
Universal Binary Programming
Guidelines, Second Edition

2006-07-24

Apple Computer, Inc.
© 2005, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, ColorSync, FireWire, Logic, Mac,
Mac OS, Macintosh, Pages, Panther, Quartz,
QuickDraw, QuickTime, Rosetta, and Xcode
are trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

eMac, Finder, and Spotlight are trademarks
of Apple Computer, Inc.

Objective-C is a registered trademark of
NeXT Software, Inc.

Intel and Intel Core are registered
trademarks of Intel Corportation or its
subsidiaries in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

MMX is a trademark of Intel Corporation
or its subsidiaries in the United States and
other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to Universal Binary Programming Guidelines 9

Who Should Read This Document? 9
Organization of This Document 9
Assumptions 10
Conventions 11

Chapter 1 Building a Universal Binary 13

Build Assumptions 13
Building Your Code 14
Debugging 17
Troubleshooting Your Built Application 17
Determining Whether a Binary Is Universal 18
Build Options 19

Default Compiler Options 19
Architecture-Specific Options 20
Autoconf Macros 20

See Also 21

Chapter 2 Architectural Differences 23

Alignment 23
Bit Fields 23
Byte Order 23
Calling Conventions 24
Code on the Stack: Disabling Execution 24
Data Type Conversions 24
Data Types 25
Divide-By-Zero Operations 25
Extensible Firmware Interface (EFI) 26
Floating-Point Equality Comparisons 26
Structures and Unions 26
See Also 27

Chapter 3 Swapping Bytes 29

Why Byte Ordering Matters 29

3
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Guidelines for Swapping Bytes 31
Byte-Swapping Routines 32
Byte-Swapping Strategies 32

Constants 33
Custom Apple Event Data 33
Custom Resource Data 34
Floating-Point Values 34
Integers 35
Network-Related Data 36
OSType-to-String Conversions 37
Unicode Text Files 37
Values in an Array 39

Writing a Callback to Swap Data Bytes 39
See Also 45

Chapter 4 Guidelines for Specific Scenarios 47

Aliases 47
Archived Bit Fields 47
Automator Scripts 48
Bit Shifting 48
Bit Test, Set, and Clear Functions: Carbon and POSIX 48
CPU Subtype 49
Dashboard Widgets 49
Deprecated Functions 49
Disk Partitions 49
Double-Precision Values: Bit-by-Bit Sensitivity 50
Finder Information and Low-Level File System Operations 50
FireWire Device Access 51
Font-Related Resources 51
GWorlds 51
Java Applications 52
Java I/O API (NIO) 52
Machine Location Data Structure 53
Mach Processes: The Task for PID Function 53
Metrowerks PowerPlant 53
Multithreading 54
Objective-C: Messages to nil 54
Objective-C Runtime: Sending Messages 54
Open Firmware 55
OpenGL 55
OSAtomic Functions 57
Pixel Data 58
PostScript Printing 58
Quartz Bitmap Data 59
QuickDraw Routines 59

4
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

QuickTime Components 60
QuickTime Metadata Functions 60
Runtime Code Generation 60
Spotlight Importers 61
System-Specific Predefined Macros 61
USB Device Access 61
See Also 61

Chapter 5 Preparing Vector-Based Code 63

Accelerate Framework 63
Rewriting AltiVec Instructions 64
See Also 64

Appendix A Rosetta 65

What Can Be Translated? 65
How It Works 66
Special Considerations 66
Forcing an Application to Run Translated 67

Make a Setting in the Info Window 68
Use Terminal 68
Modify the Property List 69
Use the sysctlbyname Function 69

Preventing an Application from Opening Using Rosetta 69
Programmatically Detecting a Translated Application 70
Troubleshooting 71

Appendix B Architecture-Independent Vector-Based Code 75

Architecture-Specific Code 75
Architecture-Independent Matrix Multiplication 79

Appendix C Application Binary Interface 81

Appendix D Using PowerPlant 83

Changing LStream Code 83
LStream.h 84
LStream.cp 86
LControl.cp 87
LListBox.cp 87
LPane.cp 88
LPrintout.cp 88
LScroller.cp 88

