, Section 3.13.2) which is used to represent all CORBA Namespace
containment, except for module containment of data type and interface declarations,
which is represented using the usual Package box surrounding the ModelElements that
it contains.

Unfortunately some tools don’t support the circleplus notation, but most will have
some mechanism for representing Namespace containment, and this should be used
until a conformant version can be produced.

1.3.2 Using Associations to Represent User-Defined Types

The aggregation of members into constructed types in CORBA is always modeled as
an aggregation Association with navigability away from the aggregate.

The name of the part is always modeled as the role name of the part in the Association.

All CORBA data types (here we mean non-object types, where object types are
interfaces and value types supporting interfaces) must be fully instantiated in order to
be passed as parameters or return values. The only nulls in CORBA are nil object
references and value types. Therefore the multiplicities for part AssociationEnds in
aggregation Associations must be 1..1 for all non-object types. Modelers may specify
multiplicities of 0..1 when nil objects are valid, or 1..1 when nil objects are not valid.

The multiplicities for the aggregate AssociationEnd will usually be 0..1, indicating that
the part type will be owned by at most one aggregate, but that it may be instantiated
independently of an aggregate.

In the case where the part is a CORBA interface, the multiplicity may be 0..*, as the
object reference may be a part of many user-defined types. (This is the default for
mapping from OMG IDL - but modeling in UML allows the modeler to constrain the
multiplicity further.) For object types the default is weak aggregation.
April 2002 UML Profile for CORBA: Specific Design Decisions 1-3

1

In the case where a new part type is declared within the scope of another user-defined
type, CORBA semantics dictate that the part type cannot be instantiated independently
of the aggregate, and therefore the multiplicity at the aggregate AssociationEnd must
be 1..1.
1-4 UML Profile for CORBA, v1.0 April 2002

 Profiles and Virtual Meta Models 2
Contents

This chapter contains the following topics.

2.1 General Definition of a UML Profile

Currently, there is no normative definition of a UML profile. However, the Business
Object Initiative RFPs elucidated the following working definition of a UML profile.

A UML profile is a specification that does one or more of the following:

• Identifies a subset of the UML metamodel (which may be the entire UML
metamodel).

• Specifies “well-formedness rules” beyond those specified by the identified subset of
the UML metamodel. “Well-formedness rule” is a term used in the normative UML
metamodel specification (ad/99-06-08) to describe a set of constraints written in
natural language and UML’s Object Constraint Language (OCL) that contributes to
the definition of a metamodel element.

• Specifies “standard elements” beyond those specified by the identified subset of the
UML metamodel. “Standard element” is a term used in the UML metamodel
specification to describe a standard instance of a UML stereotype, tagged value, or
constraint.

• Specifies semantics, expressed in natural language, beyond those specified by the
identified subset of the UML metamodel.

Topic Page

“General Definition of a UML Profile” 2-1

“Virtual Metamodel of Stereotypes” 2-2
April 2002 UML Profile for CORBA, v1.0 2-1

2

• Specifies common model elements; that is, instances of UML constructs expressed
in terms of the profile.

2.2 Virtual Metamodel of Stereotypes

The UML specification makes the following comment in its discussion of Stereotypes:

The stereotype concept provides a way of classifying (marking) elements so that
they behave in some respects as if they were instances of new "virtual" metamodel
constructs.1

This section presents a virtual metamodel for the Stereotypes defined by the UML
Profile for CORBA. The UML specification provides only a few guidelines for how to
express a virtual metamodel, and the UML Profile for CORBA is the first profile for
which an RFP was issued by the OMG. Thus, the submitters have worked out an
approach to describing the virtual metamodel that hopefully will establish some
precedents that will be able to be leveraged by the architects of future UML profiles.

2.2.1 Background Facts

2.2.1.1 Legal Relationships Among Stereotypes

In the UML metamodel, a Stereotype is a GeneralizableElement. Thus it is legal to
define Generalization (inheritance) Relationships among Stereotypes. Furthermore, a
GeneralizableElement is a ModelElement, and Dependency Relationships can be
defined among ModelElements. Thus it is legal for Stereotypes to participate in
Dependency Relationships. However, a Stereotype is not a Classifier. Therefore,
Stereotypes may not participate in Association Relationships.

2.2.1.2 The Notion of Extension

In the UML metamodel, a Stereotype extends an element or elements of the
metamodel. For example, the Stereotype <<CORBAException>> extends the UML
metamodel Exception element.

2.2.1.3 Constraints

All of the Constraints defined for a Stereotype in this specification are intended to
describe Constraints on the stereotyped ModelElements.

1.[UML 1999] section 2.6.
2-2 UML Profile for CORBA, v1.0 April 2002

2

2.2.1.4 Abstract Stereotypes

Some abstract Stereotypes are defined and, in keeping with UML notation, abstractness
is denoted by italicizing the Stereotype’s name. In UML an abstract
GeneralizableElement cannot be instantiated. The abstract Stereotypes are useful for
avoiding repetition in multiple Stereotypes that logically have common properties.

2.2.1.5 Common Model Elements

The common model elements contained in the profile are all instances of UML
DataType and Class that are stereotyped as <<CORBAPrimitive>>. These include an
instance of DataType for each of the CORBA basic types, and an instance of Class for
each of CORBA::Object and CORBA::baseValue. We place these model elements in a
package called CORBA.

2.2.2 Using UML Notation for Virtual Metamodeling

In light of these facts, the specification takes the following approach to using UML
notation to express the virtual metamodel:

• The model is expressed via class diagrams.

• Each Stereotype plays the client role in a Dependency Relationship with the UML
metaclass that it extends. These Dependencies are stereotyped <<baseElement>>.
We use this as non-standard notation because relationships afford greater clarity
than TaggedValues.

• Each Stereotype is expressed via a Classifier box, even though a Stereotype is not a
Classifier. The keyword “<<stereotype>>” does NOT represent a stereotype itself--
it is simply a notational marker for the underlying Stereotype metaclass.

• Generalization Relationships among Stereotypes are expressed in the standard UML
fashion.

2.2.3 Constraints

Constraints are expressed in English and OCL.

2.2.3.1 OCL Convenience Operations Reused from UML 1.3

The OCL for the formal constraints reuses the following OCL convenience operations
defined for the Classifier metaclass by UML 1.3 [UML 1999, Section 2.5.3].

• Operation [4] allAttributes
• Operation [5] associations
• Operation [7] oppositeAssociationEnds
April 2002 UML Profile for CORBA: Virtual Metamodel of Stereotypes 2-3

2

2.2.3.2 Additional OCL Convenience Operations for UML Metamodel
Elements

The OCL convenience operations in this section can be applied generally to UML 1.3
and are not specific to the UML Profile for CORBA. However, they are defined in
order to produce more compact and readable OCL.

For ModelElement

[1] The operation allStereotypes results in a Set containing the ModelElement’s
Stereotype and all Stereotypes inherited by that Stereotype (as opposed to all
Stereotypes inherited by the ModelElement).

allStereotypes : Set(Stereotype);

allStereotypes = self.stereotype->union

 (self.stereotype.generalization.parent.allStereotypes)

[2] The operation isStereotyped determines whether the ModelElement has a
Stereotype whose name is equal to the input name.

isStereotyped : (stereotypeName : String) : Boolean;

self.stereotype.name = stereotypeName

[3] The operation isStereokinded determines whether the ModelElement has a
Stereotype whose name is equal to the input name or if it has a Stereotype one of
whose ancestors’ name is equal to the input name.

isStereokinded : (stereotypeName : String) : Boolean;

self.allStereotypes->exists (stereotype | stereotype.name = stereotypeName)

There are some OCL convenience operations defined in this specification that apply
more narrowly to certain extensions of UML that the profile defines. These operations
appear inline with the Constraints for those specific extensions.

For Classifier

[1] The operation navigableOppositeEnds results in a Set containing all navigable
AssociationEnds that are opposite to the Classifier.

navigableOppositeEnds : Set(AssociationEnd);

navigableOppositeEnds = self.oppositeAssociationEnds

->select(end | end.isNavigable)

[2] The operation allEnds results in a Set containing all AssociationEnds for which
the Classifier is the type.

allEnds : Set(AssociationEnd);

allEnds = self.associations->collect(assoc | assoc.connection)
2-4 UML Profile for CORBA, v1.0 April 2002

2

[3] The operation nonNavigableNearEnds results in a Set containing all
AssociationEnds that are adjacent to the Classifier and that are non-navigable.

nonNavigableNearEnds : Set(AssociationEnd);

nonNavigableNearEnds = self.allEnds->select(end | end.type = self
 and not end.isNavigable)

[4] The operation navigableEnds results in a Set containing all navigable AssociationEnds
for which the Classifier; that is, self is the type.

navigableEnds : Set(AssociationEnd);

navigableEnds = allEnds->select(end | end.isNavigable)
April 2002 UML Profile for CORBA: Virtual Metamodel of Stereotypes 2-5

2

2-6 UML Profile for CORBA, v1.0 April 2002

CORBA Profile Definition 3
Contents

This chapter contains the following topics.

3.1 Introduction

This chapter is the normative definition of the CORBA Profile of UML. It consists of a
virtual metamodel, showing extensions to UML using the notation described in the
previous chapter. This is followed by a description of the way in which each IDL
construct is modeled, including TaggedValues, Stereotypes, and Constraints used to
model it, and any notation that differs from the standard UML representation of the
Stereotype’s baseElement.

3.2 Structure of the Profile

As described in Section 2.1, “General Definition of a UML Profile,” on page 2-1, a
Profile consists of the following:

• An identified subset of the UML Meta-model. This is addressed in Section 3.3,
“Identified Subset of UML,” on page 3-2.

Topic Page

“Introduction” 3-1

“Structure of the Profile” 3-1

“Identified Subset of UML” 3-2

“The Virtual Metamodel” 3-3

“The CORBA Type Representations” 3-10
April 2002 UML Profile for CORBA, v1.0 3-1

3

• Specifications of Standard Elements (Stereotypes, TaggedValues, and Constraints).
The stereotypes are shown in a virtual metamodel in Section 3.4, “The Virtual
Metamodel,” on page3-3, and then explained in detail in Sect i on3.5, “The CORBA
Type Representations,” on page 3-10. All the Standard Elements as well as
additional well-formedness rules are specified in Section 3.5, “The CORBA Type
Representations,” on page 3-10.

• Specifications of semantics in natural language. These are given in Section 3.5,
“The CORBA Type Representations,” on page 3-10.

• Specifications of Common ModelElements in terms of the Profile. This Profile
defines a number of CORBA-specific type primitives in the package “CORBA.”
These are defined in Section 3.5.1, “CORBA Basic Types,” on page 3-11.

The Standard Elements are defined within a package called “CORBAProfile.”

3.3 Identified Subset of UML

The CORBA Profile extends the following standard UML packages:

• Core

• Common Behavior

• Model Management

The following concrete metaclasses, and implicitly all super-metaclasses of these
metaclasses, are used:

From Core:

• Abstraction

• Association

• AssociationEnd

• Attribute

• Binding

• Class

• Comment

• Constraint

• DataType

• Dependency

• ElementOwnership

• Generalization

• Operation

• Parameter

• Permission
3-2 UML Profile for CORBA, v1.0 April 2002

3

• Usage

From Common Behavior:

• Exception

From Model Management:

• ElementImport

• Package

3.4 The Virtual Metamodel

Figure 3-2 on page 3-4 to Figure 3-11 on page 3-10 describe the hierarchy of
Stereotypes that model CORBA IDL. The semantics of these Stereotypes is given in
Section 3.5, “The CORBA Type Representations,” on page 3-10.

Figure 3-1 Virtual Metamodel for CORBA Primitives

CORBAProfile

Core::DataType

<<stereotype>>
CORBAPrimitive

<<baseElement>>
April 2002 UML Profile for CORBA: The Virtual Metamodel 3-3

3

Figure 3-2 Virtual Metamodel for CORBA User-Defined Types

CORBAProfile

<<stereotype>>

CORBAUserDefinedType

Core::Classifier

<<baseElement>><<baseElement>>
3-4 UML Profile for CORBA, v1.0 April 2002

3

Figure 3-3 Virtual Metamodel for CORBA Object Types

CORBAProfile

<<stereotype>>

<<stereotype>>
CORBAValue

<<stereotype>>
CORBAInterface

CORBAStructuredType

<<stereotype>>
CORBAObjectType

<<stereotype>>

Core::type

A standard UML stereotype of
Class that constrains the Class
from having Methods. (Methods
are implementations of
Operations).

