
A Technical History 

of  Apple’s Operating 

Systems

Amit Singh

A Supplementary Document for Chapter 1 from 

the book Mac OS X Internals: A Systems Approach.
Copyright © Amit Singh. All Rights Reserved. Portions Copyright © Pearson Education.

 Document Version 2.0.1 (July 28, 2006)
Latest version available at http://osxbook.com/book/bonus/chapter1/

http://osxbook.com/book/bonus/chapter1/
http://osxbook.com/book/bonus/chapter1/


This page intentionally left blank.



Dear Reader

This is a supplementary document for Chapter 1 from my book Mac OS X In-
ternals: A Systems Approach. A subset (about 30%) of this document ap-
pears in the book as the first chapter with the title Origins of  Mac OS X.

This document is titled A Technical History of Apple’s Operating Systems. 
Whereas the book’s abridged version covers the history of Mac OS X, this 
document’s coverage is considerably broader. It encompasses not only Mac OS 
X and its relevant ancestors, but the various operating systems that Apple has 
dabbled with since the company’s inception, and many other systems that were 
direct or indirect sources of  inspiration.

This was the first chapter I wrote for the book. It was particularly difficult to 
write in terms of the time and other resources required in researching the mate-
rial. I often had to find and scavenge ancient documentation, software, and 
hardware (all actual screenshots shown in this document were captured first 
hand.) However, I couldn’t include the chapter in its original form in the book. 
The book grew in size beyond everybody’s expectations—1680 pages! There-
fore, it was hard to justify the inclusion of this much history, even if it is inter-
esting history.

I strongly believe that reading this document will help in understanding the evo-
lution of Mac OS X, and, to some extent, of some aspects of modern-day op-
erating systems. An important reality of technology, and of computing in par-
ticular, is that many things that we think of as “new ideas” are not quite new. As 
Alan Kay once said, “Most ideas come from previous ideas.” This is also true in the 
case of Mac OS X. As one digs the past of Mac OS X and its predecessors, one 
begins to understand how ancient things influenced not-so-ancient things, and 
the fact that we owe what we have today to many more people than are usually 
credited.

Please note again that this document is not the same as the book’s first chapter. 
In particular, this document was not copyedited, composited, or proofread by 
the publisher. I prepared this PDF from my “raw” manuscript. Therefore, this 
document is not an example of the book’s final typesetting or other production 
aspects.

I hope you enjoy reading this document and the book. Just as this document 
provides a super-detailed history of Apple’s operating systems, the book itself is 
super-detailed on the internals of modern day Mac OS X. It is not at all a book 
about using Mac OS X—it is about the system’s design and implementation. 
Therefore, I expect it to appeal to all operating system enthusiasts and students.

Amit Singh
Sunnyvale, California
http://osxbook.com/contact/

http://osxbook.com
http://osxbook.com
http://osxbook.com
http://osxbook.com
http://osxbook.com/contact/
http://osxbook.com/contact/


This page intentionally left blank.



About Mac OS X Internals
Mac OS X was released in March 2001, but many components, such as 
Mach and BSD, are considerably older. Understanding the design, imple-
mentation, and workings of Mac OS X requires examination of several 
technologies that differ in their age, ori-
gins, philosophies, and roles.

Mac OS X Internals: A Systems Ap-
proach (Amazon page) is the first book 
that dissects the internals of the system, 
presenting a detailed picture that grows 
incrementally as you read. For example, 
you will learn the roles of the firm-
ware, the bootloader, the Mach and 
BSD kernel components (including the 
process, virtual memory, IPC, and 
file system layers), the object-oriented 
I/O Kit driver framework, user librar-
ies, and other core pieces of software. 
You will learn how these pieces connect 
and work internally, where they origi-
nated, and how they evolved. The book 
also covers several key areas of the 
Intel-based Macintosh computers.

  Over 1600 pages of the what, how, and why of Mac OS X!

A solid understanding of system internals is immensely useful in design, 
development, and debugging for programmers of various skill levels. Sys-
tem programmers can use the book as a reference and to construct a better 
picture of how the core system works. Application programmers can gain a 
deeper understanding of how their applications interact with the system. 
System administrators and power users can use the book to harness the 
power of the rich environment offered by Mac OS X. Finally, members of 
the Windows, Linux, BSD, and other Unix communities will find the book 
valuable in comparing and contrasting Mac OS X with their respective sys-
tems.

Please visit the book’s web site (osxbook.com) for more information on 
the book, including a detailed Table of Contents and links to reviews.

http://www.amazon.com/gp/product/0321278542/
http://www.amazon.com/gp/product/0321278542/
http://osxbook.com
http://osxbook.com
http://osxbook.com/book/toc/
http://osxbook.com/book/toc/
http://osxbook.com/book/reviews/
http://osxbook.com/book/reviews/


This page intentionally left blank.



A Technical History of Apple’s Operating Systems

...........................................................1.1. First Bytes into an Apple
 6
........................................................................................................1.1.1. Apple I
 6
.....................................................................................................1.1.2. Apple ][
 10

...................................................................................................1.1.2.1. Apple DOS
 11
................................................................................................1.1.2.2. Apple Pascal
 12

.................................................................................................1.1.2.3. Apple CP/M
 13
....................................................................................................1.1.3. Apple ///
 14

...................................................................................................1.1.3.1. Apple SOS
 14
..............................................................................................1.1.3.2. Apple ProDOS
 16

...............................................................................1.2. Inspirations
 17
.....................................................................................................1.2.1. Memex
 18

................................................................................................1.2.2. Sketchpad
 19
.........................................................................1.2.3. NLS: The oNLine System
 21

..........................................................................1.2.3.1. The First Computer Mouse
 21
.......................................................................................1.2.3.2. A 5-Chord Key Set
 22

.................................................................................1.2.3.3. Document Processing
 22
.........................................................................1.2.3.4. Hypertext and Image Maps
 22

.....................................................................................................1.2.3.5. Searching
 23
......................................................................................................1.2.3.6. Windows
 23

...............................................................................................1.2.3.7. Collaboration
 23
.....................................................................1.2.3.8. Live, Interactive Collaboration
 24

...................................................................................................1.2.3.9. The Result
 24
...................................................................................................1.2.4. Smalltalk
 25

................................................................................................1.2.5. Xerox Alto
 30
.........................................................................................................1.2.5.1. Alto OS
 33

..............................................................................................1.2.5.2. Alto Executive
 35
.......................................................................................................1.2.5.3. NetExec
 36

................................................................................1.2.5.4. Programming Facilities
 37
.................................................................................................1.2.5.5. Applications
 38

...................................................................................................1.2.5.6. Networking
 38
.........................................................................................................1.2.5.7. Worms
 40

................................................................................1.2.6. Xerox STAR System
 41
.....................................................1.3. The Graphical Age at Apple
 43

..........................................................................................................1.3.1. Lisa
 44
....................................................................................................1.3.1.1. Packaging
 45

...............................................................................1.3.1.2. Processor and Memory
 45
.........................................................................................................1.3.1.3. Display
 46
........................................................................................................1.3.1.4. Storage
 46

....................................................................................................1.3.1.5. Expansion
 47

1



........................................................................................................1.3.1.6. Lisa OS
 47
............................................................................................1.3.1.7. Lisa WorkShop
 55

...................................................................................................1.3.1.8. Lisa’s Fate
 56
.........................................................................................1.3.2. The Macintosh
 57

..............................................1.4. Many Systems for Many Apples
 63
..............................................................1.4.1. System Software Releases 2 - 6
 63

....................................................................1.4.2. What Color is Your System?
 65
.....................................................................................................1.4.3. GS/OS
 66

.........................................................................................................1.4.4. A/UX
 68
..........................................................................1.5. Seeking Power
 72

..................................................................................................1.5.1. System 7
 72
.......................................................................................1.5.2. AIM for POWER 
 74

......................................................................................1.5.2.1. A RISCy Look Back
 74
.......................................................................................1.5.2.2. Apple Wants RISC
 76

...............................................................................1.5.2.3. Apple Likes RISC: ARM
 78
..............................................................................1.5.3. Mac OS for PowerPC
 79

.........................................................................................................1.5.4. MAE
 80
..........................................................................1.5.5. Apple Workgroup Server
 84

.............................................................................1.5.6. NetWare for PowerPC
 85
......................................................................................1.5.7. AIX for PowerPC 
 85

..............................................1.6. Quest for the Operating System
 87
...................................................................................................1.6.1. Star Trek
 88

......................................................................................................1.6.2. Raptor
 89
..................................................................................................1.6.3. NuKernel
 89

.......................................................................................................1.6.4. TalOS
 89
....................................................................................................1.6.5. Copland
 90
..................................................................................................1.6.6. Gershwin
 93

.......................................................................................................1.6.7. BeOS
 93
......................................................................................................1.6.8. Plan A
 95

.....................................................................1.7. The NeXT Chapter
 95
..............................................................................................1.7.1. NEXTSTEP
 96
...........................................................................................1.7.2. OPENSTEP
 101

.....................................................................1.8. The Mach Factor
 102
............................................................1.8.1. Rochester’s Intelligent Gateway
 103

....................................................................................................1.8.2. Accent
 104
......................................................................................................1.8.3. Mach
 106

.................................................................................................1.8.4. MkLinux
 111
......................................................................................1.8.5. Musical Names
 112

................................................................................1.9. Strategies
 113
.....................................................................................1.9.1. Mac OS 8 and 9
 115

...............................................................................................1.9.2. Rhapsody
 117
....................................................................................................1.9.2.1. Blue Box
 119

2
    A Technical History of Apple’s Operating Systems



.................................................................................................1.9.2.2. Yellow Box
 120
...............................................................1.10. Towards Mac OS X
 121

...........................................................................1.10.1. Mac OS X Server 1.x
 123
...........................................................1.10.2. Mac OS X Developer Previews
 123

..........................................................................................................1.10.2.1. DP1
 123

..........................................................................................................1.10.2.2. DP2
 124

..........................................................................................................1.10.2.3. DP3
 124

..........................................................................................................1.10.2.4. DP4
 125
.........................................................................1.10.3. Mac OS X Public Beta
 125

....................................................................................1.10.4. Mac OS X 10.x
 127
........................................................................................1.10.4.1. Mac OS X 10.0
 128
........................................................................................1.10.4.2. Mac OS X 10.1
 129
........................................................................................1.10.4.3. Mac OS X 10.2
 130
........................................................................................1.10.4.4. Mac OS X 10.3
 131
........................................................................................1.10.4.5. Mac OS X 10.4
 131

....................................................................................1.11. Others
 133
..........................................................................1.11.1. Mac OS on the Pippin
 133

...........................................................................................1.11.2. Newton OS
 137
...............................................................................................1.11.2.1. Newton OS
 137

......................................................................................1.11.2.2. System Services
 138
..........................................................................1.11.2.3. Application Components
 138

..............................................................1.11.3. The iPod’s Operating System
 139

Mac OS X Internals (www.osxbook.com)            3

http://www.osxbook.com
http://www.osxbook.com


4
    A Technical History of Apple’s Operating Systems



C H A P T E R  1

A Technical History of Apple’s Operating Systems
“Most ideas come from previous ideas.”—Alan Curtis Kay

he Mac OS X operating system represents a rather successful coming 
together of paradigms, ideologies, and technologies that have often 

resisted each other in the past. A good example is the cordial relationship that exists 
between the command-line and graphical interfaces in Mac OS X. The system is a 
result of the trials and tribulations of Apple, NeXT, as well as their user and devel-
oper communities. Mac OS X exemplifies how a capable system can result  from the 
direct or indirect efforts of corporations, academic and research communities, the 
Open Source and Free Software movements, and of course, individuals.

Apple has been around since 1976, and many accounts of its history have been 
told. If the story of Apple as a company is fascinating, so is the technical history of 
Apple’s operating systems. This chapter discusses operating systems that Apple has 
created in the past, those that  it  attempted to create, and some that influenced or in-
spired Apple. In this discussion, we will come across several technologies whose 
confluence eventually led to Mac OS X. 

1

T



1.1. FIRST BYTES INTO AN APPLE

As 1975 came to an end, Steve Wozniak had finished his prototype of a home-brew 
computer built using inexpensive components. Hewlett-Packard, Wozniak’s em-
ployer at  that  time, was not  interested in his creation. Wozniak requested, and was 
soon granted, a release of the technology. On April first, 1976, Steve Jobs, Steve 
Wozniak, and an Atari engineer named Ronald Wayne founded Apple. The com-
pany’s first product was Wozniak’s computer: the Apple I.

1.1.1. Apple I

The Apple I was based on an 8-bit  processor, the 6502, which was made by MOS 
Technology, Inc. of Norristown, Pennsylvania. The 6502 was designed by ex-
Motorola engineers. It  was similar to the more expensive 6800 from Motorola. An-
other alternative, the Intel 8080, was also more expensive than the 6502. The 6502 
was chosen primarily because it  was cheap—it could be had for $25, whereas the 
6800 and the 8080 were well over $100 apiece.

MOS Technology advertised in 1975 that it would sell the 6502 at a dis-
counted price of $20 at the Wescon electronics show in San Francisco. The 
6502’s low price and popularity would eventually cause Intel and Motorola 
to lower the prices of their processors. Motorola had also sued MOS Tech-
nology over the similarity of the 650x processor line to the 6800. The 6501 
was consequently withdrawn from the market.

The 6502 came in a 40-pin package. The Apple I used a clock oscillator with a 
frequency of 1.023 MHz. Moreover, in the Apple I, 4 out of every 65 clock-cycles 
were dedicated to memory refresh. Therefore, the effective cycle frequency was 
0.960 MHz. Other key features of the processor included the following.

2
 Chapter 1    A Technical History of Apple’s Operating Systems



• An instruction set consisting of 56 documented instructions
• Interrupt capability with support for non-maskable interrupts
• A 16-bit address bus with an addressable memory range of up to 64KB
• Over a dozen addressing modes
• An 8-bit accumulator that was used for arithmetic and logical operations
• Two 8-bit index registers X and Y, which were typically used in indexed 

addressing modes
• A 16-bit program counter logically divided into “PCL” (low bits 0–7) 

and “PCH” (high bits 8–15) halves

• An 8-bit  processor status register consisting of the following flags: Nega-
tive (N), Overflow (V), Break Command (B), Decimal mode (D), Inter-
rupt Disable (I), Zero (Z), and Carry (C)

• An 8-bit  stack pointer (the high byte of the logical stack pointer was 
hardwired to the value 1, limiting the stack to be 256 bytes in size, and to 
lie between addresses 0x100 and 0x1FF)

The Apple I used 16-pin dynamic RAM. It  had sockets for up to 8KB of on-
board memory. The total memory could be expanded to 64KB through a 44-pin 
edge connector. All refreshing of dynamic memory, including the off-board expan-
sion memory, was performed automatically. The crystal oscillator was the source for 
the entire system timing.

The Apple I had a built-in video terminal. The output  video signal was a com-
posite signal consisting of sync and video information. It  could be sent to any stan-
dard raster-scan-based video display monitor. In particular, the Apple I could be 
directly connected to a television with an RF modulator, yielding an automatic 
scrolling display with 24 lines per page, and a frame rate of 60.05 Hz. Each line had 

40 characters, with the character matrix being 5×7 in size. Owing to the high cost of 
RAM, video terminals were designed with shift registers at  that time. The Apple I’s 
display memory was comprised of seven 1K dynamic shift registers.

The Apple I also had a keyboard interface and a cassette board meant to work 
with regular cassette recorders. The “computer” was simply a motherboard (see 

Mac OS X Internals (www.osxbook.com)            3

http://www.osxbook.com
http://www.osxbook.com


Figure 1–1.) The user had to provide a case, a display device, an ASCII-encoded 
keyboard, and two AC power sources.

The Apple I was introduced at  a price of $666.66. It came with 4KB of RAM 
and a tape of Apple BASIC.  

FIGURE 1–1  The Apple I computer board

The Apple I incorporated a firmware resident  system monitor—sometimes 
called the Hex Monitor. It  was an extremely simple program that could be thought 
of as its operating system. The program was 256 bytes in size, residing between lo-
cations 0xFF00 and 0xFFFF in the PROM.1 It  made use of the keyboard and the 
display to present the user with a command line for viewing memory contents, typ-
ing programs, executing programs, and so on. Certain RAM locations were used for 
designated purposes by the monitor, and therefore, were unavailable to the user for 
other purposes.

4
 Chapter 1    A Technical History of Apple’s Operating Systems

1 Programmable Read-Only Memory



Figure 1–2 shows a test program entered at the monitor’s “backslash” prompt. 
The first  line of hexadecimal numbers is the program itself. Its purpose is to print a 
continuous stream of ASCII characters on the display. Typing 0.A prints a listing of 
the program, and typing R runs the program.

FIGURE 1–2  The Apple I’s firmware-resident system monitor

Compared to the UNIX general-purpose time-sharing system, which was in its 
Sixth Edition then, the Apple I’s operating environment was decidedly puny. How-
ever, a contemporary computer system running UNIX would have cost many thou-
sands of dollars. The Apple I was an attempt  to make computing affordable for hob-
byists, and as those behind it hoped, for the masses. Within the first nine months of 
the Apple I’s introduction, all but a few of the two hundred or so units manufactured 
had been sold.

Mac OS X Internals (www.osxbook.com)            5

http://www.osxbook.com
http://www.osxbook.com


1.1.2. Apple ][

The Apple I had a life span of less than a year, but  its successor would live much 
longer. Wozniak soon began work on the Apple ][ . Although based on the 6502 
processor as well, the Apple ][ was introduced as an integrated computer: it  came 
completely assembled in a beige plastic case. The contents of the original Apple ][ 
package included the following.

• An Apple ][ P.C. (“Printed Circuit”) Board complete with specified 
RAM memory

• A D.C. power connector with cable
• A 2” speaker with cable
• A Preliminary manual
• Two demonstration cassette tapes
• Two 16-pin headers plugged into locations A72 and J14 on the Apple ][ 

board

Latter models varied in their configurations as well as bundled accessories. 
For example, Apple ][ computers with 16KB or more memory came with game 
paddles and the STARTREK game tape.

The Apple ][ provided a machine-level monitor. Depending on the Apple ][ 
model, resetting the computer could either leave the user in the monitor, or could 
auto-start the ROM, dropping the user in BASIC. Calling a specific subroutine3 
from BASIC allowed access to the monitor. The monitor provided commands for 
tasks such as the following.

• Examining, changing, moving, and verifying memory
• Performing cassette I/O

6
 Chapter 1    A Technical History of Apple’s Operating Systems

2 The Apple ][’s keyboard connector was a 16-pin IC socket  at location A7 on the main circuit  board, 
whereas a 16-pin game I/O connector was located at J14.

3 Typing CALL -151 at the BASIC prompt provided access to the monitor.



• Configuring the video mode
• Assembling, disassembling, running, and debugging machine code

Upon its release, the Apple ][ was the first  personal computer to display color 
graphics. Apple provided special software to make use of the Apple ][’s capabilities, 
including its graphical prowess. For example, the High-Resolution Operating Sub-
routines package provided graphical subroutines usable from both BASIC and ma-
chine language. Using these subroutines, the programmer could initialize high-
resolution mode, clear the screen, plot a point, draw a line, and draw or animate 
predefined shapes.

Various Apple ][ machines were made during the long life-span of the Apple ][ 
line: the Apple ][+, ][e, ][c, ][e Enhanced, ][e Platinum, the 16-bit ][GS, and the ][c+ 
that was introduced in 1988 as the last  Apple ][ model. Many of these models had 
multiple revisions themselves. As we will discuss next, several operating systems 
were created for the Apple ][  family.

1.1.2.1. Apple DOS

Shortly after the release of the Apple ][ in 1977, it  was realized that  a better storage 
solution than the existing one (which was based on cassette tape) was imperative for 
the computer. Wozniak created a brilliant design for a floppy disk drive—the Disk 
][—and thus there was need for a disk operating system (DOS). Apple’s first  ver-
sion of a DOS was released as Apple DOS 3.1 in July 1978.  

Apple DOS is unrelated to Microsoft’s popular MS-DOS. During a time 
when it was a luxury to have disk drives, and for an operating system to 
support them, many such “disk operating systems” had the term DOS in 
their names.

The first  release of Apple DOS had the version 3.1 (as opposed to, say, 1.0) 
because one of the implementers, Paul Laughton, incremented a revision counter of 
the format  x.y every time the source code was recompiled. The counter started with 

Mac OS X Internals (www.osxbook.com)            7

http://www.osxbook.com
http://www.osxbook.com


x being 0 and y being 1. Every time y reached 9, x was incremented by 1. Apple 
DOS was beta tested as version 3.0. Figure 1–3 shows a screenshot  from Apple 
DOS 3.3.

FIGURE 1–3  Apple DOS 3.3

1.1.2.2. Apple Pascal

The p-System  was a Pascal language and development  system that was very popular 
in the 1970s and the early 1980s. It  was created at the University of California, San 
Diego (UCSD). It was a portable operating system, essentially a stack-based virtual 

8
 Chapter 1    A Technical History of Apple’s Operating Systems



machine running p-Code,4 with UCSD Pascal being the most  popular programming 
language for it.

In 1978, most  of Apple’s software development  was around the BASIC and 
assembly languages. Two Apple employees, Bill Atkinson and Jef Raskin, were in-
strumental in introducing the Pascal language at Apple. They also licensed the p-
System from UCSD.

UCSD students Mark Allen and Richard Gleaves developed a p-Code inter-
preter for the 6502 in the summer of 1978. This interpreter became the basis for the 
Apple ][ Pascal5  that was released in 1979. Apple ][ Pascal included a compiler, an 
assembler, a filer, a modal editor, and various utility programs. The system was 
command-line-driven. Pascal code would compile into p-Code, which would then 
be interpreted by the 6502-native interpreter. It supported program modules called 
units, which could be segmented, and therefore, were typically memory-resident 
only when needed. Apple ][  Pascal’s memory usage was limited to 64KB.

Apple Pascal lived as a product  for five years, with the Pascal support in the 
Macintosh Programmer’s Workshop (MPW) eventually replacing it.

1.1.2.3. Apple CP/M

Microsoft introduced a coprocessor card, a circuit  board named SoftCard, in 1980. 
It  was originally called the Microsoft Z-80 SoftCard, but  Microsoft had to rename it 
to avoid a lawsuit from Zilog, the makers of the Z-80 processor. The SoftCard 
plugged into a slot and added a Z-80 processor, essentially converting an Apple ][ 
into two computers. An Apple ][ with a SoftCard could run Z-80 programs based on 

Mac OS X Internals (www.osxbook.com)            9

4 p-Code was akin to what is now commonly known as bytecode.

5 Apple’s Pascal system for the Apple ][ was derived from a specific implementation of the p-Code 
architecture: UCSD Pascal II.1.

http://www.osxbook.com
http://www.osxbook.com


the popular CP/M operating system,6 which had a rich software library of programs 
such as dBase and WordStar. Programming languages such as Microsoft ANSI 
Standard COBOL and FORTRAN could also be used on the Apple ][ .

Besides SoftCard, there existed other coprocessor cards for the Z-80 and for 
other processors such as the Motorola 6809. For example, the Stellation Mill 6809 
card allowed the OS-9 real-time operating system7 to run on compatible Apple ma-
chines. 

1.1.3. Apple / / /

The Apple / / / was introduced in 1980 as a computer for business users. Apple 
originally planned to ship the Apple / / / with a suite of office programs: a spread-
sheet, a word processor, a database program, and a business-graphics program. 
However, the Apple / / / shipped late, and initially ran only the VisiCalc spreadsheet 
program. It had a new operating system called SOS.

1.1.3.1. Apple SOS

SOS8  officially stood for “Sophisticated Operating System,” although it  was appar-
ently an acronym for “Sara’s Operating System,” named after an engineer’s daugh-
ter.

Every SOS program loaded the operating system into memory. A SOS applica-
tion disk consisted of a kernel (SOS.Kernel); an interpreter (SOS.Interp), which 
could be the application itself, or something that  the application used; and a set  of 
drivers (SOS.Driver). Unlike the Apple ][ , which used ROM-based device drivers 

10
 Chapter 1    A Technical History of Apple’s Operating Systems

6 CP/M was created  by Gary Kildall, who founded a company called Intergalactic Digital Research  to 
market the system.

7 Unrelated to Mac OS 9.

8 Pronounced “sauce” (which would make it “Apple Sauce.”)



(such as those residing on I/O card ROMs), SOS device drivers were RAM-based, 
and could be “installed,” which was a first  for a commercial operating system at 
that time. Figure 1–4 shows a screenshot from SOS.

FIGURE 1–4  Apple SOS

The Apple / / / also had a Pascal system that  was derived from Apple ][ Pascal, 
but had language extensions, access to up to 256KB of memory, a floating-point 
implementation called Standard Apple Numerical Environment  (SANE), and the 
ability to access SOS from Pascal programs using the SOSIO unit.

Steve Wozniak once called SOS “the finest operating system” for a micro-
computer. He lamented, however, that SOS was closed-source. In general, 
Apple’s attitude with the Apple / / / was that of starkly heightened secrecy as 
compared to earlier systems.

Mac OS X Internals (www.osxbook.com)            11

http://www.osxbook.com
http://www.osxbook.com


SOS evolved into Apple ProDOS.

1.1.3.2. Apple ProDOS

Apple ProDOS was first  released as version 1.0 in October 1983. Based on SOS, it 
was Apple’s replacement for Apple DOS 3.3. ProDOS provided better facilities for 
programming in BASIC, assembly language, and machine language; better interrupt 
handling; faster disk I/O with direct block access; and so on. Figure 1–5 shows a 
screenshot from ProDOS.

FIGURE 1–5  Apple ProDOS

ProDOS also had a relatively sophisticated hierarchical file system with fea-
tures such as the following.

12
 Chapter 1    A Technical History of Apple’s Operating Systems



• Multiple logical volumes on one physical volume
• Support  for up to 20 different file types, of which 10 could be user-

defined
• Up to 8 open files at any given time
• An arbitrary number of files in a subdirectory, although the volume di-

rectory was limited to a maximum of 51 files

When the 16-bit  Apple ][ was released, ProDOS was at  version 1.1.1. It forked 
into ProDOS 8 and ProDOS 16 for 8-bit and 16-bit processors, respectively.

