EZ Square Root

30 July 2003

A simple method for finding the square roat of an
integer without using multi pli cation, division, or
floating point arithmetic. An example program for
the PIC series of processorsisincluded.

This document:
www.bcpl.net/~jpower/ezsgrt.pdf

Web site;
www.bcpl.net /~jpower/powertech.html

POWER TECHNOLOGIES

EZ Square Root of an Integer Page2 of 6

Introduction. In the erly days of medhanical computing, the @mplexity of the machines used was
limited by their reliance on medchanisms with moving perts. Thisin turn placed a premium on simple
algorithms which could extract results from numbers essntiall y presented as integers. Even the early
eledronic computers sich asthe ENIAC had to contend with the lack of floating point capability and with
littl e storage @pacity. One such algorithm for finding the square roat of an integer is presented here. It
uses only integer additi on, subtraction, and comparision, and could be suitable for use in microcontroll er
firmware when a predsion result is not needed. First the basic theorems on which the theory is based will
be presented. A flowchart of the basic processwill then be presented, foll owed by sometips on
streamlining the program.

The algorithm for finding the approximate square roat of an integer is based on Theorem 2 below.
Subtracting successve odd integers, beginning with 1, from the given number N, determines the
maximum number of termsin the summation, which isthe square roat of that number if the remainder
beames zero, and the greatest lower bound on the square roat otherwise. In the latter case, an additional
test can be appli ed to determine whether the square rodt is greater than the number of subtractions plus
one half.

kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkhkhkkkkkkk

Theorem 1: Thesum of thefirst N positive integersis N(N+1) / 2.

N
S1= Y k=N(N+1)/2
g (1)

Pr oof:

Construct an array with successve mlumns holding k elements, k=1,2,... N. For N=6, e.g.,

s XX

LG XXX

L XXXX
XXXXX
XXXXXX

Thereisatotal of N squared positionsin the array, and N elements on the diagonal. That leaves
(N>=N)/2

positi ons above the diagonal and an equal number below it. The total number of occupied elementsin the

array isthe sum of the number on the diagonal and the number below it, giving

S1=(N2-N)/2+N
S1=N?/2+N/2=N(N+1)/2 op @

kkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkhkhkhkkkkkkk

Theorem 2: Thesum of thefirst N odd positive integersis N squared.
N
S2= Z(Zk—l) = N?
. (©)

Pr oof:
N
2= ZZk -N

From Theorem 1:

POWER TECHNOLOGIES 30 July 2003

EZ Square Root of an Integer Page3 of 6

S2=2x[N(N+1)/2]-N
S2=N?+N-N=N? Qep

kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhhhkkkkkkk

Alter nate proof:

Theinterval between two conseautive squaresis
A =(k+D*-Kk*=2k+1

Thisisthe (K + 1)'st odd integer. Since summing conseautive intervals gives the final value,

N-1
Z}Ak = N?

but this isthe same as simming thefirst N odd integers, which will also generate N~ 2. Therefore the
sum of thefirst N odd integersequalsN " 2. QED

kkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkhkhkhhkkkkkkk

Theorem 3: The integer part of the square of the mid-value between k and k+1 isthe sum of k” 2 and k.
If kisthe squareroat of N, thisisN + k.

Pr oof:

1 1 1 1
(k+2)? =k®+2k(z)+ - =k* +k+—
2 2" 4 4 QED (4)

kkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkhhhkkkkkkk

Sincethis expresson is the sum of two integers and the fraction 1/4, its value is not an integer.
This meansthat if an integer valueis given for N, the square roat cannot be [k + 1/2] for integer k.

If conseautive odd integers are subtracted from N until remainder becomes zero on the K'th
subtraction, the squareroat of N isk because thisis the number of odd integers which sum to N.

If remainder islessthan the [k + 1]’ st odd integer, the next subtraction will yield a negative
remainder. Thisplaces grt(N) between k and [k + 1]. The value @n be further refined to either the upper
or lower half of that interval by inspeding remainder. After k subtractions, we have “removed” k~ 2 from
N, leaving remainder = (N - kK 2) or N = remainder + k” 2. The maximum point of the lower half of the
interval isaty = k" 2+ k. If N <=y or equivalently, remainder <= k then sgrt(N) isin the lower half of
the interval with inequaliti es at each end of the region:

k<+/N <[k+1/2] if remainder <= k (5)

If remainder > k, then sgrt(N) will bein the upper half of the region.

