
Intra-Engine Service Security for Grids Based on WSRF

Matthew Smith, Thomas Friese, Bernd Freisleben
Dept. of Mathematics and Computer Science,

University of Marburg
Hans-Meerwein-Str, 35032 Marburg, Germany

Email: {matthew, friese, freisleb}@informatik.uni-marburg.de

Abstract

In typical on demand grid computing scenarios, services
from different organisations can potentially run in the same
web service engine on a single grid node, making intra-
engine service security vital for any production system. In
this paper, a solution to the problem of intra-engine inter-
service security for ad hoc grid environments based on
WSRF is presented. To ensure that only authorized access
to grid services is possible from within other services’ code,
a dynamic group enabled sandboxing approach within
Apache Axis is proposed to protect dynamically deployed
grid services. It relies on the features provided by a hot de-
ployment service developed for ad hoc grids. A prototyp-
ical implementation of the hot deployment service and the
intra-engine service security approach based on the Globus
Toolkit 4 (GT4) is used to demonstrate the feasibility of our
approach.

1. Introduction

The service-oriented architecture (SOA) approach and
the corresponding web service standards such as WSDL
[1] and SOAP [2] are currently adopted in various fields
of distributed application development (e.g. enterprise ap-
plication integration, web application development, inter-
organizational workflow collaboration). The Open Grid
Services Architecture (OGSA) [3, 4] incorporates the web
service paradigm in the field of grid computing as an ap-
proach towards defining theservice-oriented grid. The
OGSA effort to add stateful interaction to the web service
environment has also been recognized by other web service
users not focused on grid computing. As a result, the speci-
fications of the Web Service Resource Framework (WSRF)
[5] have emerged.

The WSRF introduces the notion of aweb service re-
source(WS-Resource) that is formed by the combination
of a resource documentand a correspondingweb service.
It is the purpose of the resource document to capture state

information for a WS-Resource while the corresponding
web service remains stateless. In this way, a multitude of
WS-Resources can be created using one stateless web ser-
vice implementation which captures the state of execution
in multiple resource documents. The WSRF further defines
web service interfaces to inspect and alter the information
contained within the resource document and to receive and
subscribe to notifications on property changes.

The service-oriented grid paradigm offers the potential
to provide a fine grained virtualization of the available re-
sources to significantly increase the versatility of a grid.
For instance, all idle workstations of a company may be
combined in a dynamically formedad hoc gridto handle
computational peak loads, thus extending the maximum
computational power of the company without further ex-
pense. This brings the service-oriented grid a step closer to
fulfilling IBM’s vision of on demandcomputing [6].

In previous work [7] we introduced the concept of an
ad hoc grid as a possible environment for on demand com-
puting. We also presented a solution to the problem ofhot
service deployment, which is one of the basic requirements
for such a flexible grid computing environment [8]. Our
work on hot service deployment raised some of the secu-
rity issues and attack scenarios that are being addressed in
this paper, and in fact our approach to provide intra-engine
service security is based on the features offered by the so-
lution developed for hot service deployment.

Current work on security issues in WSRF focuses on
the enforcement of access restrictions and protection of
message exchanges in transit. Implementations of the
WSRF specifications do not address issues concerning
intra-engine service security, since providing such mech-
anisms is not enforced or encouraged. Therefore, it is pos-
sible for various service implementations to directly access
each other through simple method calls, bypassing the ser-
vice security mechanisms established for access control.
The underlying system model assumes a single grid node
to be a unified compartment containing only trusted users
and resources. To some extent, this is a dangerous assump-
tion even in a conventional grid environment where two



different users share the same resource. In an ad hoc grid
environment where the sharing of a grid node between mul-
tiple parties is the desired usage pattern, the establishment
of secure and trusted compartments is a neccessity for user
acceptance.

In this paper, we address potential attack scenarios be-
tween grid services running in the same web service engine
and present our approach to provide intra-engine service
security. A dynamic group enabled sandboxing approach
within the Apache Axis web service engine [9] is proposed
to protect dynamically deployed grid services. The ap-
proach relies on the features provided by our hot deploy-
ment service previously developed for OGSI based ad hoc
grids, and we address the changes required by the transition
from OGSI to the WSRF. A prototypical implementation of
the hot deployment service and the intra-engine service se-
curity approach based on the Globus Toolkit 4 (GT4) [10]
is used to demonstrate the feasibility of our approach. Our
solution is not limited to the ad hoc grid scenario; confine-
ment of services and separation of instances is also bene-
ficial in a scenario where two separate users share a sin-
gle grid node in a traditional grid. Ultimately, an exten-
sion of the WSRF standard by specifications governing the
discussed service security issues of grid services based on
WSRF would be the most preferable outcome.

The paper is organized as follows. In section 2, the
notion of a service-oriented ad hoc grid environment and
scenarios for potential intra-engine service attacks are dis-
cussed. Section 3 presents the extended functionality pro-
vided by our hot deployment service in a GT4 environment.
In section 4, we introduce our solution to the intra-engine
security issues. Section 5 discusses related work. Section 6
concludes the paper and outlines areas for future research.