1.2. INSPIRATIONS

1984 is well known in the Apple world as the year the Macintosh was introduced. In 
1983, Apple had released the Lisa computer, which represented a fundamental step 
forward in mainstream personal computing. Lisa and Macintosh were greatly in-
spired—directly or indirectly—by the work done at Xerox Palo Alto Research Cen-
ter (PARC). Sources of such inspirations included the Smalltalk environment, the 
Xerox STAR system, and the Xerox Alto. Most  of the ideas pioneered in these sys-
tems remain relevant today—in Mac OS X and in other modern systems.

To fully understand the lineage of the Macintosh, we must take a few detours 
and go further back in time, first to 1945, then to 1963, and finally to 1968—before 
the advent of UNIX, long before Apple or Microsoft  were even founded, and in 
fact, decades9  before the first version of Microsoft  Windows or the Macintosh were 
released.

Mac OS X Internals (www.osxbook.com)            13

9 The first version of Microsoft Windows was released on June 28, 1985. Microsoft had made the first 
Windows announcement in November 1983. Microsoft’s selling point  was that Windows provided a 
new software development and runtime environment that used bitmap displays and mice, thus freeing 
the user from the “MS-DOS method of typing commands at the C prompt (C:\).”

http://www.osxbook.com
http://www.osxbook.com


1.2.1. Memex

Vannevar Bush published an article titled As We May Think in the July 1945 edition 
of The Atlantic Monthly.10 Bush was then the Director of the Office of Scientific 
Research and Development  in the United States. His article described, among sev-
eral incredible visionary insights and observations, a hypothetical device Bush had 
conceived many years earlier: the memex.

The memex was a mechanized private file and library—a supplement  to hu-
man memory. It would store a vast amount of information and allow for rapid 
searching of its contents. Bush envisioned that a user could store books, letters, re-
cords, and any other arbitrary information on the memex, whose storage capacity 
would be large enough. The information could be textual or graphic. Other features 
of the memex included the following.

• It  would be incorporated into an ordinary looking desk, thus fitting in the 
user’s normal work environment. Its user interface would consist of a 
keyboard, buttons, levers, and translucent projection screens.

• Its primary storage medium would be microfilm.
• New material would be primarily available for purchase on microfilm. A 

variety of content, ranging from books to daily newspapers, could be 
trivially inserted into the memex.

• The memex would have photocopying abilities so that  users could con-
veniently add their own content to the machine’s data store.

• A lever would allow a user to flip forward and backward through pages 
of information, with the browsing speed dependent  on how far the lever 
was moved. A shortcut would warp to the first page of the index.

• The user would be able to arbitrarily annotate preexisting information in 
the memex.

• The memex would not only index its content  normally, but  would allow 
the user to build “trails” of information, connecting one piece to another 
to build associations between related bodies of knowledge. Thus, Bush 

14
 Chapter 1    A Technical History of Apple’s Operating Systems

10 As We May Think,” by Vannevar Bush (Atlantic Monthly 176:1, July 1945, pp. 101–108).



described the core idea behind the web: the hyperlink—almost half a 
century before the first web browser was created.

Bush made numerous uncanny predictions. He suggested that  some day an 
entire encyclopedia would be available on a storage medium the size of a matchbox. 
He envisioned that  people from all walks of life—chemists, historians, lawyers, pat-
ent attorneys, physicians, and so on—would use the memex to perform hitherto im-
possible or inordinately difficult tasks.

The modern-day Internet, the development and proliferation of high-density 
storage media, and the critical dependence of computer users on searching, are re-
sounding testimonies to Bush’s foresight.

1.2.2. Sketchpad

In January 1963, Ivan Edward Sutherland, who was a graduate student at  the Mas-
sachusetts Institute of Technology, submitted his Ph. D. thesis titled Sketchpad, A 
Man-Machine Graphical Communication System. Sutherland’s thesis advisor was 
Claude Elwood Shannon, the world-renowned mathematical engineer who is known 
as “the father of information theory.”

Sutherland had begun work on a drawing system for the TX-2 computer in the 
fall of 1961. The Sketchpad system was primarily designed and developed within 
the next year and a half.

TX-2

The TX-2 computer was built in 1956. It had a word length of 36 bits, but it sup-

ported breaking a 36-bit word into independent sub-words, even allowing sub-word 

lengths to differ. It had a large amount of memory  for its time: a vacuum-tube-driven 

core of 64K words, and a faster, transistor-driven core of 4K words. It had a paper-tape 

reader and could also use magnetic tape as auxiliary storage.

Mac OS X Internals (www.osxbook.com)            15

http://www.osxbook.com
http://www.osxbook.com


The primary input  device of Sketchpad was the light pen: a hand held photo-
diode device with the shape and dimensions of a pen. The light  pen was connected 
to the computer by a coaxial cable, through which it communicated to the computer 
when its field-of-view encompassed a spot  on the TX-2’s display. The pen’s barrel 
could be rotated to vary the distance between the photodiode and the lens at  the 
pen’s tip, thus adjusting the field-of-view’s size.

As the user drew directly on the screen using the light  pen, Sketchpad inter-
preted the drawing. Using straight-line segments and circle arcs as basic drawable 
shapes, the user could draw more complex shapes. The system treated on-screen 
shapes as objects11  that  could be operated upon. For example, transforms such as 
rotation, scaling, and translation could be applied to existing drawings. Once drawn, 
shapes could be saved, and reused as primitive units.12 The light pen was used in 
conjunction with push-button controls. For example, the draw control created a new 
line segment or arc, with the drawn shape’s end-point  remaining attached to the pen. 
Other examples of controls included circle center, move, delete, and instance.

Sketchpad was demonstrated by creating electrical, mathematical, mechanical, 
scientific, and even artistic drawings. Moreover, arbitrary mathematical conditions, 
which could be the result of complex computations, could be applied to drawings. 
Sketchpad would automatically satisfy the conditions and alter the drawings to pic-
torially display the results. It had various other mathematical abilities that made it a 
powerful graphical input program—for example, it  allowed sub-pictures within pic-
tures, with no intrinsic limit on the nesting level.

Sketchpad drawings, or rather, their topologies, were stored in special files 
using data structures optimized for fast editing of the drawings.

Sutherland received the Turing award in 1988 for his pioneering contribu-

16
 Chapter 1    A Technical History of Apple’s Operating Systems

11  Sketchpad could be seen as an object-oriented graphics editor, and a precursor to object-oriented 
programming.

12 Thus, Sketchpad provided the first example of the Prototype design pattern.



tions to the field of computer graphics. His work on Sketchpad would prove 
inspirational in the development of Smalltalk, which in turn would be an in-
spiration for the advent of the graphical user interface at Apple.

1.2.3. NLS: The oNLine System

On December 9, 1968, an array of astounding technologies was demonstrated at the 
Convention Center in San Francisco during the Fall Joint Computer Conference 
(FJCC). Douglas Engelbart and his team of seventeen colleagues—working in the 
Augmentation Research Center at  the Stanford Research Institute (SRI) in Menlo 
Park, California—presented NLS (oNLine System). NLS was an online13  system 
they had been working on since 1962. The “astounding” adjective is justified by the 
quantity and quality of innovation demonstrated on that single day.

Engelbart  said14  at the beginning of his presentation, “The research program 
that I am going to describe to you today is quickly characterizable by saying: if in 
your office, you as an intellectual worker were supplied with a computer display 
backed up by a computer that was alive for you all day and was instantly responsi-
ble, err, responsive... how much value could you derive from that? Well that basi-
cally characterizes what we’ve been pursuing for many years...”

1.2.3.1. The First Computer Mouse

Engelbart  demonstrated the first  computer mouse, a three-button pointing device 
with a tracking spot, or “bug,” on the screen. The mouse’s underside had two 
wheels that  could roll or slide on a flat surface. Each wheel controlled a potentiome-
ter. As the user moved the mouse, the respective rolling and sliding motions of the 

Mac OS X Internals (www.osxbook.com)            17

13  “Online” refers to the interactive nature of NLS. In the 1960s, computing was typically batch-
oriented, which made an interactive system very appealing.

14 Quoted from a video recording of Engelbart’s demonstration.

http://www.osxbook.com
http://www.osxbook.com


two wheels resulted in voltage changes that were translated to relative coordinate 
changes on the screen.

1.2.3.2. A 5-Chord Key Set

Another input device Engelbart  used in his demonstration was a chord key set—a 
five-finger equivalent of a full-sized keyboard. The key set  could be used to input 
up to 31 different characters (25 minus the one state when no keys are pressed.)  

1.2.3.3. Document Processing

Engelbart  showed that  text could be entered, dragged, copied, pasted, formatted, 
scrolled, and grouped hierarchically in nested levels. Multiple lines of text could be 
collapsed into a single line. The text  so created could be saved in files, with provi-
sion for storing metadata such as the file’s owner and time of creation. The use of a 
mouse made these operations easier. Engelbart  referred to the overall mechanism as 
view control.

The system was useful while editing code as well—blocks of code could be 
expanded and collapsed, and even auto-completion was supported.

Furthermore, documents could contain embedded statements for markup, 
which allowed formatting of documents for specific purposes such as printing.

1.2.3.4. Hypertext and Image Maps

Using hypertext, or text with hyperlinks, Engelbart could jump from one location to 
another. Hyperlinks could be used to facilitate access to search results, or could be 
explicitly used as visible or invisible “live” links to information.

The system also had picture-drawing capabilities. Even pictures could have 
live hyperlinks, like latter-day image maps in web pages.

18
 Chapter 1    A Technical History of Apple’s Operating Systems



Origins of Hypertext

Theodor Holm Nelson came up with the term “hypertext,”  whereas the concept 

itself is ascribed to Vannevar Bush, who described it in the context of the memex ma-

chine,  as we saw  earlier in this chapter. Nelson is  noted for his Xanadu project, which 

was to be a worldwide electronic publishing system. He coined the term “hyper-text”  in 

1965 to refer to a flexible, generalized, non-linear presentation of related information.

1.2.3.5. Searching

NLS provided powerful search facilities: keywords could be weighted, and search 
results were ordered accordingly. Results could also be presented as hyperlinks.  

1.2.3.6. Windows

The computer screen could be split  into a frozen display and a scanning window. 
While you were reading a manual, for example, and you needed to look up a term, 
you could split the screen and view the term’s definition in the dynamically chang-
ing scanning window—similar to latter-day frames in web pages.

1.2.3.7. Collaboration

The system also kept  track of who you were and what you were doing. People could 
work collaboratively on files, annotate each other’s text, and leave notes for each 
other—akin to modern-day document versioning systems.  It was also possible to 
leave messages for one or more specific people.  A special language, essentially a 
programmable filter, would allow a test to be associated with pieces of text. There-
after, readers could only view what they were allowed to, as determined by the re-
sult of the context-sensitive test.

Mac OS X Internals (www.osxbook.com)            19

http://www.osxbook.com
http://www.osxbook.com


1.2.3.8. Live, Interactive Collaboration

The SRI team demonstrated live audio-video conferencing. The communicating 
parties could even have collaborative screen sharing, with each party having inde-
pendent  capabilities. For example, two people could look at  the same display, but 
one of them would have read-only privileges, whereas the other would be able to 
modify the display.  

1.2.3.9. The Result

Engelbart  stated that NLS was a vehicle to allow humans to operate (compose, 
study, and modify) within the domain of complex information structures, where 
content represents concepts. NLS was meant  to be a tool to navigate complex struc-
tures: something linear text could not do well.

Perhaps no discussion of individual components of NLS can convey how 
awe-inspiring the overall system that resulted from the integration of these 
parts was. NLS is best understood and appreciated by watching a record-
ing15 of the NLS demonstration.

Engelbart  was also involved in the creation of the ARPANET,16 the precursor 
to the Internet. His team planned to create a special ARPANET service that would 
provide relevant network information. For example, the service would answer ques-
tions such as the following.

Who is providing what services?
What protocol do I use to get there?
Who is “down” (in the networking sense) today and who is “up”?

20
 Chapter 1    A Technical History of Apple’s Operating Systems

15  Recordings of the NLS demonstration are available online at  a Stanford University web site 
(http://sloan.stanford.edu/mousesite/1968Demo.html).

16 The ARPANET began life in the late 1960s as a network consisting of only four computers, or net-
work nodes. It was started by the U.S. Department of Defense Advanced Research Projects Agency 
(DARPA). SRI hosted one of the network nodes.



The inherent philosophy of the endeavors of Engelbart and his team was boot-
strapping, which they defined as the recursive process of building tools that  let  you 
build better tools. A successful example of the bootstrapping philosophy is the 
UNIX operating system.

Even with such impressive innovations, NLS ran into misfortune. Several NLS 
team members went to the then nascent  Xerox PARC, where they hoped to create a 
distributed (across the network)—rather than time-sharing—version of NLS. Worse 
still, SRI dropped the program, leaving no funding for the project. Engelbart went to 
a phone networking company called Tymshare, where he sat in a cubicle in an office 
building in Cupertino, very near to the birthplace of the Macintosh.

1.2.4. Smalltalk

The work done at Xerox PARC would greatly influence the face—and surely the 
interface—of computing. The 1970s saw the development  and maturation at 
PARC’s Computer Science Laboratory (CSL) of technologies such as high-quality 
graphical user interfaces, windowing systems, laser printing, and networking. 
Smalltalk emerged as both a programming language and a programming environ-
ment at PARC.

While a graduate student at the University of Utah in the late 1960s, Alan Kay 
had collaborated with Ed Cheadle on designing a personal computer, the FLEX ma-
chine, for those who were not  computer professionals. The FLEX machine had a 
pointing and drawing tablet, a calligraphic display, and a multiwindowed graphical 
user interface. Its operating system was object-oriented. The user interacted with the 
computer—what Kay called a “personal, reactive, minicomputer”—using text and 
pictures. The machine’s primary language was also called FLEX. It  was a simple, 
interactive, programming language designed to run on a hardware interpreter. Kay’s 
work had inspirations from many existing works of research, such as GRAIL, 

Mac OS X Internals (www.osxbook.com)            21

http://www.osxbook.com
http://www.osxbook.com


LINC,17  LOGO, NLS, Simula, and Sketchpad. Kay described the design and im-
plementation of the FLEX machine in his 1969 Ph. D. Thesis titled The Reactive 
Engine. Kay’s doctoral work at Utah led to the development of Smalltalk, the first 
version of which was deployed at  Xerox PARC in 1972; Kay was one of the found-
ing members at PARC.

Besides Kay, Daniel H. H. Ingalls, Adele Goldberg, and others at  PARC were 
involved in Smalltalk’s development. Smalltalk was both a truly object-oriented 
programming language and an operating environment with an integrated user inter-
face. Daniel H. H. Ingalls wrote the first Smalltalk evaluator in October 1972 as a 
thousand-line BASIC program. The first  “program” to run on this evaluator was the 
summation 3 + 4. Shortly afterwards, the Smalltalk-72 system appeared. It  was im-
plemented in Nova assembly language. Several versions followed, with perhaps the 
best known being Smalltalk-80.

Simula
Simula, which was one of the inspirations behind Smalltalk, was the first 

language to use object concepts. It originated at the Norwegian Computing 
Center, Oslo, in the mid 1960s, as a form of Algol 60 extended with classes 
and coroutines. It  was intended to be suitable for discrete-event  simulation, 
hence the name.

Later on, Smalltalk would be one of the inspirations behind the Objective-C 
programming language, which would be the language of choice on the NEXTSTEP 
platform. Apple would inherit  NeXT’s technologies, and Objective-C would be a 
key language for Apple as well. Many similarities can be readily seen between 
Smalltalk and Objective-C. Every Smalltalk variable refers to an object. Every 

22
 Chapter 1    A Technical History of Apple’s Operating Systems

17  The LINC (Laboratory INstrument Computer) was a small  stored-program computer built by 
Wesley Clark and Charles Molnar at MIT’s Lincoln Laboratory  in 1962. Digital Equipment Corpora-
tion subsequently manufactured the LINC. It is widely regarded as the first personal computer.



Smalltalk object  is an instance of a class whose ancestor is a single base class 
named Object. Smalltalk uses a message-based model of computation. An operation 
involves sending a message to an object, which is the only way to interact  with an 
object. The sender requests the receiver to perform an action named by a selector. A 
receiving object  responds to a message by looking up in its class for a method with 
the same selector. If the method is not found, the object  looks up in its superclass, 
and so on. The set of messages an object responds to constitutes the object’s proto-
col. Figure 1–6 shows an example of Smalltalk code (note the similarities to 
modern-day Objective-C).

”The Towers of Hanoi”
moveDisk: fromTower to: toTower
    Transcript cr.
    Transcript show: (fromTower: printString, ‘’, toTower printString).

doHanoi: n from: fromTower using: usingTower to: toTower
    (n > 0) ifTrue: [
    self doHanoi: (n - 1) from: fromTower using: toTower to: usingTower.
    self moveDisk: fromTower to: toTower.
    Self doHanoi: (n - 1) from: usingTower using: fromTower to: toTower]

(Object new) doHanoi: 3 from: 1 using: 2 to: 3.

FIGURE 1–6  The Towers of Hanoi implemented in Smalltalk

Perhaps the most consequential contribution of Smalltalk to personal comput-
ing was the Smalltalk environment’s highly interactive user interface. As was the 
case with its predecessor, the FLEX machine, an important early goal of Smalltalk 
research had been to make computing systems more accessible to those who are not 
professional computer scientists. The hardware of a computer running Smalltalk 
consisted of a high-resolution bitmapped display screen, a mouse, and a keyboard. 
The user interface incorporated concepts such as the following.

•  Overlapping and resizable windows that were essential to increasing the 
virtual real estate of the display screen, providing an illusion of multiple, 

Mac OS X Internals (www.osxbook.com)            23

http://www.osxbook.com
http://www.osxbook.com


overlapping pieces of paper on an electronic desktop, with each “paper” 
containing an independently running activity

• Iconic and textual menus
• Scroll bars
• The use of the mouse as a single, uniform method of selecting, cutting, 

and pasting various types of objects
• The use of the mouse to perform operations, or commands, on objects

Smalltalk, along with its integrated environment, facilitated development of 
useful and interesting tools such as a WYSIWYG editor, a music capture and edit-
ing system, and an animation system. In turn, the availability of such tools was con-
ducive to writing programs, editing text, drawing, real-time animation, and music 
synthesis. Smalltalk was meant to be a powerful language that  experienced pro-
grammers could use, yet  one that  could still be easily grasped by children. Figure 1–
7 shows a rendition of the Smalltalk-80 user interface.

Squeak

A modern, portable, open source implementation of the Smalltalk environment is 

available as Squeak, which was created by  Kay,18 Ingalls, Kaehler, and others in 1995, 

while these people were employed at Apple. Squeak is available for Mac OS X.

Kay did not achieve all his goals with the FLEX machine. In the late 1960s, he 
came up with the idea of a powerful, easy to use, lap-sized personal computer that 
he called the Dynabook. It  was so called because Kay envisioned the personal com-
puter to be a dynamic conglomeration of all other media: animation, audio, graph-
ics, text, and so on. Key described the Dynabook as a personal computer for “chil-
dren of all ages.”

Kay’s work and ideas inspired an effort  to create a personal computer at PARC 
in 1972: one that would be known as the Alto.

24
 Chapter 1    A Technical History of Apple’s Operating Systems

18 Kay would later become an Apple fellow.



r
e
s
t
o
r
e
 
d
i
s
p
l
a
y

e
x
i
t
 
p
r
o
j
e
c
t

s
y
s
t
e
m
 
w
o
r
k
s
p
a
c
e

s
a
v
e

q
u
i
t
e

p
r
o
j
e
c
t

f
i
l
e
 
l
i
s
t

b
r
o
w
s
e
r

w
o
r
k
s
p
a
c
e

s
y
s
t
e
m
 
t
r
a
n
s
c
r
i
p
t

S
y
s
t
e
m
 
T
r
a
n
s
c
r
i
p
t

P
r
o
j
e
c
t

T
h
i
s
 
i
s
 
a
 
s
a
m
p
l
e
 
p
r
o
j
e
c
t
 
i
n

S
m
a
l
l
t
a
l
k
.

S
y
s
t
e
m
 
W
o
r
k
s
p
a
c
e

W
o
r
k
s
p
a
c
e

W
o
r
k
s
p
a
c
e

(
F
i
l
e
S
t
r
e
a
m
 
o
l
d
F
i
l
e
N
a
m
e
d
:
 
’
c
h
a
n
g
e
s
.
s
t
’
)
 
f
i
l
e
I
n
.

(
F
i
l
e
S
t
r
e
a
m
 
f
i
l
e
N
a
m
e
d
:
 
’
c
h
a
n
g
e
s
.
s
t
’
)
 
f
i
l
e
O
u
t
C
h
a
n
g
e
s
.

(
F
i
l
e
S
t
r
e
a
m
 
f
i
l
e
N
a
m
e
d
:
 
’
f
i
l
e
N
a
m
e
.
s
t
’
)
 
e
d
i
t
.
 

(
F
i
l
e
S
t
r
e
a
m
 
f
i
l
e
N
a
m
e
d
:
 
’
c
h
a
n
g
e
s
.
s
t
’
)
 
f
i
l
e
O
u
t
C
h
a
n
g
e
s
.

S
m
a
l
l
t
a
l
k
 
n
o
C
h
a
n
g
e
s
.

C
h
a
n
g
e
s

C
h
a
n
g
e
s

F
i
l
e
s

F
i
l
e
s

S
y
s
t
e
m
 
B
r
o
w
s
e
r

i
n
s
t
a
n
c
e

I
n
t
e
r
f
a
c
e
-
B
r
o
w
s
e

I
n
t
e
r
f
a
c
e
-
I
n
s
p
e
c

I
n
t
e
r
f
a
c
e
-
D
e
b
u
g
g

I
n
t
e
r
f
a
c
e
-
F
i
l
e
 
M

I
n
t
e
r
f
a
c
e
-
T
r
a
n
s
c

C
R
F
i
l
l
I
n
T
h
e
B
l
a
n
k
C

F
i
l
l
I
n
T
h
e
B
l
a
n
k
C
o
n

F
i
l
l
I
n
T
h
e
B
l
a
n
k
V
i
e

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

i
n
s
t
a
n
c
e
 
c
r
e
a
t
i
o
n
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

e
x
a
m
p
l
e
 
1

e
x
a
m
p
l
e
 
3

e
x
a
m
p
l
e
 
2

e
x
a
m
p
l
e
 
2

I
n
t
e
r
f
a
c
e
-
P
r
o
m
p
t

I
n
t
e
r
f
a
c
e
-
P
r
o
m
p
t
F
i
l
l
I
n
T
h
e
B
l
a
n
k

F
i
l
l
I
n
T
h
e
B
l
a
n
k

e
x
a
m
p
l
e
s

e
x
a
m
p
l
e
s

e
x
a
m
p
l
e
 
2

e
x
a
m
p
l
e
 
2

c
l
a
s
s

c
l
a
s
s

W
o
r
k
s
p
a
c
e

“
E
x
a
m
p
l
e
 
w
a
i
t
s
 
f
o
r
 
y
o
u
 
t
o
 
c
l
i
c
k
 
r
e
d
 
b
u
t
t
o
n
 
s
o
m
e
w
h
e
r
e
 
o
n
 
t
h
e

s
c
r
e
e
n
.
 
T
h
e
 
v
i
e
w
 
w
i
l
l
 
s
h
o
w
 
w
h
e
r
e
 
y
o
u
 
p
o
i
n
t
.
 
T
e
r
m
i
n
a
t
e
 
b
y
 
c
h
o
o
s
i
n
g

m
e
n
u
 
c
o
m
m
a
n
d
 
a
c
c
e
p
t
 
o
r
 
t
y
p
i
n
g
 
c
a
r
r
i
a
g
e
 
r
e
t
u
r
n
.
”

 
 
 
 
F
i
l
l
I
n
T
h
e
B
l
a
n
k

 
 
 
 
 
 
 
 
 
 
r
e
q
u
e
s
t
:
 
’
T
y
p
e
 
a
 
n
a
m
e
 
f
o
r
 
r
e
c
a
l
l
i
n
g
 
a
 
s
o
u
r
c
e
 
F
o
r
m
.
’

 
 
 
 
 
 
 
 
 
 
d
i
s
p
l
a
y
A
t
:
 
S
e
n
s
o
r
 
w
a
i
t
B
u
t
t
o
n

S
m
a
l
l
t
a
l
k
 
a
t
:
 
#
B
i
c
P
e
n
 
p
u
t
:
 
P
e
n
 
n
e
w

FIGURE 1–7  The Smalltalk-80 integrated user interface

Mac OS X Internals (www.osxbook.com)            25

http://www.osxbook.com
http://www.osxbook.com


Besides the Smalltalk group  at PARC, the Pilot/Mesa and the Interlisp 
groups shared credit in developing or refining the concepts of bit-mapped 
graphics, windows, menus, and the mouse.

1.2.5. Xerox Alto

The “personal” in PARC’s personal computing effort referred to a non-shared sys-
tem containing sufficient processing power, storage, and I/O capability to support 
the computing needs of a single user. The result was the Alto, which was originally 
designed by Charles P. Thacker and Edward M. McCreight. Other contributors to 
the Alto included Alan Kay, Butler Lampson, and various members of PARC’s 
Computer Sciences Laboratory and Systems Sciences Laboratory. Bob Metcalfe and 
David Boggs designed the Ethernet, an important technology used in the Alto.

The first Alto was functional in April 1973. It was named Bilbo. The very first 
bitmap picture it displayed was that of the Muppets’ Cookie Monster. Small-
talk was soon bootstrapped on this machine. Alan Kay referred to the Alto 
as the “Interim Dynabook.”

The Alto’s key hardware characteristics were the following.

• It  consisted of a 16-bit  medium-scale-integrated (MSI19) micro-
programmed processor. The processor was not single-chip. It  emulated a 
standard instruction set  that  was derived from the Data General Nova 
computer, thus aiding in portability. The corresponding emulation mi-
crocode—the normal emulator—resided in ROM. The instruction set 
could be extended through a small amount of microinstruction RAM. 