<<stereotype>>
CORBACustomValue

<<stereotype>>

CORBAUserDefinedType
April 2002 UML Profile for CORBA: The Virtual Metamodel 3-5

3

Figure 3-4 Virtual Metamodel for CORBAConstructed Types

CORBAProfile

<<stereotype>>

<<stereotype>>
CORBAStructType

<<stereotype>>
CORBAEnum

CORBAUserDefinedType

<<stereotype>>
CORBAConstructedType

<<stereotype>>
CORBAException

<<stereotype>>
CORBAUnion

<<stereotype>>

CORBAStructuredType

<<stereotype>>
CORBAStruct

CommonBehavior:: Core::Class

<<baseElement>>
<<baseElement>>

Exception

<<baseElement>>

<<base
Element>>
3-6 UML Profile for CORBA, v1.0 April 2002

3

Figure 3-5 Virtual Metamodel for CORBA Module

Figure 3-6 Virtual Metamodel for CORBA Indexed Types

CORBAProfile

ModelManagement::Package

<<stereotype>>
CORBAModule

<<baseElement>>

CORBAProfile

<<stereotype>>

<<stereotype>>
CORBASequence

<<stereotype>>
CORBAArray

CORBAUserDefinedType

<<stereotype>>
CORBAIndexedType

<<stereotype>>

CORBAAnonymousSequence

<<stereotype>>
CORBAAnonymousArray

Core::Class

<<baseElement>>
April 2002 UML Profile for CORBA: The Virtual Metamodel 3-7

3

Figure 3-7 Virtual Metamodel for CORBA Wrapper Types

Figure 3-8 Virtual Metamodel for CORBA Constants and Their Container

CORBAProfile

<<stereotype>>

<<stereotype>>

CORBATypedef

<<stereotype>>

CORBAUserDefinedType

<<stereotype>>
CORBAWrapper

CORBABoxedValue

CORBAProfile

Core::Attribute

<<stereotype>>
CORBAConstant

<<baseElement>>

Core::UtilityClass

<<stereotype>>
CORBAConstants

<<baseElement>>
3-8 UML Profile for CORBA, v1.0 April 2002

3

Figure 3-9 Virtual Metamodel for Stereotypes of Attribute and AssociationEnd

Figure 3-10 Virtual Metamodel for Stereotypes of Operation

CORBAProfile

Core::Attribute

<<stereotype>>
readonly

<<baseElement>>

Core::AssociationEnd

<<stereotype>>
readonlyEnd

<<baseElement>>

<<stereotype>>
switch

<<stereotype>>
switchEnd

<<baseElement>>
<<baseElement>>

CORBAProfile

Core::Operation

<<stereotype>>
oneway

<<baseElement>>

Core::Operation

<<stereotype>>
CORBAValueFactory

<<baseElement>>
April 2002 UML Profile for CORBA: The Virtual Metamodel 3-9

3

Figure 3-11 Virtual Metamodel for CORBA Values Supporting Interfaces

Figure 3-12 Dependencies between CORBA and CORBAProfile

3.5 The CORBA Type Representations

This section describes all the Stereotypes introduced in the Virtual Metamodel, and
adds the necessary TaggedValues, Constraints, and Common Model Elements to
complete the Profile. The subsections are arranged to match the structure of the Virtual
Meta Model.

CORBAProfile

Core::Generalization

<<stereotype>>
CORBAValueSupports

<<baseElement>>

CORBA CORBAProfile<<access>>
3-10 UML Profile for CORBA, v1.0 April 2002

3

3.5.1 CORBA Basic Types

3.5.1.1 UML Standard Elements

Stereotypes and Tagged Values

The CORBA basic types are represented by UML DataTypes with the
<<CORBAprimitive>> stereotype in the “CORBA” package. This package also
contains the base types for CORBA interfaces and value types.

Constraints

Common ModelElements

The following <<CORBAprimitive>>-stereotyped UML DataTypes are introduced in
the package “CORBA.” Their semantics is defined in Chapter 3, “OMG IDL Syntax
and Semantics,” of the CORBA/IIOP Specification.

• short

• long

• long long

• double

• long double

• unsigned short

• unsigned long

• unsigned long long

• any

• boolean

• string

• octet

• void

• char

• wchar

• float

• wstring

• typecode

• native

The CORBA package also contains a Class “Object,” stereotyped as
<<CORBAInterface>>, and a Class “ValueBase,” stereotyped as <<CORBAValue>>.
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-11

3

3.5.2 CORBA User-defined Types

3.5.2.1 UML Standard Elements

Stereotypes and Tagged Values

The abstract stereotype <<CORBAUserDefinedType>> is the base for all the concrete
stereotypes representing IDL declarations.

The ability to choose a RepositoryId for any scoped name in IDL using typeId
declarations is modeled as a TaggedValue { typeId = repository-id }, which may be
attached to any UML ModelElement representing a CORBA type declaration.

The ability to choose a RepositoryId prefix for declarations inside any scoped name
representing an IDL namespace using typePrefix declarations is modeled as a
TaggedValue { typePrefix = prefix }, which may be attached to any UML
ModelElement representing a CORBA namespace.

Constraints

CORBAUserDefinedType (Core::Classifier) and
CORBAModule (ModelManagment::Package)

[1] All model elements representing CORBA Namespaces may not directly contain
another element of the same name.

self.ownedElements

->forAll(ownedEl | not ownedEl.name = self.name)

CORBAUserDefinedType (Core::Classifier)

[1] All Attributes of a <<CORBAUserDefinedType>>-stereotyped Classifier that are
not stereotyped <<CORBAConstant>> must be of a type that is stereotyped
<<CORBAPrimitive>>, and for which the ownerScope is “instance,” the
targetScope is “instance,” and the changeability is “changeable.”

Note – “Changeable” here is different than IDL readonly, since the value of even a
readonly attribute can change (it just can't be changed via the CORBA interface).

self.allAttributes

->forAll(attribute | not attribute.isStereotyped("CORBAConstant") implies

attribute.type.isStereotyped("CORBAPrimitive") and

attribute.ownerScope = #instance and

attribute.targetScope = #instance and

attribute.changeability = #changeable
3-12 UML Profile for CORBA, v1.0 April 2002

3

[2] All Associations in which a <<CORBAUserDefinedType>>-stereotyped Classifier
participates that have navigable opposite AssociationEnds must be binary and
unidirectional.

self.navigableOppositeEnds

->forAll(end | end.association.connection->size = 2 and

 end.association.connection

->select(end | end.isNavigable)->size = 1)

[3] All navigable opposite AssociationEnds of a <<CORBAUserDefinedType>>-
stereotyped Classifier must have changeability “changeable,” aggregation “none,”
targetScope “instance,” and a type that is stereotyped with a descendant of
<<CORBAUserDefinedType>> or stereotyped <<CORBAPrimitive>>.

self.navigableOppositeEnds

->forAll (end | end.changeability = #changeable and

end.aggregation = #none and

end.targetScope = #instance and

(end.type.isStereokinded("CORBAUserDefinedType") or

end.type.isStereotyped("CORBAPrimitive")))

[4] All non-navigable near AssociationEnds of a <<CORBAUserDefinedType>>-
stereotyped Classifier must have targetScope “instance.”

self.nonNavigableNearEnds.targetScope = #instance

[5] All Associations in which a <<CORBAUserDefinedType>>-stereotyped Classifier
participates that have a navigable opposite AssociationEnd whose type is not a
<<CORBAInterface>>-stereotyped Classifier must have a near AssociationEnd
with the aggregation “composite.”

Note – Composite aggregation implies a multiplicity upper bound of 1.

self.navigableOppositeEnds

->forAll(opEnd | not opEnd.type.isStereotyped("CORBAUserDefinedType")

implies

opEnd.association.connection

->select(end | end <> opEnd).aggregation = #composite)

[6] A <<CORBAUserDefinedType>>-stereotyped Classifier cannot participate in any
AssociationClasses.

self.associations->forAll(assoc | not assoc.oclIsTypeOf(AssociationClass))
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-13

3

3.5.2.2 Notation

Association and Aggregation

The notation used for aggregation of elements has a diamond at the aggregate
AssociationEnd, and an arrow at the part AssociationEnd. Unless the part is a CORBA
interface type with a lifecycle independent of the aggregate, the strong aggregation
(composition) black diamond is used. The default Association for interface types does
not aggregate, and its multiplicity is 0..* at the near end.

Figure 3-13 Aggregate Notation for CORBA Constructed Types

Namespace Containment

The notation for Namespace containment of IDL constructs modeled as Classifiers in
this Profile is the “circle-plus” notation as shown in Figure 3-14.

Figure 3-14 UML Namespace Containment Notation for Nested CORBA Constructs

The containment of IDL constructs modeled as Features of Classifiers is indicated in
the usual way by graphical containment of the Feature in the Class box, or by
aggregation.

A CORBA Constructed Type
name10..1

A CORBA non-interface type

1..1

0..1

name2

0..*

A CORBA interface type

Some CORBA Type Some nested CORBA type
3-14 UML Profile for CORBA, v1.0 April 2002

3

3.5.3 CORBA Structured Types

We use the term structured types to refer to CORBA Object types (interfaces and
valuetypes) and CORBA constructed types (structs, exceptions, unions, and enums).
All of these types define a new name scope containing other declarations. These
contained IDL declarations are tagged to retain their order when models are UML
derived from IDL, so that equivalent IDL may be generated from the model later.

3.5.3.1 UML Standard Elements

Stereotypes and Tagged Values

The abstract stereotype <<CORBAStructuredType>> specializes
<<CORBAUserDefinedType>>, and has two derived abstract stereotypes:
<<CORBAObjectType>> and <<CORBAConstructedType>>.

Constraints

CORBAStructuredType : CORBAUserDefinedType (Core::Class)

[1] All Attributes, navigable opposite AssociationEnds, and ownedElements of a
<<CORBAStructuredType>>-stereotyped Class must have a tagged value
IDLOrder whose values are contiguous integers starting from 0.

let featureOrderTags = self.feature

->collect(feature | feature.taggedValue

->select(tag | tag.name = "IDLOrder")) and

let endOrderTags = self.navigableOppositeEnds

->collect(end | end.taggedValue

->select(tag | tag.name = "IDLOrder")) and

let ownedElementOrderTags = self.ownedElements

->collect(ownedElement | ownedElement.taggedValue

->select(tag | tag.name = "IDLOrder")) and

let orderTags

= featureOrderTags->union(endOrderTags->union(ownedElementOrderTags)) and

let orderValues = orderTags->collect(tag | tag.value) and

let numOfOrderValues = orderTags->size in

self.feature->forAll(feature | feature.taggedValue

->select(tag | tag.name = "IDLOrder")->size = 1) and
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-15

3

self.navigableOppositeEnds->forAll(end | end.taggedValue

->select(tag | tag.name = "IDLOrder")->size = 1) and

self.ownedElements->forAll(ownedElement | ownedElement.taggedValue

->select(tag | tag.name = "IDLOrder")->size = 1) and

orderValues->isUnique(n | n) and

orderValues->forAll(value | value >= 0 and (value <= numOfOrderValues - 1))

3.5.4 Module Declaration

3.5.4.1 UML Standard Elements

Stereotypes and Tagged Values

An IDL module is represented by a UML package (from Model Management)
stereotyped as <<CORBAModule>>.

IDL module containment (nesting) is modeled by Namespace containment of one
<<CORBAModule>>-stereotyped UML package within another.

The ability to choose a RepositoryId for any scoped name in IDL using typeId
declarations is modeled as a TaggedValue { typeId = repository-id }, which may be
attached to any UML package representing a CORBA module.

The ability to choose a RepositoryId prefix for declarations inside any scoped name
representing an IDL namespace using typePrefix declarations is modeled as a
TaggedValue { typePrefix = prefix }, which may be attached to any UML package
representing a CORBA module.

Constraints

CORBAModule (ModelManagement::Package)

[1] A <<CORBAModule>>-stereotyped package may directly contain only
<<CORBAModule>>-stereotyped packages or Classes stereotyped as
<<CORBAConstants>> or as a descendant of <<CORBAUserDefinedType>>.

self.ownedElement->forAll(el | el.isStereotyped("CORBAModule") or

 el.isStereotyped("CORBAConstants") or

el.isStereokinded("CORBAUserDefinedType"))

[2] A <<CORBAModule>>-stereotyped package may directly contain at most one
Class stereotyped as <<CORBAConstants>>.

self.ownedElement

->collect(el | el.isStereotyped("CORBAConstants"))->size <= 1
3-16 UML Profile for CORBA, v1.0 April 2002

3

3.5.4.2 Notation

The notation for UML package is used, with the additional stereotype label
<<CORBAModule>>.

For example the following IDL:

module Parent {
module Child1 {};
module Child2 {

module Grandchild {};
};

};

is represented in UML package notation in Figure 3-15.

Figure 3-15 Module Package Notation

Modules that contain nested modules may also be represented using Namespace
containment notation.

The IDL above is shown using the Namespace containment notation in Figure 3-16 on
page 3-18.

<<CORBAModule>>
Parent

<<CORBAModule>>
Child2

<<CORBAModule>>
GrandChild

<<CORBAModule>>
Child1
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-17

3

Figure 3-16 Module Namespace Containment Notation

3.5.5 CORBA Object Types

3.5.5.1 UML Standard Elements

Stereotypes and Tagged Values

The abstract stereotype <<CORBAObjectType>> is a specialization of UML Class that
captures common characteristics of CORBA interfaces and value types.

Constraints

CORBAObjectType : CORBAStructuredType, Core::type (Core::Class)

Note – Only object types are descendants of <<type>>, since only object types are
explicitly “realized” by implementation classes in CORBA, whereas non-object types
are simply mapped into data structures.

<<CORBAModule>>
Parent

<<CORBAModule>>

Grandchild

<<CORBAModule>>
Child2

<<CORBAModule>>

Child1
3-18 UML Profile for CORBA, v1.0 April 2002

3

[1] A <<CORBAObjectType>>-stereotyped Class may not have Receptions.

self.features->forAll(feature | not feature.oclIsTypeOf(Reception))

[2] The ownedElements of a <<CORBAObjectType>>-stereotyped Class may only be
Classes stereotyped with a descendant of <<CORBAConstructedType>>,
<<CORBAIndexedType>>, or <<CORBAWrapper>>.

self.ownedElements

->forAll(ownedEl | ownedEl.isStereokinded("CORBAConstructedType") or

ownedEl.isStereoKinded("CORBAIndexedType") or

ownedEl.isStereoKinded("CORBAWrapper"))

[3] All parents of a <<CORBAObjectType>>-stereotyped Class must have the same
stereotype as the Class.

self.generalization

->forAll(generalization | generalization.parent..stereotype.name =
self.stereotype.name)

3.5.6 Interface

3.5.6.1 UML Standard Elements

CORBA interfaces are modeled using UML Classes.