2. Background and Problem Statement

2.1. The Ad Hoc Grid Environment

An ad hoc grid is a spontaneous organization of coop-
erating heterogenous nodes into a logical community with-
out a fixed infrastructure and with only minimal adminis-
trative requirements. The ad hoc grid idea goes beyond
a static grid infrastructure to encompass frequent dynamic
additions to the grid. This includes workstations within or-
ganizations as well as scattered personal computers similar
to the idea of many popular distributed computing projects
[11]. The goal of the ad hoc grid is to provide comput-
ing resources on demand to every member of the ad hoc
grid. Unlike traditional grid systems, the number of non-
dedicated nodes is much higher, demanding non-intrusive
operation of the ad hoc grid middleware. Our definition of
an ad hoc grid is discussed in more detail in [7].

Figure 1. Two dynamic ad hoc grid environments.

Figure 1 shows how two separate ad hoc grids are com-
posed spanning two organizations respectively scattered
nodes on the Internet. Both grid communities form a vir-
tual organization using the existing Internet infrastructure.
While ad hoc grid A encompasses transient nodes it also
includes a dedicated high performance computing base. In
contrast, ad hoc grid B is made up solely of transient in-
dividual nodes. While ad hoc grid A bears a greater re-
semblance to traditional grid systems, ad hoc grid B illus-
trates the shift to a personal grid system, built without the
resources of a large organization.

The OGSA specification considers virtualization at mul-
tiple levels and allows for the creation of such an ad hoc
grid with only minor extensions. Looking at the ad hoc
grid infrastructure from an application perspective, the fol-
lowing considerations are particularly important:

Vital to the on demand invocation of services on various
nodes in the grid system is the availability of those ser-
vices. For a large scale ad hoc grid, the time consumption
for manual deployment is prohibitive and management is
difficult due to the fluctuating availability of the nodes; it
also runs contrary to the on demand philosophy. Even with
the availability of advanced grid programming toolkits, de-
ployment of services has been identified as a critical is-
sue [12]. In a dynamically changing environment, deploy-
ment is even more critical as there is no single deployment
cycle that reaches all machines, instead services need to be
deployed and instantiated on demand on machines as they
become available. The step of service deployment becomes
part of an ad hoc grid application instead of being handled
by a system administrator as a precondition to the use of a
service. Instead of only providing predefined services, the
computational nodes of the bare grid become a resource by
themselves. When a node becomes available that meets the



package de . fb12 . g r i d . s e r v i c e s ;
c l a s s A{

s t a t i c p ro tec ted Data ge tDa ta ( )
{ . . . }
s t a t i c p ro tec ted void s e t D a t a ( Data d a t a )
{ . . . }
pub l i c vo id doSomething ( ) throws RemoteExcept ion{

/ / do someth ing good
}}

Figure 2. Target Service Main Class

requirements for the deployment of a service, the applica-
tion can autonomously carry out the deployment and use
the newly available machine for its application flow.

Security is a major aspect in an ad hoc grid since there
is always the possibility that a node introduces malicious
code. On demand computing with dynamic service de-
ployment creates several new security aspects that must be
dealt with beyond the standard security requirements exist-
ing in previous grid systems. Like in traditional systems,
installing a service requires security certificates allowing
the operation. In traditional Grids, services usually can
only be installed by a small number of people and trust
may be assumed between all parties. In a large ad hoc grid
system offering on demand service deployment, it is possi-
ble that users unknown to each other operate on the same
node. Thus intra-engine inter-service security must be of-
fered, since fair play is not guaranteed any more.

2.2. Service Security Threats

In this section, the security threads are presented in more
detail. Since the separate grid services running on one grid
node are all hosted by Axis in GT4, they run within the
same JVM and the classes are loaded by the same class
loader. As a consequence, interaction between the classes
is possible, thus offering malicious code the possibility to
harm running services. To illustrate the problem, we intro-
duce a target service which we will then attack. The service
code is listed in 2. The main class A lies in the package
de.fb12.grid.services. It has two static methods for service
internal use to access and set some data. It also has a pub-
lic service method which is called by the clients wanting to
use the service. The get and set methods are declared as
protected methods, which restricts access to these methods
to classes declared in the same package.

The static get and set methods are the origin of the
first intra-engine service security issue and enable anintra-
engine service data attack. In general, an intra-engine ser-
vice data attack is made possible if the service targeted for
attack uses singletons, or any other method to access in-
ternal objects which does not require specific object refer-
ences, like static methods. It is then possible to introduce

package de . fb12 . g r i d . s e r v i c e s ;
pub l i c c l a s s E v i l S e r v i c e{

doDataAt tack ( ){
s t o l e n D a t a =A. ge tDa ta ( ) ;
A. s e t D a t a ( e v i l D a t a ) ;

}}

Figure 3. The Data Attack Service

a service which can modify these objects simply by using
the same package as the target service and calling the meth-
ods on those objects. Using this attack, the internal state of
an object belonging to a different service can be modified.
Listing 3 shows how data from the target service in figure
2 is accessed and then replaced by a different data object.