• It  had 64KB of error correcting code (ECC) 16-bit  word semiconductor 
memory with a cycle time of 850 ns. The memory was expandable to 
256KB.

• It  had a bitmapped 606×808 point graphical display with a viewing area 
of 8.5”×11”. The display was oriented with the long tube dimension ver-

26
 Chapter 1    A Technical History of Apple’s Operating Systems

19 MSI refers to the number of electronic components on a chip. MSI has evolved to “very large” and 
“ultra large” scale integrated systems (VLSI and ULSI, respectively).



tical. It was implemented using a standard 875-line raster-scanned televi-
sion monitor with a refresh rate of 60 fields per second (or 30 frames per 
second). The on-screen contents were refreshed from a bitmap in main 
memory, as bits were serially extracted from words fetched from mem-
ory, resulting in a video signal. There was a 16×16 hardware cursor 
whose bitmap was contained in 16 memory words at  a specific address. 
The cursor was merged, or composited, with the video to present  the fi-
nal image. Displaying on the entire screen at full resolution (the screen-
fill operation) required about 60% of the processor cycles.

• The Alto’s input  devices included a 61-key or 64-key unencoded key-
board, a five-finger key set, and a three-button mouse. The key set  was 
programmatically visible as five bits of memory. The mouse contained a 
ball, as opposed to the wheels in the SRI mouse. Rather than numbering 
the mouse buttons, the Alto convention was to name them red, yellow, 
and blue, even though they were visually not of these colors.

• The Alto was housed in a small cabinet that  contained the processor, one 
or more disks, and their power supplies. Other, larger I/O devices could 
be contained in their own cabinets that could be located away from the 
Alto, which was meant  for desktop use. It  had interfaces for local con-
nection to printers and plotters, and a 2.94 Mbps Ethernet  interface via 
which it  could be connected to other Altos and laser printers. Note that 
the Alto’s processor controlled the disk, the display, and the Ethernet.

The Alto could be booted from either a local disk, or the network. In the case 
of a disk boot, the user could specify a disk address from where to fetch the 256-
word disk bootloader, with the default  location being disk address 0. The first  key-
board word was read to determine the boot type to perform. Pressing the <BS> key 
implied a network boot; otherwise, the microcode interpreted any reported key-
presses as a disk address. The bootloader loaded a portion of Alto main memory 
from a boot file, eventually jumping to a known fixed location. The newly loaded 
program could then initialize still more of the Alto’s state. In the case of a network 
boot, a special boot  packet containing a 256-word Ethernet  bootloader would have 
to arrive at the Alto for booting to commence. This packet—the BreathOfLife pack-
et—was a raw Ethernet  packet  that was sent by a boot server periodically on each 
directly connected Ethernet. The boot microcode enabled the Ethernet receiver to 

Mac OS X Internals (www.osxbook.com)            27

http://www.osxbook.com
http://www.osxbook.com


accept packets directed to a special host  377B. The received packets were copied 
into memory beginning at location 1. When a packet  of type 602B was received 
without  error, the Alto began executing instructions at  location 3. The loader would 
establish further communication to continue booting. 

Figure 1–8 shows a rendition of the Alto’s interface.

Start

Ready:
Select file names with the mouse

Red-Copy, Yel-Copy/Rename, Blue-Delete

Click ‘Start’ to execute file name commands

Quit

Clear

Type

Pages: 832
Files listed: 72
Files selected: 0
Copy/Rename: 0

Delete: 0
Copy: 0

Pages: 0
Files listed: 0
Files selected: 0
Copy/Rename: 0

Delete: 0
Copy: 0

DP0: <SysDir.> *.* No Disk: <SysDir.> *>*

Log Log

--

~~ BEGINNING ~~

BattleShip.er.

BattleShip.RUN.

BlackJack.RUN.

Calculator.RUN.

Chess.log.

Chess.RUN.

Com.Cm.

CRTTEST.RUN.

DMT.boot.

empress.run.

Executive.run.

Fly.run.

galaxian.boot.

Garbage.$.

Mesa.Typescript

NEPTUNE.RUN.

Rem.cm.

User.cm.

Sys.boot.

SysDir.

Sysfont.al.

Swatee.

FTP.run.

FTP.log.

Bravo.run.

Bravo.error.

Bravo.messages.

FIGURE 1–8  The Xerox Alto system

28
 Chapter 1    A Technical History of Apple’s Operating Systems



The Alto was later reengineered as the Alto II. By 1979, over 1500 Altos were 
in use, within and outside of Xerox.

As the number of Altos increased, many of the system aspects were standard-
ized. Several standard facilities were made ROM-resident, including I/O device in-
terfaces such as display, disk, Ethernet, keyboard, and mouse.

1.2.5.1. Alto OS

The Alto’s operating system, which was stored in the file Sys.boot, was imple-
mented in BCPL. Its functionality included the following.

• Drivers for disk, keyboard, and display
• Management of memory, the clock, interrupts, and other events
• The file system
• The BCPL environment

BCPL was developed as a general-purpose recursive programming lan-
guage, with emphasis on systems programming. It has similarities to AL-
GOL. It was used on a variety of computer systems such as CTSS (at Pro-
ject MAC), PDP-11, GE635 (GECOS), and Nova.

The Alto ran its instruction set emulator in a task called Emulator, which ran 
with the lowest  priority. It  also was the 0th task. This task was always requesting 
wake-up, but  could be interrupted by a wake-up request  from any other task. In this 
sense, it ran in the background. Other standard tasks included tasks for the follow-
ing subsystems.

• Disk (Disk Sector Task, Disk Word Task)
• Display (Display Word Task, Cursor Task, Display Horizontal Task, Dis-

play Vertical Task)
• Memory (Memory Refresh Task, Parity Task)
• Networking (Ethernet Task)

Mac OS X Internals (www.osxbook.com)            29

http://www.osxbook.com
http://www.osxbook.com


A technique called Junta  allowed BCPL programs to eliminate layers of the 
Alto operating system that  were not required by a particular subsystem.20  Another 
technique called Counter-Junta could bring back the layers removed through Junta. 
Consequently, exceptionally large programs could run on the Alto with a clean re-
turn path to the operating system. To facilitate Junta, the operating system was di-
vided into a series of levels. Each level had a known approximate size. Examples of 
levels include levBcpl (BCPL runtime routines), levDisplay (display driver), 
and levMain (the main operating system, including code for Junta itself). Figure 1–
9 shows a pseudocode example of using Junta.

// All levels below levName will be de-activated, that is,
// levName will be the last level retained. Thereafter,
// ProcedureName() will be called; it should not return.
//
Junta(levName, ProcedureName)

...

// fCode could be fcOK or fcAbort
// This will also perform the CounterJunta()
//
OsFinish(fCode)

FIGURE 1–9  Using Junta

The Alto provided powerful and flexible graphics capabilities. For example, a 
set of BIT BLT21 routines was available as a BCPL driver. The BIT  BLT  algorithm 
was also implemented by a complex Alto instruction called BITBLT. Figure 1–10 
shows an assembly-language excerpt  from the source code of these routines (circa 
November 1975).

30
 Chapter 1    A Technical History of Apple’s Operating Systems

20 The Alto’s processor did not support virtual memory.

21 “BIT BLT” is  pronounced as bit-blit. The “BLT” stands for Block Transfer. The term is commonly 
used to  refer to an  algorithm for moving and  modifying  rectangular bitmaps  from one area of memory 
to  another on a bit-mapped device. Typically one of the areas resides in main memory and the other 
resides in display memory.



...
CLIPC:
        MOV 3,1       ; SUBR FOR WINDOW CLIPPING
                      ; SAVE RETURN – BBSTABLE COMES IN AC2
        STA 1,TEMP1,2
        LDA 0,CHAR,2
        LDA 1,SPACE
        SNE 0,1
        JMP SPCIT
        ISZ TRLCHR,2  ; INDICATE NON_SPACE CHAR – HELP DEAL
                      ; WITH MULTIPLE SPACES IN JUSTIFICATION
        NOP           ; SOMETIMES USED AS NIL FLAG – ARGHH!!
...

FIGURE 1–10  Assembly-language excerpt from the BIT BLT source for the Alto

1.2.5.2. Alto Executive

The program that  a user interacted with just  after the Alto booted was the Alto Ex-
ecutive (Executive.Run)—a command interpreter akin to the UNIX shell. It  ran 
atop the Alto OS, and could theoretically be replaced by another program. It had 
built-in facilities for executing programs and command files, listing on-disk files, 
querying file sizes, and so on. Examples of Executive subroutines that could be in-
voked from the command line included the following.22

• BootFrom.~ FileName [...Sys.Boot]

• Chat.~

• Copy.~ DestFileName SourceFileName ...

• Delete.~ FileName ...

• Diagnose.~

• FileStat.~ FileName ...

• Ftp.~

• Login.~

• NetExec.~

Mac OS X Internals (www.osxbook.com)            31

22 The “~” character, which was used for identifying Executive commands, was illegal in a filename.

http://www.osxbook.com
http://www.osxbook.com


• Quit.~

• Rename.~ OldFileName NewFileName

• Scavenger.~

• SetTime.~

• Type.~ FileName ...

The Executive supported powerful command-line editing and filename expan-
sion. The user could refer to a set  of files by specifying patterns containing special 
characters such as * and #, which the Executive expanded. The Executive displayed 
a digital clock and other useful status information, such as the versions of the oper-
ating system and the Executive itself, the owner’s name, the disk’s name; the Ether-
net address of the Alto, and the number of free pages on the disk. When a user 
called another program from the Executive, the display was erased and replaced by 
that of the called program. The operating system invoked the Executive whenever a 
program finished running, or specifically, whenever the BCPL operator finish (or 
equivalent) was executed. Figure 1–11 shows an example of the Executive’s 
prompt.

-- XEROX Alto Executive/11 ------------ May 18, 1981 – 786 Pages ----- OS Version 
18/16 --- Alto 0#377# --- --- -----------------------------------------
>// eventBooted
>|

FIGURE 1–11  The Alto Executive’s prompt

The Alto’s Find subsystem allowed fast pattern-based file searches. Special-
purpose files such as address or telephone lists, program source files, and library 
catalogs could be effectively searched through this subsystem.

1.2.5.3. NetExec

There also was a networked version of the Executive—the NetExec—that  loaded 
programs from a boot server available via the Ethernet rather than from the local 

32
 Chapter 1    A Technical History of Apple’s Operating Systems



disk. One could query available facilities by typing <?>. Examples of utilities typi-
cally available through the NetExec included the following.

• Scavenger was a program that  rebuilt the file structure, but  not the con-
tent, of an Alto disk. It  was analogous to the UNIX fsck program. It 
checked disk packs while attempting to correct  erroneous header blocks, 
checksum errors, and other problems. It prompted the user for confirma-
tion in most cases. It  could discover all well-formed files and all free 
pages, verify that the serial numbers of all well-formed files were dis-
tinct, and link all irrecoverably bad pages together as part  of the file 
Garbage.$. Scavenger was available from the NetExec as an emer-
gency remedial measure in case the local disk was rendered unbootable.

• Chat was a subsystem that  allowed teletype-like interactive access to a 
remote computer on the network. It  included an extension to support 
text-display control and graphics, similar to the latter-day telnet pro-
gram.

• CopyDisk was a standalone program used to transfer the entire contents 
of a disk, either between computers, or between the multiple disks of a 
single computer.

• FTP was a file transfer program.

1.2.5.4. Programming Facilities

Many programming languages were available on the Alto, including BCPL, LISP, 
Smalltalk, Mesa,23 and Poplar.24

The system’s debugger was called Swat. It  saved machine state in a file named 
Swatee. You could stop a running program and get  back to the Executive by hold-

ing down the left <SHIFT> key and hitting the <SWAT> key.

Mac OS X Internals (www.osxbook.com)            33

23 Mesa was a Pascal-like strongly-typed system programming language.

24 Poplar was a simple, interactive, text-oriented programming language.

http://www.osxbook.com
http://www.osxbook.com


1.2.5.5. Applications

The Alto began with several productivity applications and went on to have many 
more. Examples of sophisticated Alto applications include the following.

• Bravo was a feature-rich, multiwindowed, text-processing application.
• Draw was an interactive illustrator program for creating pictures com-

posed of lines, curves, and text captions. It  divided the screen into multi-
ple areas: brush menu, command menu, font menu, picture area, caption 
area, and a message area for displaying information, error, or prompting 
messages.

• Laurel25 was a display-oriented mail messaging system that provided fa-
cilities to display, forward, classify, file, and print  mail messages. It 
stored messages on the local Alto disk.

• Markup was a document illustration application.
• Neptune was a utility program for managing files and directories.
• Officetalk was an experimental forms-processing system that  inspired the 

Xerox STAR system.

Alto used file extensions to conventionally indicate file content types. A file 
extension was a filename’s trailing portion following a period. It could be 
null. Examples of such extensions include “.log” (program action history), 
“.mail” (Laurel mail file), “.run”  (BCPL program executable), “.st”  (Smalltalk 
source file), and “.syms” (BCPL symbol table file). Alto filenames could be 
at most 39 characters in length.

1.2.5.6. Networking

The development  of inter-network communication facilities at  PARC led to a packet 
format called PARC Universal Packet, or Pup. Besides the name of the abstract de-
sign of the packet format, Pup also represented the corresponding inter-network 
architecture, which included a hierarchy of protocols. The standard Pup format is 
shown in Figure 1–12. Pup influenced the creation of the TCP/IP protocol suite.

34
 Chapter 1    A Technical History of Apple’s Operating Systems

25 A subsequent mail program for an Alto-successor machine was called Hardy.



Pup Length

Transport Control Pup Type

Pup Identifier

Destination Network Destination Host

Destination Socket

Source Network Source Host

Source Socket

Packet Contents

Pup Checksum

Possible Garbage Byte

1 byte 1 byte

Pup Header

(20 bytes) Destination Port

Source Port

Contents

(0 - 532 bytes)

FIGURE 1–12  The standard Pup format

The Alto made heavy use of networking. As we saw earlier, it also included 
capabilities for file transfer and remote interactive access. A protocol called Copy-
Disk, which was similar to FTP, allowed creation of a disk’s bit-for-bit  copy over 
the network. In all such protocols, the server listened  for connection requests on a 
well-known socket. A client initiated a connection to the server using commands 
sent over an established connection to operate the server.

Mac OS X Internals (www.osxbook.com)            35

http://www.osxbook.com
http://www.osxbook.com


1.2.5.7. Worms

An interesting investigation involving networked Alto computers was with worm 
programs. In 1975, science fiction writer John Brunner had written about such pro-
grams in his book The Shockwave Rider. PARC researchers John F. Shoch and Jon 
A. Hupp experimented with worm programs in the early 1980s. The experimental 
environment  consisted of over a hundred Ethernet-connected Altos. A worm was 
simply a multimachine computation, with each machine holding a segment of the 
worm. Segments on various machines could communicate with each other. If a 
segment  was lost, say, because its machine went down, the remaining segments 
would search for an idle Alto on which to load a new copy—self-repairing software. 
It  is important  to note that  the idea behind the worm experiments was not  that of 
mischief. The researchers intended to create useful programs that would utilize oth-
erwise idle machines—essentially a form of distributed computing.26  Nevertheless, 
the aberrant  potential of worms was clearly identified, although worms were still 
not perceived as a real security risk. Comparatively, viruses and self-replicating 
Trojan horse programs were considered bigger threats to security. Examples of ap-
plications that used such worms include the following.

• The Existential worm was a null worm that only contained logic for its 
own survival.

• The Billboard worm could distribute graphics images to multiple ma-
chines.

• The Alarm Clock worm was a distributed, fault-tolerant, computer-based 
alarm clock that could call a user on the telephone at a designated time.

• The Multimachine Animation worm was part of a distributed real-time 
animation mechanism involving multiple compute nodes and a single 
master node.

36
 Chapter 1    A Technical History of Apple’s Operating Systems

26 The Alto worms were conceptually  similar, in some aspects, to the controller and agent programs in 
a modern-day grid-computing environment such as Apple’s Xgrid.



• The Ethernet Diagnostic worm conducted network tests to locate errone-
ous Ethernet interfaces. It reported the findings to a control host.

Other useful things that  the worms were meant to do included reclaiming file 
space, shutting down idle workstations, and delivering mail.

Trek

A popular application for the Alto was the game Trek,  which used a number of 

Alto computers on a single Ethernet to facilitate a distributed multiplayer game. The 

game’s objective was to destroy  the enemy  and his base without being destroyed, and 

to become the “Master of the Universe.” Each Alto user participating in the game could 

control one space ship.  Trek’s display  consisted of seven distinct areas: long range 

and galaxy scan; short range scan; acceleration and direction controls;  energy  and 

velocity  indicators; damage information; fire control and supplies indicators; and the 

communication area.

Xerox used the Alto’s technology to create a system designed for office pro-
fessionals: the STAR System.

1.2.6. Xerox STAR System

Xerox introduced the 801027 STAR Information System at a Chicago trade show in 
April 1981. The STAR’s hardware28  was based on the Alto, with better components 
such as more memory, bigger disks, a higher resolution display, and faster Ethernet. 
An important difference from the Alto was that  the STAR user interface was explic-
itly designed before actually building the hardware or software. Moreover, rather 

Mac OS X Internals (www.osxbook.com)            37

27 The Xerox STAR 8010 was also nicknamed the Dandelion.

28 Even though the overall system was marketed as “STAR,” the name STAR should only apply to the 
software. The computer itself was an 8000 series workstation.

http://www.osxbook.com
http://www.osxbook.com


than using an existing computer, the hardware was specially designed for the soft-
ware. Figure 1–13 shows a mockup of the STAR user interface.

Directory

Amit S.

Amit

IN

Out

OUT

Letter

Form
Memo

Form

Book

Draft

Book

Resear

Chapter

Drafts

Audience

Feedback

Hercules

Keyboard

Display

Mouse

Adjust

Select

Folder

Document

Out-Basket

In-Basket

Printer

Text

Scrollbar

Frame

Graphic

TitlePaginate Button

Close Button

Help Button

Chart

Directory

FIGURE 1–13  The Xerox STAR system

The STAR user interface provided the user with an electronic metaphor for the 
physical office. As Figure 1–13 shows, there were electronic analogs of common 
office objects: paper, folders, file cabinets, mailboxes, calculators, printers, and so 
on. It would be an understatement to say that the STAR interface greatly influenced 
many systems that  came after it. Noteworthy aspects of the STAR user interface 
included the following.

• The user’s first view of the working environment was the Desktop, 
which displayed icons (small pictures) of familiar objects such as docu-
ments, folders, file drawers, in-baskets, and out-baskets.

38
 Chapter 1    A Technical History of Apple’s Operating Systems



• The user could click on an icon and push the <OPEN> key to open  the 
icon, which resulted in a window displaying the icon’s contents. Icons 
could represent  either Data (Document, Folder, or Record File) or Func-
tion. The user could copy, delete, file, mail, move, open, close, and print 
data icons. Function icons operated on data icons. Many of the function 
icons were analogous to modern-day application icons. Examples of 
function icons include File Drawer, In- and Out-Baskets, Printer, Floppy 
Disk Drive, User, User Group, Calculator, Terminal Emulator, and Net-
work Resource Directory.

• Windows had title bars displaying the corresponding icon names and a 
context-sensitive command menu. Context-sensitive help was accessible 
via the ? button. Horizontal and vertical scroll bars provided page-up, 
page-down, and jump-to features.  However, STAR windows could only 
be tiled29  and were explicitly designed not to overlap; overlapping behav-
ior was considered a nuisance (for the end user) in the Alto by STAR’s 
designers.

• An abstraction called Property Sheets was analogous to today’s control 
or property panels. A related abstraction called Option Sheets imple-
mented a visual interface for providing options (arguments) to com-
mands. For example, the “Find” option sheet  was a powerful tool for 
searching text in a part  or whole of a document or selection. Even textual 
properties such as case, face, font, position, and size could be used for 
searching. It also allowed optionally user-confirmed replacement of the 
found text and its properties.

The STAR system was rather expensive, with a base configuration initially 
costing $16,500.

1.3. THE GRAPHICAL AGE AT APPLE

Apple was instrumental in making personal computing affordable for the masses 
with the Apple ][ . However, even after the Apple ][’s success, computers were diffi-
cult to learn for most  people—a fact that was perceived by Apple and many others 
as a large impediment to computer use. The Lisa (Local Integrated Software Archi-

Mac OS X Internals (www.osxbook.com)            39

29 Window overlapping was allowed, and in fact was turned  on by default, in STAR’s successor View-
Point.

http://www.osxbook.com
http://www.osxbook.com


tecture) project began at  Apple in 1979 to create an integrated, stand-alone, single-
user, and easy-to-use microcomputer.

1.3.1. Lisa

Lisa’s goals included the following.

• Be intuitive
• Be consistent
• Provide an integrated environment that  was in line with people’s day-to-

day work
• Provide sufficient performance without being overly complex or exorbi-

tantly priced
• Provide an open architecture to make it  easy for Apple and third parties 

to develop additional hardware and software
• Be reliable
• Be aesthetically appealing and not out of place in a typical work envi-

ronment

As we noted at  the beginning of Section 1.2, Lisa was greatly inspired by the 
work done at  Xerox PARC: especially by the Smalltalk environment, and to a lesser 
extent, by the Xerox STAR System. Apple was made privy to many details of 
PARC’s technologies, thanks to a deal in which Xerox received Apple stock in re-
turn for allowing Apple to visit  Xerox to observe and understand some of Xerox’s 
work. The marketing requirements for the Lisa project, which was already under-
way when Apple visited PARC for the first  time, included heavy incorporation of 
Smalltalk concepts. Apple also adopted the STAR system’s Desktop metaphor, 
along with STAR’s use of icons. Apple would refine and augment these concepts 
and use them to create a pragmatic and efficient user interface for Lisa.

Apple released Lisa at an annual shareholder meeting on January 19, 1983—a 
year before the Macintosh was introduced. Lisa’s price was $9995, making it  five 

40
 Chapter 1    A Technical History of Apple’s Operating Systems



times more expensive than the originally planned price of $2000.30  Apple pro-
claimed that  Lisa would revolutionize the way work was done in office environ-
ments. Apple also emphasized Lisa’s small learning curve by claiming that  a first-
time user could do productive work with Lisa in less than 30 minutes. Apple had 
earlier estimated that existing computers required twenty to thirty hours of training 
and practice before a user could start being productive.

1.3.1.1. Packaging

The first Lisa system consisted of the following discrete parts.

• A patented compact  desktop unit weighing 48 lbs; it  housed the com-
puter itself, a CRT screen, two floppy disk drives, and the power supply

• A one-button mouse
• A keyboard with a numeric keypad
• An Apple ProFile hard disk drive unit

Various peripherals such as mouse, keyboard, hard disk drives, printers, and 
serial devices could be plugged into the main unit. Moreover, it was possible to dis-
assemble the unit without tools.

1.3.1.2. Processor and Memory

Lisa had a 5 MHz Motorola MC68000 processor, which had a 16-bit  external data 
path with a 32-bit internal architecture. The system had a memory management unit 
(MMU), but  no floating-point unit (FPU). Lisa initially included 1MB of RAM, but 
could support up to 2MB. However, the processor was capable of handling a 16MB 
address space, and supported multiple memory addressing modes. A physical ad-
dress could lie in one of following three address spaces:

Mac OS X Internals (www.osxbook.com)            41

30 When introduced, the Lisa project had consumed about 200 man-years and 50 million dollars.

http://www.osxbook.com
http://www.osxbook.com


• The main memory (RAM), where Lisa programs and data were stored
• The I/O address space, which was used for accessing peripheral control-

lers, status registers, and control registers
• The special I/O address space, which was used for accessing the boot 

ROM and internal MMU registers

Lisa’s MMU provided four (numbered 0 through 3) logical address space con-
texts for programs to run, of which context 0 was reserved for use by the operating 
system.

1.3.1.3. Display

Lisa had a 12” CRT display with active dimensions of 8.5”×6”. Apple referred to it 

as a “half-page”31  display, given that  a Letter-sized sheet  of paper measures 
8.5”×11”. The bitmapped display’s maximum resolution was 720×364. It allowed 

for up to 45 lines of 144 characters each. The horizontal and vertical pixel densities 
were not  the same, being 90 and 60 dots per inch, respectively. Therefore, a mathe-
matical square did not  appear as a square on Lisa’s screen. Like the Xerox STAR 
system, Lisa strived to present a physical office metaphor. It  mimicked the appear-
ance of real-life paper by displaying black text on white background. Since a white 
screen flickers more than a black screen, Lisa required a higher refresh rate for its 
display, thus adding to its price.

1.3.1.4. Storage

Each of Lisa’s two built-in floppy disk drives used special high-density double-
sided 5.25” diskettes, with a formatted capacity of 851KB. The 5MB Apple ProFile 
was a self-contained external hard disk drive unit that connected to Lisa’s built-in 

42
 Chapter 1    A Technical History of Apple’s Operating Systems

31 You can get a feel for the size of Lisa’s display by folding a Letter-sized sheet of paper into half.



parallel port. It was possible to connect multiple such disk unit, for a maximum of 
seven units, using optional parallel interface cards.

1.3.1.5. Expansion

Lisa had a built-in parallel port, two built-in serial ports, and three expansion slots 
on the motherboard that could be accessed by removing the main unit’s back panel. 
It  also had a composite video output  allowing it to be connected to compatible ex-
ternal monitors.

1.3.1.6. Lisa OS

Lisa was introduced with a proprietary operating system (the Lisa Office System, or 
Lisa OS) and a suite of office applications. Several aspects of Lisa’s software would 
become part  of Apple’s systems to come, and in fact, many such concepts exist in 
Mac OS X in some form.

Lisa was not tied to a particular operating system. Unlike its successor, the 
Macintosh, Lisa did not have portions of the operating system in ROM. This al-
lowed it to support multiple operating systems. It presented the user with an interac-
tive screen called the Environments Window if multiple bootable environments (for 
example, Lisa OS and Lisa Workshop) were found on attached storage devices.

At the time of Lisa’s release, Apple announced that Microsoft had been 
working on a version of Xenix for Lisa. Eventually, SCO Xenix was available 
for Lisa.