5
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

LTable.cp 89
LView.cp 89
LWindow.cp 89
LPopupGroupBox.cp 90
LControlView.cp 90
LScrollerView.cp 90
LPageController.cp 90

Flipping the 'DBC#' Resource Type 91

Document Revision History 93

6
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Tables, Figures, and Listings

Chapter 1 Building a Universal Binary 13

Figure 1-1 The Build pane 15
Figure 1-2 Architectures settings 16
Figure 1-3 The Chess application has a Universal binary 19
Table 1-1 Default values for compiler flags on an Intel-based Macintosh computer 20

Chapter 2 Architectural Differences 23

Listing 2-1 Code that illustrates byte-ordering differences 24
Listing 2-2 Architecture-dependent code 25
Listing 2-3 A union whose components can be affected by byte order 26

Chapter 3 Swapping Bytes 29

Figure 3-1 Big-endian byte ordering compared to little-endian byte ordering 30
Listing 3-1 A data structure that contains multibyte and single-byte data 29
Listing 3-2 Encoding a 64-bit floating-point value 35
Listing 3-3 Decoding a 32-bit floating-point value 35
Listing 3-4 Swapping a 16-bit integer from big-endian to host-endian 36
Listing 3-5 Swapping integers from little-endian to host-endian 36
Listing 3-6 A routine for swapping the bytes of the values in an array 39
Listing 3-7 A declaration for a custom resource 41
Listing 3-8 A flipper function for RGBColor data 41
Listing 3-9 A flipper for the custom 'PREF' resource 41
Table 3-1 Byte order marks 38

Chapter 4 Guidelines for Specific Scenarios 47

Figure 4-1 A test image that can help locate the source of color problems 58
Listing 4-1 A structure that swaps bit fields 47
Table 4-1 Quartz constants that specify byte ordering 59

Appendix A Rosetta 65

Figure A-1 The Info window for the Calculator application 68
Figure A-2 Rosetta listens for a port connection 72

7
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

Figure A-3 Terminal windows with the commands for debugging a PowerPC binary on
an Intel-based Macintosh computer 73

Listing A-1 A structure whose endian format depends on the architecture 67
Listing A-2 A routine that controls the preferred CPU type for sublaunched processes

69
Listing A-3 A utility routine for calling the sysctlbyname function 70
Listing A-4 A routine that determines whether a process is running natively or translated

71

Appendix B Architecture-Independent Vector-Based Code 75

Listing B-1 Architecture-specific code needed to support matrix multiplication 76
Listing B-2 Architecture-independent code that performs matrix multiplication 79

Appendix D Using PowerPlant 83

Listing D-1 Calls that may require swapping bytes 83
Listing D-2 Code that flips the 'DBC#' resource type 91

8
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

T A B L E S , F I G U R E S , A N D L I S T I N G S

Universal Binary Programming Guidelines will assist experienced developers to build and modify their
Mac OS X applications to run as universal binaries. Universal binaries run natively on Macintosh
computers using PowerPC or Intel microprocessors and deliver optimal performance for both
architectures in a single package.

This document is designed to help developers determine exactly how much work needs to be done
and provides useful tips for general as well as specific code modification scenarios. It describes the
prerequisites for building code as a universal binary and shows how to do so using Xcode 2.2. It also
discusses the differences between the Intel and PowerPC architectures that can affect code behavior
and provides guidelines for ensuring that universal binary code builds correctly.

This version of Universal Binary Programming Guidelines represents a significant update since its
introduction at the Apple Worldwide Developers Conference in June, 2005. It brings together all the
information that developers need to make the transition to Intel-based Macintosh computers. This
version includes pointers to newly revised tools documentation—Xcode 2.3 User Guide, GCC Porting
Guide, Cross-Development Programming Guide, and more—as well as improved guidelines and tips.
Anyone who has an older version of Universal Binary Programming Guidelines will want to replace it
with this version.

Who Should Read This Document?

Any developer who currently has an application that runs in Mac OS X will want to read this document
to learn how to modify their code so that it runs natively on all current Apple hardware. Developers
who have not yet written an application for the Macintosh, but are planning to do so, will want to
follow the guidelines in the document to ensure that their code can run as a universal binary.