[k+1/21 <IN <[k+1 it ¢ < remainder < [k+ 1] C)

In the foll owing flow chart, the latter test is performed as a test for remainder < 0, knowing that on
the previousiteration remainder > [k - 1]. Thelogicisasfollows: on thisiteration, the remainder is
negative, so the remainder on the previous passwas lessthan k, but on the other hand, that remainder was
also > [k - 1], otherwise the algorithm would have terminated with a solution. That places the previous
remainder in the upper half of the previous region. Asaresult, sgrt(N) lies between [k - 1] + 1/2 and k, or
between [k - 1/2] and k, using the aurrent value of k. Using the previous value of k gives the result shown
in (6). Sinceit is convenient to present the result as an integer with positive or zero dfsets, the amde

T Sgrt(N) cannot be [k + 1/2], and if it were an integer, it would have been deteded in the test for zero.
POWER TECHNOLOGIES 30 July 2003

EZ Square Root of an Integer Page4 of 6

presented later deaements k if remainder islessthan zero. This makes the previous value of k the integer
part of the answer.

(START) ‘

k=1
odd_int = 1

remainder = N F”’]d Sqrt(N)

remainder = remainder - odd_int

remainder

s 1 sgrt(N) =k

remainder
<07?

1 (k - 1/2) < sqrt(N) <k

remainder
<=k?

- k <sqgrt(N) < (k + 1/2)

DONE

k=k+1
odd_int = odd_int + 2

Discussion. This method works only for integer values of N and can require alarge number of
subtractions. These limitations can be worked around. The integer N can be shifted left by Shits; after
finding the squareroat of N * (2), the binary point can then be moved §2 positi ons to the left from its
initial position at theright of the low order bit. The number of subtractions can be reduced by anticipating
the approximate range of the result and using appropriate starting values for remainder, k, and odd_int.
Both of these methods are utili zed in the PIC code example which foll ows.

Example. Statement of the problem:
Find the square roat of an unsigned 8 hit integer N and pu the result in register result. Sincethe integer

POWER TECHNOLOGIES 30 July 2003

EZ Square Root of an Integer Page5of 6

part of result needs no more than 4 bits, use the remaining 4 bitsin result to hold a fractional part. If
feasible, obtain additional bits of resolution.

Statement of the method to be used:

Theresult will be mnsidered afixed point fraction with the binary point between bitsr4 and r3. This
allows values from zero to 1111.1111 . Theinitial value N will be shifted 8 bits to the left, multi plying it
by 256, thiswill shift result by 8/2 = 4 bits |eft, acoomodating the format described above. The
supdementary information supgied by equations (5) and (6) will provide two additional bits. Here' s how:
for purposes of the algorithm, result is an integer. The additional information about which half of the
interval (upper or lower) holds the answer places the result either between result.0 and result.1 or between
result.1 and result+ 1 (note the binary point). On average, the result will li e at the center of the appropriate
interval, soif in the lower half, state the result as result.01; if in the upper half, useresult.11 as the best
estimate. These expressonswill have an error no larger than * B'.01'; after taking into account the real
position of the binary point in result, this beames £B’.000001 which is * 1/64. After finding result,
append as auxili ary bits either 01 or 11, based on (5) or (6).

If N=0or 1, sgrt(N) = N, so these values do not need to be cmputed; they can be loaded dredly
into result (and then shifted left 4 places). The minimum value of N is now 2, making the small est value
of remainder 0x02000r 512 The largest number of iterations that can be guaranteed to be completed
without exhausting remainder is now 22, sincesgrt(512) = 22.6. Sincethe preloaded value of result isthe
next value to be used, take the starting value of result to be 23. Theinitial value of remainder is the result
of the previous subtraction, consequently since22” 2 = 484, the normal starting value of remainder must
now be deaeased by 484 Observe that D'484 = H'01E4’, and that the original shifted value of
remainder, | N || 0|, always has alow byte equal to zero. Deaeasing remainder by 484 reduces the high
byte of remainder by 2 for the foll owing reason. Subtracting the E4 part from zero always creates a borrow
from the high byte, leaving D’ 28 in the low byte. Subtracting the 1 from the high byte reduces the high
byte oncemore. Asaresult, remainder isinitially loaded with | N - 2| | 28 | and result is loaded with 23,
Odd_int must now be preloaded as the 23nd odd integer, which is2 * 23- 1 =45,