Most  of Lisa’s system and application software was written in an extended 
version of Pascal (Lisa Pascal). During Lisa’s development, Apple even considered 
using a p-Chip that would run p-Code natively.

Lisa OS was designed to support  Lisa’s graphical user interface. Figure 1–14 
shows a logical view of Lisa’s software architecture.

Mac OS X Internals (www.osxbook.com)            43

http://www.osxbook.com
http://www.osxbook.com


Lisa OS was designed to support  Lisa’s graphical user interface. Figure 1–14 
shows a logical view of Lisa’s software architecture.

Exception

Handling

File

Management

Memory

Management

Process

Management

Hardware

Core OS

Hard Disk Drives Floppy Diskettes

Peripheral Devices
RAM CPUMMU

Pascal Library (PasLib)

Display

Floating-Point

Support

Heap

Manager

Database

Routines

Font Manager

QuickDraw

Parameter

Memory (PRAM)

Window

Manager

Printing

Support

Hardware Interface

API

Alert Manager
Cut & Paste

Print Manager

Text Editor

Library

Table Editor

Input Device

Interrupts

Filer

Applications
LisaCalc

LisaDraw

LisaGraph

LisaList

LisaProject

LisaTerminal

LisaWrite

Calculator

Clock

Desktop Manager

FIGURE 1–14  Lisa’s software architecture

Process Management

Lisa OS implemented non-preemptive multitasking. Although the scheduling algo-
rithm was simple in the absence of preemption, it supported process priorities.

A process could only be created by another process, except the initial process, 
which was created by the operating system as the “shell” process upon booting. The 
shell process ran the Desktop Manager application by default. The system’s process 
management API included calls for creating, terminating, suspending, and resuming 

44
 Chapter 1    A Technical History of Apple’s Operating Systems



processes. Terminating a process also resulted in the termination of all its descen-
dants.

Examples of Lisa process-management system calls included the following.

• make_process

• kill_process

• activate_process

• suspend_process

• info_process

• setpriority_process

• yield_process

• sched_class

System-level exceptions resulted in the termination of a process—a side effect 
of the execution of default  exception handlers. Processes could install custom ex-
ception handlers, which were invoked with detailed exception context. Examples of 
Lisa exception-management system calls included the following.

• enable_excep

• disable_excep

• declare_excep_hdl

• signal_excep

Interprocess Communication

By default, a process was not allowed to access the logical address space of another 
process. Interprocess communication was possible through multiple mechanisms 
such as events, shared files, and shared memory. Events were structured messages 
consisting of a system-attached header and a sender-provided data block, transmit-
ted between processes over named channels. A process could listen on a channel, 
waiting for messages to arrive. Alternatively, a process could register an exception 
handler and arrange for an exception to be generated upon message arrival.

Mac OS X Internals (www.osxbook.com)            45

http://www.osxbook.com
http://www.osxbook.com


Examples of Lisa event-channel management system calls included  the fol-
lowing.

• make_event_chn

• kill_event_chn

• open_event_chn

• close_event_chn

• wait_event_chn

• send_event_chn

Memory Management

Lisa OS supported segmented virtual memory wherein read-only code segments 
could be swapped in as needed. A program had to be accordingly compiled and 
linked for this to work. For example, the programmer could divide a program into 
independent  parts, with the size of each part being limited to 128KB. When an in-
struction attempted to access code that  was not in physical memory, a bus error oc-
curred. The consequent  system trap was handled by the memory manager, which 
brought the required segment into physical memory and restarted the instruction.

Examples of Lisa memory-management system calls included the following.

• make_dataseg

• kill_dataseg

• open_dataseg

• close_dataseg

• mem_info

• info_address

File System 

Lisa OS used a hierarchical file system that incorporated both UNIX-like aspects 
and some hitherto new concepts. The mount system call performed a similar func-
tion as on UNIX: it was used to introduce a new object  into the file system’s name 

46
 Chapter 1    A Technical History of Apple’s Operating Systems



space. Besides files and folders, the file system name space also contained disk vol-
umes, printer devices, and serial devices—again, like UNIX. The system performed 
I/O to these objects uniformly, regardless of the underlying device, although one 
could perform device-specific “control” operations on files representing devices.

The file system stored redundant  information for each file to reduce the likeli-
hood of data loss in a crash. The volume format had a central disk catalog that  con-
tained critical information about  each file. This information was replicated in a spe-
cial block belonging to the file. Moreover, each used block on disk was tagged, con-
taining information indicating that  block’s logical position in the contents of the file 
that it  belonged to. Thus, critical redundant  information was distributed throughout 
the volume, making it possible to recover or reconstruct  information after a system 
crash in many cases. The standard file system repair program was called the 
scavenger.32

The Lisa file system supported per-file attributes. System-generated metadata, 
such as a file’s size and creation date, were stored as attributes. There were APIs 
using which applications could define, create, and access their own attributes, which 
were stored in a per-file label—an early form of the resource fork in the latter-day 
Macintosh Hierarchical File System (HFS). It  was also possible for a program to 
preallocate contiguous file system space.

Examples of Lisa file system calls included the following.

• open

• make_pipe

• read_data

• flush

• lookup

• allocate

• truncate

Mac OS X Internals (www.osxbook.com)            47

32 Recall that the Alto’s file system repair program was also called scavenger.

http://www.osxbook.com
http://www.osxbook.com


• read_label

• get_working_dir

• device_control

Other sets of system calls included those for timers and for manipulating sys-
tem configuration. The system call Pascal interface was implemented in the Lisa 
Operating System library.
The Graphical User Interface

Perhaps the best-known aspect of Lisa is the graphical user interface (GUI) of the 
Lisa OS. The system’s shell—the Desktop Manager—used icons of documents and 
folders to act as an electronic analog of a real desk with a filing system. Some 
noteworthy aspects of the user interface included the following.

• Multiple, overlapping windows
• Hierarchical pull-down menus
• A menu bar33 that  was always visible at  the top of the screen and changed 

automatically as the active application changed, revealing options that 
were relevant to that application

• Dialog boxes for prompts, error messages, and other interactions with the 
user

• Horizontal and vertical scroll bars
• Use of the mouse for pointing, clicking, double-clicking, dragging, and 

selecting – optionally in conjunction with key-presses
• A cursor whose shape changed depending on its current function
• Special or modifier keys on the keyboard (including the “Apple key”), 

with support  for direct  invocation of frequently used menu commands 
from the keyboard

• Editing commands such as copy, cut, paste, and undo
• A “scrap folder” called the Clipboard—for use by copy-paste and cut-

paste operations

48
 Chapter 1    A Technical History of Apple’s Operating Systems

33 Lisa’s menu bar did not have the Apple menu found in latter systems. However, menu commands 
did use an  Apple symbol. Apple later started using the cloverleaf symbol (the cmd key) for menu 
commands.



The Clipboard was implemented as a globally shared data segment  accessible 
by all processes. Data was stored in the Clipboard in multiple formats, including a 
generic format that  could be used by a process that did not understand the 
application-specific version of that data.

There were graphic representations (icons) of objects typically found in an 
office environment, such as files, folders, blank stationery, clipboard, and trash can 
(or wastebasket). The icons were active in that they could be clicked. They were 
used to represent both objects and tasks. Double-clicking on a folder icon would 
display the folder’s contents in a window, whereas double-clicking on a document 
icon would launch the appropriate application to open the document (each docu-
ment could have an associated application with it). The resultant  windows came up 
animated. An object could be renamed by pointing at its icon and simply typing the 
desired name. New folders and documents were created by “tearing off” items from 
pads of empty folders and documents, respectively. Items were deleted by dragging 
them to a trash can icon. Figure 1–15  shows a screenshot of Lisa’s user interface.

Advanced Features

In addition to bringing graphical user interfaces to mainstream computing, Lisa 

was among the first to provide software controls  for hitherto mechanical ones. It had 

instant-on capability: pressing the power switch while Lisa was operating sent a reset 

signal to the CPU. The handler routine for this signal caused open documents and the 

state of the desktop to be saved to disk,  after which the computer went into a low-

power state. Powering Lisa on would restore the desktop state.

Other software controls allowed ejecting a diskette; and adjusting preferences 

such as screen brightness, key repeat rate, and the tone generator volume.

Lisa also had a hardware serial number that could be used by  its software for 

multiple purposes, including a rudimentary form of digital content protection.

Mac OS X Internals (www.osxbook.com)            49

http://www.osxbook.com
http://www.osxbook.com


FIGURE 1–12
 Lisa’s graphical user interface

Lisa came with a suite of the following GUI-based office applications.

• LisaCalc—spreadsheet and financial modeling tool with support  for up 
to a 255×255 worksheet

• LisaDraw—drawing and illustration application
• LisaGraph—application for making bar, line, pie, and scatter graphs
• LisaList—database for creating and maintaining various types of lists
• LisaProject—visual project-management  and scheduling application 

based on Project Evaluation and Review Technique (PERT)
• LisaTerminal—asynchronous communications application that supported 

emulation of teletype (TTY), VT52, and VT100 terminals
• LisaWrite—WYSIWYG word processor

Lisa applications had consistent user interfaces so that a user was not required 
to learn every application from scratch. It was also possible to transfer data between 
applications.

Lisa’s competition included the IBM PC XT (introduced on March 8, 1983), 

50
 Chapter 1    A Technical History of Apple’s Operating Systems



the DEC family of personal computers (the Rainbow 100, the DECmate II, 
and the PC300 line), the Corvus Concept Network Workstation (which also 
used the M68000 processor), the Fortune 32:16 Hard Disk System, the 
Xerox STAR System, and the Xerox 820-II Personal Computer.

Multiple programming languages were available34 for Lisa, such as Pascal, 
BASIC-Plus, C, and COBOL. Lisa’s software library, many of whose components 
are shown in Figure 1–14, provided a variety of primitives for building complex 
applications. Pascal language units in the software library included the Alert  Man-
ager, the Font Manager, the Print Manager, QuickDraw, and the Window Manager.

QuickDraw was a high-performance bitmap graphics technology that used 
regions, both for clipping and for implementing shapes with efficient use of 
memory. A region was an arbitrary area that could include multiple groups 
of disjoint areas.

1.3.1.7. Lisa WorkShop

Lisa WorkShop was Lisa’s development  environment. Strongly influenced by 
UCSD Pascal, it  was primarily meant for Pascal-based development, although it 
supported other languages such as BASIC-Plus, C, and COBOL-74. It  provided a 
multitude of tools for software development: a Pascal compiler, a 68K assembler, a 
linker, a low-level debugger, a file comparison utility, a mouse-based graphical text-
editor, and so on. It  also provided a command-line shell, along with subsystems for 
accessing files on storage devices (the File Manager) and for accessing low-level 
features of Lisa (the System  Manager). The WorkShop could even copy-protect 
software, after which copies of such protected software would only run on one ma-
chine (the first machine on which the copy was made).

Mac OS X Internals (www.osxbook.com)            51

34 The Pascal, Basic-Plus, and COBOL products could be purchased from Apple at the time of Lisa’s 

introduction at the suggested retail price of $595, $295, and $995, respectively.

http://www.osxbook.com
http://www.osxbook.com


The WorkShop was extensively used for the development  of Macintosh soft-
ware.

1.3.1.8. Lisa’s Fate

Despite Lisa’s technical sophistication and Apple’s advertising,35  Lisa was a com-
mercial failure, partly owing to its high cost. The addition of more memory and a 
disk drive pushed Lisa’s price well above $10,000. The Macintosh, which was un-
der development, was perceived by many as a far more affordable mini-Lisa. In 
1984, Apple released a second version of the computer, Lisa 2, at  half the price of 
the original. The Lisa 2/5 variant came with a 5MB external ProFile disk drive, 
whereas the Lisa 2/10 variant came with an internal 10MB “Widget” drive. A year 
after the Macintosh was introduced, Lisa 2 was re-branded as the Macintosh XL. It 
ran the Macintosh operating system courtesy of the MacWorks XL software, which 
implemented Macintosh ROM emulation.

Lisa was discontinued in 1985. In September 1989, Apple buried about 2700 
Lisa computers in the Logan landfill in Utah. The value of the computers had de-
preciated so much that the tax break received from scrapping the computers resulted 
in more money for Apple than could be obtained by selling them.

Although Lisa failed to become the perfect computer it  was designed to be, it 
introduced several aspects that would become part of Apple’s systems to come. In 
this sense, Lisa was a technological success.

52
 Chapter 1    A Technical History of Apple’s Operating Systems

35 Hollywood actor Kevin Costner appeared as a businessman in a 1983 Lisa advertisement.



1.3.2. The Macintosh

At the turn of the 1980s, there was a project  called Annie inside Apple. Apple em-
ployee Jef Raskin36 was not happy with names such as “Lisa” and “Annie,” which 
represented a sexist approach according to him. He changed the project’s name to 
Macintosh, a deliberate misspelling of “McIntosh,” which is a variety of Apples.

McIntosh was also part of the name of a stereo manufacturer called McIn-
tosh Labs. The name was brought under contention when Apple tried to 
trademark it, but Apple eventually managed to buy the trademark. During 
the legal battle, Apple considered acronyms such as MAC, for Mouse Acti-
vated Computer. There were alleged jokes within Apple that “MAC” actually 
was an acronym for Meaningless Acronym Computer. For a short while, 
there were even efforts to change the project’s name to Bicycle, which al-
luded to a quote from Steve Jobs about personal computers being “bicycles 
for the mind.”

Jef Raskin had written The Book of Macintosh, an Apple-internal document  on 
personal computing that described a cheap, user-friendly computer designed for the 
Person In The Street (PITS). Some of the desirable features of the computer were 
the following.

• The computer “system” must not consist  of myriad external components. 
It  must be all in one, with components such as the display, the keyboard, 
disks, and others all integrated into one package. Moreover, the package 
must be portable, with a handle, and must not weigh more than 20 lbs.

• The computer’s internals should not be visible.
• The PITS should never be required to open the computer, nor even see its 

interior. The only reason to open the computer should be for repair.
• The PITS should not  be required to deal with components in sockets, 

whether inside or outside of the computer. Any additional boards, RAMs, 
ROMs, or other accessories should be allowed only if they exist  as 
standalone appliances that can be trivially connected to the computer.

Mac OS X Internals (www.osxbook.com)            53

36 Jef Raskin was Apple employee number 31.

http://www.osxbook.com
http://www.osxbook.com


• There should be no external cables besides a power cord. In the ideal 
world, there would not even be a power cord!

• If there are multiple models of a computer system, the models should not 
have differences that require documentation in a user’s manual.

• There should not be too many keys on the keyboard.
• There should be as few manuals as possible, and even those should be 

small. The manuals should not use computer jargon.
• The end-user should be able to purchase the computer for no more than 

$500.

Besides documenting his vision for an affordable, appliance-like computer, Jef 
Raskin also put  together a capable initial team in late 1979 to pursue his Macintosh 
project. However, Raskin left  the project—and some time later, the company—be-
fore Macintosh could become substantial. Steve Jobs, who took over, would be the 
driving force behind the Macintosh product.

Steve Jobs unveiled the Macintosh on January 24, 1984, at  the Flint Center in 
De Anza College, Cupertino. The occasion was Apple’s annual shareholders meet-
ing. Jobs opened the meeting by reciting lines from Bob Dylan’s song The Times 
They Are A-Changin’.

Come writers and critics
Who prophesize with your pen
And keep your eyes wide
The chance won’t come again
And don’t speak too soon
For the wheel’s still in spin
And there’s no tellin’ who
That it’s namin’.
For the loser now
Will be later to win
For the times they are a-changin’.

54
 Chapter 1    A Technical History of Apple’s Operating Systems



Besides being a vehicle of Lisa’s technology of windows, icons, pull-down 
menus, mouse commands, and software integration, the Macintosh was a compel-
ling execution of marketing wizardry. Apple hailed it as “the computer for the rest 
of us.” After demonstrating the Macintosh’s capabilities, Jobs said “We’ve done a 
lot of talking about Macintosh recently, but today, for the first time ever, I’d like the 
Macintosh to speak for itself.” A program running on the Macintosh “spoke” an 
introductory message:

 “Hello, I am  Macintosh. It sure is great to get out of that bag. Unaccustomed 
as I am to public speaking, I’d like to share with you a maxim I thought of the first 
time I met with an IBM mainframe: NEVER TRUST A COMPUTER YOU CAN’T 
LIFT! Obviously, I can talk, but right now I’d like to sit back and listen. So, it is 
with considerable pride that I introduce a man who’s been like a father to me… 
STEVE JOBS.”

An early Macintosh sales brochure had the following blurb: “For the first 

time in recorded computer history, hardware engineers actually talked to 

software engineers in moderate tones of voice, and both were united by a 

common goal: to build the most powerful, most transportable, most flexible, 

most versatile computer not-very-much-money could buy. And when the 

engineers were finally finished, they introduced us to a personal computer 

so personable it can practically shake hands. And so easy to use most 

people already know how. They didn’t call it the QZ190, or the Zipchip 

5000. They called it Macintosh.”

Later known as the Mac 128K due to the 128KB of built-in RAM, the Macin-
tosh debuted at a price of $2,495. It had the following key specifications.

• 7.83 MHz Motorola MC68000 processor
• No memory management unit  (MMU), no floating-point unit (FPU), and 

no L1 or L2 caches
• 32-bit internal data bus
• 64KB ROM

Mac OS X Internals (www.osxbook.com)            55

http://www.osxbook.com
http://www.osxbook.com


• 128KB RAM
• 20 bytes of parameter memory (PRAM) on a CMOS custom chip with 

4.5 V user-replaceable backup battery
• Internal single-sided 3.5” floppy disk drive that accepted 400KB hard 

shell floppy disks
• An external drive port with a DB-19 connector that allowed attachment 

of a second drive
• Mouse port (DE-9 connector), and a mechanical tracking mouse with 

optical shaft encoding at 3.54 pulses per mm (90 pulses per inch) of 
travel

• Synchronous serial keyboard bus with an RJ-11 connector, and a 
software-mapped 58-key keyboard

• Two RS-232/RS-422 serial ports (DE-9 connectors) for connecting mo-
dems, printers, and other peripherals

• Four-voice sound generator with 8-bit  digital/analog conversion and 22 
kHz sampling rate

• 512×342-pixel bit-mapped black and white display on a 9-inch diagonal 
CRT screen

• Physical dimensions of 13.6”×9.6”×10.9”, with a weight  of 16 lb 8 oz 
(7.5 kg), and a logic board area of 80 square inches

• No internal fan

The Macintosh ran a single-user, single-tasking operating system, initially 
known as Mac System Software, which resided on a single 400KB floppy disk. 
Many Macintosh programs were either conversions of, or influenced by, Lisa pro-
grams. Examples include MacPaint, MacProject, and MacWrite.

Unlike Lisa, the Macintosh was not designed to run multiple operating sys-
tems. The Macintosh ROM contained both low-level and high-level code. The low-
level code was for hardware initialization, diagnostics, drivers, and so on. The 
higher-level Toolbox was a collection of software routines meant for use by applica-
tions, quite like a shared library. Toolbox functionality included the following.

• Management of dialog boxes, fonts, icons, pull-down menus, scroll bars, 
and windows

• Event handling

56
 Chapter 1    A Technical History of Apple’s Operating Systems



• Text entry and editing
• Arithmetic and logical operations

The Lisa-derived QuickDraw portion of the Toolbox contained highly opti-
mized primitives for drawing shapes and user-interface elements. The use of com-
mon system-provided user-interface routines ensured a consistent  and standard user 
interface. With time, the Toolbox would have an incredible amount  of functionality 
(and associated APIs) packed into it, obstructing Apple’s attempts to create a mod-
ern operating system while maintaining backwards compatibility. Figure 1–16 
shows a screenshot of the first Macintosh operating system.

�

FIGURE 1–16  Macintosh System 1: the first Macintosh operating system

The Finder was the default application that ran as the system came up. It was 
an interface for browsing the file system and launching applications. Owing to the 

Mac OS X Internals (www.osxbook.com)            57

http://www.osxbook.com
http://www.osxbook.com


single-tasking operating system, the user had to quit any running application to 
work in the Finder.

The Macintosh File System (MFS) was a flat file system: all files were stored 
in a single directory. However, the system software presented a hierarchical view 
that showed nested folders. Each disk contained a folder called Empty Folder at  its 
root  level. Renaming this folder created a new folder, with a replacement  Empty 
Folder appearing as a side effect.

There was a menu-bar at  the top, like in the case of Lisa, but with an Apple 
menu. There was also an iconic trash can that  was automatically emptied every time 
the system booted. The Macintosh also heralded Apple’s Human Interface Guide-
lines, which partially evolved from Lisa’s user-interface standards.

An Icon Named Trash

The Macintosh trash can is sometimes criticized for being poorly  designed, as it 

is not only  meant to destroy files,  but also for ejecting disks so that they  can be safely 

put away. Apple’s interface designers once explained the rationale behind this design.  

Since the original Macintosh only  had a single floppy disk drive, and no hard 

disk, it was expected that users would typically  use several diskettes while working on 

the Macintosh. A convenience feature of the system was that it cached—in memo-

ry—the list of files on a diskette. The cache was retained even after the diskette had 

been ejected. A grayed-out Desktop icon for that diskette indicated this fact. Clicking 

on such an icon prompted the user to insert the appropriate diskette in the drive. Drag-

ging a grayed-out icon to the trash freed up the memory used by that diskette’s cache.

Thus, even if a user intended to permanently  eject a diskette, two actions were 

required: the eject command, and dragging an icon to the trash. The redundancy  was 

removed by combining these actions to a single action: dragging an “active”  (non-

grayed-out) icon to the trash caused the diskette to be ejected and its cache to be de-

leted.

58
 Chapter 1    A Technical History of Apple’s Operating Systems



At its introduction, the Macintosh was targeted for two primary markets: 
knowledge-workers and students. Referring to the telephone as the first “desktop 
appliance,” Steve Jobs hoped that  the Macintosh would become the second desktop 
appliance. Bill Gates of Microsoft stated, “To create a new standard takes some-
thing that’s not just a little bit different. It takes something that’s really new, and 
captures people’s imaginations. Macintosh meets that standard.”

In 1984, Apple also introduced AppleTalk, a self-configuring, multilayered 
local area network (LAN) protocol whose features include dynamic addressing, 
router discovery, and name binding.

1.4. MANY SYSTEMS FOR MANY APPLES

After the Macintosh’s release, Apple spent  the next few years improving the Macin-
tosh operating system and creating some other noteworthy systems.

1.4.1. System Software Releases 2 - 6

For a long time, there were multiple, independent  versioning schemes in effect for 
Macintosh system components: a System Software Release, a System Version, a 
Finder Version, a MultiFinder Version, a LaserWriter Version, and so on. Eventually 
there were attempts to unify these versions.  

Notable improvements made during this time included the following.

• Continued speed improvements for the Finder, including a disk cache 
and an additional minifinder to make applications launch faster

• Commands for common tasks such as shutting down, creating new fold-
ers, and ejecting disks

• A hierarchical file system (HFS) that supported true hierarchy, allowing 
folders to be nested without illusory aid

• Support for multiple monitors

Mac OS X Internals (www.osxbook.com)            59

http://www.osxbook.com
http://www.osxbook.com


• Support for larger disk drives
• AppleShare client features

Figure 1–17 shows a screenshot of System 6.

FIGURE 1–17  Macintosh System 6

An important improvement came when Apple incorporated cooperative multi-
tasking through the MultiFinder. Initially included as a separate piece of software 
along with the original Finder, MultiFinder soon became mandatory. It allowed the 
user to have several programs open simultaneously and to assign specific amounts 
of RAM to these programs. Usability improvements included providing a progress 
bar with cancel button for “copy file” and “erase disk” operations. Until this point, 
the Finder did not use color even on color capable systems. This was remedied with 
the introduction of Color QuickDraw.  

60
 Chapter 1    A Technical History of Apple’s Operating Systems



1.4.2. What Color is Your System?

In March 1988, after the Macintosh had been around for four years, some Apple 
engineers and managers had an off-site meeting. As they brainstormed to come up 
with future operating system strategies, they noted down their ideas on three sets of 
index cards that were colored blue, pink, and red.

Blue would be the project for improving the existing Macintosh operating sys-
tem. It would eventually form the core of System 7.

Pink would soon become a revolutionary operating system project at  Apple. 
The operating system was planned to be object-oriented. It  would have full memory 
protection, multitasking with lightweight threads, a large number of protected ad-
dress spaces, and several other modern features. After languishing for many years at 
Apple, Pink would move out to Taligent, a company jointly run by Apple and IBM. 
We will briefly discuss Taligent in Section 1.6.4.

Since the color red is “pinker than pink,” ideas considered too advanced even 
for Pink were made part of the Red project.

As the 1980s were drawing to an end, the system software was at major ver-
sion 6. System 7, a result  of the Blue project, would be Apple’s most  significant 
system yet, both relatively and absolutely. However, that would not be until 1991. 
Apple would come out  with two interesting operating systems before that: GS/OS 
and A/UX.

  

Gestalt

In 1989, Apple introduced a system call named “Gestalt”  in version 6.0.4 of the 

operating system. Gestalt allowed applications to dynamically  query  the capabilities 

that were present in a running system configuration.  It would go on to become a widely 

used system call, and continues to exist in Mac OS X as a Carbon function.

Mac OS X Internals (www.osxbook.com)            61

http://www.osxbook.com
http://www.osxbook.com


“Gestalt”  is originally  a German word that means wholeness,  shape, or form. In 

one of its connotations, it is used to denote a structure or configuration integrated to 

form a functional unit in such a way  that the properties of the whole are not derivable 

by summation of its parts.

1.4.3. GS/OS

As noted earlier, the Apple ][ had a rather long life span. After the release of the 
Macintosh in 1984, the Apple ][ still existed as a product. The Apple ][GS was intro-
duced in 1986, almost  as a bridge between the old and the new. It was the first and 
only 16-bit  Apple ][ , and had impressive multimedia abilities (the “GS” stood for 
graphics and sound). Its notable features included the following.

• A 6502-compatible37  65C816 processor. The firmware-resident monitor 
allowed assembling and disassembling instructions for both processors.