Note – The correspondingly named UML metamodel element “Interface” (from Core)
is inappropriate for modeling an IDL interface, as it may not have Attributes or
Associations that can be navigated from the Interface. Although IDL attributes are
implemented as accessor and modifier methods in most language mappings, the IDL
attribute is a distinguished type in the CORBA Interface Repository, which is modeled
in this Profile by UML Attribute. In addition we require IDL attributes whose type is
an aliased or constructed type to be represented by navigable Associations between the
UML ModelElement representing the IDL interface and the UML ModelElement
representing the IDL attribute’s type.

The representation for IDL interface attributes is fully specified in Section 3.5.23,
“Attribute,” on page 3-57. In summary:

• Attributes whose types are basic types are represented as UML Class Attributes,
having syntax specified inline. These Attributes are constrained to have Visibility
set to public.

• Attributes whose types are user-defined types are represented as UML Associations
between the <<CORBAInterface>>-stereotyped Class and the CORBA Profile
ModelElements representing that user-defined type.

The representation for IDL operations is fully specified in Section 3.5.22, “Operation,”
on page 3-53. In summary:

• Each IDL operation is represented as a UML Class Operation.
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-19

3

The raising of an IDL exception is represented using TaggedValues on Operations and
Attributes.

Containment of CORBA data type declarations by the interface’s name scope is
represented using UML Namespace containment.

Stereotypes and Tagged Values

An IDL interface is represented by a UML Class that is stereotyped
<<CORBAInterface>>.

Local interfaces are represented using the TaggedValue { isLocal = TRUE }.

When mapping each semi-colon-separated declaration in an IDL interface to a
ModelElement in a UML model the ModelElement will be tagged with the
TaggedValue {IDLOrder = N}, where N is the number of the declaration from zero
upwards. Models created directly in UML will also have an IDLOrder tag attached to
each declaration ModelElement belonging to a <<CORBAInterface>>-stereotyped
Class. In the latter case the numbering of tags is arbitrary, as long as type declarations
are numbered lower than any declarations that use these types.

Constraints

CORBAInterface : CORBAObjectType (Core::Class)

All the constraints for <<CORBAObjectType>> apply to CORBA interfaces, as well as
the following:

[1] All Attributes of a <<CORBAInterface>>-stereotyped Class must have visibility
“public.”

self.allAttributes->forAll(attrib | attrib.visibility = #public)

[2] All navigable opposite AssociationEnds of a <<CORBAInterface>>-stereotyped
Class must have visibility “public.”

self.navigableOppositeEnds->forAll(end | end.visibility = #public)

[3] A <<CORBAInterface>>-stereotyped Class tagged “isLocal” can only participate
in Generalizations with other <<CORBAInterface>>-stereotyped Classes tagged
“isLocal.”

(self.generalization->forAll(

parent.isStereotyped(“CORBAInterface”) and

parent.stereotype.taggedValue->select(name = "isLocal")->size = 1))

and

(self.generalization->forAll(

child.isStereotyped("CORBAInterface") and

child.stereotype.taggedValue->select(name = "isLocal")->size = 1))
3-20 UML Profile for CORBA, v1.0 April 2002

3

3.5.6.2 Notation

The notation for UML Class is used, with the stereotype keyword
<<CORBAInterface>>.

Containment of data type declarations is shown using the “circle-plus” notation for
UML Namespace containment.

Local interfaces are represented using the TaggedValue { isLocal = TRUE }, usually
written as {local}. Non-local interfaces do not use this TaggedValue.

The UML notation for the following IDL is shown in Figure 3-17.

interface TestInterface {

struct TestStruct {
string Member1;

};

attribute string MyStringAttr;
attribute TestStruct MyStructAttr;

void MyOp1(in string str, inout TestStruct t);
boolean MyOp2(inout TestStruct t);

};

Figure 3-17 Example Interface Containing a Struct

This example shows the explicit “IDLOrder” TaggedValues on each of the Attributes,
Associations, and Namespace containments for preserving the ordering given in the
IDL.

<<CORBAInterface>>
TestInterface

MyStringAttr : string {IDLOrder = 1}

<<CORBAStruct>>

TestStruct

MyStructAttr {IDLOrder = 2}1..1

0..1

MyOp1(in str : string,

MyOp2(inout t : TestStruct) : boolean {IDLOrder = 4}

member1 : string

{IDLOrder = 0}

 inout t : TestStruct) : void {IDLOrder = 3}
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-21

3

3.5.7 Value Types

3.5.7.1 UML Standard Elements

Stereotypes and Tagged Values

CORBA value types are represented by a UML Class stereotyped as
<<CORBAValue>>.

CORBA custom value types are represented by a UML Class stereotyped as
<<CORBACustomValue>>.

Abstract value types will have their isAbstract metaattribute (from Generalizable
Element) set to TRUE, and non-abstract values to FALSE. The notation reflects this in
the usual UML manner by italicizing the Class name.

The support by a value type of an IDL interface type is represented by a Generalization
relationship with that IDL interface’s Class, which is stereotyped
<<CORBAValueSupports>>.

The truncatable inheritance of one concrete value type by another is represented by a
Generalization relationship between the value types that is stereotyped
<<CORBATruncatable>>.

A value type factory operation is represented using a UML Operation that is
stereotyped <<CORBAValueFactory>>.

Constraints

CORBAValue : CORBAObjectType (Core::Class)

[1] All Attributes of a <<CORBAValue>>-stereotyped Class must have visibility
“public” or “private.”

self.allAttributes->forAll(attrib | attrib.visibility = #public or

attrib.visibility = #private)

[2] All navigable opposite AssociationEnds of a <<CORBAValue>>-stereotyped Class
must have visibility “public” or “private.”

self.navigableOppositeEnds->forAll(end | end.visibility = #public or

end.visibility = #private)

[3] A concrete <<CORBAValue>>-stereotyped Class may only specialize a single
other concrete <<CORBAValue>>-stereotyped Class.

not self.isAbstract implies

self.generalization

->select(parent.isStereokinded("CORBAValue") and
3-22 UML Profile for CORBA, v1.0 April 2002

3

not parent.isAbstract)->size = 1

[4] A <<CORBAValue>>-stereotyped Class may only specialize a single
<<CORBAInterface>>-stereotyped Class, and it must do so using a
<<CORBAValueSupports>>-stereotyped Generalization.

let supportedInterface =

self.generalization->select(parent.isStereotyped("CORBAInterface")) and

let supportsGeneralization =

supportedInterface.generalization->intersection(self.generalization) in

supportedInterface->size = 1 and

supportsGeneralization.isStereotyped("CORBAValueSupports")

[5] A <<CORBAValue>>-stereotyped Class may only contain a single Operation
stereotyped as <<CORBAValueFactory>>.

self.allOperations->collect(isStereotyped("CORBAValueFactory"))->size <= 1

Constraints

CORBACustomValue : CORBAValue (Core::Class)

As <<CORBACustomValue>> is derived from <<CORBAValue>> the constraint below
applies in addition to those for <<CORBAValue>> above.

[1] A <<CORBACustomValue>>-stereotyped Class may not be truncated by a
<<CORBATruncatable>>-stereotyped Generalization that specializes the Class.

self.generalization

->forAll(parent = self implies not isStereotyped("CORBATruncatable"))

CORBAValueSupports (Core::Generalization)

[1] A <<CORBAValueSupports>>-stereotyped Generalization must have a
<<CORBAInterface>>-stereotyped Class as its parent and a <<CORBAValue>>-
stereotyped or <<CORBACustomValue>>-stereotyped Class as its child.

self.parent.isStereotyped("CORBAInterface") and

self.child.isStereokinded("CORBAValue")

CORBATruncatable (Core::Generalization)

[1] A <<CORBATruncatable>>-stereotyped Generalization must have a concrete
<<CORBAValue>>-stereotyped or <<CORBACustomValue>>-stereotyped Class
as its parent and has the same restriction as to its child.

self.parent.isStereokinded("CORBAValue") and not self.parent.isAbstract and

self.child.isStereokinded("CORBAValue") and not self.child.isAbstract

CORBAValueFactory (Core::Operation)
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-23

3

[1] A <<CORBAValueFactory>>-stereotyped Operation can have only in parameters
and has no return type.

self.parameter->forAll(kind = #in)

[2] A <<CORBAValueFactory>>-stereotypedOperation must be owned by a
<<CORBAValue>>-stereotyped or <<CORBACustomValue>>-stereotyped Class.

self.owner.isStereokinded("CORBAValue")

3.5.7.2 Notation

The Class notation is used to represent CORBA value types.

For example the following IDL:

interface PrettyPrint {
string print();

};

valuetype Time {
public short hour;
public short minute;

};

valuetype DateAndTime : Time supports PrettyPrint {
private Date the_date;

factory init(in short hr, in short min);
Date get_date();

};

is represented in UML as shown in Figure 3-18:
3-24 UML Profile for CORBA, v1.0 April 2002

3

Figure 3-18 Valuetype Example

3.5.8 CORBA Wrapper Types

There are two declarations in IDL that provide existing named types with another
identifier:

• typedef gives a name to an existing type (or to a new template type).

• boxed value declarations give a new name to an existing type, and allow the new type
to be passed as a null parameter.

3.5.8.1 UML Standard Elements

Stereotypes and Tagged Values

Wrapper declarations are represented by the abstract stereotype <<CORBAWrapper>>,
which specializes <<CORBAUserDefinedType>>. There are two concrete
specializations of <<CORBAWrapper>>:<<CORBATypedef>> and
<<CORBABoxedValue>>.

<<CORBAInterface>>

+ hour : short

<<CORBAValue>>
Time

+ minute : short

PrettyPrint

print () : string

<<CORBAValue>>
DateAndTime

<<CORBAStruct>>

Date
- the_date

1..1

0..1

<<CORBAValueFactory>>init(in hr : short, in min : short)

get_date() : Date

<<CORBAValueSupports>>
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-25

3

Constraints

CORBAWrapper : CORBAUserDefinedType (Core::Classifier)

[1] A <<CORBAWrapper>>-stereotyped Classifier must participate as the child in
exactly one Generalization relationship.

self.generalization->select(gen | gen.child = self)->size = 1

[2] The parent of a <<CORBAWrapper>>-stereotyped Classifier must be stereotyped
as <<CORBAPrimitive>> or as a descendant of <<CORBAUserDefinedType>>.

self.generalization

->forAll(gen | gen.parent.isStereotyped("CORBAPrimitive") or

 gen.parent.isStereokinded("CORBAUserDefinedType"))

[3] The Generalization relationship in which a <<CORBAWrapper>>-stereotyped
Classifier participates has the empty string as its discriminator and no powertypes.

self.generalization->forAll(gen | gen.discriminator = ““ and

 gen.powertype->isEmpty)

[4] A <<CORBAWrapper>>-stereotyped Classifier may not have any non-inherited
features.

self.feature->isEmpty

[5] A <<CORBAWrapper>>-stereotyped Classifier may not participate in any
Associations with navigable opposite AssociationEnds.

self.navigableOppositeEnds->isEmpty

[6] A <<CORBAWrapper>> can only extend a DataType or a Class.

self.oclIsTypeOf(DataType) or self.oclIsTypeOf(Class)

3.5.9 Typedef

3.5.9.1 UML Standard Elements

Typedefs in IDL serve two purposes. Firstly they rename types that already have names
to provide an alias for an existing type. For example, the IDL below provides an alias
“Y” for the interface named “X.”

interface X;
typedef X Y;

These typedefs are modeled by Classifiers stereotyped as <<CORBATypedef>>.
3-26 UML Profile for CORBA, v1.0 April 2002

3

Secondly typedefs provide a type name for anonymous template types, such as
sequences, arrays, and fixed point numbers. For example, the IDL below gives the
name “short_array” to an anonymous array of shorts.

typedef short short_array[10];

These typedefs are modeled by Classifiers that are stereotyped as
<<CORBASequence>> (see Section 3.5.19, “Sequence,” on page 3-44),
<<CORBAArray>> (see Section 3.5.20, “Array,” on page 3-48) or <<CORBAFixed>>
(see Section 3.5.21, “Fixed Type,” on page 3-51).

When aliasing an existing type declaration, the typedef specializes the existing
ModelElements (using a UML Generalization relationship) with a new Class or
Datatype being the specialization, giving the type a new name but no new features.

Stereotypes and Tagged Values

An IDL typedef aliasing a named CORBA type is represented by a UML Class or
Datatype stereotyped as <<CORBATypedef>>.

Constraints

CORBATypedef : CORBAWrapper (Core::Classifier)

In addition to the constraints inherited from <<CORBAWrapper>>, the following also
apply:

[1] The parent of a <<CORBATypedef>>-stereotyped Classifier must not be
stereotyped as <<CORBAAnonymousSequence>> or
<<CORBAAnonymousArray>>.

self.generalization

->forAll(gen |not gen.parent.isStereotyped("CORBAAnonymousSequence") and

not gen.parent.isStereotyped("CORBAAnonymousArray"))

3.5.9.2 Notation

The notation for UML Class or Datatype and the notation for Generalization between
Classifiers are used, with the stereotype keyword <<CORBATypedef>> attached to the
Class or Datatype.

