
� � � � � � � � � 	 	

30 July 2003

A simple method for finding the square root of an
integer without using multipli cation, division, or

floating point arithmetic. An example program for
the PIC series of processors is included.

This document:
www.bcpl.net/~jpower/ezsqrt.pdf

Web site:
www.bcpl.net /~jpower/powertech.html

� �
 � � � � � � � � � � � � � �

EZ Square Root of an Integer Page 2 of 6

Introduction. In the early days of mechanical computing, the complexity of the machines used was
limited by their reliance on mechanisms with moving parts. This in turn placed a premium on simple
algorithms which could extract results from numbers essentiall y presented as integers. Even the early
electronic computers such as the ENIAC had to contend with the lack of floating point capabilit y and with
littl e storage capacity. One such algorithm for finding the square root of an integer is presented here. It
uses only integer addition, subtraction, and comparision, and could be suitable for use in microcontroller
firmware when a precision result is not needed. First the basic theorems on which the theory is based will
be presented. A flowchart of the basic process will t hen be presented, followed by some tips on
streamlining the program.

The algorithm for finding the approximate square root of an integer is based on Theorem 2 below.
Subtracting successive odd integers, beginning with 1, from the given number N, determines the
maximum number of terms in the summation, which is the square root of that number if the remainder
becomes zero, and the greatest lower bound on the square root otherwise. In the latter case, an additional
test can be applied to determine whether the square root is greater than the number of subtractions plus
one half.

**

Theorem 1: The sum of the first N positi ve integers is N(N+1) / 2.

S k N N
k

N

1 1 2
1

≡ = +
=

∑ () /
(1)

Proof:

Construct an array with successive columns holding k elements, k=1,2,...,N. For N=6, e.g.,

 x
 xx
 ...xxx
 ..xxxx
 .xxxxx
 xxxxxx

There is a total of N squared positions in the array, and N elements on the diagonal. That leaves

() /N N2 2−
positions above the diagonal and an equal number below it. The total number of occupied elements in the
array is the sum of the number on the diagonal and the number below it, giving

S N N N1 22= − +() /

S N N N N1 2 2 1 22= + = +/ / () / QED (2)

**

Theorem 2: The sum of the first N odd positi ve integers is N squared.

S k N
k

N

2 2 1
1

2≡ − =
=

∑ ()
(3)

Proof:

S k N
k

N

2 2
1

= −
=

∑
From Theorem 1:

� � � � � � � � � � ! � " # � $
 30 July 2003

EZ Square Root of an Integer Page 3 of 6

S N N N2 2 1 2= × + −[() /]

S N N N N2 2 2= + − = QED

**
Alternate proof:

The interval between two consecutive squares is

∆ k k k k= + − = +()1 2 12 2

This is the (k + 1)’st odd integer. Since summing consecutive intervals gives the final value,

∆ k
k

N

N
=

−

∑ =
0

1
2

but this is the same as summing the first N odd integers, which will also generate N ^ 2. Therefore the
sum of the first N odd integers equals N ^ 2. QED

**

Theorem 3: The integer part of the square of the mid-value between k and k+1 is the sum of k ^ 2 and k.
If k is the square root of N, this is N + k.

Proof:

() ()k k k k k+ = + + = + +

1

2
2

1

2

1

4

1

4
2 2 2

 QED (4)

**

Since this expression is the sum of two integers and the fraction 1/4, its value is not an integer.
This means that if an integer value is given for N, the square root cannot be [k + 1/2] for integer k.

If consecutive odd integers are subtracted from N until remainder becomes zero on the k’ th
subtraction, the square root of N is k because this is the number of odd integers which sum to N.

If remainder is less than the [k + 1]’ st odd integer, the next subtraction will yield a negative
remainder. This places sqrt(N) between k and [k + 1]. The value can be further refined to either the upper
or lower half of that interval by inspecting remainder. After k subtractions, we have “removed” k ^ 2 from
N, leaving remainder = (N - k ^ 2) or N = remainder + k ^ 2. The maximum point of the lower half of the
interval is at y = k ^ 2 + k. If N <= y or equivalently, remainder <= k then sqrt(N) is in the lower half of
the interval with inequaliti es at each end of the region:†

k N k< < +[/]1 2 if remainder <= k (5)

If remainder > k, then sqrt(N) will be in the upper half of the region.