• Support  for 24-bit addressing, which allowed memory expansion up to 8 
MB. The monitor could handle both 16-bit and 24-bit addresses.

• Two very high-resolution graphics modes: 320×200 with a 16-color pal-
ette and 640×200 with a 4-color palette.

• RGB and NTSC video outputs.
• A 32-voice Ensoniq Digital Oscillator chip that  could be driven by firm-

ware to produce up to 15 musical instruments.
• A mouse-driven, color desktop interface with windows and menus. A 

built-in control panel desk accessory allowed the user to set  machine pa-
rameters for display, disk drives, processor speed, serial ports, and so on.

• Two standard serial ports that could be used with AppleTalk.

The Apple ][GS had several other additions or improvements over previous 
Apple ][  machines.  

Apple ProDOS was forked into 8- and 16-bit  versions to accommodate the 
Apple ][GS. After using ProDOS 16 as the computer’s operating system for a short 

62
 Chapter 1    A Technical History of Apple’s Operating Systems

37 The user could select either the 1 MHz processor clock speed of the 6502, or a faster 2.8 MHz.



time, Apple replaced it  with GS/OS: a new 16-bit native-mode system that signifi-
cantly improved performance on many fronts such as boot time, disk access time, 
and program launch time. Figure 1–18 shows a screenshot of GS/OS.

FIGURE 1–18  GS/OS

GS/OS had several modern features. It  had the concept  of file system  transla-
tors (FSTs)—a generic file interface that allowed different  file systems to be read 
from and written to.  The concept was along similar lines as AT&T’s file system 
switch, Sun Microsystems’ vnode/vfs, and DEC’s gnode that  were being introduced 
in the mid-1980s to allow multiple file systems to coexist. GS/OS eventually went 
on to have FSTs for various file systems: Macintosh HFS, ISO/High Sierra, Apple-
Share, and native file systems of Apple DOS 3.3, Apple Pascal, MS-DOS, and Pro-
DOS. Since the AppleShare FST  allowed GS/OS to access an AppleShare file 
server using AppleTalk networking, the GS/OS Finder could browse over the net-
work. GS/OS could even be network booted.

Mac OS X Internals (www.osxbook.com)            63

http://www.osxbook.com
http://www.osxbook.com


The graphical control panel in GS/OS was a facility for controlling various 
system settings. Third-party developers could add their own control panel devices 
(CDEVs), thus extending the set of entities that the control panel could access.  

The last version of GS/OS—4.02—shipped with Apple ][GS System 6.0.1.

1.4.4. A/UX

A/UX was Apple’s own version of POSIX compliant UNIX. It  was released in late 
1988. It  only ran on 68K-based Apple machines38  with both a floating-point unit 
(FPU) and a paged memory-management unit  (PMMU). The earliest  A/UX was 
based on 4.2BSD and AT&T UNIX System V Release 2, but it  would later derive 
from 4.3BSD and various subsequent System V releases. A/UX features included 
the following.

• 4.3BSD extensions such as groups, signals, and job control
• System V IPC (semaphores, messages) and System V-style signals
• Networking (AppleTalk, STREAMS, TCP/IP over Ethernet  as well as 

over a serial connection, sockets, domains, subnets, NFS with Yellow 
Pages, and so on)

• The Berkeley Fast File System (ffs)
• Multiple Unix command interpreters such as the Bourne, Korn, and C 

shells
• A comprehensive set of development tools such as lint, lex, yacc, debug-

gers (adb, sdb, MacsBug), various editors, assembler, linker, C compiler 
(cc), FORTRAN compiler (f77), make, and SCCS

• The X Window System
• AppleTalk printing and file sharing client services via LocalTalk or Eth-

erTalk

64
 Chapter 1    A Technical History of Apple’s Operating Systems

38 For example, A/UX ran on a Macintosh SE/30.



Besides POSIX compatibility, A/UX supported the BSD and System V APIs. 
In particular, A/UX was compliant  with the System V Interface Definition (SVID), 
and passed the System V Verification Suite (SVVS).

Figure 1–19 shows a screenshot of A/UX.

FIGURE 1–19  The A/UX operating system

More interestingly, A/UX combined various features of the Macintosh operat-
ing system with Unix. A/UX 2.x used Macintosh System 6, whereas A/UX 3.x 
combined a Unix environment with System 7. The default  user environment  con-
sisted of the Macintosh Finder, which was essentially a graphical shell hosted by A/
UX. The A/UX file system appeared as a disk drive icon in the Finder. Files could 
be accessed and manipulated through their icons.  It was possible to run Macintosh 

Mac OS X Internals (www.osxbook.com)            65

http://www.osxbook.com
http://www.osxbook.com


applications, Unix command-line or X Window applications, and even MS-DOS 
applications39  side-by-side. The MacX display server allowed X Window System 
client applications to be displayed on the A/UX Desktop.

The OSF/Motif toolkit  for the X Window system was available as a third-party 
addition. A/UX supported hybrid applications that made use of both the Unix sys-
tem call interface and the Macintosh Toolbox. All types of applications could be 
launched from within the Finder.

Whereas Unix processes ran with preemptive multitasking under A/UX, the 
Macintosh Finder (the MultiFinder specifically) still supported only cooperative 
multitasking. When 32-bit  addressing was in effect, the startmac application was 
responsible for creating the Macintosh environment  under A/UX. The startmac24 
variant was used with 24-bit addressing. Many aspects of this environment  were 
customizable, including which application to run as the Finder. Macintosh-style 
menu-driven login, logout, system startup, and shutdown procedures were sup-
ported. A conceptual diagram of the A/UX architecture is shown in Figure 1–20.

Many proponents of A/UX regarded it as the holy grail of Unix systems.  
Given compatible hardware, the A/UX installation procedure was incredibly simple 
for a Unix system, being essentially one-click.

From trivialities such as similar commands (such as appleping) to the more 
elaborate marriage of the Unix and Macintosh environments, vestiges of insights 
gained through A/UX can be seen in Mac OS X. Examples include the following.

• A/UX used /.mac/<host>/Desktop Folder/ and /.mac/<host>/
Trash/ as the Unix pathnames for directories containing items visible 
on the Macintosh Desktop and in the trash can, respectively.

• Unix uses the ‘/’ character to separate path components, whereas Macin-
tosh file systems use ‘:’. Invisible translation was done while accessing 
or moving files from one environment to the other.

• Home directories for user accounts were located in /users/.

66
 Chapter 1    A Technical History of Apple’s Operating Systems

39 Running MS-DOS applications required the SoftPC product.



Hardware

Drivers

Unix

Kernel

A/UX Toolbox

Macintosh Desktop

Macintosh

Application

Unix Command-line

Application

Unix X Window

System Application

Unix X Window

System Motif-based

Application

MSDOS

Application

A/UX

Finder

Multitasking

and Process

Scheduling

Virtual Memory

Management

Device I/O

and Driver

Interfacing

Interprocess

Communication

ROM-resident Macintosh User Interface Routines

Toolbox Calls

Macintosh ROM Calls

Translation

Macintosh OS Calls

A/UX Library Calls

Macintosh OS

(reimplemented)

Redirection

A/UX

Libraries
Memory Manager

Time Manager
Slot Manager

SerialManager

Sound Manager
File Manager

Unix System Calls

C Library

FIGURE 1–20  A/UX architecture

The last version of A/UX—3.1.1—was released in 1995.

Mac OS X Internals (www.osxbook.com)            67

http://www.osxbook.com
http://www.osxbook.com


1.5. SEEKING POWER

As the 1990s began, Apple was making great  efforts to overhaul its operating sys-
tem. Of the three “colorful” projects mentioned earlier, Blue, would emerge as Sys-
tem 7.

1.5.1. System 7

When released in 1991, System 7 represented a gigantic leap forward in comparison 
to earlier Macintosh systems. Some of its key features included a built-in Multi-
Finder, built-in networking (AppleTalk Phase 240), built-in file sharing (Apple-
Share), support  for 32-bit  memory addressing, a virtual memory implementation, 
and a multitude of new technologies41 such as the following.

• AppleScript—a system-level macro language for automating tasks
• ColorSync—a color management system
• PowerTalk—a collaboration and email software
• QuickTime—a cross-platform multimedia software for viewing and ma-

nipulating video, animations, images, and audio
• TrueType—a font technology
• WorldScript—a multilingual text-rendering engine and programming 

interface

The first Macintosh with an MMU was introduced in 1987: the Macintosh II. 
Whereas A/UX required an MMU, it was not until System 7 that a Macintosh 
operating system would use the MMU. However, the virtual memory sup-
port was only preliminary—features such as protected address spaces, 
memory-mapped files, page locking, and shared memory, were not present.

68
 Chapter 1    A Technical History of Apple’s Operating Systems

40 AppleTalk Phase 2 was introduced in 1989. It was based on the original version of AppleTalk, but 
included several improvements and performance enhancements.

41 Some of these technologies were not bundled with the first release of System 7.



FIGURE 1–21  System 7

System 7 also had several usability improvements such as the following.

• Users could view, and switch between, running applications via a menu. 
• The trash can now had the same status as any other folder. It  now had to 

be proactively emptied instead of the system automatically emptying it.
• In addition to cut-and-paste, text-selections could be dragged between 

applications.
• Aliases could be created for access to documents and applications from 

two or more locations.
• Control Panels and Extensions were organized hierarchically on disk.

Certain machines such as the Macintosh II, IIx, IIcx, and the SE/30 could 

Mac OS X Internals (www.osxbook.com)            69

http://www.osxbook.com
http://www.osxbook.com


have 32-bit support and a larger virtual memory capability through a 32-bit 
“system enabler” program (called MODE32) on System 7. The standard 
ROMs of these machines were not 32-bit clean, and therefore were only 
compatible with 24-bit addressing. MODE32 allowed selecting and chang-
ing between 24-bit and 32-bit addressing modes. With 32-bit addressing, it 
was possible to use more than 8 MB of contiguous physical memory. With 
virtual memory, it was possible to use hard disk space as swap  space to 
run programs.

Even with the aforementioned improvements, System 7 only performed coop-
erative multitasking, and lacked memory protection.

Around this time, Apple formed an alliance with IBM and Motorola—a move 
that put  the PowerPC on Apple’s hardware roadmap. The advent of the PowerPC 
required fundamental changes in the design of the Macintosh operating system.  

1.5.2. AIM for POWER

The emphasis on making the semantics of computer architecture close to those of 
higher level programming environments had led to very complex processors. How-
ever, people like Seymour Cray understood the benefits of simplicity in computer 
architecture design even in the early 1960s. Cray’s CDC 6600 supercomputer and 
the CRAY-1 computer were both RISC machines, although the term “RISC” had not 
been coined yet.

1.5.2.1. A RISCy Look Back

RISC stands for Reduced Instruction Set Computer, although it  does not only imply 
fewer instructions. RISC architectures are predominantly load-store and register-
centric, usually employ fixed-format  instructions, have efficient  pipelining, require 
relatively fewer clock cycles per instruction, and so on.  

The line between RISC and CISC has been growing fuzzier over the years, 

70
 Chapter 1    A Technical History of Apple’s Operating Systems



particularly as focus of microprocessor companies has shifted to micro-
architecture. It is common to see companies attempting to optimize su-
perscalar, out-of-order execution. For example, Intel’s Pentium Pro (1995) 
translated complex x86 instructions into RISC-like micro-operations during 
instruction decoding. A superscalar engine executed these micro-operations 
in a speculative, out-of-order fashion, with register renaming. Intel’s P6 ar-
chitecture had various other RISC-like features.

The 801 Minicomputer Project, so called after the name of the building it was 
housed in, started at IBM in 1975. John Cocke, who is regarded as the “father of 
RISC architecture,” and others explored a simplified instruction set  along with 
compiler code-generation strategies for improving performance and reducing cost. 
An early RISC tenet  was an instruction-processing rate of 1 per clock-cycle. The 
801 was able to achieve a clock-cycles-per-instruction (CPI) ratio of 1 for contrived 
code, but  not for general-purpose code. It  had 120 instructions. As instruction pipe-
lining and cache memories evolved and improved, it became increasingly possible 
to meet the goal of having a CPI of 1.

IBM’s first  RISC-based product  was the IBM Personal Computer RT (RISC 
Technology), which was announced in January 1986. It ran an operating system 
called the Advanced Interactive Executive (AIX). Further work led to a new design 
called “AMERICA,” which led to “RIOS,” and eventually the “POWER” architec-
ture. POWER is a contraction for “Performance Optimized With Enhanced RISC.” 
It  combined the original RISC concepts with some traditional (CISC) concepts re-
sulting in a more balanced architecture, representing the second generation of 
IBM’s RISC technology. The associated product family included the RISC System/
6000 (RS/6000), along with the AIX 3 operating system. The first RS/6000 systems 
were announced on February 15, 1990.

The POWER architecture defined 184 instructions, which, although a few too 
many from a RISC purist’s perspective, performed well with the independent execu-
tion units available in the RS/6000, as multiple instructions could be executed in a 

Mac OS X Internals (www.osxbook.com)            71

http://www.osxbook.com
http://www.osxbook.com


single cycle. As the POWER architecture evolved, the earliest version of the archi-
tecture came to be known as POWER1. Even in the POWER1 era, there were mul-
tiple implementations of POWER, such as the low-end RISC Single Chip (RSC), 
the mid-end RS .9, and the high-end RS 1.0. The RSC had a shared data and in-
struction cache. It was a low-cost shrinkage of POWER onto a single chip, whereas 
the others were multiple-chip. The lowest-end RS/6000 model—the 33 MHz Model 
220—was released in January 1992.

In the early 1980s, Berkeley and Stanford Universities were working on the 
RISC and MIPS projects, respectively. By 1990, there were several competing 
RISC architectures in the market: MIPS, HP Precision Architecture (PA-RISC), 
SPARC V8, Motorola 88K, and IBM RS/6000. The Intel i860 was introduced in 
1989 as a general-purpose, 64-bit RISC processor with 3D graphics capabilities. 
The Alpha AXP from Digital Equipment Corporation joined the RISC crowd in 
1992 as another 64-bit RISC processor.

1.5.2.2. Apple Wants RISC

As part  of a project code-named Jaguar, Apple had briefly considered using a Mo-
torola 88K variant  as their future RISC-based hardware platform. They turned to the 
POWER architecture next.  

In 1991 Apple, IBM, and Motorola joined forces to form the “AIM” Alliance 
with the goal of creating a Common Hardware Reference Platform (CHRP). The 
collaboration resulted in the PowerPC Architecture—a derivative of POWER. Pow-
erPC included most of the POWER instructions, while adding some new ones and 
excluding some rarely used instructions. Important  PowerPC improvements in-
cluded the following.

• It  supported both 32-bit and 64-bit computing, with an implementation 
being free to only implement the 32-bit  subset. An implementation sup-
porting both would be able to dynamically switch between them.

72
 Chapter 1    A Technical History of Apple’s Operating Systems



• It had a cleaner and simplified superscalar design.
• It  had a cleaner separation between architecture and implementation. The 

resulting architecture was flexible enough to permit a broad range of im-
plementations.

• It supported symmetric multiprocessor (SMP) systems.

CHRP was also aimed at companies other than Apple so that they could 
sell PowerPC-based systems. Microsoft Windows NT 3.51 and 4.0 ran on 
PowerPC Reference Platform (PReP) compliant systems, until Microsoft 
announced in early 1997 that it would phase out NT development on the 
PowerPC architecture. A version of Solaris (2.5.1) was also released as 
Solaris PowerPC Edition.

The first  PowerPC processor was the 601. It  was jointly developed by the AIM 
companies at  the Somerset Design Center in the Northwest  Hills of Austin, Texas. 
When introduced in September 1993, the 601 ran at  66 MHz. It  implemented the 
32-bit subset  of the PowerPC Architecture, but without  the full PowerPC instruction 
set. It  was regarded as a bridge that  would allow vendors to transition to PowerPC. 
IBM’s RS/6000 Model 250 Workstation was the first PowerPC-based system to 
ship.

From PowerPC to x86

After Apple adopted the PowerPC, it remained the mainstay  of Apple hardware 

for over a decade—until the year 2005, specifically. Steve Jobs announced in his 

Worldwide Developer Conference 2005 keynote that Apple had decided to transition 

from PowerPC to the x86 platform within the next two years. Apple also announced its 

partnership with Intel to facilitate the transition. Mac OS X was demonstrated to be 

already running on x86 hardware during the keynote. 

Apple has used many PowerPC generations over the years. Until Apple intro-
duced the Power Macintosh “G5” in June 2003, all PowerPC processors used by 

Mac OS X Internals (www.osxbook.com)            73

http://www.osxbook.com
http://www.osxbook.com


Apple had been 32-bit  implementations. The first  64-bit G5 chips—namely, the 
PowerPC 970 and 970FX—are very similar to the POWER4 chips since the G5 is 
based on the POWER4 architecture. A key difference is that the G5 contains the 
VMX42 vector-processing unit (VPU). Moreover, a single POWER4 chip has two 
processor cores, whereas the 970 and the 970FX only have one each. Apple added 
the dual-core 970MP processor to its PowerPC offerings in the second half of 2005.

1.5.2.3. Apple Likes RISC: ARM

As Apple was turning to RISC computing in the early 1990s, it  collaborated with 
other partners besides IBM. In the mid 1980s, the Cambridge-based British com-
pany Acorn Computer Group43 had developed the world’s first commercial RISC 
processor. At  that  time, ARM stood for “Acorn RISC Machine.” The first version of 
the ARM architecture (ARMv1) had 26-bit addressing, with no onboard multiplier 
or coprocessor. The first  ARMv1 processor, the ARM1, saw limited use in proto-
types of the Archimedes workstation and as a low-cost secondary component in the 
BBC microcomputer. It  is noteworthy that  ARM eschewed some key features of the 
prevailing Berkeley RISC architecture: delayed branching, register windows, and 
requiring all instructions to execute in a single cycle each.

Even before the AIM alliance was formed, Apple had teamed with Acorn to 
fund a new company called Advanced RISC Machines (ARM) Limited. The com-
pany’s goal was to create a new RISC microprocessor standard. VLSI Technology 
was an investor and technology partner in this endeavor. It  was also ARM’s first  
licensee. ARM Limited’s first processor was an embeddable RISC core called the 
ARM6. Based on version 3 of the ARM processor architecture (ARMv3), the 
ARM6 had full 32-bit code and data addressing. An ARM6 processor—a 20 MHz 

74
 Chapter 1    A Technical History of Apple’s Operating Systems

42 VMX is the same as AltiVec, which is a Motorola trademark.

43 One of Acorn’s best-known computers  was the BBC micro, which, at its launch in 1981, was based 
on a 2 MHz 6502 processor.



610—was used in Apple’s MessagePad hand-held that ran the Newton operating 
system44.  

1.5.3. Mac OS for PowerPC

System 7.1.2 was the first Apple operating system to run on the PowerPC, even 
though much of the code was not  PowerPC-native. Given Apple’s roadmap, porting 
all components of the operating system to a new architecture would have taken pro-
hibitively long. Moreover, it  was extremely important for Apple to provide a way so 
that 68K-based applications would continue to run even on the PowerPC platform. 
The system architecture devised to address these issues included a hardware ab-
straction layer (HAL) and a 68K emulator.  

A nanokernel45  was used to “drive” the PowerPC. Executing in supervisor 
mode, the nanokernel acted as the HAL. It exported low-level interfaces for inter-
rupt  management, exception handling, memory management, and so on. Only the 
system software and possibly debuggers could use the nanokernel API.  

The 68K emulator was initialized by the nanokernel during boot  time. It  only 
emulated a 68LC04046  user-mode instruction set, without emulating the paged 
MMU (PMMU) or the FPU. Exception stack frames were created as per a slightly 
older processor (the 68020) for better compatibility. There were other caveats and 
limitations as compared to a real 68LC040. In particular, since A/UX used the 
PMMU directly, it did not run on this emulator.

Since two instruction-set architectures were simultaneously in effect, a system 
level component  called the Mixed Mode Manager was used to handle context 

Mac OS X Internals (www.osxbook.com)            75

44 Keywords  often associated with ARM processors include “embedded,” “high-performance,” “low-
cost,” “power-efficient,” and “RISC.” Such features are especially appealing for low-power devices.

45 A term sometimes used to refer to a kernel that is even smaller than a microkernel.

46 The 68LC040 was a low-cost version of the 68040—it lacked a floating-point unit.

http://www.osxbook.com
http://www.osxbook.com


switches between the two types of code. Code pieces belonging to the two archi-
tectures could also call each other. The manager was transparent to 68K code, but 
PowerPC code was aware of it.  

The initial PowerPC ports of Mac OS had little native PowerPC code—most 
existing applications, device drivers, system extensions, large parts of the Toolbox, 
and the operating system itself were not  PowerPC-native. In fact, even though Ap-
ple’s PowerPC introduction occurred in 1994, most of the operating system was still 
68K-based in 1996. It  would not be until 1998 that  Mac OS was mostly PowerPC-
native. Figure 1–22 is a conceptual depiction of part of the transition to PowerPC.

It was hoped that the nanokernel would form the basis for future Apple sys-
tems, perhaps as a robust microkernel.

1.5.4. MAE

A Mixed Mode Manager was also used in Apple’s Macintosh Application Environ-
ment (MAE) product. MAE was an X Window application available for Sun and 
Hewlett-Packard workstations. It  ran on SunOS (SPARC) and HP-UX (HP9000/
700), providing an emulated Macintosh environment. It  also contained a 68K emu-
lator—for example, MAE 3 had a 68LC040 emulator. The Mixed Mode Manager 
was used to optimize execution by translating 68K code to native instructions if 
possible.

76
 Chapter 1    A Technical History of Apple’s Operating Systems



Drivers Drivers

DriversDrivers Core OS Core OS

Core OS Core OS

68k 68k

PowerPC PowerPC

Applications

ApplicationsSingle

Application

68k Emulator 68k Emulator

Nanokernel Nanokernel

Macintosh Toolbox Macintosh Toolbox

Carbon

“Single”

Finder

Multi

Finder

Multi

Finder

(1) (2)

(3) (4)

ApplicationsMulti

Finder

FIGURE 1–22  Transitioning to the PowerPC

MAE provided an emulated System 7. Depending on the MAE version, it sup-
ported features such as aliases, AppleEvents, AppleTalk, NFS, QuickDraw, Quick-
Time, and TrueType. MAE ran as a user-space process called mae, along with an 
auxiliary daemon process called macd, which was the Macintosh environment dae-
mon. Multiple copies of MAE could run simultaneously on a workstation within the 
constraints of available resources.

Mac OS X Internals (www.osxbook.com)            77

http://www.osxbook.com
http://www.osxbook.com


MAE contained an implementation of the Macintosh Process Manager, which 
was responsible for loading and unloading all Macintosh applications used from 
within MAE. When the mae process started, it  reserved a memory region for use by 
the Process Manager and the virtual Macintosh system. The default size of this re-
gion was 16MB, although the user could configure it  based on resources available 
on the host, the number of MAE instances that  could be launched, and the amount 
of “physical memory” desired in the virtual environment. Even though MAE itself 
ran on a UNIX system, applications within MAE ran with cooperative multitask-
ing—as they would on a real Macintosh. Moreover, there was no memory protec-
tion. MAE had several behavioral similarities to A/UX. It made UNIX file systems 
visible as Mac OS volumes. UNIX symbolic links were represented as aliases. A 
MAE user could launch UNIX commands from the Finder.

Since MAE had neither a real Macintosh-compatible graphics card nor a real 
monitor, its graphics component  had to provide an illusion to the Macintosh soft-
ware running within it. It implemented a virtual Macintosh monitor as a frame-
buffer, which was updated as a result of applications making QuickDraw calls, with 
QuickDraw, in turn, notifying MAE of the parts of the bitmap that had changed. In 
early versions of MAE, the entire framebuffer was passed to the X Window system. 
In version 3.0 of MAE, updates to the framebuffer were translated to Xlib calls that 
were sent to the X server.

MAE included the following primary components.

• The main executable (apple/bin/mae), the auxiliary daemon, other 
native UNIX code, and related data

• The MAE engine (apple/lib/engine), which included code for the 
Mac OS ROM (Toolbox), 680x0 “glue” code, and related data

• Mac OS system code, application code, and data
• The MAE X Window graphics buffer

78
 Chapter 1    A Technical History of Apple’s Operating Systems



The glue code mapped Mac OS operations to UNIX system calls. The MAE 
engine and associated data were mapped into memory using the mmap() system 
call. If the host  platform supported copy-on-write, substantial portions of MAE 
could be shared between its multiple instances.

MAE made heavy use of processor caches, performing best  on machines with 
large caches. It cached both instructions and data. Examples of instruction cache use 
by MAE included the following.

• Native code to support the 680x0 glue and dynamic compilation 
• Native code to emulate instructions
• Dynamically compiled code to emulate instructions

Examples of data cache use by MAE included the following.

• Native data to support the 680x0 glue and dynamic compilation
• Dispatch table47 for mapping 680x0 opcodes to native emulation code
• 680x0 instructions emulated by MAE
• 680x0 data for Mac OS system code and the Toolbox
• Graphics framebuffer

MAE was discontinued on May 14, 1998.

MAS

Apple had announced another emulation-based Mac-on-Unix  solution called 

Macintosh Application Services (MAS). Unlike MAE, MAS supported both 680x0-based 

and PowerPC-based Macintosh software on PowerPC-based Unix  systems such as 

AIX.

Mac OS X Internals (www.osxbook.com)            79

47  The dispatch table was indexed by the 16-bit  680x0 opcode. It was perhaps the most  aggressive 
cache user among all of MAE’s components.

http://www.osxbook.com
http://www.osxbook.com


Meanwhile, Apple continued to develop System 7, adding features and im-
proving existing features. The Internet  was burgeoning, rapidly making networking 
capabilities an essential component  of even end-user operating systems. System 7.5 
and later included OpenTransport, a networking subsystem based on Mentat  Port-
able STREAMS.

Other noteworthy features added to Systems 7.5.x included QuickDraw 3D, a 
Java runtime, and the OpenDoc component software architecture that  could be lik-
ened to Microsoft’s Object Linking and Embedding (OLE). Visual enhancements 
such as a startup screen with a Mac OS logo and a progress bar were also added 
around this time.