In the foll owing code, the order of the tests for remainder = 0 and remainder < O are reversed for
convenience It isonly important that the test for remainder <= k come last, sincebath of the other tests
can also satisfy this criterion.

The auxili ary bits are returned in W, with a value of 0 indicating that the result of the algorithm is
an exact integer. This does not mean that the square roat of N isan integer, but rather that the fraction
result is exact with no more binary digits.

The amde: (register addresses depend on the processor used)

parm equ 0x20 ; unsigned 8 bit value of N
result equ 0x21 ; the answer goes here (= k)
oddintlo equ 0x22 ; max result = 255 => max odd int =
oddinthi equ 0x23 ; 2*255 -1 =509 = 2 bytes
remhi equ 0x24 ; high byte of remainder
remlo equ 0x25 ; low byte of remainder
sqrt: moviw 2 ;testNforOorl
subwf parm, W ; N-2:if borrow, N=0or1

btfsc STATUS, C ; C set = no borrow, must calculate it
goto the _long _way

movf parm, W ;sqrt(N) =N

movwf result

swapf result, F ; shift the binary point 4 bits left

retw 0 ; 0 =>result is a perfect integer
the _long _way:

movwf remhi ; Wstillhas N - 2

moviw D’28’

movwf remlo ; preload remainder

moviw D23’

movwf result ; preload result

moviw D45’

movwf oddintlo ; preload current odd integer

POWER TECHNOLOGIES 30 July 2003

EZ Square Root of an Integer Page 6 of 6

clrf oddinthi

loop: movf oddintlo, W ; subtract the next odd integer
subwf remlo, F
btfsc STATUS, C

goto auxcy ; if no borrow from low byte, continue
moviw 1 ; must decrement high byte, since low
subwf remhi, F ; byte borrowed - if this decrement also
btfss STATUS, C ; borrows, then whole subtraction
goto carry ; borrowed - we're done

auxcy: movf oddinthi, W ; low byte didn’t borrow, so check high

subwf remhi, F
btfsc STATUS, C ; if clear, there is a carry

goto no_carry ; 1st two tests are reversed - see text
carry: decf result, F ; we went past it, so back up
retw B’11000000’ ; it's in the upper half - exit
no__carry: movf remlo, W ; test remainder for zero
iorwf remhi, W ; we still need remainder
btfsc STATUS, Z ; so don’t change it
retw 0 ; its an integer! - exit
above _k?: movf remhi, W ; test remainder for > result
btfss STATUS, Z ; if remhi 1= 0, then rem is > result
goto next
movf remlo, W ; (result-remlo): if C, then rem > result

subwf result, W

btfsc STATUS, C

rettw B’01000000’ ;it's in the lower half - exit
next: incf result, F

moviw 2

addwf oddintlo, F

btfsc STATUS, C

incf oddinthi, F

goto loop

The maximum number of iterations will be 255- 22 = 233 which is a minimum reduction of 8.6%
or an average reduction of twicethat. This can beimproved if N istested for midpoint by cheding bath
high order bits (p7 and p8 for zero. Note that for result equal to 1/2 of maximum value, N achieves only
1/4 of its maximum. Sincethe goal isto halve exeaution time, the break occursat N = 2554 = 63 which
isindicated by bath high order bits being zero. If either bit is st, a new set of preloadsis used in place of
those found abowve.

The program can be modified easily to handle 16 bit values of N giving 8 bit integer values of
result. All that isrequired is an additional register for the low byte of N; high and low bytes of N would
then be loaded into remainder in placeof | N - 2| | 28 |. The standard preload numbers: 1 for result, and
1 for odd_int would then be used sincethereis no advantage otherwise.

POWER TECHNOLOGIES 30 July 2003