For example, the IDL definition:
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-27

3

typedef string Istring;
typedef Istring PropertyName;

is represented in UML as in Figure 3-19.

Figure 3-19 Typedef Alias Example

Examples of typedefs for anonymous types are shown in Section 3.5.19, “Sequence,”
on page 3-44 and in Section 3.5.20, “Array,” on page 3-48.

3.5.10 Boxed Value Types

3.5.10.1 UML Standard Elements

Boxed values are similar to typedefs in that they provide a new name for an existing
type, and change the parameter passing semantics to allow instances of the new type to
be null.

When boxing an existing type declaration, the boxed value specializes the existing
ModelElements (using a UML Generalization relationship) with a new Class or
Datatype being the specialization, giving the type a new name, and possible null value
semantics, but no new features.

Stereotypes and Tagged Values

A Boxed value type is represented by a UML Classifier stereotyped as
<<CORBABoxedValue>>.

<<CORBAPrimitive>>

string

Istring

PropertyName

<<CORBATypedef>>

<<CORBATypedef>>
3-28 UML Profile for CORBA, v1.0 April 2002

3

Constraints

CORBABoxedValue : CORBAWrapper (Core::Classifier)

All the constraints from <<CORBAWrapper>> apply to <<CORBABoxedValue>>.

3.5.10.2 Notation

The Class notation is used to represent a boxed value. The following IDL:

valuetype OptionalNameSeq sequence<string>;
valuetype OptionalStruct TestStruct;

is represented in the CORBA Profile for UML as:

Figure 3-20 Boxed Valuetype Examples

3.5.11 Constant Declaration

3.5.11.1 UML Standard Elements

Stereotypes and Tagged Values

An IDL constant is modeled as a Stereotype “CORBAConstant” of UML Attribute,
with the constant value expression represented by the Attribute’s initialValue
expression.

Constants defined within the scope of an IDL interface simply become Attributes of a
Class that is stereotyped as <<CORBAObjectType>>.

<<CORBABoxedValue>>
OptionalNameSeq

<<CORBABoxedValue>>

OptionalStructCORBA::string

<<CORBAPrimitive>>

index : long {0..*}

1..1

0..1

<<CORBAStruct>>

myIDL::TestStruct
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-29

3

For constants defined within a CORBA module scope a new Stereotype
“CORBAConstants” of UtilityClass is introduced. The name of the Class must be
“Constants.”

Constraints

CORBAConstants (Core::Class)

[1] A <<CORBAConstants>>-stereotyped Class must be directly contained by a
<<CORBAModule>>-stereotyped package.

self.namespace.isStereotyped("CORBAModule")

[2] All the features of a <<CORBAConstants>>-stereotyped Class must be
<<CORBAConstant>>-stereotyped Attributes.

self.feature->forAll(feature | feature.oclIsTypeOf (Attribute) and

feature.isStereotyped ("CORBAConstant"))

[3] A <<CORBAConstants>>-stereotyped UtilityClass cannot participate in any
Associations.

self.associations->isEmpty

Constraints

CORBAConstant (Core::Attribute)

[1] A <<CORBAConstant>>-stereotyped Attribute has the changeability “frozen” and
the ownerScope “classifier.”

self.changeability = #frozen and self.ownerScope = #classifier

[2] The owner of a <<CORBAConstant>>-stereotyped Attribute must be stereotyped
<<CORBAConstants>> or <<CORBAObjectType>>.

self.owner.isStereotyped("CORBAConstants") or

self.owner.isStereokinded("CORBAObjectType")

3.5.11.2 Notation

The notation for UML Attribute is used, with the stereotype name
<<CORBAConstant>>.

As an example, the IDL definition:
3-30 UML Profile for CORBA, v1.0 April 2002

3

module Y {
constant short S = 3;

interface X {
constant long L = S + 20;

};
};

is represented in UML as shown in Figure 3-21.

.

Figure 3-21 Constant Example

3.5.12 Constructed Types

This section defines the common semantics of CORBA structs, unions and exceptions,
each of which share the characteristics of having ordered named elements of some
CORBA type.

3.5.12.1 UML Standard Elements

Each of the IDL constructed types is represented by a stereotype of UML Classifier or
one of its derived metaclasses. Specifically UML Exception is derived from Classifier,
and is used to model CORBA exceptions, while UML Class is derived from Classifier
and is used to model the other Constructed types.

Note – An extension of UML DataType would seem sensible here - but unfortunately
DataTypes are not allowed to contain any Attributes, and Attributes are the best way to
model struct/union members.

<<CORBAModule>> Y

<<CORBAConstant>> S : short = 3

<<CORBAInterface>> X

<<CORBAConstant>> L : long = S + 20

<<CORBAConstants>>
Constants
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-31

3

Each member of a constructed type that is of a CORBA basic type is represented as an
Attribute. The name of this Attribute is the same as the identifier for the member of the
constructed type.

Each member of a constructed type, which is of a user-defined IDL type, is represented
as a UML Association with the stereotyped UML ModelElement representing that IDL
type. In such cases, the identifier for the member of the constructed type is used as the
name of the opposite AssociationEnd.

Stereotypes and Tagged Values

The virtual metamodel contains an abstract stereotype <<CORBAConstructedType>>,
which is a generalization of <<CORBAStruct>>, <<CORBAUnion>>, and
<<CORBAException>>. The following constraints apply to all stereotypes derived
from <<CORBAConstructedType>>.

Each member’s representation in UML must have a TaggedValue {IDLOrder = N},
whose integer value N is the position of the member’s declaration in the IDL,
numbered from zero upwards.

Constraints

CORBAConstructedType : CORBAStructuredType (Core::Classifier)

[1] All features of a <<CORBAConstructedType>>-stereotyped Classifier must be
Attributes with visibility “public.”

self.feature->forAll(feature | feature.oclIsTypeOf(Attribute) and

feature.visibility = #public)

[2] All navigable opposite AssociationEnds of a <<CORBAConstructedType>> must
have visibility “public.”

self.navigableOppositeEnds->forAll(end | end.visibility = #public)

[3] A <<CORBAConstructedType>>-stereotyped Classifier cannot participate in any
Generalization relationships.

self.generalization->isEmpty and self.specialization->isEmpty

3.5.12.2 Notation

The notation for UML Classifier is used, with the addition of the specific stereotype
keyword corresponding to the particular constructed type.

Notation examples are shown in each of the following subsections.
3-32 UML Profile for CORBA, v1.0 April 2002

3

3.5.13 CORBAStructType

3.5.13.1 UML Standard Elements

Stereotypes and Tagged Values

The virtual metamodel contains an abstract stereotype <<CORBAStructType>>, which
is a generalization of <<CORBAStruct>> and <<CORBAException>>. The following
constraints apply to all stereotypes derived from <<CORBAStructType>>.

Constraints

CORBAStructType : CORBAConstructedType (Core::Classifier)

The constraints from <<CORBAConstructedType>> apply to all
<<CORBAStructType>>-stereotyped Classifiers. In addition:

[1] All the Attributes of a <<CORBAStructType>>-stereotyped Classifier must have
multiplicity 1..1.

self.allAttributes->forAll(multiplicity.range.lower = 1 and

 multiplicity.range.upper = 1)

[2] All the navigable opposite AssociationEnds of a <<CORBAStructType>>-
stereotyped Classifier must have the upper multiplicity value equal to 1.

self.navigableOppositeEnds->forAll(multiplicity.range.upper = 1)

[3] All the navigable opposite AssociationEnds of a <<CORBAStructType>>-
stereotyped Classifier whose type is not a <<CORBAInterface>>-stereotyped
Class must have the lower multiplicity value equal to 1.

self.navigableOppositeEnds->forAll(not isStereotyped("CORBAInterface")

implies multiplicity.range.lower = 1)

3.5.13.2 Notation

See the concrete stereotypes CORBAStruct and CORBAException.

3.5.14 Struct

3.5.14.1 UML Standard Elements

Stereotypes and Tagged Values

IDL struct definitions are represented by a UML Class stereotyped as
<<CORBAStruct>>.
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-33

3

Each basic-typed member is represented as a UML Attribute, and each user-defined-
typed member is represented as an Association as defined in Section 3.5.12.1, “UML
Standard Elements,” on page 3-31.

Constraints

CORBAStruct : CORBAStructType (Core::Class)

The constraints from <<CORBAStructType>> apply to all <<CORBAStruct>>-
stereotyped Classes.

3.5.14.2 Notation

For example, the IDL definition:

struct foo {
long length;
PropertyName name;
Object ref;

};

is represented in UML as shown in Figure 3-22.

Figure 3-22 Struct Example

The following IDL:

<<CORBAStruct>>

foo

length : long name

0..1

<<CORBAPrimitive>>

string

Istring

PropertyName

<<CORBATypedef>>

<<CORBATypedef>>

1..1

<<CORBAInterface>>

CORBA::Object

0..*

0..1 ref
3-34 UML Profile for CORBA, v1.0 April 2002

3

struct A {
struct B {

short k;
long j;

} p;
string q;

};

is represented in UML as in Figure 3-23.

Figure 3-23 Nested Struct Example

Note – Whether the multiplicity on the AssociationEnd named “p” is 0..1 or 1..1 is the
modelers choice.

3.5.15 Discriminated Union

3.5.15.1 UML Standard Elements

Stereotypes and Tagged Values

IDL union definitions are represented by a UML Class stereotyped as
<<CORBAUnion>>.

The discriminator type is represented as an additional Attribute or Association
(according to the rules given in Section 3.5.12.1, “UML Standard Elements,” on
page 3-31) of the <<CORBAUnion>>-stereotyped Class, which is stereotyped as a
<<switch>> or <<switchEnd>> respectively.

Each member of the IDL union is represented as a UML Attribute or Association,
according to the rules given in Section 3.5.12.1, “UML Standard Elements,” on
page 3-31.

Each member has a TaggedValue {IDLOrder = N} attached to it, where N is a number
from zero upwards corresponding to the order in which the members are declared.

<<CORBAStruct>>
A

q : string p

<<CORBAStruct>>

j : long

B

k : short0..1
1..1
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-35

3

Each member has a TaggedValue {Case = LabelName} attached with its LabelName
value being the case label for this member in the union declaration. For union
declarations in which there is a default case, the value of LabelName for the default
member will be the string “default.”

Constraints

CORBAUnion : CORBAConstructedType (Core::Class)

All of the constraints on <<CORBAConstructedType>> apply to unions. In addition the
following constraints apply:

[1] Either exactly one of the Attributes or exactly one of the navigable opposite
AssociationEnds of a <<CORBAUnion>>-stereotyped Class (but not both) must be
stereotyped as <<switch>> (in the case of an Attribute) or <<switchEnd>> (in the
case of AssociationEnd).

self.allAttributes->select(attrib | attrib.type.isStereotyped("switch"))-
>size = 1 xor

self.navigableOppositeEnds->select(end |
end.type.isStereotyped("swutchEnd"))->size = 1

[2] The Attribute or AssociationEnd that represents the switch of the IDL union
represented by the <<CORBAUnion>>-stereotyped Class must have multiplicity
1..1.

let switch =

 self.allAttributes->select(attrib |
attrib.type.isStereotyped("switch"))->union(

 self.navigableOppositeEnds->select(end |
end.type.isStereotyped("switchEnd"))) in

switch.oclIsTypeOf(Attribute) implies

(switch.multiplicity.range.lower = 1 and

switch.multiplicity.range.upper = 1)

and

switch.oclIsTypeOf(AssociationEnd) implies

(switch.multiplicity.range.lower = 1 and

switch.multiplicity.range.upper = 1)

[3] With the exception of the element representing the switch, every Attribute and
navigable opposite AssociationEnd of a <<CORBAUnion>>-stereotyped Class
must have the multiplicity 0..1 and a tagged value “case.”

(self.allAttributes

->forAll(attrib | not attrib.type.isStereotyped("switch")

implies attrib.multiplicity.range.lower = 0 and

 attrib.multiplicity.range.upper = 1))

and
3-36 UML Profile for CORBA, v1.0 April 2002

3

(self.navigableOppositeEnds

->forAll(end | not end.type.isStereotyped("switchEnd")

implies end.multiplicity.range.lower = 0 and

end.multiplicity.range.upper = 1))

3.5.15.2 Notation

The UML Class notation is used. For example, the IDL definition:

enum Contents {
INTEGER_CL;
FLOAT_CL;
DOUBLE_CL;
COMPLEX_CL;
STRUCTURED_CL;

};

union Reading switch (Contents) {
case INTEGER_CL:

long a_long;
case FLOAT_CL:
case DOUBLE_CL:

double a_double;
default: any an_any;

};

union ValOpt switch (boolean) {
case TRUE: PropertyValue pv;

};

is represented in UML as in Figure 3-24.
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-37

3

Figure 3-24 Union Example

3.5.16 Enum

3.5.16.1 UML Standard Elements

Stereotypes and Tagged Values

IDL enum definitions are represented by UML Classes stereotyped as
<<CORBAEnum>>.

Each element of the enum type is represented as an Attribute of the stereotyped UML
Class, with the same name as the enum element.