In the 1990s, Apple also made some forays into server computing. Let us 
briefly look at some of these endeavors.

1.5.5. Apple Workgroup Server

Apple Workgroup Server was a line of servers intended for use as file, print, and 
database servers for workgroups. These systems were initially 68K-based, but 
PowerPC-based systems were also available eventually. The following are some 
examples of systems from this line.

• WGS 60 (50/25 MHz Motorola 68040) used System 7.1, ran AppleShare 
4.0, and was targeted at small businesses and classroom lab environ-
ments.

• WGS 80 (66 MHz Motorola 68040) used System 7.1, ran AppleShare 
4.0, and was targeted at  medium-sized business environments where it 
could act as a communications server – for example, as an Internet router 
and a SNA*ps, X.25, or X.400 gateway.

• WGS 95 (66 MHz Motorola 68040) used A/UX 3.1 as the server operat-
ing system, ran AppleShare Pro, and was targeted at large or data-
intensive workgroups—for example, as a high-performance AppleShare 
file and print server. It was also intended to run relational database 
(RDBMS) products such as Oracle7 Cooperative Server.

80
 Chapter 1    A Technical History of Apple’s Operating Systems



• WGS 9650 (233 MHz PowerPC 604e) ran Mac OS 7.6.1.

The 60, 80, and 95 were introduced in 1993, whereas the 9650 was introduced 
in 1997.

1.5.6. NetWare for PowerPC

Apple partnered with Novell in the mid 1990s to port NetWare to the PowerPC. The 
jointly funded port was designed to be much easier to configure than NetWare for 
x86. It was intended to run on an Apple-designed server called Shiner.  

Although the port  was more or less completed, the project  was killed before it 
ever shipped. Shiner would lead to the Apple Network Server, which ran AIX.

1.5.7. AIX for PowerPC

A few years later—in 1996—Apple had a short-lived product  called Apple Network 
Server. The PowerPC-based server had hardware features such as the following.

• Processor resident on a daughterboard for easy upgradeability
• An easy-to-replace logic board
• Up to 1MB of L2 cache
• Up to 512MB of parity RAM
• A 4MB ROM and an 8KB NVRAM
• Multiple hot-swappable and RAID-capable drive bays, for a total ap-

proximate disk capacity of 340GB
• Hot-swappable power supplies and fans
• Provisions for adding several SCSI devices and PCI cards
• An external LCD display for system diagnostics and status messages
• Several physical security features

Mac OS X Internals (www.osxbook.com)            81

http://www.osxbook.com
http://www.osxbook.com


The Network Server came with the AIX for Apple Network Servers operating 
system, which was based on IBM’s AIX. The server did not support  Mac OS. With 
AIX, Apple had an advanced operating system with features such as the following.

• Memory protection
• Preemptive multitasking
• Multithreading
• Support  for various networking protocols including AppleTalk and 

AppleTalk services
• RAID
• Journal File System (JFS)
• Logical Volume Manager (LVM), which supported multiple file systems 

up to 256GB in size, and could handle files up to 2GB in size

The user could work with the command-line interface, or could have one of 
the AIXwindows or Common Desktop Environment (CDE) graphical interfaces.  The 
operating system included several applications to ease administrative tasks. A 
menu-driven System Management Interface Tool (SMIT) was used for configura-
tion, installation, maintenance, and troubleshooting. A graphical Visual System 
Management (VSM) interface allowed system tasks to be performed by clicking on 
icons.

Apple revised the Network Server line shortly after its introduction, but dis-
continued it in 1997. The next  serious server offering from Apple would not be until 
2002, when the Xserve would be released.

82
 Chapter 1    A Technical History of Apple’s Operating Systems



1.6. QUEST FOR THE48 OPERATING SYSTEM

FIGURE 1–20  Microsoft Windows NT 3.1

Microsoft’s Windows 3.x had been extremely successful since its release in 1990. 
Microsoft had been working on a new operating system code-named “Chicago.” 
Initially slated for 1993 release, “Chicago” kept slipping. It  would be eventually be 
released as Windows 95. Microsoft  did, however, release Windows NT in 1993. NT 
was an advanced operating system meant for high-end client-server applications. It 
had various important features such as symmetric multiprocessing support, a pre-

Mac OS X Internals (www.osxbook.com)            83

48 Whereas the word “the” is  used here to designate prominence and desirability, it is an interesting 
coincidence that “THE” was the name of a multiprogramming system described by Edsger W. Dijkstra 
in a 1968 paper.

http://www.osxbook.com
http://www.osxbook.com


emptive scheduler, integrated networking, subsystems for OS/2 and POSIX, virtual 
machines for DOS and 16-bit  Windows, a new file system called NTFS, and sup-
port for the Win32 API.  

Apple needed an answer to Microsoft’s onslaught, particularly in the face of 
the upcoming Windows 95, which was to be an end-user operating system.

The Pink and the Red projects would turn out  to be rather unsuccessful. Apple 
would continue to make attempts to solve the “OS problem” one way or another.

1.6.1. Star Trek

Star Trek was a bold project  that  Apple ran jointly with Novell to port Mac OS to 
run on the x86 platform. A team consisting of engineers from both Apple and No-
vell actually succeeded in creating a very reasonable prototype in an incredibly 
short  amount of time. The project  was cancelled, however, for various reasons: Ap-
ple had already committed to the PowerPC; many within and outside of Apple 
thought  that doing so would disrupt  Apple’s existing business model; and vendor 
feedback was not encouraging.

Many years later, Darwin—the core of Apple’s far more successful Mac OS 
X—would run on both the PowerPC and the x86. Whereas the Star Trek prototype 
showed the “Happy Mac” logo while booting up, Darwin/x86 prints the message 
“Welcome to Macintosh” during boot.

Star Trek was finally vindicated with Apple’s mid-2005 announcement of tran-
sitioning Mac OS X to the x86 platform. The first  x86-based Macintosh comput-
ers—the iMac and the MacBook Pro (the successor to the PowerBook)—were un-
veiled at the San Francisco Macworld Conference & Expo in January 2006.

84
 Chapter 1    A Technical History of Apple’s Operating Systems



1.6.2. Raptor

Raptor was in many respects the Red project. It  was supposed to provide Apple 
with a next-generation microkernel that would run on any architecture. As the Star 
Trek project  was being cancelled, it was considered for absorption by Raptor, which 
itself would die due to budgetary limitations and employee attrition, among other 
reasons.  

1.6.3. NuKernel

NuKernel was a kernel project at  Apple that was meant to result  in a modern operat-
ing system kernel on more than one occasion.

1.6.4. TalOS

Apple and IBM formed a company called Taligent in early 1992 to continue work 
on the Pink project. Pink originally aimed to be an object-oriented operating system, 
but later morphed into an object-oriented environment  called CommonPoint that  ran 
on many modern operating systems such as AIX, HP-UX, OS/2, Windows 95, and 
Windows NT. It  was also meant to run on Apple’s NuKernel. Taligent Object Serv-
ices (TalOS) was the name given to a set  of lower-level technologies that were to be 
built around Mach 3.0.  TalOS was meant to be an extensible and portable operating 
system, with a small footprint and good performance.  

TalOS was object-oriented from the kernel up, with even device drivers and 
network protocols implemented in an object-oriented fashion. Taligent’s object-
oriented libraries were known as frameworks. There were frameworks for user in-
terfaces, text, documents, graphics, multimedia, fonts, printing, and low-level serv-
ices such as drivers.  These, along with the TalOS development  tools, explicitly 

Mac OS X Internals (www.osxbook.com)            85

http://www.osxbook.com
http://www.osxbook.com


strived to shift  the burden of programming from application developers to applica-
tion system engineers.

Note that  even though there existed other commercial systems such as NEXT-
STEP that  had object-oriented application frameworks, Taligent  aimed to build its 
entire programming model around objects. In NEXTSTEP, the developers who cre-
ated frameworks had to map object behavior to the underlying libraries, Unix sys-
tem calls, Display PostScript, and so on—all of which had procedural APIs. In con-
trast, Taligent’s CommonPoint applications were not  meant  to use the host  OS APIs 
at all.  

In 1995, Taligent became a wholly owned subsidiary of IBM. The Pink project 
did not give Apple the next-generation operating system that  Apple had been seek-
ing.

1.6.5. Copland

Apple made an announcement  in early 1994 that it  would channel more than a dec-
ade of experience into the next major release of the Macintosh operating system, 
Mac OS 8. The project was codenamed “Copland.” It was expected that Copland 
would be Apple’s real response to Microsoft Windows. With Copland, Apple hoped 
to achieve several goals, many of which had been long elusive, such as the follow-
ing:

• Adopt RISC as a key foundation technology by making the system fully 
PowerPC-native.

• Integrate, improve, and leverage existing Apple technologies such as 
ColorSync, OpenDoc, PowerShare, PowerTalk, QuickDraw 3D, and 
QuickDraw GX.

• Retain and improve the ease-of-use of the Mac OS interface, while mak-
ing it multiuser and fully customizable. In particular, Copland’s imple-
mentation of themes allowed customization of most  user-interface ele-
ments on a per-user basis.

86
 Chapter 1    A Technical History of Apple’s Operating Systems



• Extend interoperability with DOS and Windows.
• Make Mac OS systems the best network clients.
• Incorporate active assistance that works across applications and net-

works—that is, make it very easy to automate a wide variety of tasks.
• Release Copland as a system that  may be openly licensed to foster de-

velopment of Mac OS compatible clones by third parties.

To achieve these goals, Copland was supposed to have a comprehensive set of 
system-level features, for example:

• A hardware abstraction layer (HAL) that would also help vendors in cre-
ating compatible systems

• A microkernel (the NuKernel) at its core
• Symmetric multiprocessing with preemptive multitasking
• Improved virtual memory with memory protection
• A flexible and powerful system extension mechanism
• Critical subsystems such as I/O, networking, and file systems running as 

services on top of the kernel
• Built-in low-level networking facilities such as X/Open Transport Inter-

face (OTI), System V STREAMS, and Data Link Provider Interface 
(DLPI)

• File searching based on both metadata and content
• The ability to perform “live upgrades” on a system without  affecting the 

performance of other running programs

Work on Copland gained momentum during the early 1990s, and by the mid 
1990s, Copland was heavily counted on to do wonders for Apple. Apple dubbed it 
as “The Mac OS Foundation for the Next Generation of Personal Computers.” 
However, the project kept slipping. A few prototypical Driver Development Kit 
(DDK) releases went  out, but a 1996 release, as had been planned and hoped, did 
not seem feasible. Due to numerous pressures, full memory protection had not  been 
included after all. Apple’s CEO Gil Amelio described the state of Copland as “... 
just a collection of separate pieces, each being worked on by a different team... that 
were expected to magically come together somehow...”

Mac OS X Internals (www.osxbook.com)            87

http://www.osxbook.com
http://www.osxbook.com


A conceptual view of Copland is shown in Figure 1–24.

Task 2

Copland Microkernel

Preemptive

Multitasking

Protected

Memory

System Extension

Mechanism

File System I/O Subystem Networking Subsystem

Hardware Abstraction

APIs/Frameworks/Libraries/Services

Open

Transport

Networking

Architecture

OpenDoc

Component

Software

Architecture

QuickDraw GX QuickDraw 3D PowerTalk PowerShare

Task 1

Task n

Preemptive Multitasking

with Memory Protection

Macintosh Toolbox Environment

Finder

Macintosh

System 7.x

Application
Copland-aware

Application

FIGURE 1–24  Copland architecture

Apple eventually decided to cancel Copland in May 1996. Amelio announced 
that Copland’s best  pieces would be shipped with future releases of their existing 
system, beginning with the upcoming System 7.6, whose name was formally 
changed to Mac OS 7.6.  

88
 Chapter 1    A Technical History of Apple’s Operating Systems



1.6.6. Gershwin

After the Copland debacle, Apple’s need for a new operating system was direr than 
ever. Focus shifted briefly to a project  named Gershwin, which was to include the 
painfully elusive memory protection, among other things. However, it was appar-
ently nothing more than a codename, and it  is believed that nobody ever worked on 
Gershwin.  

1.6.7. BeOS

Apple briefly considered partnering with Microsoft  to create an Apple OS based on 
Windows NT. Other systems under consideration were Solaris from Sun Microsys-
tems and BeOS from Be. In fact, Apple’s acquisition of Be came rather close to ma-
terializing.

Be was founded in 1990 by Jean-Louis Gassée, Apple’s former head of Prod-
uct Development. Be’s capable engineering team had created an impressive operat-
ing system in BeOS. It  had memory protection, preemptive multitasking, and sym-
metric multiprocessing. It  even ran on the PowerPC,49  thus fitting with Apple’s 
hardware agenda. BeOS was designed to be especially adept  at handling multime-
dia. It  had a metadata-rich file system called BeFS that  allowed files to be accessed 
via multiple attributes. However, BeOS was still an unfinished and unproven prod-
uct. For example, it  did not  yet  support file sharing or printing, and only a few ap-
plications had been written for it. Figure 1–25 shows a screenshot of BeOS.

Mac OS X Internals (www.osxbook.com)            89

49 BeOS initially ran on Be’s own PowerPC-based  machine called the BeBox. It was later ported to  the 
x86 platform.

http://www.osxbook.com
http://www.osxbook.com


FIGURE 1–25  BeOS

Gassée and Apple negotiated back and forth over Be’s acquisition. The total 
investment in Be at that  time was estimated to be about $20 million, and Apple val-
ued Be at $50 million. Gassée sought  over $500 million, being confident  that Apple 
would buy Be. Apple negotiated up to $125 million, and Be negotiated down to 
$300 million. When things still did not work out, Apple offered $200 million, and 
even though it  is rumored that  Gassée was actually willing to accept this offer, it  is 
also said that he came back with a “final price” of $275 million, hoping Apple 
would bite the bullet. The deal did not  happen. In any case, Be had a tough con-
tender in NeXT, a company founded and run by another one-time Apple employee: 
Steve Jobs.

90
 Chapter 1    A Technical History of Apple’s Operating Systems



Be would eventually fail as a company—its technological assets were acquired 
by Palm, Inc. in 2001. 

1.6.8. Plan A

Unlike Be, NeXT’s operating systems had at least been proven in the market, de-
spite NeXT not having any resounding successes. In particular, OPENSTEP had 
been well received in the enterprise market. Moreover, Steve Jobs pitched NeXT’s 
technology strongly to Apple, asserting that OPENSTEP was many years ahead of 
the market. The deal with NeXT did go through: Apple acquired NeXT in February 
1997 for over $400 million. Amelio later quipped, "We choose plan A instead of 
Plan Be."

NeXT’s acquisition would prove pivotal to Apple, as NeXT’s operating system 
technology would be the basis for what  would become Mac OS X. Let us now look 
at the background of NeXT’s systems.

1.7. THE NEXT CHAPTER

All of Steve Jobs’ operational responsibilities at  Apple were “taken away” on May 
31, 1985. Around this time, Jobs had come up with an idea for a startup for which 
he pulled in five other Apple employees. The idea was to create the perfect  research 
computer for universities, colleges, and research labs. Jobs had even attempted to 
seek the opinion of Nobel laureate biochemist  Paul Berg on using such a computer 
for simulations. Although interested in investing in Jobs’ startup, Apple sued Jobs 
upon finding out  about the Apple employees joining him. After some mutual 
agreements, Apple dropped the suit the year after. The startup was NeXT  Computer, 
Inc.  

Mac OS X Internals (www.osxbook.com)            91

http://www.osxbook.com
http://www.osxbook.com


NeXT’s beginnings were promising. Jobs initially used $7 million of his per-
sonal money. Several larger investments would be made in NeXT, such as $20 mil-
lion from Ross Perot  and $100 million from Canon Inc. a few years later.  True to 
its original goal, NeXT strived to create a computer that  would be perfect in form 
and function. The result was the NeXT cube.

The cube’s motherboard had a clever, visually appealing design. Its magne-
sium case was painted black with a matte finish. The monitor stand required an as-
tonishing amount  of engineering (for a monitor stand). An onboard digital signal-
processing chip allowed the cube to play stereo quality music. The machines were 
manufactured in NeXT’s own state-of-the-art factory.

1.7.1. NEXTSTEP

Jobs unveiled the NeXT cube on October 12, 1988, at  the Davies Symphony Hall in 
San Francisco. The computer ran an operating system called NEXTSTEP, which 
used as its kernel a port of CMU Mach 2.0 with a 4.3BSD environment.50 NEXT-
STEP’s window server was based on Display PostScript—a marriage of the Post-
Script page-description language and window-system technologies.

In 1986, Sun Microsystems had announced their own Display Postscript 
Window System called NeWS.

NEXTSTEP offered both a graphical user-interface and a Unix-style 
command-line interface. The NEXTSTEP graphical user interface had multilevel 
menus, windows whose contents were shown while being dragged, and smooth 
scrolling. A dock application always stayed on top and held frequently used applica-
tions. Other NEXTSTEP features included the following.

• The ability to “hide” applications instead of quitting them

92
 Chapter 1    A Technical History of Apple’s Operating Systems

50 The Mach implementation in NEXTSTEP  included NeXT-specific features, as well as some features 
from later versions of CMU Mach.



• CD-quality sound
• A versatile mail application that supported voice annotation of messages, 

inline graphics, and dynamic lookup of email addresses over the network
• Drag and drop of complex objects between applications
• A services menu that  could be accessed from various applications to pro-

vide services such as dictionary and thesaurus
• A Digital Librarian application that  could build searchable indexes of 

content dragged to it
• A file viewer that extended across the network
• An object-oriented device driver framework called the Driver Kit

NEXTSTEP used drag and drop as a fundamental, powerful operation. It was 
possible to drag an image from, say, the mail application, to a document  editing ap-
plication such as WordPerfect. Conversely, you could drag a spreadsheet to the mail 
application to attach it with a message. Since the file viewer was network capable, a 
remote directory could be dragged as a short cut  on the user’s desktop (specifically, 
on the shelf).

NEXTSTEP used Objective-C as its native programming language. It  included 
Interface Builder, a tool for designing application user interfaces graphically. A 
number of software kits were provided to aid in application development. A soft-
ware kit was a collection of reusable classes (or object templates). Examples in-
clude the Application Kit, the Music Kit, and the Sound Kit.

Objective-C

Objective-C is an object-oriented, compiled programming language invented by 

Brad Cox and Tom Love in the early  1980s. It is an object-oriented superset of C, with 

dynamic binding and a messaging syntax  inspired by  Smalltalk.  It aims to be a simpler 

language than C++. Consequently, it does not have many  features of C++, such as 

multiple inheritance and operator overloading.  

Mac OS X Internals (www.osxbook.com)            93

http://www.osxbook.com
http://www.osxbook.com


Cox  and Love founded StepStone Corporation, from which NeXT licensed the 

language and created its own compiler. In 1995, NeXT acquired all rights to Step-

Stone’s Objective-C related intellectual property.  

Apple’s Objective-C compiler used in Mac OS X is  a modified version of the GNU 

compiler.

At the time of the cube’s announcement, NEXTSTEP was at version 0.8. It 
would be another year before a 1.0 mature release would be made.

NEXTSTEP 2.0 was released a year after 1.0, with improvements such as sup-
port  for CD-ROMs, color monitors, NFS, on-the-fly spell checking, and 
dynamically-loadable device drivers.

In the fall of 1990, Timothy John “Tim” Berners-Lee at CERN created the 
first web browser. It offered WYSIWYG browsing and authoring. The 
browser was developed on a NeXT computer. Tim’s collaborator, Robert 
Cailliau, later said that “... Tim’s prototype implementation on NEXTSTEP is 

made in the space of a few months, thanks to the qualities of the NEXT-

STEP software development system...”

At the 1992 NeXTWORLD Expo, NEXTSTEP 486—a $995 version for the 
x86—was announced.

The last version of NEXTSTEP—3.3—was released in February 1995. By that 
time NEXTSTEP had very powerful application development facilities courtesy of 
tools such as the Project Builder and the Interface Builder. There existed an exten-
sive collection of libraries for user interfaces, databases, distributed objects, multi-
media, networking, and so on. NEXTSTEP’s object-oriented device driver toolkit 
was especially helpful in driver development.

Figure 1–26 shows a screenshot of NEXTSTEP.

94
 Chapter 1    A Technical History of Apple’s Operating Systems



FIGURE 1–26  NEXTSTEP

NEXTSTEP ran on the 68K, x86, PA-RISC, and SPARC platforms. It  was 
possible to create a single version of an application containing binaries for all sup-
ported architectures. Such multiple-architecture binaries are known as “fat” binari-
es51.

Despite the elegance of NeXT’s hardware and the virtues of NEXTSTEP, the 
company had proven to be economically unviable over the years. In early 1993, 
NeXT  announced its plans to leave the hardware business but continue development 

Mac OS X Internals (www.osxbook.com)            95

51 Mac OS X supports fat  binaries. In particular, a fat binary  can be used to contain  32-bit and 64-bit 
versions of a program on Mac OS X 10.4 and later. The so called “Universal Binaries” on the x86 
version of Mac OS X are simply fat binaries.

http://www.osxbook.com
http://www.osxbook.com


of NEXTSTEP for the x86 platform. Figure 1–27 shows the timeline of NeXT’s 
operating systems.

NEXTSTEP 0.8

4.3BSD

Mach 2.0

October 1988

Mach 2.5

Mach 2.6

Mach 3.0

NEXTSTEP 1.0
September 1989

NeXT additions to Mach

2.0

2.1

3.0

3.1

3.2

3.3

September 1990

March 1991

September 1992

May 1993

October 1993

February 1995

OPENSTEP 4.0
July 1996

OpenStep

Specification
1994

4.1

4.2

December 1996

January 1997
Apple buys NeXT

February 4, 1997

Mach 1.0
Project started in 1984

USENIX paper in 1986

Accent

RIG

! Mach 0.9, circa 1979

! Mach 0.8, mid 1970s

FIGURE 1–27  The timeline of NeXT’s operating systems

96
 Chapter 1    A Technical History of Apple’s Operating Systems



Canon had a personal workstation, the object.station 41, which was designed to 

run NEXTSTEP. The system’s 100 MHz Intel 486DX4 processor was upgradeable to 

an Intel Pentium OverDrive processor. Besides NEXTSTEP as the operating system, 

the machine included Insignia Solutions’ SoftPC.

1.7.2. OPENSTEP

NeXT  partnered with Sun Microsystems to jointly release specifications for Open-
Step, an open platform comprised of several APIs and frameworks that anybody 
could use to create their own implementation of an object-oriented operating sys-
tem—running on any underlying core operating system. The OpenStep API was 
implemented on SunOS, HP-UX, and Windows NT. NeXT’s own implementa-
tion—essentially an OpenStep compliant version of NEXTSTEP—was released as 
OPENSTEP 4.0 in July 1996, with 4.1 and 4.2 following shortly afterwards. 

The OpenStep API and the OPENSTEP operating system did not seem to turn 
things around for NeXT, even though they caused some excitement in the business, 
enterprise, and government  markets. NeXT started to shift focus to its WebObjects 
product, which was a multiplatform environment for rapidly building and deploying 
web-based applications.  

As we saw earlier, NeXT was purchased by Apple in early 1997. Mac OS X 
would be based on NeXT’s technology. WebObjects would keep up with advance-
ments in its domain, as exemplified by its support  for Web Services and Enterprise 
Java. Apple uses WebObjects for its own web sites, such as the Apple Developer 
Connection (ADC) site, the online Apple Store, and the .Mac offering.

Figure 1–28 shows a screenshot of OPENSTEP.

Mac OS X Internals (www.osxbook.com)            97

http://www.osxbook.com
http://www.osxbook.com


FIGURE 1–28  OPENSTEP  

1.8. THE MACH FACTOR

Along with NeXT’s operating system came its kernel, which became the kernel 
foundation of Apple’s future systems. Let  us now briefly discuss the origins and 
evolution of Mach—a key component  of the NEXTSTEP  kernel, and in turn, of the 
Mac OS X kernel.  

98
 Chapter 1    A Technical History of Apple’s Operating Systems



1.8.1. Rochester’s Intelligent Gateway

A group of researchers at the University of Rochester, New York, began develop-
ment of an “intelligent” gateway system named RIG (Rochester’s Intelligent Gate-
way) in 1975. Jerry Feldman, who coined the name RIG, largely did the system’s 
initial design. RIG was meant to provide uniform access—say, via terminals—to a 
variety of local and remote computing facilities. Local facilities could be locally 
connected disks, magnetic tapes, printers, plotters, batch processing or time-sharing 
computers, and so on. Remote facilities could be available through a network such 
as the ARPANET. RIG’s operating system—called Aleph—ran on a Data General 
Eclipse minicomputer.  

The Aleph kernel was structured around an interprocess communication (IPC) 
facility. RIG processes could send messages to each other, with a port specifying 
the destination. A port  was an in-kernel message queue that was globally identified 
by a dotted pair of integers: a process number and a port number. A process could 
have several ports defined within itself, each of which could be used to wait for a 
message to arrive on.  A process X could shadow or interpose another process Y. In 
the case of shadowing, X received a copy of every message sent  to Y. While inter-
posing, X intercepted all messages sent  to, or originating from Y. This IPC facility 
based on messages and ports was a basic building block of the operating system.

RIG was killed a few years later due to several fundamental shortcomings in 
its design or in the underlying hardware, for example:

• The lack of paged virtual memory
• A 2KB limit  on the size of a message due to the limited address space 

provided by the underlying hardware
• Inefficient IPC due to limited message size
• No protection for ports
• No way to notify the failure of a process to a dependent process without 

explicit registration of such dependencies

Mac OS X Internals (www.osxbook.com)            99

http://www.osxbook.com
http://www.osxbook.com


• Networking not an area of emphasis in the original design

RIG port  numbers were global, allowing any process to create or use them. 
Therefore, any process could send a message to any other process. However, RIG 
processes, which were single threaded, did have protected address spaces.

1.8.2. Accent

Richard Rashid was one of the people who worked on RIG. In 1979, Rashid moved 
to Carnegie Mellon University, where he would work on Accent, a network operat-
ing system kernel. Active development of Accent  began in April 1981. Like RIG, 
Accent was also a communication-oriented system that used IPC as the basic 
system-structuring tool, or “glue.” However, Accent  addressed many of RIG’s 
shortcomings, for example:

• Processes had large (4GB), sparse virtual address spaces that  were line-
arly addressable.