Since the get and set methods are declared as pro-
tected, the attacking class was placed in the same pack-
age as the target class. In a standard computing en-
vironment, we could configure a security manager to
restrict access to the package de.fb12.grid.services and
thus prevent the malicious class entering our pack-
age and accessing our target service. This is done
by setting package.definition=de.fb12.grid.services and
package.access=de.fb12.grid.services in the java.security
properties file, effectively blocking creation of new classes
in the protected package and access to the package from
unauthorized classes. These security properties must be
set before starting the system. In an on demand grid en-
vironment, this is not feasible since new services in cus-
tom packages will have to be inserted during runtime and
thus could not be protected. Furthermore, legitimate ac-
cess to these existing services or legitimate deployment
of new services in the same package should be possible.
The standard approach in Java to allow this is to set spe-
cific security permissions (shown in figure 4) for the code
base trying to access a package or create a new class in
that package. In the case of GT4, which uses Tomcat
as the WebApplication host, these settings are stored in
catalinahome/conf/catalina.policy and are loaded during
startup. Again, this is not a usable solution for on de-
mand grid computing since code bases not registered dur-
ing startup might need legitimate access to certain pack-
ages. To prevent illegal access we require a sandboxing
system which allows us to protect classes from intra-engine
service data attacks while at the same time allowing dy-
namically added services to access our classes if they have
sufficient security clearance and the certificates to prove it.

A different form of attack is theintra-engine service
code attack. If the target service is loaded after the attack-
ing services or loads classes on demand (the standard pro-
cedure in Java), it is possible to introduce foreign code into
the service by preempting the load procedure. If, for exam-
ple, the target service has a Class A which loads Class B at



g r a n t codeBase ” f i l e :\${wsr f . home} /WEB−INF / l i b / MyService
my−s e r v i c e . j a r ” {

p e r m i s s i o n j a v a . l ang . Run t imePermiss ion
” d e f i n e C l a s s I n P a c k a g e . de . fb12 . g r i d . s e r v i c e s ”} ;

Figure 4. Excerpt from the catalina.policy file

a certain time during its operation, a malicious service can
use that as an entry point for an attack. Figure 5 illustrates
the attack. The attacking service defines a Class B* with
the same fully qualified name and with the same method
signature as Class B and then loads that class (5.1). If this
is done prior to the loading of B in the target service, the
malicious code has been successfully introduced into the
system (5.2). When A tries to load B (5.3), the ClassLoader
will see it has already loaded a class with the fully qualified
name of B (namely B*) and returns the class from its cache
(5.4). As a consequence, A now executes B* instead of B
(5.5). This attack can even be used to replace the service A
completely if A is deployed to a node where the malicious
service is already running. Listings 6 and 7 show how this
is done. Listing 6 shows the malicious replacement A* of
the target service A. It has the same method signature as
the legitimate service A and thus can function as its re-
placement but executes the attack code instead when, for
instance, the method doSomething is called. If the target
service is deployed onto a grid node where the malicious
service A* is already loaded, the Axis class loader will sim-
ply return A* when A is supposed to be loaded, since A*
has the same fully quallified name as A. Listing 7 shows
how the attacking service loads the A* class.

Figure 5. Intra-Engine Service Code Attack

If service code is protected by placing the computa-
tion into a separate class which can only be instantiated
by classes of the same package, as shown in listing 8, the
attacking service can either be placed in the same package
or it can avoid instantiating the class altogether and simply
load the class explicitly, as shown in 9.

The solution to the above security problems requires

package de . fb12 . g r i d . s e r v i c e s ;
c l a s s A{

s t a t i c Data ge tDa ta ( )
{ . . . }
s t a t i c vo id s e t D a t a ( Data d a t a )
{ . . . }
p r i v a t e vo id doSomething ( ) throws RemoteExcept ion{

/ / do someth ing m a l i c i o u s
}}

Figure 6. Malicious Replacement of the Target Ser-
vice Main Class

package com . e v i l ;
import de . fb12 . g r i d . s e r v i c e s . B ;
pub l i c c l a s s E v i l S e r v i c e{

p r i v a t e doCodeAt tack ( ){
A a = new A ( ) ;

}}

Figure 7. The Code Attack Service

package de . fb12 . g r i d . s e r v i c e s ;
c l a s s B{

p ro tec ted B ( )
{ . . . }
p r i v a t e vo id doMore ( ){

/ / do someth ing good
}}

Figure 8. Target Service Helper Class B

package com . e v i l ;
pub l i c c l a s s E v i l S e r v i c e{

p r i v a t e doCodeAt tack ( ){
t r y {

E v i l S e r v i c e .c l a s s. g e t C l a s s L o a d e r ( ) .
l o a d C l a s s ( ” de . fb12 . g r i d . s e r v i c e s . B” ) ;

} ca tch ( C lassNotFoundExcep t ion e ){
e . p r i n t S t a c k T r a c e ( ) ;

}}}

Figure 9. The Code Attack Service 2



that we are able to deploy services into separate sandboxes
which protect the services from illegal access. The next
section presents the hot deployment service which is later
utilized by our security infrastructure to do that.