[/] []k N k+ < < +1 2 1 if k < remainder < [k + 1] (6)
In the following flow chart, the latter test is performed as a test for remainder < 0, knowing that on

the previous iteration remainder > [k - 1]. The logic is as follows: on this iteration, the remainder is
negative, so the remainder on the previous pass was less than k, but on the other hand, that remainder was
also > [k - 1], otherwise the algorithm would have terminated with a solution. That places the previous
remainder in the upper half of the previous region. As a result, sqrt(N) lies between [k - 1] + 1/2 and k, or
between [k - 1/2] and k, using the current value of k. Using the previous value of k gives the result shown
in (6). Since it is convenient to present the result as an integer with positi ve or zero offsets, the code

† Sqrt(N) cannot be [k + 1/2], and if it were an integer, it would have been detected in the test for zero.
% & ' () * (+ , - & . & / 0 (1

 30 July 2003

EZ Square Root of an Integer Page 4 of 6

presented later decrements k if remainder is less than zero. This makes the previous value of k the integer
part of the answer.

YES sqrt(N) = kremainder

NO

YES (k - 1/2) < sqrt(N) < kremainder

YESremainder k < sqrt(N) < (k + 1/2)

k = k + 1
odd_int = odd_int + 2

k = 1

odd_int = 1

remainder = N

remainder = remainder - odd_int

NO

NO

START

DONE

Find sqrt(N)

= 0 ?

< 0 ?

<= k ?

Discussion. This method works only for integer values of N and can require a large number of
subtractions. These limitations can be worked around. The integer N can be shifted left by S bits; after
finding the square root of N * (2 ̂ S), the binary point can then be moved S/2 positions to the left from its
initial position at the right of the low order bit. The number of subtractions can be reduced by anticipating
the approximate range of the result and using appropriate starting values for remainder, k, and odd_int.
Both of these methods are utili zed in the PIC code example which follows.

Example. Statement of the problem:
Find the square root of an unsigned 8 bit integer N and put the result in register result. Since the integer

2 3 4 5 6 7 5 8 9 : 3 ; 3 < = 5 >
 30 July 2003

EZ Square Root of an Integer Page 5 of 6

part of result needs no more than 4 bits, use the remaining 4 bits in result to hold a fractional part. If
feasible, obtain additional bits of resolution.

Statement of the method to be used:
The result will be considered a fixed point fraction with the binary point between bits r4 and r3. This
allows values from zero to 1111.1111 . The initial value N will be shifted 8 bits to the left, multiplying it
by 256; this will shift result by 8/2 = 4 bits left, accomodating the format described above. The
supplementary information supplied by equations (5) and (6) will provide two additional bits. Here’s how:
for purposes of the algorithm, result is an integer. The additional information about which half of the
interval (upper or lower) holds the answer places the result either between result.0 and result.1 or between
result.1 and result+1 (note the binary point). On average, the result will li e at the center of the appropriate
interval, so if in the lower half, state the result as result.01; if in the upper half, use result.11 as the best
estimate. These expressions will have an error no larger than ± B’ .01’ ; after taking into account the real

position of the binary point in result, this becomes ±B’ .000001’ which is ± 1/64. After finding result,
append as auxili ary bits either 01 or 11, based on (5) or (6).

If N = 0 or 1, sqrt(N) = N, so these values do not need to be computed; they can be loaded directly
into result (and then shifted left 4 places). The minimum value of N is now 2, making the smallest value
of remainder 0x0200 or 512. The largest number of iterations that can be guaranteed to be completed
without exhausting remainder is now 22, since sqrt(512) = 22.6. Since the preloaded value of result is the
next value to be used, take the starting value of result to be 23. The initial value of remainder is the result
of the previous subtraction, consequently since 22 ̂ 2 = 484, the normal starting value of remainder must
now be decreased by 484. Observe that D’484’ = H’01E4’ , and that the original shifted value of
remainder, | N | | 0 |, always has a low byte equal to zero. Decreasing remainder by 484 reduces the high
byte of remainder by 2 for the following reason. Subtracting the E4 part from zero always creates a borrow
from the high byte, leaving D’28’ in the low byte. Subtracting the 1 from the high byte reduces the high
byte once more. As a result, remainder is initiall y loaded with | N - 2 | | 28 | and result is loaded with 23.
Odd_int must now be preloaded as the 23nd odd integer, which is 2 * 23 - 1 = 45.