• There was flexible and powerful virtual memory management  that was 
integrated with IPC and file storage. The kernel itself could be paged, 
although certain critical parts of the kernel, such as I/O memory and the 
virtual memory table, were “wired” in physical memory.

• Copy-on-write (COW) memory mapping was used to facilitate large 
message transfers. Based on experience with RIG, it  was expected that 
most messages would be simple. There were optimizations for the com-
mon case.

• Ports had the semantics of capabilities.
• Messages could be sent to processes on another machine through an in-

termediary process, thus providing location transparency.

Memory-related API calls in Accent  included functions for creating, destroying, 
reading, and writing memory segments, with support for copy-on-write. One may 
think of Accent as RIG enhanced with virtual memory and network-transparent 
messaging.

100
 Chapter 1    A Technical History of Apple’s Operating Systems



Accent was developed to support two distributed computing projects: 
SPICE (distributed personal computing) and DSN (fault-tolerant distributed 
sensor network). Accent was also the name of a food product (a spice) sold 
by Accent International, Inc. The only ingredient of this product was mono-
sodium glutamate (MSG). In computing, one often abbreviates “message” 
as “msg”.  

Accent ran on PERQ computers, which were commercial graphics worksta-
tions. Three Rivers Corporation delivered the first PERQ in 1980. QNIX was a 
UNIX environment based on AT&T System V UNIX that  ran under Accent on 
PERQ machines. Developed by Spider Systems, QNIX used its own microcode,52 
but ran in an Accent window managed by Accent’s Sapphire window manager, with 
other Accent programs running alongside. A LISP machine (SPICE LISP) was also 
available for Accent, along with other languages such as Ada, PERQ Pascal, C, and 
Fortran. PERQ could interpret bytecode in hardware, akin to latter-day mechanisms 
for Java.

Within a few years, the future of Accent did not  look promising as well.  It 
needed a new hardware base, support for multiprocessors, and portability to other 
kinds of hardware. Accent also had difficulty supporting UNIX software.

 

Matchmaker

The Matchmaker project was started in 1981 as part of the SPICE project. 

Matchmaker was an interface-specification language intended for use with existing 

programming languages. Using the Matchmaker language, object-oriented remote 

procedure call (RPC) interfaces could be specified. The specification would be con-

verted into interface code by  a multitarget compiler. Matchmaker is readily  comparable 

to the rpcgen protocol compiler and its language. The Mach Interface Generator (MIG) 

program, which is also used in Mac OS X, was derived from Matchmaker.  

Mac OS X Internals (www.osxbook.com)            101

52 The PERQ had soft-microcode, allowing its instruction set to be extended.

http://www.osxbook.com
http://www.osxbook.com


1.8.3. Mach

The sequel to Accent  was called Mach, which was conceived as a UNIX-compatible 
Accent-inspired system. In retrospect, with respect  to the first  version (1.0) of 
Mach, one could consider Accent  and RIG to be Mach versions 0.9 and 0.8 respec-
tively.

When Mach was developed, UNIX had been around for over fifteen years. 
Although the designers of Mach subscribed to the importance and usefulness of 
UNIX, they noted that UNIX was no longer as simple or as easy to modify as it 
once had been. Richard Rashid called the UNIX kernel a “dumping ground for vir-
tually every new feature or facility.” Mach’s design goals were partially a response 
to the inexorably increasing complexity of UNIX.

The Mach project started in 1984 with an overall goal of creating a microker-
nel that would be the operating system foundation for other operating systems. The 
project’s specific goals included the following.

• Provide full support for multiprocessing.
• Exploit other features of modern hardware architectures that  were emerg-

ing at  that  time. Mach aimed to support diverse architectures, including 
shared memory access schemes such as Non-Uniform Memory Access 
(NUMA) and No-Remote Memory Access (NORMA).

• Support transparent and seamless distributed operation.
• Reduce the number of features in the kernel to make it less complex, 

while giving the programmer a very small number of abstractions to 
work with. Nevertheless, the abstractions would be general enough to 
allow several operating systems to be implemented on top of Mach.

• Provide compatibility with UNIX.
• Address shortcomings of previous systems such as Accent.

Mach was intended to primarily implement processor and memory manage-
ment, but  no file system, networking, or I/O. The “real” operating system was to run 

102
 Chapter 1    A Technical History of Apple’s Operating Systems



as a user-level Mach task. Written in C, the Mach kernel was also meant to be 
highly portable.

Mach’s implementation used 4.3BSD as the starting code base. Its designers 
had RIG and Accent as references in the area of message-passing kernels. DEC’s 
TOPS-20 operating system53  provided some ideas for Mach’s virtual memory sub-
system. As Mach evolved, portions of the BSD kernel were replaced by their Mach 
equivalents, and various new components were added.

When published in 1986, the original Mach paper hailed Mach as “A New 
Kernel Foundation For UNIX Development.” While not  everybody saw or sees it 
that way, Mach went on to become a rather popular system. From Apple’s stand-
point, the paper’s title might as well have been “A NuKernel Foundation...”

Nomenclature

Avadis Tevanian, one of the inventors of Mach and Apple’s Chief Software Tech-

nology  Officer, told me the following history  about how  Mach was named. (Tevanian 

qualified the account as  his best memory  of an event that occurred two decades ago.) 

On a rainy  day  in Pittsburgh, Tevanian and some others were on their daily  trek to 

lunch.  As they were thinking of names for the yet unnamed Mach kernel,  Tevanian, 

navigating around one of the numerous mud puddles, suggested the name “MUCK”  in 

jest. MUCK was to stand for “Multi-User Communication Kernel” or “Multiprocessor 

Universal Communication Kernel.” As a joke, Richard Rashid passed the name along 

to a colleague, Dario Giuse, who was Italian. Guise inadvertently  pronounced MUCK 

as “Mach,” and Rashid liked it so much that the name stuck.  

Initially the Mach designers presented four basic abstractions in the kernel.

Mac OS X Internals (www.osxbook.com)            103

53 TOPS-20 was a descendant of the TENEX operating system.

http://www.osxbook.com
http://www.osxbook.com


A task is a container for the resources of one or more threads.54 Examples of 
resources include virtual memory, ports, processors, and so on.

A thread is a basic unit  of execution in a task. The task provides an execution 
environment  for its threads, whereas the threads actually run. The various threads of 
a task share its resources, although each has its own execution state, which includes 
the program counter and various other registers. Thus, unlike a process in Accent, a 
Mach “process” is divided55 into a task and multiple threads.

A port is similar to an Accent  port—it  is an in-kernel message queue with ca-
pabilities. Ports form the basis for Mach’s interprocess communication facilities. 
Mach implements ports as simple integral values.

A message is a collection of data that threads in different tasks, or in the same 
task, can send to each other using ports.

Another basic Mach abstraction is that of a memory object, which could be 
thought  of as a container for data (including file data) mapped into a task’s address 
space. Mach requires a paged memory-management  unit  (PMMU). Through its 
pmap (physical map) layer, Mach provides an excellent  interface to the machine-
dependent MMU facilities. Mach’s virtual memory subsystem was designed to sup-
port  large, sparse virtual address spaces, and was integrated with IPC. In traditional 
UNIX, contiguous virtual memory space was implied, with the heap and the stack 
growing towards each other. In contrast, Mach allowed for sparse address spaces. 
Regions of memory could be allocated from anywhere in the address space.  Mem-
ory could be shared for reading and writing in a structured manner. Copy-on-write 
techniques were used both to optimize copy operations and for sharing physical 
memory between tasks. The generalized memory object  abstraction allowed for ex-

104
 Chapter 1    A Technical History of Apple’s Operating Systems

54 It is possible to have a Mach task with zero threads, although such a task would not be very useful.

55 Certain subsequent versions of Mach further subdivided a thread into an “activation” and a “shut-
tle.”



ternal56 memory pagers to handle page faults and page-out data requests. The source 
or target data could even reside on another machine.

FreeBSD’s virtual memory architecture is based on Mach’s.

As noted earlier, Mach was neither meant to provide, nor provided, any file 
system, networking, or I/O capabilities. It  was to be used as a service operating sys-
tem  to create other operating systems from. It  was hoped that  this approach would 
maintain simplicity and promote portability of operating systems. One or more op-
erating systems could run on top of Mach as user-level tasks. However, real-life 
implementations deviated from this concept. Release 2.0 of Mach, as well as the 
rather successful Release 2.5, had monolithic implementations in that Mach and 
BSD resided in the same address space. 

One of CMU’s important  decisions was to provide all Mach software with un-
restrictive licensing—free of distribution fees or royalties. The Open Software 
Foundation57 (OSF) used Release 2.5 of Mach for providing many of the kernel 
services in the OSF/1 operating system. Mach 2.x was also used in Mt. Xinu, 
Multimax (Encore), Omron LUNA/88k, NEXTSTEP, and OPENSTEP.

The Mach 3 project  was started at CMU and continued by OSF. Mach 3 was 
the first  true microkernel version—BSD ran as a user-space Mach task, with only 
fundamental features being provided by the Mach kernel. Other changes and im-
provements in Mach 3 included the following.

• Kernel preemption and a real-time scheduling framework to provide real-
time support

Mac OS X Internals (www.osxbook.com)            105

56 Implies external to the kernel—that is, in user-space

57 The OSF was formed in May 1988 to develop core software technologies and supply them to the 
entire industry on  fair and reasonable terms. It went on to have several hundred members from among 
commercial end users, software companies, computer manufacturers, universities, research laborato-
ries, and so on. The OSF later became the Open Group, and then became Silicomp. 

http://www.osxbook.com
http://www.osxbook.com


• Low-level device support  wherein devices were presented as ports to 
which data or control messages could be sent, with support  for both syn-
chronous and asynchronous I/O

• A completely rewritten IPC implementation
• System call redirection that  allowed a set of system calls to be handled 

by user-space code running within the calling task
• Use of continuations, a kernel facility that gives a thread the option to 

block by specifying a function (the continuation function) that is called 
when the thread runs again

Historically, arguments in favor of “true” microkernels have emphasized a 
greater degree of system structure and modularity, improved software engineering, 
ease of debugging, robustness, software malleability (for example, the ability to run 
multiple operating system personalities), and so on. The intended benefits of 
microkernel-based operating systems such as Mach 3 were offset  by the significant 
real-life performance problems that occurred due to reasons such as the following.

• The cost of maintaining separate protection domains, including the cost 
of context  switching from one domain to another (often, simple opera-
tions resulted in many software or hardware layers to be crossed)

• The cost of kernel entry and exit code
• Data copies in MIG-generated stub routines
• The use of semantically powerful, but  implementation-heavy IPC 

mechanisms, even for same-machine RPC

Many operating systems were ported to the conceptual virtual machine pro-
vided by the Mach API, and several user-mode operating system interfaces were 
demonstrated to execute on top of Mach. The Mach-US symmetric multiserver op-
erating system contained a set of server processes that  provided generic system 
services such as local interprocess communication; networking; and management of 
devices, files, processes, and terminals. Each server typically ran in a separate Mach 
task. An emulation library, which was loaded into each user process, provided an 
operating system personality. Such libraries used generic services to emulate differ-
ent operating systems by intercepting system calls and redirecting them to the ap-

106
 Chapter 1    A Technical History of Apple’s Operating Systems



propriate handlers. Mach emulators existed for BSD, DOS, HP-UX, OS/2, OSF/1, 
SVR4, VMS, and even the Macintosh operating system.

Richard Rashid went on to become the head of Microsoft Research. Mach 
coinventor Avie Tevanian would be the Chief Software Technology Officer at 
Apple.

1.8.4. MkLinux

Apple and OSF began a project  to port Linux to run on various Power Macintosh 
platforms, with Linux hosted on top of OSF’s Mach implementation.  The project 
led to a core system called osfmk. The overall system was known as MkLinux. The 
first  version of MkLinux was based on Linux 1.3. It was released as MkLinux DR1 
in early 1996. Subsequent releases moved to Linux 2.0 and beyond. One of the re-
leases was incorporated into Apple’s Reference Release.

MkLinux used a single server approach: the monolithic Linux kernel ran as a 
single Mach task. Mac OS X uses a kernel base derived from osfmk, and includes 
many MkLinux enhancements. However, all kernel components in Mac OS X, in-
cluding the BSD portions, reside in the same address space.

MachTen

Besides A/UX, there was another avenue—a third party  one—on which the Mac-

intosh had close encounters of the Unix  kind. The MachTen product from Tenon Sys-

tems was introduced as an unobtrusive Unix  solution for MacOS: it ran as an applica-

tion atop Apple’s operating system. In contrast, A/UX ran directly on top of hardware.

MachTen was based on the Mach kernel with a BSD environment. It provided 

preemptive multitasking for Unix  applications running within it, although the MacOS 

execution environment remained cooperative multitasking.

Mac OS X Internals (www.osxbook.com)            107

http://www.osxbook.com
http://www.osxbook.com


Although the marriage of Mach, BSD, and Macintosh in MachTen sounds similar 

to the latter-day  Mac OS X, there is a critical difference in design and philosophy. Mac 

OS X was a continuation of NEXTSTEP technology  in several ways.  Apple provided 

legacy  compatibility  and ease of transition at two primary  levels:  through APIs such as 

Carbon, and through the Classic virtualizer. In contrast, MachTen was a logical opposite: 

MacOS remained the first class citizen, whereas Unix  ran in a virtual machine (UVM) 

that was implemented within a standard Macintosh application. The UVM provided a 

preemptive multitasking execution environment with a set of Unix  APIs (such as PO-

SIX,  including the standard C library  and POSIX threads), a BSD-style networking 

stack, file systems such as UFS and FFS, RPC, NFS, and so on.  MachTen also in-

cluded an implementation of the X Window System.

Although confined within a single application, MachTen consisted of various sub-

systems similar to a full-fledged operating system. At the logically  lowest level, an inter-

face layer talked to MacOS. The Mach kernel resided above this layer, providing serv-

ices such as memory  management, interprocess communication, tasks, and threads. 

Other MachTen subsystems that directly  talked to the MacOS interface layer included 

the window manager and the networking stack’s ARP layer.

1.8.5. Musical Names

Apple’s operating system strategy after acquiring NeXT was two-pronged: it  would 
keep improving Mac OS for the consumer desktop market, and would create a high-
end operating system based on NeXT technology. The new system, called Rhap-
sody, would mainly be targeted towards the server and enterprise markets.

In contrast to the chromatic aberrations such as Pink and Red, Apple also had 
a string of musically inspired code names for its operating system projects. Copland 

108
 Chapter 1    A Technical History of Apple’s Operating Systems



and Gershwin were named after Aaron Copland and George Gershwin,58  both 
American composers. Rhapsody in Blue is a famous work of Gershwin.

1.9. STRATEGIES

The first  release of an Apple operating system after NeXT’s purchase was in late 
1996 with version 7.6. This release represented the initial stage of Apple’s new op-
erating system roadmap.  It was the first  system to be called Mac OS. Apple’s plan 
was to release full standalone installations once a year, with updates in between. 
Many Power Macintosh and PowerBook models that were not supported by Mac 
OS 7.6 were supported by the 7.6.1 incremental update. The system originally 
slated to be version 7.7 would eventually become Mac OS 8.

Mac OS 7.6 required a compatible computer that  was 32-bit clean, with at 
least a 68030 processor. It  offered performance enhancements in several areas such 
as virtual memory, memory management, PowerPC Resource Manager routines, 
system startup, and the File Manager’s caching scheme. It also integrated key Apple 
technologies such as Cyberdog, OpenDoc, Open Transport, and QuickTime. 

Two phenomena were sweeping the computer world at  that  time: the Internet 
and Microsoft Windows 95. Apple emphasized compatibility of Mac OS 7.6 with 
Windows 95 and highlighted the system’s Internet  prowess. Mac OS 7.6 included 
built-in support for TCP/IP, PPP, and Apple Remote Access (ARA). Its integrated 
Cyberdog technology could be used to incorporate Internet features into documents 
that used “Live Objects.”  For example, live web links and email addresses could 
reside on the Desktop, and could be activated from the Finder. 

Mac OS X Internals (www.osxbook.com)            109

58 George Gershwin’s brother Ira actually came up with the title Rhapsody in Blue.

http://www.osxbook.com
http://www.osxbook.com


OpenDoc

OpenDoc was a cross-platform component software architecture for Mac OS, 

OS/2,  Windows, and UNIX. It started as collaboration between several companies, 

including Apple, IBM, and WordPerfect. An independent association called Component 

Integration Laboratories (CI Labs) was founded to act as a forum for the “open”  evolu-

tion of OpenDoc.

OpenDoc was implemented as a set of shared libraries that allowed construction 

and sharing of compound documents. An OpenDoc document was composed of build-

ing blocks of content called components, which could be interactively  edited. A compo-

nent was a relatively  small software unit containing a well-defined focused functionality. 

OpenDoc aimed to replace large, monolithic applications with applications constructed 

by  mixing and matching various components.  Examples of OpenDoc component types 

include graphics,  Internet,  spreadsheet,  text, and video components. OpenDoc’s im-

plementation of such functionality, which was identified as hitherto being redundant 

across complex applications, yielded reusable building blocks that could be embedded 

into OpenDoc-aware documents. A document could have features such as editable 

portions, live data feed from an Internet source, user-interface elements that linked one 

part of the document to another, and hot areas where objects could be dragged and 

dropped. 

OpenDoc was supported by  several key  technologies: Document Level Services, 

Component Level Services, Open Scripting Architecture59 (OSA), System Object Model 

(SOM),  and Open Linking and Embedding of Objects (interoperable with Microsoft’s 

OLE).

The OLE-inspired COM and DCOM were OpenDoc’s competitors.  Whereas 

OpenDoc failed, COM is heavily used by modern versions of Microsoft Windows.

110
 Chapter 1    A Technical History of Apple’s Operating Systems

59  OSA is an automation and scripting API that also exists  in Mac OS X. It supports application-
independent scripting, allowing multiple scripting systems and languages to coexist. AppleScript is  the 
primary language that supports OSA.



1.9.1. Mac OS 8 and 9

As we saw earlier, Copland and Pink were potential candidates for Mac OS 8 at one 
time or another. Similarly, Gershwin was a candidate for Mac OS 9. Over the years, 
some important features that were either created or improved for Copland were 
added to Mac OS 8 and 9, as was originally intended. The following are examples 
of such features.

• A search engine that  could search on local drives, network servers, and 
the Internet (released as Sherlock)

• The Copland API, which gradually evolved into Carbon
• The Platinum-look user interface
• Multiple users, with support for per-user preferences

Mac OS 8 had a multithreaded Finder that allowed several file-oriented opera-
tions simultaneously. Other notable features included the following.

• The Mac OS Extended file system (HFS Plus), which was introduced 
with Mac OS 8.1

• Contextual menus activated by a control-click
• Spring-loaded folders60

• Personal web hosting
• Web browsers (Microsoft Internet Explorer and Netscape Navigator) 

bundled with the system
• Macintosh Runtime for Java (MRJ—Apple’s implementation of the Java 

environment) part of the system
• Enhancements to power-management, USB, and FireWire

Figure 1–29 shows a screenshot of Mac OS 8.

Mac OS X Internals (www.osxbook.com)            111

60  Spring-loaded folders are a feature of the Finder’s user interface. If the user pauses briefly while 
dragging an item onto a folder icon, a window springs open displaying the folder’s contents. This al-
lows  the user to choose where to put the item. Continuing to hold the item causes a subfolder to spring 
open, and so on.

http://www.osxbook.com
http://www.osxbook.com


FIGURE 1–29  Mac OS 8

Mac OS 8.5 was PowerPC-only. The nanokernel was overhauled in Mac OS 
8.6 to integrate multitasking and multiprocessing. It  included a preemption-safe 
memory allocator. The multiprocessor (MP) API library could now run with virtual 
memory enabled, although virtual memory was still optional.

When Mac OS 9 was released in 1999, it  was hailed by Apple as the “best 
Internet operating system ever”. It  was the first  Mac OS version that could be up-
dated over the Internet. It  could also use the AppleTalk protocol over TCP/IP. Its 
useful security features included file encryption and the Keychain mechanism for 
storing passwords securely.

An important component  of Mac OS 9 was a mature installation of the Carbon 
APIs, which at  the time represented about  70% of the legacy Mac OS APIs. Carbon 
provided compatibility with Mac OS 8.1 and later.

112
 Chapter 1    A Technical History of Apple’s Operating Systems



The last  release of Mac OS 9 was released in late 2001 as version 9.2.2. With 
the advent of Mac OS X, this “old” Mac OS would eventually be referred to as 
Classic. Figure 1–30 shows a screenshot of Mac OS 9.

FIGURE 1–30  Mac OS 9

1.9.2. Rhapsody

We saw that  after acquiring NeXT, Apple based its next-generation operating sys-
tem called Rhapsody on NeXT’s OPENSTEP. Rhapsody was first  demonstrated at 
the 1997 World Wide Developers Conference (WWDC). Figure 1–31 shows a 
screenshot of Rhapsody. 

Mac OS X Internals (www.osxbook.com)            113

http://www.osxbook.com
http://www.osxbook.com


FIGURE 1–31  Rhapsody

Rhapsody consisted of the following primary components.

• The kernel and related subsystems that were based on Mach and BSD
• A Mac OS compatibility subsystem (the Blue Box)
• An extended OpenStep API implementation (the Yellow Box)
• A Java virtual machine
• A Display PostScript-based windowing system
• A user interface that was Mac OS-like, but  also had features from 

OPENSTEP

114
 Chapter 1    A Technical History of Apple’s Operating Systems



Apple had plans to port  to Rhapsody most key Mac OS frameworks, for ex-
ample, QuickTime, QuickDraw 3D, QuickDraw GX, and ColorSync.  Rhapsody 
was also to support  numerous file systems such as Apple Filing Protocol (AFP), 
FAT, HFS, HFS Plus, ISO9660, and UFS.  

There were two developer releases of Rhapsody, dubbed DR1 and DR2. These 
were released both for the PowerPC and the x86 platforms.

1.9.2.1. Blue Box

Shortly after Rhapsody DR1 was released, Apple extended the PowerPC version 
with a Mac OS compatibility environment called the Blue Box. Implemented by a 
Rhapsody application (MacOS.app), Blue Box was a virtual environment that  ap-
peared as a new Macintosh hardware model. MacOS.app loaded a Macintosh ROM 
file from disk and created an environment within which Mac OS ran mostly un-
changed. Blue Box initially ran Mac OS 8.x, full-screen, with the ability to switch 
between Rhapsody and Mac OS using the <cmd-return> key combination. It 
placed certain restrictions on the applications that ran within it. For example, an 
application could neither access the hardware directly, nor could use undocumented 
Mac OS APIs. The implementers’ initial goal was to achieve 90% to 115% of native 
Mac OS performance. Blue Box beta 1.0 used Open Transport—rather than BSD 
sockets—for networking. Support for newer versions of Mac OS, as well as for 
running the Blue Box windowed, was added later. The Blue Box environment 
would be known as the Classic environment in Mac OS X, provided by an applica-
tion named “Classic Startup.app”.61

The Blue Box environment is a virtualization layer, and not an emulation 
layer. “Harmless” instructions execute natively on the processor, whereas 
“harmful”  instructions, such as those that can affect the hardware, are 
trapped and handled appropriately.

Mac OS X Internals (www.osxbook.com)            115

61 The application was called Classic.app in earlier versions of Mac OS X.

http://www.osxbook.com
http://www.osxbook.com


1.9.2.2. Yellow Box

Rhapsody’s development platform was called the Yellow Box. Besides being hosted 
on the Power Macintosh and x86 versions of Rhapsody, it was also available inde-
pendently for Microsoft  Windows. Figure 1–32 shows a screenshot of Yellow Box 
running under Windows XP.

FIGURE 1–32  Yellow Box

Yellow Box included most  of OPENSTEP’s integrated frameworks, which 
were implemented as shared object libraries. These were augmented by a runtime 
and development environment.  There were three core object  frameworks whose 
APIs were available in Objective-C and Java.

• Foundation was a collection of base classes with APIs for allocating, 
deallocating, examining, storing, notifying, and distributing objects.

116
 Chapter 1    A Technical History of Apple’s Operating Systems



• Application Kit was a set  of APIs for creating user interfaces; managing 
and processing events; and using services such as color and font  man-
agement, printing, cut-and-paste, and text-manipulation.

• Display PostScript was a set  of APIs for drawing in PostScript, compo-
siting images, and performing other visual operations. It  could be con-
sidered as a subset of Application Kit.

Yellow Box included NeXT’s Project Builder integrated development envi-
ronment  and the Interface Builder visual tool for creating graphical user-interfaces. 
The Windows NT  implementation of Yellow Box provided a very similar environ-
ment through a combination of the following Apple provided Windows system serv-
ices and applications:

• The Mach Emulation Daemon (the machd service)
• The Netname Server (the nmserver service)
• The Window Server (the WindowServer application)
• The Pasteboard Server (the pbs application)

Earlier implementations of the OpenStep API for platforms such as Solaris 
used a similar architecture. Yellow Box evolved into the Mac OS X Cocoa APIs.

1.10. TOWARDS MAC OS X

After Rhapsody’s DR2 release, Apple would still alter its operating system strategy, 
but would finally be on its way towards achieving its goal of having a new system. 
During the 1998 Worldwide Developer Conference, Adobe’s Photoshop ran on what 
would be Mac OS X. However, the first  shipping release of Mac OS X would take 
another three years. Figure 1–33 shows an approximation of the progression from 
Rhapsody towards Mac OS X.

Mac OS X Internals (www.osxbook.com)            117

http://www.osxbook.com
http://www.osxbook.com


Rhapsody DR1
September 1997

Rhapsody DR2
May 1998

Mac OS X DP1
May 1999

Mac OS X DP2
November 1999

Mac OS X DP3
January 2000

Mac OS X DP4
May 2000

Mac OS X Public Beta
September 13, 2000

Mac OS X 10.0
March 24, 2001

OPENSTEP 4.4BSD

Blue Box
October 1997

FreeBSD

NetBSD

Mach 3.0

Mac OS X Server 1.0
March 1999

1.0-1

1.0-2

1.2

1.2v3

Mac OS X Server 10.0.3
May 21, 2001

Mac OS X 10.x.y

Mac OS X Server 10.x.y

Darwin 0.1
March 1999

GNU Darwin

OpenDarwin.org

.