Constraints

CORBAEnum : CORBAConstructedType (Core::Class)

All constraints that apply to <<CORBAConstructedType>> apply to enums. In addition:

<<CORBAEnum>>

Contents

INTEGER_CL

FLOAT_CL

COMPLEX_CL

STRUCTURED_CL

<<CORBAUnion>>

Reading

a_long : [0..1] long {Case=INTEGER_CL}

a_double : [0..1] double

<<switchEnd>>

an_any : [0..1] any {Case=default}

{Case = (FLOAT_CL,

<<CORBAUnion>>

ValOpt

<<switch>> X : boolean

PropertyValue

pv {Case = TRUE}

DOUBLE_CL) }

0..1

0..1

1..1

0..1
<<CORBAStruct>>
3-38 UML Profile for CORBA, v1.0 April 2002

3

[1] All the Attributes of a <<CORBAEnum>>-stereotyped Class must have
multiplicity 1..1, type CORBA::short and an initialValue equal to the value of its
IDLOrder tag.

self.allAttributes

->forAll(attrib |attrib.multiplicity.range.lower = 1 and

attrib.multiplicity.range.upper = 1 and

attrib.initialValue.body = attrib.taggedValues

->select(tag | tag.name = "IDLOrder").value)

[2] A <<CORBAEnum>>-stereotyped Class may not participate in any Association
that has navigable opposite AssociationEnds.

navigableOppositeEnds->isEmpty

3.5.16.2 Notation

The usual Class and Attribute notation is used. An example enum is represented in
UML in Figure 3-25 on page 3-41.

The type and initial numeric values of the Attributes representing enum elements may
be omitted in the notation, as the type is always short, and the initialValue can be
deduced from the ordering of the Attributes.

3.5.17 Exception

3.5.17.1 UML Standard Elements

CORBA Exceptions are modeled using stereotypes of UML Exceptions. The members
of the CORBA exception are represented exactly the same as those of CORBA struct.

In the UML metamodel, Exception is a subtype of Signal, which is a subtype of
Classifier.

Note – In CORBA 2.4 attributes may not raise exceptions.

Stereotypes and Tagged Values

CORBA exceptions are represented by UML Exceptions (from Common Behavior),
stereotyped <<CORBAException>>.

The TaggedValue { raises = (exception-name, exception-name, ...) } is defined for
Operations in Section 3.5.22, “Operation,” on page 3-53 to describe which operations
raise which exceptions.
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-39

3

Constraints

CORBAException : CORBAStructType (CommonBehavior::Exception)

All the constraints for <<CORBAStructType>>-stereotyped Classifiers apply to
<<CORBAException>>-stereotyped Exceptions. The following constraint also applies.

[1] A <<CORBAException>>-stereotyped Exception cannot be the type of a
navigable AssociationEnd.

self.allEnds->forAll(end | end.type = self implies not end.isNavigable)

3.5.17.2 Notation

The notation for UML Class is used to represent exceptions.

Examples

The following IDL:

struct AdminLimit {
CosNotification::PropertyName name;
CosNotification::PropertyValue val;

};

exception AdminLimitExceeded { AdminLimit admin_property_err; };

is represented in UML as in Figure 3-25.
3-40 UML Profile for CORBA, v1.0 April 2002

3

Figure 3-25 Operation Raising Exception Example

The following IDL:

interface Tex {

exception Badness2000 { string err_msg };

void process_token (in string tok)
raises (Badness2000);

};

is represented in UML as in Figure 3-26.

<<CORBAStruct>>

AdminLimit

<<CORBAStruct>>

name

val

<<CORBAException>>

AdminLimitExceeded

admin_property_err

<<CORBAInterface>>

bar

PropertyValue

<<CORBAPrimitive>>

string

Istring

PropertyName

<<CORBATypedef>>

<<CORBATypedef>>0..1

0..1

1..1

1..1

1..1

my_op(in x : string) : string
 {raises = (AdminLimitExceeded)}
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-41

3

Figure 3-26 Exception Containment and Raising

3.5.18 Indexed Types

The CORBA indexed types are sequences and arrays. These have similar modeling
characteristics, and so we define their commonalities using the abstract stereotype
<<CORBAIndexedType>>. All indexed types are modeled as Classes that have a
qualified Association to the element type. The qualifier represents the index. We model
indexed types in two ways, depending on whether or not the element type is an
interface type.

Case 1: Where an interface type is being indexed:

• The opposite end multiplicity on the qualified association defaults to 0..1.

• The near end multiplicity on the qualified association defaults to 0..*

• The near end AggregationKind defaults to “none.”

Case 2: Where a non-interface type is being indexed:

• The opposite end multiplicity on the qualified association is 1..1.

• The near end multiplicity on the qualified association defaults to 0..1.

• The near end AggregationKind is “composite.”

3.5.18.1 UML Standard Elements

Stereotypes and Tagged Values

The abstract stereotype <<CORBAIndexedType>> specializes the abstract stereotype
<<CORBAStructuredType>>, and all its concrete derived stereotypes are of UML
Class.

<<CORBAIndexedType>> is specialized to the concrete stereotypes
<<CORBASequence>>, <<CORBAAnonymousSequence>>, <<CORBAArray>>, and
<<CORBAAnonymousArray>>.

<<CORBAInterface>>

Tex

<<CORBAException>>

Badness2000

process_token (in tok :string) : void err_msg : string

{raises = (Badness2000) }
3-42 UML Profile for CORBA, v1.0 April 2002

3

Constraints

CORBAIndexedType : CORBAUserDefinedType (Core::Class)

[1] A <<CORBAIndexedType>>-stereotyped Class has no features.

self.features->isEmpty

[2] A <<CORBAIndexedType>>-stereotyped Class participates in exactly one
Association that has a navigable opposite AssociationEnd.

self.navigableOppositeEnds->size = 1

[3] The single navigable opposite AssociationEnd of a <<CORBAIndexedType>>-
stereotyped Class must have the visibility “public.”

self.navigableOppositeEnds->forAll(end | end.visibility = #public)

[4] There is exactly one Association in which a <<CORBAIndexedType>>
participates as the type of the near, non-navigable AssociationEnd.

self.nonNavigableNearEnds->size = 1

[4] All qualifiers of the single non-navigable near AssociationEnd of a
<<CORBAIndexedType>> must have multiplicity 1..1, type CORBA::long, and a
constraint of the form "{0..n}" or "{0..*}" (where n is a non-negative integer).

self.nonNavigableNearEnds->forAll(end | end.qualifier->forAll

(qualifier | qualifier.multiplicity.range.lower = 1 and

qualifier.multiplicity.range.upper = 1 and

qualifier.type.name = "CORBA::long" and

qualifier.constraint->exists(constraint |

constraintSubstring(constraint,1,3) = "0.." and

(constraintUpperValue = "*" or

constraintUpperValue >= 1))))

[5] If the type being indexed is a <<CORBAInterface>>-stereotyped Class, then the
opposite AssociationEnd of the one qualified Association in which the
<<CORBAIndexedType>>-stereotyped Class participates has multiplicity lower
bound of at most 1 and multiplicity upper bound of exactly 1.

self.navigableOppositeEnd.type.isStereotyped("CORBAInterface")

implies

self.navigableOppositeEnd.multiplicity.range.lower <= 1 and

self.navigableOppositeEnd.multiplicity.range.upper = 1

[6] If the type being indexed is not a <<CORBAInterface>>-stereotyped Class, then

• the opposite AssociationEnd of the one qualified Association in which the
<<CORBAIndexedType>>-stereotyped Class participates has multiplicity 1..1, and

• the near AssociationEnd of the qualified Association has multiplicity lower bound
of at most 1 and upper bound of exactly 1.
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-43

3

not

self.qualifiedAssociationOppositeEnd.type.isStereotyped("CORBAInterface")

implies

(self.navigableOppositeEnd.multiplicity.range.lower = 1 and

self.navigableOppositeEnd.multiplicity.range.upper = 1)

and

(self.navigableNearEnd.multiplicity.range.lower <= 1 and

self.navigableNearEnd.multiplicity.range.upper =1)

[7] A <<CORBAIndexedType>>-stereotyped Class cannot have any ownedElements.

self.ownedElements->isEmpty

[8] A <<CORBAIndexedType>>-stereotyped Class cannot participate in any
Generalization relationships.

self.generalization->isEmpty and self.specialization->isEmpty

OCL Convenience Operations

[1] and [2] deleted

[3] The operation constraintAsString returns a substring of the Constraint body
expression, where lower is the lower bound of the substring and upper is the upper
bound of the substring.

constraintSubstring :

(constraint : Constraint, lower : Integer, upper : Integer);

constraintSubstring =

constraint.body.body.substring(lower,upper) --sic!

[4] The operation constraintUpperValue returns the portion of the Constraint body
expression following “0..”

constraintUpperValue : (constraint : Constraint);

constraintUpperValue =

constraintSubString(constraint,4,constraint.body.body.size) --sic!

3.5.19 Sequence

CORBA Sequences are IDL template types that take a CORBA type as their element
parameter, and optionally an integer as an upper bound specification. Sequences are
anonymous, and can either be named by a typedef, or by the member name of a
constructed type.
3-44 UML Profile for CORBA, v1.0 April 2002

3

Sequences are modeled by Classes that participate in a qualified Association with the
Classifier representing the element type of the sequence. The qualifier Attribute on the
Association represents the index of the sequence, and the (optional) upper bound of the
sequence is modeled as a constraint on that index.

Sequences that are declared as the type-declarator of a typedef are given the name of
that typedef and the stereotype <<CORBASequence>>. Sequences that are anonymous
(declared in some context where they don’t have a type name, such as a struct member
type) are given the stereotype <<CORBAAnonymousSequence>>.

3.5.19.1 UML Standard Elements

Stereotypes and Tagged Values

An IDL sequence that is declared as the type-declarator of a typedef is represented as
a UML Class stereotyped as <<CORBASequence>>. The name of the Class will be the
name of the typedef.

An IDL sequence that is declared in any other context is represented by a Class
stereotyped as <<CORBAAnonymousSequence>>.

Constraints

CORBASequence : CORBAIndexedType (Core::Class)

These constraints are in addition to those defined for all CORBA indexed types in
Section 3.5.18, “Indexed Types,” on page 3-42.

[1] The single non-navigable near AssociationEnd of a <<CORBASequence>>-
stereotyped Class must have a single qualifier with the name “index.”

self.nonNavigableNearEnds->size = 1 and

self.nonNavigableNearEnds

->forAll(end |end.qualifier->size = 1 and

end.qualifier->forAll(qualifier | qualifier.name = "index")

[2a] The single navigable opposite AssociationEnd of a <<CORBASequence>>-
stereotyped Class must have multiplicity 1..1 if it cannot be a null in CORBA; that
is, unless it is an object type or a boxed value type.

[2b]The single navigable opposite AssociationEnd of a <<CORBASequence>>-
stereotyped Class must have multiplicity 0..1 if it is a boxed value type or object
type.

[3] A <<CORBAIndexedType>>-stereotyped Class cannot have any ownedElements.

self.ownedElements->isEmpty
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-45

3

Constraints

CORBAAnonymousSequence : CORBASequence (Core::Class)

In the virtual metamodel <<CORBAAnonymousSequence>> is a derived Stereotype of
<<CORBASequence>>; therefore, the following constraint is in addition to those for
<<CORBASequence>> above.

[1] A <<CORBAAnonymousSequence>>-stereotyped Class must have exactly one
navigable opposite AssociationEnd whose multiplicity is 1..1.

navigableOppositeEnds->size = 1 and

navigableOppositeEnds

->forAll(end | end.multiplicity.range.lower = 1 and

 end.multiplicity.range.upper = 1)

3.5.19.2 Notation

The UML Class and qualified Association notation is used. For example, the IDL
definition:

typedef sequence<short> foo;

struct bar {
long val;
sequence <short, 4> my_shorts;

};
3-46 UML Profile for CORBA, v1.0 April 2002

3

is represented in UML as in Figure 3-27.

Figure 3-27 Sequence Example

The following IDL, featuring an anonymous sequence as the type of another sequence:

typedef sequence < sequence < string > > string_matrix;

is represented in UML as in Figure 3-28.

<<CORBAAnonymousSequence>>

my_shorts

CORBA::short

<<CORBAPrimitive>

index : long {0..3}

1..1

<<CORBAStruct>>

bar

val : long

1..1 1..1

foo

<<CORBASequence>

1..1

index : long {0..*}

0..1

0..1
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-47

3

Figure 3-28 Nested Sequence Example

3.5.20 Array

CORBA Arrays are IDL indexed types that take a CORBA type as their element type,
and have at least one integer as the size of the zeroth dimension of the array.
Additional array dimensions are specified by additional integers. Arrays are
anonymous, and can either be named by a typedef, or by the member name of a
constructed type.

Arrays are modeled by Classes that participate in a qualified Association with the
Classifier representing the element type of the array. The qualifier on the Association
contains Attributes representing each dimension of the array. A constraint on each
qualifier Attribute represented specifies the size of the array dimension. The type of all
qualifier Attributes is CORBA::long, and constraints on the Attributes limit these to
have a value between zero and size-1.

CORBA::string

<<CORBAPrimitive>

1..1

index : long {0..*}

1..1

index : long {0..*}

<<CORBASequence>>

string_matrix

<<CORBAAnonymousSequence>>

1..1

1..1
3-48 UML Profile for CORBA, v1.0 April 2002

3

Arrays that are declared as the type-declarator of a typedef are given the name of that
typedef and the stereotype <<CORBAArray>>. Arrays that are anonymous (declared in
some context where they don’t have a type name, such as a struct member type) are
given the stereotype <<CORBAAnonymousArray>>.