3. Hot Service Deployment in GT4 Ad Hoc
Grids

A WS-Resource is the collection of a web service and a
resource document holding the state information of the re-
source. Access to the service part of a resource in GT4
is provided by the Axis JavaProvider. A newly created
WS-Resource is uniquely identified by a WS-Addressing
Endpoint Reference (WS-ER) that can later on be used to
interact with the resource and distinguish between differ-
ent instances for different users. Every Globus service is
registered with the GT4 web application by making an ap-
propriate web service deployment descriptor (WSDD) en-
try available to the web application container hosting the
Globus web application.

Vital to the creation of new resource instances is the
availability of the accompanying web service and the
schema definition of the associated resource document.
Hot service deployment addresses the need to dynamically
and non-intrusively provide the service implementation and
schema definitions in a running grid container. We have
previously addressed this issue in an GT3 environment [8].
In contrast to GT3 where a custom Servlet extending the
AxisServlet was used to invoke the service, GT4 passes the
request to the standard AxisServer, thus creating a much
cleaner system. GT4 now only needs to deal with the grid
specific requirements.

The deployment of a service currently requires a grid
service archive (GAR file) containing the needed classes,
schema files and deployment descriptors that make up a
service. Users of GT4 are supplied with Ant tasks that han-
dle the distribution of the contents of this GAR file into
the local standalone GT4 environment. The Ant tasks ex-
tract and copy the jar files containing the class files of the
service into the local web application directory. Schema
files are copied into the schema repository. The current
deployment strategy of GT4 requires the restart of the en-
tire WSRF web application, thereby killing every other grid
service currently running. Furthermore, direct access to the
machine running the GT4 application is required because
the Ant tasks perform all copy operations locally.

Neither the first nor the second property of the deploy-
ment mechanism are feasible for an ad hoc environment
with a frequently changing collection of nodes. In this
environment, an application has to make sure - through
dynamic service deployment - that the required service is
present on every node it wishes to incorporate into its ap-

plication flow.
To enable this, we modified the Axis web service engine

utilized by GT4 to allow dynamic loading and unloading
of grid services. Ourhot deployment service(HDS) pro-
vides applications with the capability to remotelydeploy,
undeployandredeployservices onto a running node. The
operations have the following semantics:

Deploy adds a service to the set of available services
on the grid node. The service is identified by its service
name. The operation will not deploy the service if there is
a service with the same name already present on the node.

Undeployremoves a service from the node, based on its
service name. Running service instances already created
are unaffected by the operation.

Redeployis the chaining of undeploy and deploy. Run-
ning service instances are not changed by the redeploy op-
eration, subsequent requests to create new instances will,
however, use the newly supplied implementation of the ser-
vice.

In our current implementation, access to the HDS is re-
stricted by using the security mechanisms offered by GT4.

The basic steps the HDS needs to perform to deploy a
service are:

• Register the service description with the AXIS/WSRF
request handlers.

• Make the schema files available to the WSRF environ-
ment.

• Make the service class files available to the class
loader.

Currently, the need to load additional classes and dy-
namically replace them was not anticipated or governed by
the WSRF specification or the GT4 implementation. To en-
able this functionality, a novel class loading mechanism is
introduced into the realization of the HDS, as described in
the following.

Grid services in GT4 are separated into three classes:
The service resource class, a service home class and the
service implementation itself. The service home class is
used to load resources attached to a service and the service
classes themselves. We provide the class HotResource-
HomeImpl as our implementation of the ResourceHome
interface in order to leverage our own class loading mecha-
nism into GT4. The ResourceHome is responsible for cre-
ating the ClassLoader hierarchy. It distinguishes different
instances of the ClassLoaders by acquiring the service con-
text from the AXIS engine inside the GT4 web applica-
tion. It also registers all ClassLoaders created by it at a
central DisposableClassLoaderManager and the Axis Clas-
sUtils ClassLoader cache, so they can be accessed later dur-
ing undeployment. The code snippet in figure 10 shows the



p u b l i c vo id s e t R e s o u r c e C l a s s ( S t r i n g c l a z z )
th rows ClassNotFoundExcep t ion{

S t r i n g serv iceName =
AxisEngine . ge tCu r ren tMes sage Con tex t ( )
. g e t T a r g e t S e r v i c e ( ) ;

S t r i n g b ase Pa t h =
C o n t a i n e r C o n f i g . g e t C o n f i g ( ) .
g e t I n t e rn a lW e b Ro o t ( ) ;