In the following code, the order of the tests for remainder = 0 and remainder < 0 are reversed for
convenience. It is only important that the test for remainder <= k come last, since both of the other tests
can also satisfy this criterion.

The auxili ary bits are returned in W, with a value of 0 indicating that the result of the algorithm is
an exact integer. This does not mean that the square root of N is an integer, but rather that the fraction
result is exact with no more binary digits.

The code: (register addresses depend on the processor used)

parm equ 0x20 ; unsigned 8 bit value of N
result equ 0x21 ; the answer goes here (= k)
oddintlo equ 0x22 ; max result = 255 => max odd int =
oddinthi equ 0x23 ; 2*255 -1 = 509 = 2 bytes
remhi equ 0x24 ; high byte of remainder
remlo equ 0x25 ; low byte of remainder

sqrt: movlw 2 ; test N for 0 or 1
subwf parm, W ; N - 2: if borrow, N = 0 or 1
btfsc STATUS, C ; C set = no borrow, must calculate it
goto the _long _way

 movf parm, W ; sqrt(N) = N
movwf result
swapf result, F ; shift the binary point 4 bits left
retlw 0 ; 0 => result is a perfect integer

the _long _way:
movwf remhi ; W still has N - 2
movlw D’28’
movwf remlo ; preload remainder
movlw D’23’
movwf result ; preload result
movlw D’45’
movwf oddintlo ; preload current odd integer

? @ A B C D B E F G @ H @ I J B K
 30 July 2003

EZ Square Root of an Integer Page 6 of 6

clrf oddinthi
loop: movf oddintlo, W ; subtract the next odd integer

subwf remlo, F
btfsc STATUS, C
goto auxcy ; if no borrow from low byte, continue
movlw 1 ; must decrement high byte, since low
subwf remhi, F ; byte borrowed - if this decrement also
btfss STATUS, C ; borrows, then whole subtraction
goto carry ; borrowed - we’re done

auxcy: movf oddinthi, W ; low byte didn’t borrow, so check high
subwf remhi, F
btfsc STATUS, C ; if clear, there is a carry
goto no_carry ; 1st two tests are reversed - see text

carry: decf result, F ; we went past it, so back up
retlw B’11000000’ ; it’s in the upper half - exit

no_carry: movf remlo, W ; test remainder for zero
iorwf remhi, W ; we still need remainder
btfsc STATUS, Z ; so don’t change it
retlw 0 ; its an integer! - exit

above _k?: movf remhi, W ; test remainder for > result
btfss STATUS, Z ; if remhi != 0, then rem is > result
goto next
movf remlo, W ; (result-remlo): if C, then rem > result
subwf result, W
btfsc STATUS, C
retlw B’01000000’ ; it’s in the lower half - exit

next: incf result, F
movlw 2
addwf oddintlo, F
btfsc STATUS, C
incf oddinthi, F
goto loop

The maximum number of iterations will be 255 - 22 = 233, which is a minimum reduction of 8.6%
or an average reduction of twice that. This can be improved if N is tested for midpoint by checking both
high order bits (p7 and p8) for zero. Note that for result equal to 1/2 of maximum value, N achieves only
1/4 of its maximum. Since the goal is to halve execution time, the break occurs at N = 255/4 = 63 which
is indicated by both high order bits being zero. If either bit is set, a new set of preloads is used in place of
those found above.

The program can be modified easil y to handle 16 bit values of N giving 8 bit integer values of
result. All that is required is an additional register for the low byte of N; high and low bytes of N would
then be loaded into remainder in place of | N - 2| | 28 |. The standard preload numbers: 1 for result, and
1 for odd_int would then be used since there is no advantage otherwise.

L M N O P Q O R S T M U M V W O X
 30 July 2003