3.5.20.1 UML Standard Elements

Stereotypes and Tagged Values

An IDL array that is declared as the type-declarator of a typedef is represented as a
UML Class stereotyped as <<CORBAArray>>. The name of the Class will be the
name of the typedef.

An IDL array that is declared in any other context is represented by a Class stereotyped
as <<CORBAAnonymousArray>>.

Constraints

CORBAArray : CORBAIndexedType (Core::Class)

[1] The single non-navigable near AssociationEnd of a <<CORBAArray>>-
stereotyped Class must have one or more qualifiers with the names “index<i>,”
where the <i> are contiguous integers starting from 0.

let dimensions = self.nonNavigableNearEnd.

qualifier->collect(name.substring(6,name.size)) in

self.nonNavigableNearEnd.qualifier

->forAll(name.substring(1,5) = "index") and

dimensions->isUnique(n | n) and

dimensions->forAll(dim | dim >= 0 and dim <= dimensions.size)

[2] The single navigable opposite AssociationEnd of a <<CORBAArray>>-
stereotyped Class must have multiplicity 1..1.

navigableOppositeEnds

->forAll(end | end.multiplicity.range.lower = 1 and

 end.multiplicity.range.upper = 1)

CORBAAnonymousArray : CORBAArray (Core::Class)

As <<CORBAAnonymousArray>> specializes <<CORBAArray>> in the virtual
metamodel, the following constraints apply in addition to those for arrays above.

[1] A <<CORBAAnonymousArray>>-stereotyped Class must have exactly one
navigable opposite AssociationEnd whose multiplicity is 1..1.

navigableOppositeEnds->size = 1 and
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-49

3

navigableOppositeEnds

->forAll(end | end.multiplicity.range.lower = 1 and

 end.multiplicity.range.upper = 1)

3.5.20.2 Notation

The UML notation for Classes and for qualified Associations is used to represent
arrays.

Examples

The following IDL is represented in UML as in Figure 3-29.

typedef short short_arr[4];
typedef my_struct my_struct_arr[5][10];

Figure 3-29 Typedefed Array Example

Note – The AssociationEnd name my_s_arr above does not affect the IDL. Modelers
may choose to provide meaningful names for AssociationEnds of Associations
between Classes representing sequences and arrays and their element types, or to
provide empty string names, or to suppress the names in their notation.

The following IDL is represented in UML as in Figure 3-30.

CORBA::short

<<CORBAPrimitive>

short_arr
<<CORBAArray>>

1..1

index : long {0..3}

1..1

index0 : long {0..4}

<<CORBAStruct>>
my_struct

index1 : long {0..9}

<<CORBAArray>>

my_struct_arr

0..1

0..1

my_s_arr
3-50 UML Profile for CORBA, v1.0 April 2002

3

struct boom {
string zoom[4];
my_struct loom[2][2][2];

};

Figure 3-30 Anonymous Array Example

3.5.21 Fixed Type

Fixed types are modeled as Template Classes with two Parameters representing the
digits and scale of a fixed point decimal number. Specific uses of fixed point
declarations will instantiate (bind) the template with specific parameters.

When a typedef gives the fixed point type instantiation a name, the resulting Class is
stereotyped as <<CORBAFixed>>.

3.5.21.1 UML Standard Elements

Stereotypes and Tagged Values

Fixed point number types are modeled by UML Classes that instantiate the Template
CORBA::fixed. Any IDL fixed declaration, which is the declarator type of a typedef is
given the stereotype <<CORBAFixed>>. Fixed declarations in other contexts are not
stereotyped.

CORBA::string

<<CORBAPrimitive>

zoom

<<CORBAAnonymousArray>>

1..1

index : long {0..3}

1..1

index0 : long {0..1}

<<CORBAstruct>>
my_struct

index1 : long {0..1}

<<CORBAAnonymousArray>>

<<CORBAStruct>>
boom

1..1

index2 : long {0..1}
1..1

1..1 1..1

loom1..1

1..1
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-51

3

Constraints

CORBAFixed : CORBAStructuredType (Core::Class)

All constraints that apply to <<CORBAStructuredType>> apply to IDL fixed instances.

Common ModelElements

The Template Class “fixed” is contained in the CORBA package.

Figure 3-31 Fixed Template Specification

3.5.21.2 Notation

Uses of anonymous fixed types as members of constructed types use the inline
notation:

member-name : fixed <digits, scale>

in the same way as IDL.

Typedefed fixed types bind the template parameters using the <<bind>> stereotype.
These Classes are stereotyped as <<CORBAFixed>>.

The following IDL would be represented as shown in Figure 3-32.

fixed
digits, scale : short

CORBA
3-52 UML Profile for CORBA, v1.0 April 2002

3

typedef fixed <10, 2> bar;

struct baz {
fixed <8, 4> high_scale;
fixed <8, 2> low_scale;

};

Figure 3-32 Fixed Example

3.5.22 Operation

3.5.22.1 UML Standard Elements

An IDL operation is represented as a UML Operation of the <<CORBAObjectType>>-
stereotyped UML Class that represents the containing CORBA interface.

The names and types of the operation parameters are mapped directly to the UML
Operation Parameter names and types, regardless of whether the types are IDL basic
types or user defined IDL types. The IDL Parameter directional attributes “in,” “out,”
and “inout” are represented using the equivalent UML Parameter kind metaattribute.

Stereotypes and Tagged Values

CORBA oneway operations are modeled by UML Operations stereotyped as
<<oneway>>.

Context expressions on CORBA operations are modeled using a TaggedValue {Context
= (ctx_expr, ctx_expr, ...) }.

Raises clauses on IDL operations are modeled using a TaggedValue { raises = (
exception-name, exception-name, ...) }. Where the names of exceptions raised are given
in UML scope identifier notation.

CORBA::fixed

digits, scale : short

<<bind>> (10, 2)

bar
<<CORBAFixed>>

<<CORBAStruct>>

baz

high_scale : fixed <8, 4>

low_scale : fixed <8, 2>
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-53

3

Constraints

oneway (Core::Operation)

[1] A <<oneway>>-stereotyped Operation may not have any out or inout Parameters
and must have a return Parameter of type CORBA::void.

self.parameter

->forAll(param | param.kind <> #out and

 param.kind <> #inout) and

self.parameter->select(param | param.kind = #return and

 param.type.name = “CORBA::void”)->size = 1)

[2] A <<oneway>>-stereotyped Operation must be owned by a
<<CORBAInterface>>-stereotyped Class.

self.owner.isStereotyped("CORBAInterface")

3.5.22.2 Notation

The notation for UML Operation in a UML Classifier is given by the UML 1.3
Notation Guide as:

stereotype-keyword visibility name ‘(‘ parameter-list ‘)’ : return-type-expression
‘{‘ property-string ‘}’

The optional notation for visibility is not required because it will always be stored in
the model as “public.”

For oneway operations the stereotype-keyword <<oneway>> is placed before the name
of the operation.

The Operation name is the same as the IDL operation name.

The parameter-list is defined below.

The return-type-expression will use UML double-colon-separated scoped naming
conventions when it refers to types defined outside the module naming scope within
which this IDL operation is declared.

Parameter List

The standard UML syntax used to represent parameter-lists is a comma-separated list
of parameters, each of which are shown as follows:

kind name : type-expression = default-value

In UML the kind label (in, out, inout) is optional - but for this Profile it is mandated
that it be represented, even for the default in case.

The type-expression will use UML double-colon-separated scoped naming conventions
when it refers to types defined outside the module naming scope within which this IDL
operation is declared.
3-54 UML Profile for CORBA, v1.0 April 2002

3

The default-value specification is optional, and may be used by a modeler to provide
instruction to implementers, but it is not representative of any IDL semantics.

Exception Raising

The specification that a particular IDL exception may be raised by an IDL operation is
denoted by a TaggedValue “raises” defined in Section 3.5.22, “Operation,” on
page 3-53.

Example

The following IDL of an interface with several operations from the Notification
Service is shown using the CORBA Profile in Figure 3-33 on page 3-56.

interface SequencePullSupplier : NotifySubscribe {

CosNotification::EventBatch pull_structured_events(
in long max_number)

raises(CosEventComm::Disconnected);

CosNotification::EventBatch try_pull_structured_events(
in long max_number,
out boolean has_event)

raises(CosEventComm::Disconnected);

void disconnect_sequence_pull_supplier();

}; // SequencePullSupplier
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-55

3

Figure 3-33 Example IDL Interface with Operations

The following IDL interface containing oneway operations and context expressions is
depicted in Figure 3-34.

interface OutOfDate {
oneway void signalExpiry(in Date expiry_date);
boolean validContext() context (“ptr*”, “rtn*”);

}

Figure 3-34 Example IDL Interface with Oneway

<<CORBAInterface>>
NotifySubscribe

<<CORBAInterface>>

SequencePullSupplier

 pull_structured_events (in max_number : long) : CosNotification::EventBatch

try_pull_structured_events(in max_number : long, out has_event : boolean)

disconnect_sequence_pull_supplier () : void

: CosNotification::EventBatch {raises = (CosEventComm::Disconnected) }

 {raises = (CosEventComm::Disconnected) }

<<CORBAInterface>>

OutOfDate

<<oneway>> signalExpiry(in expiry_date : Date) : void

validContext () : boolean {context = (“ptr*”, “rtn*”) }
3-56 UML Profile for CORBA, v1.0 April 2002

3

3.5.23 Attribute

3.5.23.1 UML Standard Elements

An IDL attribute definition whose type is CORBA basic types in an IDL interface or
valuetype definition is represented as:

• A UML Attribute of a <<CORBAInterface>>-stereotyped Class corresponding to
the IDL interface that the attribute is defined in. The identifier of the IDL attribute
is used as the name of the UML Attribute in the <<CORBAInterface>> stereotyped
Class.

An IDL attribute whose type is a user-defined data type is represented as:

• A UML Association between the <<CORBAInterface>>-stereotyped Class and the
UML stereotype that represents the user-defined IDL type of the IDL attribute. The
identifier of the IDL attribute is used as the role name for the user-defined-type
AssociationEnd of this Association.

Stereotypes and Tagged Values

CORBA readonly attributes of basic types are represented by UML Attributes
stereotyped as <<readonly>>.

CORBA readonly attributes of user-defined types are represented by UML
Associations between the interface or value type defining the attribute, and the
Classifier representing the attribute’s type. The far (type) AssociationEnd of this
Association will be stereotyped <<readonlyEnd>>.

The specification that a particular exception type may be raised by an IDL attribute’s
access (get) or modification (set) is denoted by a pair of Tagged Values:

{ getRaises = (exception-name, exception-name, ...) }

{ setRaises = (exception-name, exception-name,...) }

Where the exception-name is the name of the <<CORBAException>>-stereotyped
exception raised by the attribute’s accessor and modifier.

Constraints

readonly (Core::Attribute)

[1] A <<readonly>>-stereotyped Attribute cannot raise a modify exception.

not self.taggedValue->exists(tag | tag.name = "setRaises")

readonlyEnd (AssociationEnd)

[1] A <<readonlyEnd>>--stereotyped AssociationEnd cannot raise a modify
exception.
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-57

3

not self.taggedValue->exists(tag | tag.name = "setRaises")

3.5.23.2 Notation

Basic Typed Attributes

IDL attributes whose type is a CORBA basic type are shown using the inline form for
UML Attributes, which is given in the UML 1.3 Notation Guide is as follows:

stereotype-keyword visibility name ‘[‘ multiplicity ‘]’ ‘:’ type-expression
‘=’ initial-value ‘{‘ property-string ‘}’

Readonly attributes will have the stereotype-keyword <<readonly>> at the beginning of
the attribute.

The visibility notation is mandatory for Attributes of value types. For Attributes of
CORBA interfaces the visibility is always “public,” but thus may be suppressed in the
notation.

The name shown is the same as the name of the IDL attribute name.

The optional square-bracketed multiplicity is always 1..1 and is not shown in the
notation.

The type-expression will use CORBA double-colon-separated scoped naming
conventions when it refers to types defined outside the module naming scope within
which this IDL operation is declared.

The initial-value specification is optional, and may be used by a modeler to provide
instruction to implementers, but it is not representative of any IDL semantics.

IDL readonly attributes must show the TaggedValue {readonly} after the Attribute.

User-defined Typed Attributes

The notation for UML Association is used to denote IDL attributes that have user-
defined IDL types.

Readonly IDL attributes have the stereotype <<readonlyEnd>> attached to the
AssociationEnd corresponding to the attribute’s type.

Unless the IDL attribute is an IDL object reference the Association is modeled as a
strong aggregation, also known as a composite aggregation. (UML notation depicts
strong aggregation with a black diamond.) In either case, the Association is navigable
to the stereotyped UML Class representing the user-defined type.

Example

For example, the IDL definition:
3-58 UML Profile for CORBA, v1.0 April 2002

3

interface Vehicle {
readonly attribute ManufacturerIfce manufacturer;
readonly attribute short tireCount;
attribute PropertyName vehicleId;

};

is represented in UML as in Figure 3-35.

Figure 3-35 Interface Attribute Example

Note – The modeler may constrain multiplicity and choose aggregation kinds.

<<CORBAInterface>>
Vehicle

<<readonly>> tireCount : short {IDLOrder=1}

{IDLOrder=0}

{IDLOrder=2}

manufacturer

vehicleId

ManufacturerIfce

<<CORBATypedef>>0..1

1..1

0..* 1..1

<<CORBAInterface>>

PropertyName

<<readonlyEnd>>
April 2002 UML Profile for CORBA: The CORBA Type Representations 3-59

3

3-60 UML Profile for CORBA, v1.0 April 2002

Complete Example 4
Contents

This chapter contains the following topics.