S t r i n g r e l P a t h b ase Pa t h + s e r v i c e P a t h + l i b P a t h ;
C lassLoader c l =

Ja rC lassLoaderManager . c r e a t e L o a d e r (
serv iceName , r e l P a t h )

r e s o u r c e C l a s s = c l . l o a d C l a s s ( c l a z z ) ;
}

Figure 10. The setResourceClass operation in
HotResourceHomeImpl

main operation of our HotResourceHomeImpl. First, the
service name is extracted from the current message context.
Then, the path where the jar files of the service are stored is
generated based on the container configuration and an arbi-
trary path extension. In our case we chose basePath/WEB-
INF/lib/serviceName/. Based on that, we create a JarClass-
Loader capable of loading all classes contained in all jar
files in that directory. The JarClassLoaderManager also in-
forms the Axis ClassUtils that it is now responsible for this
service.

This is a non-intrusive way to introduce our own class
loading mechanism into GT4, since the ResourceHome im-
plementation can be specified for each individual service.
A service wishing to be hot deployable merely must use the
HotResourceHomeImpl instead of the standard Resource-
HomeImpl. This is the only change required to make a
service hot deployable and reloadable. Hot deployable and
standard services can be run side by side by using the dif-
ferent ResourceHome implementations. Figure 11 shows
the relationship of the ResourceHome implementations and
class loaders.

The process of loading a service class is as
follows. When a Service is first requested, the
org.globus.wsrf.jndi.BasicBeanFactory loads our HotRe-
sourceHomeImpl class in the standard Axis WebApp-
sClassLoader. The HotResourceHomeImpl is responsible
for creating the disposable ClassLoaders wich will later
load the service classes and the attached resources. When
the setResourceClass method is called by the BasicBean-
Factory, the CurrentMessageContext from the Axis engine
is parsed to discover on behalf of which service the method
is being called, thus allowing us to create one and only one
ClassLoader for each service. Our JarClassLoaderManager
and the modified Axis ClassUtils are informed of the ser-
vice to ClassLoader mapping. Once the ResourceHome
is in place, the BasicBeanFactory informs the home ob-
ject which class is the main service class. As mentioned
above, the HotResourceHomeImpl attaches a disposable

ClassLoader to the service. Class and ClassLoader are then
used by the org.globus.axis.providers.RPCProvider to in-
stantiate the actual service object. The HotResourceHome-
Impl makes sure that the class is loaded in the proper Class-
Loader. Now everything is in place and the service can be
accessed via the JavaProvider.

Removal of a service is mainly concerned with remov-
ing the service entries from the in-memory registries. Once
the service information has been removed, no new service
instances can be created. Running instances of a service
previously created are untouched by this process. To de-
ploy a new version of a service, no explicit unloading of
the old service classes is required, since the new version of
the service will be created using a new ClassLoader. If in
addition to the service information the service instances are
to be removed, the central manager used by the JarClass-
LoaderManager can be used to access the ClassLoaders of
the separate services to free the resources and unload the
classes. Only then can the jar files be deleted, since other-
wise active services might try to lazy load classes after the
containing jar files have already been removed.

On top of the deployment service and the ClassLoad-
ing structure described above, our solution to intra-engine
service security is realized, as described in the next section.

4. An Approach to Intra-Engine Service Secu-
rity

The attacks described in 2.2 lead us to propose the fol-
lowing intra-engine service security requirements: A ser-
vice must be able to be deployed into a private sandbox if
it does not want its classes to be accesed by other services.
Services wishing to form a group in which classes can be
shared require a secure grouping mechanism which allows
all services within the group to share classes but services
outside of the group are denied access. Both mechanisms
must function in an on demand fashion, i.e., normal op-
eration of the grid node must not be disrupted. Services
already running on the system must be unaffected by the
introduction of new services and new security groups.

In GT4, the intra-engine service attacks described in
section 2.2 are made possible by the fact that GT4 loads
all grid services within the same class loader. The basic
idea of our solution to this problem is to use the introduced
ClassLoader hierarchy to enable the dynamic loading and
reloading of classes to also provide intra-engine service se-
curity. In its most basic form, each grid service is loaded
within its own ClassLoader functioning as a sandbox and
as such its classes and resources are private and can not be
accessed by any other service. This ensures that services
using singletons can not be hijacked by malicious services,
and foreign code can not be inserted into the program flow.



Figure 11. Relationship of the ResourceHome implementations and class loaders.