.

.

.

.

.

.

.

.

Mac OS

FIGURE 1–33  An approximation of the Mac OS X timeline

118
 Chapter 1    A Technical History of Apple’s Operating Systems



1.10.1. Mac OS X Server 1.x

As people were expecting a DR3 release of Rhapsody, Apple announced Mac OS X 
Server 1.0 in March 1999. Essentially an improved version of Rhapsody, it  was 
bundled with WebObjects, the QuickTime streaming server, a collection of devel-
oper tools, the Apache web server, and facilities for booting or administering over 
the network.  

Apple also announced an initiative called Darwin: a fork of Rhapsody’s de-
veloper release. Darwin would become the open-source core of Apple’s systems.  

Over the next three years, as updates would be released for the server product, 
development  of the desktop version would continue, with the server sharing many 
of the desktop improvements.

1.10.2. Mac OS X Developer Previews

There were four Developer Preview releases of Mac OS X: named DP1 through 
DP4. Substantial improvements were made during these “DP” releases.

1.10.2.1. DP1

An implementation of the Carbon API was added in DP1. Carbon represented an 
overhaul of the “classic” Mac OS APIs, which were pruned, extended, and modified 
to run in the more modern Mac OS X environment. Carbon was also meant to help 
Mac OS developers in transitioning to Mac OS X. A Classic application would re-
quire an installation of Mac OS 9 to run under Mac OS X, whereas Carbon applica-
tions could be compiled to run as native applications under both Mac OS 9 and Mac 
OS X.

Mac OS X Internals (www.osxbook.com)            119

http://www.osxbook.com
http://www.osxbook.com


1.10.2.2. DP2

The Yellow Box evolved into Cocoa, originally alluding to the fact that besides 
Objective-C, the API would be available in Java. A version of the Java Develop-
ment Kit (JDK) was included, along with a just-in-time (JIT) compiler. The Blue 
Box environment was provided via Classic.app (a new version of MacOS.app) 
that ran as a process called TruBlueEnvironment. The Unix environment  was 
based on 4.4BSD. DP2 thus contained a multitude of APIs: BSD, Carbon, Classic, 
Cocoa, and Java. There was widespread dissatisfaction with the existing user inter-
face. The Aqua user interface had not  been introduced yet, although there were ru-
mors that Apple was keeping the “real” user interface a secret.62

Carbon is sometimes perceived as “the old” API. Although Carbon indeed 
contains modernized versions of many old APIs, it also provides functional-
ity that may not be available through other APIs. Parts of Carbon are com-
plementary to “new” APIs such as Cocoa. Nevertheless, Apple has been 
adding more functionality to Cocoa so that dependencies on Carbon can be 
eventually eliminated. For example, much of the QuickTime functionality 
was only available through Carbon in Mac OS X versions prior to 10.4. Ap-
ple introduced the QTKit framework for Cocoa in Mac OS X 10.4, which 
reduces or eliminates Carbon dependencies for QuickTime.

1.10.2.3. DP3

The Aqua user interface was first demonstrated during the San Francisco Macworld 
Expo in January 2000. Mac OS X DP3 included Aqua along with its distinctive 
elements: “water-like” elements, pinstripes, pulsating default  buttons, “traffic-light” 
window buttons, drop shadows, transparency, animations, sheets, and so on. The 

120
 Chapter 1    A Technical History of Apple’s Operating Systems

62 Apple had referred to the Mac OS X user interface as “Advanced Mac OS Look and Feel”.



DP3 Finder was Aqua-based as well. The Dock was introduced with support for 
photorealistic icons that were dynamically scalable up to 128×128 pixels.

1.10.2.4. DP4

The Finder was renamed the Desktop in DP4. The System Preferences application 
(Preferences.app—the precursor to “System Preferences.app”) made its 

first  appearance in Mac OS X, allowing the user to view and set a multitude of sys-
tem preferences such as Classic, ColorSync, Date & Time, Energy Saver, Internet, 
Keyboard, Login Items, Monitors, Mouse, Network, Password, and others. Prior to 
DP4, the Finder and the Dock were implemented within the same application. The 
Dock was an independent application (Dock.app) in DP4. It was divided into two 
sections: the left side for applications and the right side for the trash can, files, fold-
ers, and minimized windows. Other notable components of DP4 included an inte-
grated development environment and OpenGL.

The Dock’s visual indication of a running application underwent several changes. 

In DP3, an application’s Dock icon had a few  pixels  high bottom edge that was color-

coded to indicate whether the application was running. This was replaced by  an ellipsis 

in DP4, and was followed by  a triangle in subsequent Mac OS X versions. DP4 also 

introduced the smoke cloud animation that ensues after an item is dragged off the 

Dock. 

1.10.3. Mac OS X Public Beta

Apple released a beta version of Mac OS X at the Apple Expo in Paris on Septem-
ber 13, 2000. Essentially a publicly available preview release for evaluation and 
development  purposes, the “Mac OS X Public Beta” was sold for $29.95 at the Ap-
ple Store. It  was available in English, French, and German. The software’s packag-
ing contained a message from Apple to the beta testers: “You are holding the future 

Mac OS X Internals (www.osxbook.com)            121

http://www.osxbook.com
http://www.osxbook.com


of the Macintosh in your hands.” Apple also created a Mac OS X tab on its web site 
that would contain information on Mac OS X, including updates on third-party ap-
plications, tips and tricks, and technical support. Figure 1–34 shows a screenshot of 
Mac OS X Public Beta.

FIGURE 1–34  Mac OS X Public Beta

Although the beta release was missing important features and ostensibly 
lacked in stability and performance, it demonstrated several important  Apple tech-
nologies at work, particularly to those who had not been following the DP releases. 
The beta’s key features were the following.

122
 Chapter 1    A Technical History of Apple’s Operating Systems



• The Darwin core with its xnu kernel that offered “true” memory protec-
tion, preemptive multitasking, and symmetric multiprocessing

• The PDF-based Quartz 2D drawing engine
• OpenGL support
• The Aqua interface and the Dock
• Apple’s new mail client, with support for IMAP and POP
• A new version of the QuickTime player
• The Music Player application for playing MP3s and audio CDs
• A new version of the Sherlock Internet searching tool
• A beta version of Microsoft Internet Explorer

With Darwin, Apple would continually leverage a substantial amount  of exist-
ing open source software by using it  for, and often integrating it with Mac OS X. 
Apple and Internet  Systems Consortium, Inc. (ISC) jointly founded the OpenDar-
win project in April 2002 for fostering cooperative open source development of 
Darwin. GNU-Darwin is an open source Darwin-based operating system.

The New Kernel

Darwin’s kernel is called “xnu.”  It is unofficially  an acronym for “X is Not Unix.”  It 

is also a coincidental tribute to the fact that it is indeed the NuKernel for Mac OS X. 

xnu is largely  based on Mach and FreeBSD, but includes code and concepts from 

various sources such as the formerly  Apple supported MkLinux  project, the work done 

on Mach at the University of Utah, NetBSD, and OpenBSD.

1.10.4. Mac OS X 10.x

The first  version of Mac OS X was released on March 24, 2001 as Mac OS X 10.0 
“Cheetah.” Soon afterwards, the versioning scheme of the server product  was re-
vised to synchronize it with that  of the desktop system. Since then, the trend has 

Mac OS X Internals (www.osxbook.com)            123

http://www.osxbook.com
http://www.osxbook.com


been that a new version of the desktop is released first, soon followed by the 
equivalent server revision.

The first few major Mac OS X releases are listed in Table 1–1. Note that  the 
code names are all taken from felid taxonomy.

TABLE 1–1 Mac OS X Versions
Version Codename Release Date

10.0 Cheetah March 24, 2001

10.1 Puma September 29, 2001

10.2 Jaguar August 23, 2002

10.3 Panther October 24, 2003

10.4 Tiger April 29, 2005

10.5 Leopard 2006/2007?

Let us look at some notable aspects of each major Mac OS X release.

1.10.4.1. Mac OS X 10.0

Apple dubbed “Cheetah” as “the world’s most advanced operating system.” Finally, 
Apple had shipped an operating system with features that it  had long sought. How-
ever, it  was clear that Apple had a long way to go in terms of performance and sta-
bility. Key features of 10.0 included the following.

• The Aqua user interface, with the Dock and the Finder as the primary 
user-facing tools

• The PDF-based Quartz 2D graphics engine
• OpenGL for 3D graphics
• QuickTime for streaming audio and video (shipping for the first  time as 

an integrated feature)
• Java 2 Standard Edition (J2SE)
• Integrated Kerberos

124
 Chapter 1    A Technical History of Apple’s Operating Systems



• Mac OS X versions of the three most popular Apple applications avail-
able as free downloads: iMovie 2, iTunes, and a preview version of Ap-
pleWorks

• Free IMAP service for .Mac email accounts

When Mac OS X 10.0 was released, there were approximately 350 applica-
tions available for it.

1.10.4.2. Mac OS X 10.1

“Puma” was a free update released six months after 10.0’s release. It offered sig-
nificant performance enhancements, as indicated by Apple’s following claims.

• Up to 3× improvement in application launch speed

• Up to 5× improvement in menu performance

• Up to 3× improvement in window resizing

• Up to 2× improvement in file copying

There were substantial performance boosts in other areas such as system 
startup, user login, Classic startup, OpenGL, and Java. Other key features of this 
release included the following.

• The ability to move the Dock from its usual place at the bottom to the 
left or right

• System status icons on the menu bar to provide easier access to com-
monly used functions such as volume control, display settings, date and 
time, Internet  connection settings, wireless network monitoring, and bat-
tery charging

• iTunes and iMovie as part  of system installation, and the introduction of 
iDVD

• A new DVD player with a simplified interface
• Improved iDisk functionality based on WebDAV
• A built-in image capturing application to automatically download and 

enhance pictures from digital cameras

Mac OS X Internals (www.osxbook.com)            125

http://www.osxbook.com
http://www.osxbook.com


• The ability to burn over 4GB of data to a DVD, with support for burning 
recordable DVD discs directly in the Finder

• An integrated SMB/CIFS client

The Carbon API implementation in 10.1 was complete enough to allow impor-
tant third party applications to be released. Carbonized versions of Microsoft Of-
fice, Adobe Photoshop, and Macromedia Freehand were released soon after 10.1’s 
release.

1.10.4.3. Mac OS X 10.2

“Jaguar” was released at  10:20 pm to emphasize its version number. Its important 
feature additions included the following.

• Quartz Extreme—an integrated hardware acceleration layer for rendering 
on-screen objects by compositing them using primarily the Graphics 
Processing Unit (GPU) on supported graphics cards

• iChat—an AOL Instant Messaging (AIM) compatible “IM” client
• An enhanced mail application (Mail.app) with built-in adaptive spam 

filtering
• A new Address Book application with support for vCards, Bluetooth, and 

iSync synchronization with .Mac servers, PDAs, certain cell phones, and 
other Mac OS X computers (the Address Book’s information was acces-
sible to other applications)

• QuickTime 6, with support for MPEG-4
• An improved Finder with quick file searching from the toolbar and sup-

port for spring-loaded folders
• Inkwell—a handwriting recognition technology integrated with the text 

system, allowing text input using a graphics tablet
• Rendezvous,63 which was Apple’s implementation of ZeroConf—a zero-

configuration networking technology allowing enabled devices to find 
one another on the network

• Better compatibility with Windows networks
• Version 3 of the Sherlock Internet services tool

126
 Chapter 1    A Technical History of Apple’s Operating Systems

63 Rendezvous was later renamed Bonjour.



Hereafter, Apple introduced new applications and incorporated technologies in 
Mac OS X at  a bewildering pace. Other notable additions to Mac OS X after the 
release of “Jaguar” included the iPhoto digital photo management  application, the 
Safari web browser, and an optimized implementation of the X Window system.

1.10.4.4. Mac OS X 10.3

“Panther” added several productivity and security features to Mac OS X, besides 
providing general performance and usability improvements. Notable 10.3 features 
included the following.

• An enhanced Finder, with a sidebar and support for labels
• Audio and video conferencing through the iChat AV application
• Exposé—a user-interface feature that  can “live shrink” each on-screen 

window such that no windows overlap, allowing the user to find a win-
dow visually, after which each window is restored to its original size and 
location

• FileVault—encryption of a user’s home directory
• Secure deletion of files in a user’s trash can via a multipass overwriting 

algorithm
• Fast user switching
• Built-in faxing
• Improved Windows compatibility courtesy of better support for SMB 

shares and Microsoft Exchange
• Support for HFSX—a case-sensitive version of the HFS Plus file system

The BSD component in “Panther” was based on FreeBSD 5.

1.10.4.5. Mac OS X 10.4

Besides providing typical evolutionary improvements, “Tiger” introduced several 
new technologies such as Spotlight and Dashboard. Spotlight  is a search technology 
consisting of an extensible set  of metadata importer plug-ins and a query API for 

Mac OS X Internals (www.osxbook.com)            127

http://www.osxbook.com
http://www.osxbook.com


searching files based on their metadata, even immediately after new files are cre-
ated. Dashboard is an environment  for creating and running lightweight  desktop 
utilities called widgets, which normally remain hidden and can be summoned by a 
key-press. Other important “Tiger” features include the following.

• Improved 64-bit support, with the ability to compile 64-bit binaries, and 
64-bit support in the libSystem shared library

• Automator—a tool for automating common procedures by visually creat-
ing workflows

• Core Image—a media technology employing GPU-based acceleration 
for image processing

• Core Video—a media technology acting as a bridge between QuickTime 
and the GPU for hardware-accelerated video processing

• Quartz 2D Extreme—a new set of Quartz layer optimizations that use the 
GPU for the entire drawing path (from the application to the frame-
buffer)

• Quartz Composer—a tool for visually creating compositions using both 
graphical technologies (such as Quartz 2D, Core Image, OpenGL, and 
QuickTime) and non-graphical technologies (such as MIDI System Serv-
ices and Rich Site Summary)

• Support for resolution-independent user interface
• Improved iChat AV, with support  for multiple simultaneous audio and 

video conferences
• PDF Kit—a Cocoa framework for managing and displaying PDF files 

from within applications
• Improved Universal Access, with support  for an integrated spoken inter-

face
• Improved Sync Services
• An embeddable SQL database engine (SQLite) allowing applications to 

use SQL databases without running a separate RDBMS64  process
• Core Data—a Cocoa technology that  integrates with Cocoa bindings and 

allows visual description of an application’s data entities, whose in-
stances can persist on a storage medium

• An improved Search Kit

128
 Chapter 1    A Technical History of Apple’s Operating Systems

64 Relational Database Management System



• Fast Logout and Autosave for improved user experience
• Support for Access Control Lists (ACLs)
• New formalized and stable interfaces, particularly for kernel program-

ming
• Improvements to: the Web Kit  (including support for creating and editing 

content at the DOM level of an HTML document), the Safari web 
browser (including RSS support), QuickTime (including support  for the 
H.264 code and a new QuickTime Kit  Cocoa framework), the Audio 
subsystem (including support for OpenAL, the Open Audio Library), the 
Mac OS X installer application, Xcode, and so on

The first shipping x86-based Macintosh computers used Mac OS X 10.4.4 
as the operating system.

1.11. OTHERS

Besides desktop and server computers, Apple has made various other devices run-
ning operating systems, such as the Pippin multimedia device, hand-held computers 
(the MessagePad and the eMate), and the iPod portable music player.

1.11.1. Mac OS on the Pippin

Apple announced the Pippin platform in Tokyo on December 13, 1994. The Pippin 
was dubbed as a multimedia device, a set-top box, and a network computer. It  was a 
multimedia player platform based on Apple’s second generation Power Macintosh 
hardware and software.

The nomenclature has fruity  connotations and connections. Pippin is also a vari-

ety of apples (the fruit). Pippin apples are smaller than the McIntosh variety of apples.

The Pippin was meant  for activities such as playing back CDs, surfing the 
Internet, reading email, and playing games—but not  for full-fledged computing. Its 
primary display was meant to be a television screen. It was therefore positioned as a 

Mac OS X Internals (www.osxbook.com)            129

http://www.osxbook.com
http://www.osxbook.com


device that was “more than” a video game console, but  “less than” a personal com-
puter. Apple’s plan was to license the Pippin platform to third parties, allowing 
manufacturers to build and sell their own versions. The license terms were to in-
clude a per-title royalty.

The Pippin’s technical specifications are shown in Table 1–2. Note that of the 
6MB RAM, approximately 2MB was used for system software and video, and the 
rest  was available for use by titles. Memory could be added via expansion cards in 
increments of 2MB, 4MB, or 8MB. The few devices actually made also had 128KB 
of built-in NVRAM, of which the system software used 8KB. The NVRAM was 
represented as a small HFS volume.

TABLE 1–2 The Pippin’s technical specifications

Area Details

Processor 66 MHz PowerPC 603e processor, with 3 instructions per 
clock cycle, 8KB data cache, 8KB instruction cache, and 
IEEE standard compliant single/double precision floating-
point unit

Memory 6MB total RAM and 64KB SRAM

Physical Storage 4X CDROM drive, floppy disk drives and disk drives 
attachable through an expansion bus

Video Support for NTSC, PAL, S-Video, and VGA (640×480); 

up to 16.7 million colors; support for 8-bit and 16-bit 
video

Audio Stereo 16-bit 44 kHz sampled input and output

Input Devices Support for up to four simultaneous game controllers over 
the Apple Desktop Bus, support for standard ADB key-
board and mice connected through adapters

130
 Chapter 1    A Technical History of Apple’s Operating Systems



Area Details

I/O Serial port and telephony support via an optional GeoPort

The Pippin also offered a proprietary digital filtering technique for improving 
text visibility on a standard television screen. Planned connectivity features for the 
Pippin included file sharing and other communication with home computers. Inter-
net connectivity was to be provided using an additional adapter or an external mo-
dem. 

Apple announced in early 1995 that the Pippin would ship by the end of that 
year.65 There were no plans to ship an Apple-branded Pippin. The first third party to 
license the Pippin was Bandai66 Digital Entertainment Corporation—a Japanese toy 
manufacturer and CDROM game title publisher. Bandai’s Pippin-based Power 
Player product was expected to sell for approximately $500. A “cheap” multimedia 
computer’s cost was over $1000 at that point.

The Pippin ran a custom version of Mac OS that had various dedicated fea-
tures. Several Macintosh computer specific features had been removed to minimize 
memory footprint. However, highly used or otherwise necessary features were in-
cluded, for example: the Macintosh Toolbox; a built-in 680x0 emulator; integrated 
QuickTime; and an integrated, PowerPC-native version of QuickDraw. Since the 
Pippin did not include a disk drive by default, it  typically booted from system soft-
ware residing on the same disc as a Pippin title. Developers could create their own 
system software bundle by choosing the appropriate system version and configura-
tion.

The Pippin’s intended software library was to include games and software for 
reference, learning, and interactive music. It was believed that the Pippin would 

Mac OS X Internals (www.osxbook.com)            131

65 Apple eventually provided a Pippin Developer SDK in early 1996.

66 Bandai’s product line included the Power Rangers action figures.

http://www.osxbook.com
http://www.osxbook.com


even run simple versions of financial software, spreadsheets, and word processors. 
In fact, Apple expected many Macintosh applications to run unchanged on the Pip-
pin,67 with the only requirement being a remastering step to include system software 
on application discs. Conversely, Pippin titles were expected to work on the Macin-
tosh too.

The Pippin met with a positive reception from the media. An October 1996 
article in a Microsoft  developer column called Pippin “A Real Network Computer.” 
The article pointed out  that the Pippin’s appeal was that for the price of a high-end 
VCR, it delivered an almost complete low-end Macintosh. Apple’s licensing plans 
were also praised:

“Apple’s go-it-alone attitude has achieved legendary status. That’s why it’s 
amazing that the company that once vowed never to license their crown jewels is 
neither manufacturing nor marketing the Pippin itself. The Network Computer may 
be a joke so far, but Pippin clearly is not.” BYTE magazine proclaimed “Bandai 
Digital’s @WORLD Web-browsing system  may one day be the Mac network com-
puter for corporations.”

However, the Pippin was a failed product—it did not  reach most of its in-
tended markets. Bandai sold some systems, marketing them as ATMARK in Japan 
and @WORLD in USA. The @WORLD system came with a slightly modified ver-
sion of the Spyglass Internet  browser. A few other variants of Pippin existed as 
samples or prototypes. Some Pippins had a PowerPC sticker and another stating 
“Advanced Technology By Apple Computer.”

Apple also had a set top  box product: the Apple Interactive TV Box. It sup-
ported the MPEG-2 video decompression standard, and a variety of input 
and output ports such as ADB, dual 21-pin EURO-SCART, RF IN and RF 
OUT (either NTSC or PAL), RJ-45 connector for either E1 or T1 data 
streams, Apple System/Peripheral 8 Cable (serial), S-Video output, RCA 

132
 Chapter 1    A Technical History of Apple’s Operating Systems

67 Nevertheless, the Pippin  was a fundamentally more limited runtime environment as compared to a 
Macintosh.



composite video output, RCA stereo audio output, and SCSI HDI-30.

1.11.2. Newton OS

Newton was a software and hardware technology that  Apple created for a family of 
PDAs and PDA-like products. Apple’s line of hand-held computing devices, such as 
models of the MessagePad and the eMate 300, ran the Newton operating system. 
Newton also ran on clone devices.

The MessagePad was physically similar to a latter-day Personal Digital Assis-
tant (PDA), with an active LCD screen for on-screen tapping, writing, and drawing. 
The original model was introduced in 1993 with Newton OS 1.0. It had a 20 MHz 
ARM 610 processor, 640KB RAM, and 4MB ROM. The last  model—the 
MP2100—was introduced in late 1997. It had a 161.9 MHz StrongARM processor, 
8MB RAM, and 8MB ROM. It ran Newton OS 2.1.

The eMate was a portable68 computer with a 480×320 pixel active LCD screen 

and a keyboard. Its screen had a 0.30 mm dot pitch, supported 16 levels of gray, and 
had a yellow-green luminescent backlight.

The Newton System Software was logically divided into three parts: Newton 
OS at the lowest level, System Services, and Application Components.

1.11.2.1. Newton OS  

The operating system was preemptive and multitasking. It  could be considered as a 
modular set of tasks, each dedicated to specific functionality such as scheduling, 
task management, inter-task communications, memory management, power man-
agement, and various interactions with hardware. A low-level, extensible communi-

Mac OS X Internals (www.osxbook.com)            133

68 The eMate 300 measured 289.6×305.0×53.3 mm, and weighed 4.2 lbs.

http://www.osxbook.com
http://www.osxbook.com


cations subsystem managed serial hardware, infrared,69  and AppleTalk networking. 
This subsystem was extensible in that new protocols could be dynamically added 
and removed.

1.11.2.2. System Services  

Many system services ran atop the operating system, such as Book Reader, End-
point  Communications, Filing, Find, Imaging and Printing, Intelligent  Assistant, 
Object Storage System, Routing and Transport, Stationery, Text  Input and Recogni-
tion, and View System.

1.11.2.3. Application Components

These included the NewtonScript  Application Program and the user interface that 
ran atop System Services. Newton applications, both built-in and third party, ran in 
a single operating system task.

Newton used a sophisticated, modeless input recognition system that  could 
recognize text, shapes, and gestures. The text  recognizer could handle printed, cur-
sive, or mixed handwriting. The shape recognizer could recognize both simple and 
complex geometric shapes. A descendant of this recognition technology exists as 
Inkwell in Mac OS X. 

Dylan

A programming language called Dylan was considered as a candidate for being 

the primary  language for developing Newton applications. Dylan is  an object-oriented, 

Lisp-like, dynamic language that combines the features of static (such as C and C++) 

and dynamic (such as Lisp) languages. It was originally  developed at Apple in collabo-

134
 Chapter 1    A Technical History of Apple’s Operating Systems

69 Newton devices could exchange information with each other using infrared wireless transmission.



ration with Carnegie Mellon University  and Harlequin Inc. One of Dylan’s primary  de-

sign goals was to be a suitable language for commercial software development. Apple 

abandoned Dylan in 1995.

1.11.3. The iPod’s Operating System

Apple’s successful iPod portable music player runs a proprietary operating system. 
When the first  iPod was released in 2001, its software’s “About” section mentioned 
PortalPlayer, a company that offers platform suites to manufacturers developing 
portable digital entertainment devices. A small company called Pixo was also cred-
ited. Pixo’s focus was on developing a wireless software platform and services for 
phone manufacturers. The Pixo software platform consisted of components such as 
the following:

• Pixo Kernel
• Pixo Toolbox
• Pixo Application Framework
• Pixo User-interface Builder
• Pixo Platform Applications
• Pixo Partner Applications
• Pixo Internet Microbrowser

Pixo was acquired by Sun Microsystems in 2003. 

The iPod uses PortalPlayer’s Digital Media Platform, which is marketed as a 
turnkey solution consisting of System-On-Chip integrated circuits (ICs), a custom-
izable firmware suite, integrated third party services, PC software, and other com-
ponents. The iPod uses PortalPlayer’s PP50xx chip, which contains two ARM7T-
DMI processor cores. Its embedded operating system, along with its encoding and 
decoding components, also come from PortalPlayer.

Mac OS X Internals (www.osxbook.com)            135

http://www.osxbook.com
http://www.osxbook.com


Pixo’s software, particularly the Toolbox, provided the foundation on which 
the iPod’s user interface was originally designed and implemented by Apple. The 
Pixo Toolbox provided modules for memory management, low-level graphics such 
as bitmaps, boxes, lines, and text, Unicode, collection classes, resource database, 
and standard libraries. Pixo’s range of applications included Address Book, Calcula-
tor, Calendar, Email, Graphical World Clock, Memo Maker, Todo List, and PC Syn-
chronization.

136
 Chapter 1    A Technical History of Apple’s Operating Systems