4.1 Introduction

This section is the result of a reverse engineering of the IDL of the OMG Task and
Session Service, version 2. The IDL used as a basis is contained in OMG document
dtc/99-08-05, and is included at the end of this chapter.

4.2 Approach

The reverse engineering was accomplished by using the Rational RoseCORBA reverse
engineering tool, and then modifying the results to comply with this specification.
RoseCORBA and the UML Profile for CORBA concern themselves only with class
diagrams and the metamodel underlying class diagrams, and thus this example consists
exclusively of class diagrams.

When graphically modeling a system via UML, it is generally advisable to avoid
clutter in the diagrams. This approach results in more diagrams with fewer model
elements per diagram.

Topic Page

“Introduction” 4-1

“Approach” 4-1

“Class Diagrams” 4-2

“Task & Session IDL” 4-11
April 2002 UML Profile for CORBA, v1.0 4-1

4

4.3 Class Diagrams

4.3.1 The Class Diagrams for the OMG Task & Session Service

Figure 4-1 Constants

The order of the
constants is the same
as in the Task &
Session IDL

ModuleConstants
<<CORBACons tant>> references : LinkKind = 0
<<CORBACons tant>> referenced_by : LinkKind = 1
<<CORBACons tant>> cons umes : LinkKind = 8
<<CORBACons tant>> cons umed_by : LinkKind = 9
<<CORBACons tant>> produces : LinkKind = 10
<<CORBACons tant>> produced_by : LinkKind = 11
<<CORBACons tant>> processes : LinkKind = 12
<<CORBACons tant>> processed_by : LinkKind = 13
<<CORBACons tant>> contains : LinkKind = 14
<<CORBACons tant>> contained_by : LinkKind = 15
<<CORBACons tant>> holds : LinkKind = 6
<<CORBACons tant>> grants : LinkKind = 7
<<CORBACons tant>> access : LinkKind = 14
<<CORBACons tant>> accessed_by : LinkKind = 15
<<CORBACons tant>> adm inisters : L inkKind = 16
<<CORBACons tant>> adm inistered_by : LinkKind = 17
<<CORBACons tant>> owns : LinkKind = 18
<<CORBACons tant>> owned_by : LinkKind = 19

<<CORBAConstants>> The order of the
constants is the same
as in the Task &
Session IDL
4-2 UML Profile for CORBA, v1.0 April 2002

4

Figure 4-2 Typedefs and Sequences

long
(from CORBA)

<<primitive>>

LinkKinds

<<CORBASequence>>

LinkKind

<<CORBATypedef >>

index : long {0..*}

0..1

1

0..1

index : long {0..*}

1

Link

<<CORBAStruct>>

Links

<<CORBASequence>>

1

index : long {0..*}

0..1

1

0..1

index : long {0..*}

LinkExtent

<<CORBAStruct>>

LinkExtents

<<CORBASequence>>

1

index : long {0..*}

0..1

1

0..1

index : long {0..*}

Task
<<CORBAInterface>>

Tasks

<<CORBASequence>>

0..1

index : long {0..*}

0..*

0..1

0..*

index : long {0..*}

Message

<<CORBAInterface>>

Messages

<<CORBASequence>>

0..1

index : long {0..*}

0..*

0..1

0..*

index : long {0..*}

User

<<CORBAInterface>>

Users

<<CORBASequence>>

0..1

index : long {0..*}

0..*

0..1

0..*

index : long {0..*}

AbstractResource

<<CORBAInterface>>

AbstractResources

<<CORBASequence>>

0..1

index : long {0..*}

0..*

0..1

0..*

index : long {0..*}

Workspace

<<CORBAInterface>>

Workspaces

<<CORBASequence>>

0..1

index : long {0..*}

0..*

0..1

0..*

index : long {0..*}

If the type being sequenced (e.g.
LinkKind, Link, LinkExtent) is anything
other than a sequence of an interface
type, then the sequence is a
composition (i.e. strong aggregation,
black diamond) and an instance of that
type can be in at most one instance of
the sequence.

For a sequence of interface types, this end of the Association can be as shown,
which is the most general. However, the modeler has the discretion to constrain
this end further by declaring a more restrictive multiplicity or by specifying weak or
strong aggregation semantics (i.e. white or black diamond).
April 2002 UML Profile for CORBA: Class Diagrams 4-3

4

Figure 4-3 Interfaces--Inheritance View

Figure 4-4 Interfaces--Iterators

IdentifiableDomainObject
<<CORBAInterface>>

BaseBus inessObject
<<CORBAInterface>>

AbstractResource
<<CORBAInterface>>

AbstractPerson
<<CORBAInterface>>

Message
<<CORBAInterface>>

MessageFactory
<<CORBAInterface>>

Workspace
<<CORBAInterface>>

Desktop
<<CORBAInterface>>

Task
<<CORBAInterface>>

In this view we do not show show the UML elements that
correspond to the attributes and operations of the CORBA
interfaces because the diagram would become too cluttered to be
useful. Full operation signatures, including exceptions raised, are
shown on other diagrams

User
<<CORBAInterface>>

TaskIterator
<<CORBAInterface>>

MessageIterator
<<CORBAInterface>>

WorkspaceIterator
<<CORBAInterface>>

UserIterator

<<CORBAInterface>>

LinkExtentIterator

<<CORBAInterface>>

AbstractResourceIterator
<<CORBAInterface>>

Note: These al l inheri t from
CosCollection::Iterator, but
elements from other modules
are not shown in these
diagrams
4-4 UML Profile for CORBA, v1.0 April 2002

4

Figure 4-5 Structs

0..1

1

0..1

AbstractResource
<<CORBAInterface>>

Link
<<CORBAStruct>>

0..1

0..*

+res ource0..1
{IDLOrder = 1}

0..*

LinkKind
<<CORBATypedef>>

0..1

0..1

+kind0..1
{IDLOrder = 0}

0..1

AbstractResources
<<CORBASequence>>

AbstractResourceIterator
<<CORBAInterface>>

LinkExtent
<<CORBAStruct>>

0..1 0..1

+kind

0..1
{IDLOrder = 0}

0..1

+seq1
{IDLOrder = 1}0..1

0..*

+iterator
0..1

{IDLOrder = 2}

0..*

Default is no aggregation, 0..*
multiplicity. Modeler may choose to
constrain further, i.e. to specifiy weak or
strong aggregation (i.e. white or black
diamond) and to restrict the multiplicity
more than the default.

Default is 0..1, but
Modeler's could constrain it
further, i.e. specify 1..1

Must be composite
aggregation if the target type
is not a CORBAInterface or
sequence of
CORBAInterfaces
April 2002 UML Profile for CORBA: Class Diagrams 4-5

4

Figure 4-6 Enums

Task
<<CORBAInterface>>

User
<<CORBAInterface>>

connect_state

connected
disconnected

<<CO RBAEnum >>
task_state

open
not_running
notstarted
running
suspended
term inated
com pleted
closed

<<CO RBAEnum >>

Th is d ia g ra m s h o w s th e th e
d e fin itio n s o f th e e n u m s a n d
s h o w s th e ir n a m e s p a ce
co n ta in m e n t w ith in s p e c ific
in te rfa ce s .

Ma n y U ML to o ls d o n o t s u p p o rt
U ML 's n a m e s p a ce co n ta in m e n t
("c irc le -p lu s ") n o ta tio n . W h e n
u s in g s u ch a to o l o n e m u s t
u n fo rtu n a te ly le ve ra g e w h a te ve r
m e ch a n is m th e to o l s u p p o rts fo r
re p re s e n tin g n a m e s p a ce
co n ta in m e n t.
4-6 UML Profile for CORBA, v1.0 April 2002

4

Figure 4-7 Interfaces--Full Signatures, Part 1, IDLOrder Tags Included

BaseBusinessObject
<<CORBAInterface>>

AbstractResource
name : string {IDLOrder = 0}
<<readonly>> resourceKind : TypeCode {IDLOrder = 1}

bind(in link : Link) : void {raises = (ResourceUnavailable, ProcessorConflict, SemanticConflict), IDLOrder = 5}
replace(in old : Link, in new : Link) : void {raises = (ResourceUnavailable, ProcessorConflict, SemanticConflict), IDLOrder = 6}
release(in link : Link) : void {IDLOrder = 7}
list_contained(in max_number : long, out workspaces : Session::Workspaces, out wsit : WorkspaceIterator) : void {IDLOrder = 8}
list_consumers(in max_number : long, out tasks : Tasks, out taskit : TaskIterator) : void {IDLOrder = 9}
get_producer() : Task {IDLOrder = 10}
expand(in link_types : LinkKinds, in max_number : long, out seq : LinkExtents, out iterator : LinkExtentIterator) : void {IDLOrder = 11}

<<CORBAInterface>>

IdentifiableDomainObject

same_domain(in other_object : IdentifiableDomainObject) : boolean

<<CORBAInterface>>

NamingAuthority::AuthorityId
<<CORBAStruct>>1

0..10..1 +domain

1

<<readonlyEnd>>

ResourceUnavailable
<<CORBAException>>

ProcessorConflict
<<CORBAException>>

SemanticConflict
<<CORBAException>>

{IDLOrder = 2} {IDLOrder = 3} {IDLOrder = 4}

IDLOrder tags m ay be
suppress ed on diagrams
but mus t be stored in the
model .
April 2002 UML Profile for CORBA: Class Diagrams 4-7

4

Figure 4-8 Interfaces--Full Signatures, Part 2, IDLOrder Tags Suppressed

User

connect() : void {raises = (AlreadyConnected) }
disconnect() : void {raises = (NotConnected) }
enqueue_message(in new_message : Message) : void
dequeue_message(in message : Message) : void
list_messages(in max_number : long, out messages : Messages, out messageit : MessageIterator) : void
create_task(in name : string, in process : AbstractResource, in data : AbstractResource) : Task
list_tasks(max_number : in long, tasks : out Tasks, taskit : out TaskIterator) : void
get_desktop() : Desktop
create_workspace(in name : string, in accesslist : Users) : Workspace
list_workspaces(in max_number : long, out workspaces : Session::Workspaces, out wsit : WorkspaceIterator) : void

<<CORBAInterface>>

connect_state

connected
disconnected

<<CORBAEnum>>

+connectstate1

1

<<readonlyEnd>>

1
Because the connect_state
definition is nested within the
User definition, it could never
exist independently of a User.NotConnected

<<CORBAException>>
AlreadyConnected

<<CORBAException>>
4-8 UML Profile for CORBA, v1.0 April 2002

4

Figure 4-9 Interfaces--Full Signatures, Part 3

Message

message_id : any
message : any

<<CORBAInterface>>

MessageFactory

create(in message_id : any, in message : any) : Message

<<CORBAInterface>>

Workspace

add_contains_resource(in resource : AbstractResource) : void
remove_contains_resource(in resource : AbstractResource) : void
create_subworkspace(in name : string, in accesslist : Users) : Workspace
list_resources_by_type(in resourcetype : TypeCode, in max_number : long, out resources : AbstractResources, out resourceit : AbstractResourceIterator) : void

<<CORBAInterface>>

Desktop

set_belongs_to(in user : User) : void
belongs_to() : User

<<CORBAInterface>>
April 2002 UML Profile for CORBA: Class Diagrams 4-9

4

Figure 4-10 Interfaces--Full Signatures, Part 4

Task

description : string

get_task_state() : task_state
owned_by() : User
set_owned_by(in new_task_owner : User) : void
add_consumed(in resource : AbstractResource) : void
remove_consumed(in resource : AbstractResource) : void
list_consumed(in max_number : long, out resources : AbstractResources, out resourceit : AbstractResourceIterator) : void
add_produced(in resource : AbstractResource) : void
remove_produced(in resource : AbstractResource) : void
list_produced(in max_number : long, out resources : AbstractResources, out resourceit : AbstractResourceIterator) : void
get_processor() : AbstractResource
set_processor(in processor : AbstractResource) : void {raises = (ProcessorConflict) }
start() : void {raises = (CannotStart, AlreadyRunning) }
suspend() : void {raises = (CannotSuspend, CurrentlySuspended) }
stop() : void {raises = CannotStop, NotRunning) }

(from Session)

<<CORBAInterface>>

CannotStop
<<CORBAException>>

CannotStart
<<CORBAException>>

AlreadyRunning
<<CORBAException>>

NotRunning
<<CORBAException>>

CannotSuspend
<<CORBAException>>

CurrentlySuspended
<<CORBAException>>

task_state

open
not_running
notstarted
running
suspended
terminated
completed
closed

<<CORBAEnum>>
4-10 UML Profile for CORBA, v1.0 April 2002

4

4.4 Task & Session IDL

4.4.1 The OMG Task & Session IDL (dtc/99-08-05)

// Task and Session RTF V2.0 Session.idl

#ifndef _SESSION_
#define _SESSION_

#include <CosLifeCycle.idl>
#include <CosObjectIdentity.idl>
#include <CosCollection.idl>
#include <NamingAuthority.idl>
#include <CosNotifyComm.idl>
#include <CosPropertyService.idl>

#pragma prefix "omg.org"
#pragma javaPackage "org.omg"

module Session {

interface AbstractResource;
interface Task;
interface Workspace;
interface AbstractPerson;
interface User;
interface Message;
interface Desktop;

typedef long LinkKind;