4.1. Service Sandboxing in Axis

To enable the required secure loading process, the Class-
Utils and JavaProvider classes provided by Axis needed to
be modified. The code snippet in figure 12 shows the nec-
essary changes to the loading mechanism in the Axis Clas-
sUtils. To ensure that service classes are only loaded by
our sandboxed class loader, the current message context is
checked as to whether the current loader request was trig-
gered by a service or by the container itself. If it was trig-
gered by a service, it checks whether it is a service which
is registered with our ClassLoaderMananger and should
be protected. If that is the case, the class is loaded using
the appropriate service ClassLoader and Axis is prevented
from loading the classes in its WebAppsClassLoader and
thus breaking our sandbox. Otherwise, the Axis class load-
ing is unmodifed, allowing all normal operations to proceed
unhindered. The second place where Axis could try and
load the service classes into its own WebAppsClassLoader
is the JavaProvider. Listing 13 shows the modification to
the loading process needed to protect the service classes.
Similar to above, we check whether the service is registered
with our framework and if that is the case we preempt the
Axis loading mechanism and use our own ClassLoaders.

Through these modifications to Axis, inter-service com-
munication is now confined to using web service calls and
thus ensures that proper authentication between services
must be observed. In many cases, this approach suffices
to protect the service being deployed while still allowing

s t a t i c C l a ss l o a d C l a s s ( S t r i n gc lassName )
th rows ClassNotFoundExcep t ion{
f i n a l S t r i n g className = c lassName ;
/ / Get t h e c l a s s w i t h i n a d o P r i v l e g e d b lock
Ob jec t r e t = A c c e s s C o n t r o l l e r . d o P r i v i l e g e d (

new P r i v i l e g e d A c t i o n ( ){
p u b l i c Ob jec t run ( ){

t r y {
MessageContext mc =

AxisEngine . ge tCu r ren tMes sage Con tex t ( ) ;
i f (mc!= n u l l )
{

S t r i n g serv iceName =mc . g e t T a r g e t S e r v i c e ( ) ;
i f ( Ja rC lassLoaderManager .

i s R e g i s t e r e d ( serv iceName ) )
{

ClassLoader c l a s s L o a d e r =
Ja rC lassLoaderManager .
g e t J a r C l a s s L o a d e r ( serv iceName ) ;

r e t u r n C l a s s . forName ( className , t r u e ,
c l a s s L o a d e r ) ;

}
}
ClassLoader c l a s s L o a d e r =

g e t C l a s s L o a d e r ( c lassName ) ;
r e t u r n C l a s s . forName ( className , t r u e ,

c l a s s L o a d e r ) ;
} c a t c h ( C lassNotFoundExcep t ion cn fe )
{ . . . }

. . .
}

Figure 12. The modified loadClass operation in the
Axis ClassUtils

unhindered operations within the service.



p r o t e c t e d C l as s g e t S e r v i c e C l a s s
( S t r i n g clsName ,
SOAPService s e r v i c e ,
MessageContext msgContext ) th rows A x i s F a u l t{

i f ( Ja rC lassLoaderManager .
i s R e g i s t e r e d ( s e r v i c e . name ) ){

ClassLoader c l = Ja rC lassLoaderManager .
g e t C l a s s L o a d e r ( s e r v i c e . name )

r e t u r n c l . l o a d C l a s s ( clsName )
} e l s e {

s t a n d a r d Axis b e h a v i o u r
}}

Figure 13. The modified getServiceClass operation in
the Axis JavaProvider

4.2. Secure Sandbox Groups

If it is necessary that two services be able to commu-
nicate directly using class references to create a composed
web service application, they must group their ClassLoad-
ers together using a SecureGroupClassLoader provided as
part of our intra-engine service security infrastructure. A
service specifies which group it wants to join either by
passing the groupId to the Hot Deployment Service or
by setting the parameter<parameter name="group"
value="groupId"/> in the server-deploy WSDD of
the service. The SecureGroupClassLoader responsible for
the group is a parent ClassLoader to all service ClassLoad-
ers in that group. It enables inter-service communication in
two ways: First, separate communication classes are placed
in the SecureGroupClassLoader which can be accessed by
all child ClassLoaders. This is the preferred way as defined
by Java to allow classes in sister ClassLoaders to communi-
cate. For instance, the interface class of an object to be used
by classes in two sister ClassLoaders is placed with the
parent so it can be accessed by both children. The imple-
menting classes are placed in both child ClassLoaders and
object references can be passed between ClassLoaders as
long as only the interface defined in the parent ClassLoader
is used. This is the traditional way to allow code-based
interaction between services but it requires that the com-
munication classes are placed in the parent ClassLoader.
The disadvantage of this approach is that if the communi-
cation classes need to be replaced, all child ClassLoaders
must be discarded because the SecureGroupClassLoader
must be replaced. So, even if only two services use the
communication classes, all services must be undeployed to
update the communication classes. To avoid this problem,
the SecureGroupClassLoader is capable of emulating a flat
namespace for its child ClassLoaders while still allowing
HotDeployment and HotUndeployment of component parts
of the composed web service application.