// sequence definitions

typedef sequence<Session::AbstractResource>AbstractResources;
typedef sequence<Session::Task>Tasks;
typedef sequence<Session::Message>Messages;
typedef sequence<Session::User>Users;
typedef sequence<Session::Workspace>Workspaces;
typedef sequence<LinkKind>LinkKinds;

// reference (abstract)
const LinkKind references = 0;
const LinkKind referenced_by = 1;

// usage (abstract)
const LinkKind uses = 2;
const LinkKind used_by = 3;
April 2002 UML Profile for CORBA: Task & Session IDL 4-11

4

// consumption
const LinkKind consumes = 8;
const LinkKind consumed_by = 9;

// production
const LinkKind produces = 10;
const LinkKind produced_by = 11;

// process
const LinkKind processes = 12;
const LinkKind processed_by = 13;

// containment
const LinkKind contains = 4;
const LinkKind contained_by = 5;

// rights (abstract)
const LinkKind holds = 6;
const LinkKind grants = 7;

// access rights
const LinkKind accesses = 14;
const LinkKind accessed_by = 15;

// administration rights
const LinkKind administers = 16;
const LinkKind administered_by = 17;

// ownership rights
const LinkKind owns = 18;
const LinkKind owned_by = 19;

struct Link {
LinkKind kind;
AbstractResource resource;

};

struct LinkExtent {
LinkKind kind;
AbstractResources seq;
AbstractResourceIterator iterator;

};

typedef sequence<Session::Link>Links;
typedef sequence<LinkExtent>LinkExtents;

interface AbstractResourceIterator : CosCollection :: Iterator { };
interface TaskIterator : CosCollection :: Iterator { };
interface MessageIterator : CosCollection :: Iterator { };
interface WorkspaceIterator : CosCollection :: Iterator { };
4-12 UML Profile for CORBA, v1.0 April 2002

4

interface UserIterator : CosCollection :: Iterator { };
interface LinkExtentIterator : CosCollection :: Iterator { };

interface IdentifiableDomainObject :
CosObjectIdentity::IdentifiableObject
{
readonly attribute NamingAuthority::AuthorityId domain;
boolean same_domain(

in IdentifiableDomainObject other_object
);

};

interface BaseBusinessObject :
Session::IdentifiableDomainObject,
CosLifeCycle::LifeCycleObject,
CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer
{

};

interface AbstractResource :
BaseBusinessObject {
attribute string name;
readonly attribute TypeCode resourceKind;
exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };
void bind(

in Link link
) raises (

ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void replace(

in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void release(

in Link link
);
void list_contained (

in long max_number,
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);
void list_consumers (
April 2002 UML Profile for CORBA: Task & Session IDL 4-13

4

in long max_number,
out Tasks tasks,
out TaskIterator taskit

);
 Task get_producer(

);
void expand (

in LinkKinds link_types,
in long max_number,
out LinkExtents seq,
out LinkExtentIterator iterator

);
};

interface AbstractPerson :
CosPropertyService::PropertySetDef
{

};

interface User :
AbstractResource,
AbstractPerson,
CosLifeCycle::FactoryFinder
{
enum connect_state {connected, disconnected};
readonly attribute connect_state connectstate;
exception AlreadyConnected {};
exception NotConnected {};
void connect()

raises (AlreadyConnected);
void disconnect()

raises (NotConnected);
void enqueue_message (

in Message new_message);
void dequeue_message (

in Message message);
void list_messages(

in long max_number,
out Messages messages,
out MessageIterator messageit);

Task create_task (
in string name,
in AbstractResource process,
in AbstractResource data);

void list_tasks (
in long max_number,
out Tasks tasks,
out TaskIterator taskit

);
Desktop get_desktop ();
Workspace create_workspace (
4-14 UML Profile for CORBA, v1.0 April 2002

4

in string name,
in Users accesslist

);
void list_workspaces (

in long max_number,
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);

};

interface Message : AbstractResource {
attribute any message_id;
attribute any message;

};

interface MessageFactory{
Message create(

in any message_id,
in any message

);
};

interface Workspace :
AbstractResource,
CosLifeCycle::FactoryFinder
{
void add_contains_resource(

in AbstractResource resource
);
void remove_contains_resource(

in AbstractResource resource
);
Workspace create_subworkspace (

in string name,
in Users accesslist

);
void list_resources_by_type(

in TypeCode resourcetype,
in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
};

interface Desktop:Workspace {
void set_belongs_to(

in User user
);
User belongs_to();

};
April 2002 UML Profile for CORBA: Task & Session IDL 4-15

4

interface Task : AbstractResource {
exception CannotStart {};
exception AlreadyRunning {};
exception CannotSuspend {};
exception CurrentlySuspended {};
exception CannotStop {};
exception NotRunning {};
attribute string description;
enum task_state {

open, not_running, notstarted, running,
suspended, terminated, completed, closed

};
task_state get_task_state();
User owned_by();
void set_owned_by (

in User new_task_owner
);
void add_consumed(

in AbstractResource resource
);
void remove_consumed(

in AbstractResource resource
);
void list_consumed (

in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
void add_produced(

in AbstractResource resource);
void remove_produced(

in AbstractResource resource);
void list_produced (

in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
AbstractResource get_processor();
void set_processor(

in AbstractResource processor
) raises (

ProcessorConflict
);
void start () raises (CannotStart, AlreadyRunning);
void suspend () raises (CannotSuspend, CurrentlySuspended);
void stop () raises (CannotStop, NotRunning);

};
};

#endif /* _SESSION_ */
4-16 UML Profile for CORBA, v1.0 April 2002

Conformance Issues A
This appendix specifies the conformance points for this specification.

 A.1 Conformance

There are two kinds of conformance that can be defined with respect to a UML profile.
One kind is conformance by UML modeling tools and the other kind is conformance
by specific UML-based object models.

 A.1.1 Versions

All conformance points below require implementations to model CORBA IDL as
specified in CORBA 2.4, using UML models as specified in UML 1.3.

 A.1.2 Conformance by Specific UML Object Models

A specific UML object model either conforms with the defined UML Profile for
CORBA or it does not. There are no categories of this kind of conformance. A UML
object model conforms with the profile if it restricts itself to the identified subset of the
UML metamodel and satisfies all constraints imposed by the profile.

 A.1.3 Conformance by UML Modeling Tools

The term all constructs defined by the profile is used several times in the following
Conformance points. This term is defined to mean all UML constructs that are part of
the profile’s identified subset of UML plus all extensions to that subset that the profile
defines. This term thus includes UML constructs that are part of the identified subset
but that the profile does not extend. For example, the profile does not extend the UML
Core construct Constraint but, because Constraint is part of the identified subset, the
term includes Constraint.
April 2002 UML Profile for CORBA, v1.0 A-1

A

A UML modeling tool is considered to be a Conformant simple modeling tool for the
UML Profile for CORBA if it supports expression of all constructs defined by the
profile. The tool must support such expression via the notation specified by UML 1.3
as applied by the UML Profile for CORBA notation guidelines.

A UML modeling tool is considered to be a Conformant forward-engineering tool for
the UML Profile for CORBA if it can perform a transformation in which the source is
any arbitrary object model expressed in terms of the profile and the target is CORBA
IDL, where the transformation satisfies the definition of the profile. The parser must be
able to detect violations of the profile’s constraints and produce error messages that
explain the violations. The tool must permit the source object model to use all
constructs defined by the profile.

A UML modeling tool is considered to be a Conformant reverse-engineering tool for
the UML Profile for CORBA if it can perform a transformation in which the source is
an object model expressed in either CORBA IDL or contained in a CORBA interface
repository and the target is an object model expressed in terms of the profile, where the
transformation satisfies the definition of the profile. If the source is CORBA IDL, the
reverse-engineer tool must be able to detect and produce error messages about errors in
IDL syntax. The tool must support all legal IDL syntax.
A-2 UML Profile for CORBA, v1.0 April 2002

Index
A
Abstract Stereotypes 2-3
Aggregate Notation for CORBA Constructed Types 3-14
allEnds 2-4
allStereotypes 2-4
Anonymous Array Example 3-51
Array 3-48
Attribute 3-57

B
Boxed Value Types 3-28
Boxed Valuetype Example 3-29

C
Circleplus notation 1-3
Class Diagrams 4-2
Classifier operations 2-4
Common model elements 2-2, 2-3
Common ModelElements 3-11
Concrete metaclasses 3-2
Conformance A-1
Constant Declaration 3-29
Constant Example 3-31
Constraints 2-2, 2-3
Constructed Types 3-31
CORBA

contributors 1-v
documentation set 1-iv

CORBA Basic Types 3-11
CORBA Object Type s3-18
CORBA Structured Types 3-15
CORBA Type Representations 3-10
CORBA User-defined Type s3-12
CORBA Wrapper Types 3-25
CORBAStructType 3-33

D
Definition of a UML profile 2-1
Dependencies between CORBA and CORBAProfile 3-10
Dependency Relationship 2-3
Design Decisions 1-3
Discriminated Union 3-36

E
Enum 3-39
Exception 3-40
Exception Containment and Raising 3-42
Extension 2-2

F
Fixed Example 3-53
Fixed Template Specification 3-52
Fixed type 3-51

G
GeneralizableElement 2-2
Generalization Relationships 2-3

I
IDL Interface with Oneway 3-56
IDL Interface with Operations 3-56
Indexed types 3-42

Interface 3-19
Interface Attribute Example 3-59
Interface Containing a Struct 3-21
isStereokinded 2-4
isStereotyped 2-4

L
Legal Relationships Among Stereotypes 2-2

M
Metaclasses 3-2
ModelElement 2-2
ModelElement operations 2-4
Module Declaration 3-16
Module Namespace Containment Notation 3-18
Module Package Notation 3-17

N
Namespace Containment 1-3
navigableEnds 2-5
navigableOppositeEnds 2-4
Nested Sequence Example 3-48
Nested Struct Example 3-35
nonNavigableNearEnds 2-5
normative definition 3-1

O
Object Management Group 1-iii

address of 1-iv
OCL 2-4
OCL convenience operations 2-4
Operation 3-53
Operation Raising Exception Example 3-41

R
Reverse engineerin g4-1

S
Semantics 2-1
Sequence 3-45
Sequence Example 3-47
Standard Elements 2-1, 3-2
Standard UML packages 3-2
Stereotype 1-1
Struct 3-34
Struct Example 3-35
Structure of the Profile 3-1
Subset 2-1

T
Task & Session IDL 4-11
Typedef 3-26
Typedef Alias Example 3-28
Typedefed Array Example 3-50

U
UML Namespace Containment Notation for Nested CORBA

Constructs 3-14
UML Notation 2-3
UML Standard Elements 3-11
Union Example 3-38
April 2002 UML Profile for CORBA, v1.0 Index-1

Index
V
Value Types 3-22
Valuetype Example 3-25
Virtual Metamodel 3-3
Virtual Metamodel for CORBA Constants and Their Container 3-8
Virtual Metamodel for CORBA Indexed Types 3-7
Virtual Metamodel for CORBA Module 3-7
Virtual Metamodel for CORBA Object Type s3-5
Virtual Metamodel for CORBA Primitives 3-3
Virtual Metamodel for CORBA User-Defined Type s3-4

Virtual Metamodel for CORBA Values Supporting Interfaces 3-10
Virtual Metamodel for CORBA Wrapper Types 3-8
Virtual Metamodel for CORBAConstructed Types 3-6
Virtual Metamodel for Stereotypes of Attribute and

AssociationEnd 3-9
Virtual Metamodel for Stereotypes of Operation 3-9
Virtual Metamodel of Stereotypes 2-2

W
Well-formedness rules 2-1
Index-2 UML Profile for CORBA, v1.0 April 2002

	Preface
	About the Object Management Group
	What is CORBA?

	Acknowledgments

	1. Overview
	1.1 Goal
	1.2 Scope
	1.3 Specific Design Decisions
	1.3.1 Namespace Containment
	1.3.2 Using Associations to Represent User-Defined Types

	2. Profiles and Virtual Meta Models
	2.1 General Definition of a UML Profile
	2.2 Virtual Metamodel of Stereotypes
	2.2.1 Background Facts
	2.2.2 Using UML Notation for Virtual Metamodeling
	2.2.3 Constraints

	3. CORBA Profile Definition
	3.1 Introduction
	3.2 Structure of the Profile
	3.3 Identified Subset of UML
	3.4 The Virtual Metamodel
	3.5 The CORBA Type Representations
	3.5.1 CORBA Basic Types
	3.5.2 CORBA User-defined Types
	3.5.3 CORBA Structured Types
	3.5.4 Module Declaration
	3.5.5 CORBA Object Types
	3.5.6 Interface
	3.5.7 Value Types
	3.5.8 CORBA Wrapper Types
	3.5.9 Typedef
	3.5.10 Boxed Value Types
	3.5.11 Constant Declaration
	3.5.12 Constructed Types
	3.5.13 CORBAStructType
	3.5.14 Struct
	3.5.15 Discriminated Union
	3.5.16 Enum
	3.5.17 Exception
	3.5.18 Indexed Types
	3.5.19 Sequence
	3.5.20 Array
	3.5.21 Fixed Type
	3.5.22 Operation
	3.5.23 Attribute

	4. Complete Example
	4.1 Introduction
	4.2 Approach
	4.3 Class Diagrams
	4.3.1 The Class Diagrams for the OMG Task & Session Service

	4.4 Task & Session IDL
	4.4.1 The OMG Task & Session IDL (dtc/99-08-05)

	Appendix A - Conformance Issues
	Index