When a service ClassLoader joins the SecureGroup-
ClassLoader, the SecureGroupClassLoader checks which

classes the service ClassLoader is capable of loading and
stores that information internally. If a different service
within the same group tries to load one of those classes,
its own ClassLoader will not be able to find the class and
thus asks its parent, the SecureGroupClassLoader. The
SecureGroupClassLoader then checks whether one of the
other service ClassLoaders can load the requested Class
and passes the request on to that ClassLoader before pass-
ing the request on to its parent ClassLoader, the WebApps-
ClassLoader. This, of course, only works if each Class
is only defined once within all ClassLoaders in the same
group. If different versions of one and the same class
can be accessed from the same ClassLoader, TargetInvo-
cation and ClassCastExceptions will be the result. How-
ever, this ClassLoading mechanism was designed to allow
tightly coupled web services to be composed into a web
application, so it is very unlikely and undesirable that the
same class will be defined in two different places, since the
idea of tight integration was to be able to reuse the classes
of the other services. In the case of such class duplica-
tion, the less tightly coupled composition via service calls
is the preferred way of linking different web services, and
the grouping function should not be used.

4.3. Undeployment of Grouped Services

Undeployment of services is more complex if the ser-
vice to be undeployed is in a group, since classes from ser-
vices loaded in different ClassLoaders can have references
to each other. To prevent these classes from being unde-
ployed and crashing the system when one of the other ser-
vices tries to access undeployed classes, the SecureGroup-
ClassLoader stores the information which service Class-
Loaders have interacted with each other and denies unde-
ployment requests to these services unless all service Class-
Loaders which are coupled to it are undeployed at the same
time. Services loaded in the same group but which have
not accessed classes from the Services to be undeployed
remain unaffected by this process. This is a clear benefit
compared to the standard approach of placing the commu-
nication classes in the parent ClassLoader.

As an example, figure 14 shows four grid services which
are joined into a group by one SecureGroupClassLoader.
Service A defines classes U and V where U uses W which
is defined by Service B. Service C defines classes X and
Y and Service D defines class Z. Class Y uses Z and Z
uses X. That means, Service B can not be undeployed while
A is alive, and Services C and D can only be undeployed
together.



Figure 14. ClassLoader Group Interaction

4.4. Group Access

To be able to securely group different service Class-
Loaders together, access control to the grouping function
is required. In our current implementation, when a group is
created it has one owner who gets an asymmetric key pair to
enable access control to the group. The private key is used
by the group owner to sign Grid Service Archives (GARs)
which are to be admitted to the group. The public key is
used to identify the group and to check whether the GARs
submitted for deployment are permitted to join the group
in question. When the deploy method in the HotDeploy-
mentService is called, the HotDeploymentService checks
wether the GAR submitted for deployment was signed by
the private key using the public key for that group. If the
GAR was signed correctly, the deployment process is al-
lowed and the service ClassLoader is added to the Secure-
GroupClassLoader of that group; if not, the deployment
process is aborted and no changes to the grid environment
are made.

Figure 15 shows a snapshot of the complete ClassLoader
hierarchy in the system, after four different grid services
have been instantiated in two separate security groups. Ser-
vices A through C are deployed in the same group and thus
can access each others’ Class definitions. Service D is de-
ployed in its own group and thus is protected from direct
code access by any of the other services deployed on this
node.

The above solution to inter-service security shows one
possible way of protecting services from attacks within the
same web service engine on which the service is running.
Since with the progressive adoption of grid technologies in
the scientific and business communities, intra-engine inter-
service security will become more relevant as more users
will share grid nodes. It would be best if the WSRF spec-
ifications deal with this topic. We propose that the re-
quirements posed at the beginning of this section be for-
mulated in a platform independent way, which nonetheless
binds WSRF implementations to enforce intra-engine inter-
service security on all platforms. The specification should

Figure 15. Hierarchy of the ClassLoader instances.

then be integrated in the WSRF specifications family.

5. Related Work

The Open Grid Services Architecture (OGSA) has been
accepted as the foundation for service-oriented grid com-
puting. While OGSA describes the higher level architec-
tural aspects of service-oriented grid computing, the Web
Service Resource Framework (WSRF) is a fine grained
specification of the infrastructure required to implement the
OGSA model. Several implementations of WSRF are be-
ing developed concurrently, including: Globus Toolkit 4
(GT4) [10] and WSRF.NET [13].

The Globus Toolkit 4 (GT4) offers mechanisms to create
service instances on a grid node via the Axis Java Provider.
GT4 does not offer a flexible mechanism for hot service
deployment (i.e., the deployment and removal of a grid ser-
vice without restarting the GT4 engine inside the web ap-
plication container). Instead, a service is deployed using an
Apache Ant [14] task. The files making up a grid service
are copied into the GT4 directory structure. To effect the
changes, the application container must restart the GT4 ap-
plication, causing a restart of every service running in its
context. Intra-engine service security is not dealt with by
GT4.

The architecture of the WSRF.NET grid uses the Mi-
crosoft Internet Information Server (IIS) as its hosting con-
tainer. Dynamic deployment of services and intra-engine
service security are not addressed by WSRF.NET, and the
deployment process is similar to a Tomcat based GT4 dis-
tribution. It requires the alteration of the container’s con-
figuration file, copying of service descriptions as well as
service assemblies (service DLLs) and the restart of the IIS.

The attacks described in section 2.2 and our security so-
lution presented above demonstrate that intra-engine inter-
service security is an issue which should be dealt with by



the WSRF community. The current WSRF specifications
[5] do not deal with intra-engine inter-service security at
all, leaving an intra-engine inter-service security frame-
work completely to the hands of the different WSRF im-
plementations. It is highly likely that different implemen-
tations would deal with the issue in different ways, creating
a non-homogenous security environment. That would sig-
nificantly weaken the WSRF environment in its entirety,
since WSRF alone would not represent a secure grid envi-
ronment. Clearly, it should be possible to deploy a service
to a WSRF compliant grid node, sure in the knowledge that
intra-engine inter-service security is a guaranteed feature of
the environment.

6. Conclusions

In this paper, it was demonstrated how easy it is to hi-
jack a service running on the same web service engine as
an attacking service. A sandboxing security mechanism
to ensure intra-engine inter-service security has been pro-
posed. It allows services to be deployed on demand into
a running webservice engine of a grid node, either join-
ing an existing security group using the right credentials
or creating a separate group to ensure inter-service secu-
rity for all services. No direct code access between ser-
vices is possible unless the service was signed using the
appropriate group authorization, in which case only mem-
bers of that group can access the classes belonging to the
service. The intra-engine inter-service attacks presented in
this paper can not be executed on a grid node using this
security mechanism. The combination of the standard se-
curity model of GT4 and the proposed ClassLoader-based
sandboxing and grouping of services offers the necessary
security for on demand service-oriented grid computing.

Future work will consist of formulating the intra-engine
service security requirements in a WSRF-* specification
consistent way and possibly submitting these requirements
to the WSRF standards group. To examine the usability and
robustness of our system, we will proceed to test the intro-
duced security mechanism in production environments. Fi-
nally, we intend to consider possible additonal intra-engine
threats to grid services and develop solutions to them, to
ensure that widespread adoption of WSRF based Grids is
not hindered by platform security deficiencies.

Acknowledgement
This work is partially funded by Siemens AG, Corporate
Technology, Munich, Germany.

References

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, “Web Services Description Language (WSDL)
1.1,” 2001,
http://www.w3.org/TR/wsdl.

[2] The World Wide Web Consortium, “Simple Object Access
Protocol (SOAP),” 2003,
http://www.w3.org/TR/soap/.

[3] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Phys-
iology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration,” inOpen Grid Service In-
frastructure WG, Global Grid Forum, 2002.

[4] I. Foster, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
H. Kishimoto, F. Maciel, A. Savvy, F. Siebenlist, R. Subra-
maniam, J. Treadwell, and J. von Reich, “The Open Grid
Services Architecture, Version 1.0,” 2004,
https://forge.gridforum.org/projects/ogsa-wg/document/
draft-ggf-ogsa-spec/en/.

[5] OASIS, “Web Services Resource Framework,” 2004,
http://www.oasis-open.org/committees/tchome.php?
wg abbrev=wsrf.

[6] IBM, “E-Business on Demand: The Race is on,” 2003, iBM
Whitepaper,
http://www-5.ibm.com/e-business/de/literature/.

[7] M. Smith, T. Friese, and B. Freisleben, “Towards a Service-
Oriented Ad Hoc Grid,” inProceeedings of the 3rd Interna-
tional Symposium on Parallel and Distributed Computing,
Cork, Ireland, 2004, pp. 201–209.

[8] T. Friese, M. Smith, and B. Freisleben, “Hot service deploy-
ment in an ad hoc grid environment,” inProceedings of the
2nd Int. Conference on Service Oriented Computing, New
York, USA. ACM Press, 2004, pp. 75–83.

[9] Apache Software Foundation, “Apache Web Services
Project,” 2004,
http://ws.apache.org/axis/.

[10] T. G. Project, “The Globus Toolkit 4.0 (GT Version 3.9.3),”
2004,
http://www-unix.globus.org/toolkit/downloads/
development/.

[11] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and
M. Lebofsky, “SETI@home - Massively distributed com-
puting for SETI,” Computing in Science and Engineering,
vol. 3, no. 1, p. p. 79, 2001.

[12] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govin-
daraju, L. Ramakrishnan, and A. Slominski, “Grid Web Ser-
vices and Application Factories,” inGrid Computing: Mak-
ing the Global Infrastructure a Reality, F. Berman, G. Fox,
and T. Hey, Eds. John Wiley & Sons Inc., December 2002.

[13] D. Byrne, A. Hume, and M. Jackson, “Grid Services and
Microsoft .NET,” inProc. of UK e-Science All Hands Meet-
ing, 2003, pp. 129–136.

[14] The Apache Software Foundation, “The Apache Ant
Project,” 2004,
http://ant.apache.org.