Organization of This Document

This document is organized into the following chapters:

 ■ “Building a Universal Binary” (page 13) shows how to use Xcode 2.2 to build native and universal
binaries, describes build options, and provides troubleshooting information for code that doesn’t
run properly on an Intel-based Macintosh computer.

Who Should Read This Document? 9
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Universal Binary
Programming Guidelines

 ■ “Architectural Differences” (page 23) outlines the major differences between the x86 and PowerPC
architectures. Understanding the differences will help you to write portable code.

 ■ “Swapping Bytes” (page 29) describes byte-ordering differences in detail, provides a list of
byte-swapping routines, and discusses strategies for a number of scenarios that require you to
swap bytes. This is a must-read chapter for all Mac OS X developers. It will help you understand
how to avoid byte-ordering issues when transferring data and data files between architectures.

 ■ “Guidelines for Specific Scenarios” (page 47) contains tips for a variety of situations that are not
common to most applications.

 ■ “Preparing Vector-Based Code” (page 63) discusses the options available for those developers
who have high-performance computing needs.

This document contains the following appendixes:

 ■ “Rosetta” (page 65) describes the translation process that allows PowerPC binaries to run on an
Intel-based Macintosh computer.

 ■ “Architecture-Independent Vector-Based Code” (page 75) uses matrix multiplication as an
example to show how to write vector code with a minimum amount of architecture-specific
coding.

 ■ “Application Binary Interface” (page 81) provides information on where to find details.

 ■ “Using PowerPlant” (page 83) discusses the changes you need to make to use PowerPlant on an
Intel-based Macintosh computer.

Assumptions

The document assumes the following:

 ■ Your application runs in Mac OS X.

Your application can use any of the Mac OS X development environments: Carbon, Cocoa, Java,
or BSD UNIX.

If your application runs in the UNIX operating system but not specifically in Mac OS X, you
should first read Porting UNIX/Linux Applications to Mac OS X.

If your application runs only in the Windows operating system, you should first read Porting to
Mac OS X from Windows Win32 API.

If you are new to Mac OS X, you should take a look at Mac OS X Technology Overview.

 ■ You know how to use Xcode.

Currently Xcode is the only GUI tool available that compiles code to run universally.

If you are unfamiliar with Xcode, you might want to take a look at Xcode 2.3 User Guide.

If you have been using CodeWarrior, you should read Porting CodeWarrior Projects to Xcode.

10 Assumptions
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Universal Binary Programming Guidelines

Conventions

The term x86 is a generic term used in some parts of this book to refer to the class of microprocessors
manufactured by Intel. This book uses the term x86 as a synonym for IA-32 (Intel Architecture 32-bit).

Conventions 11
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Universal Binary Programming Guidelines

12 Conventions
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Universal Binary Programming Guidelines

Architectural differences between Macintosh computers that use Intel and PowerPC microprocessors
can cause existing PowerPC code to behave differently when built and run natively on a Macintosh
computer that uses an Intel microprocessor. The extent to which architectural differences affect your
code depends on the level of your source code. Most existing code is high-level source code that is
not specific to the processor. If your application falls into this category, you’ll find that creating a
universal binary involves adjusting code in a few places. Cocoa developers may need to make fewer
adjustments than Carbon developers whose code was ported from Mac OS 9 to Mac OS X.

Most code that uses high-level frameworks and that builds with GCC 4.0 in Mac OS X v10.4 will build
with few, if any, changes on an Intel-based Macintosh computer. The best approach for any developer
in that situation is to build the existing code as a universal binary, as described in this chapter, and
then see how the application runs on an Intel-based Macintosh. Find the places where the code doesn’t
behave as expected and consult the sections in this document that cover those issues.

Developers who use AltiVec instructions in their code or who intentionally exploit architectural
differences for optimization or other purposes will need to make the most code adjustments. These
developers will probably want to consult the rest of this document before building a universal binary.
AltiVec programmers should read “Preparing Vector-Based Code” (page 63).

This chapter describes how to use Xcode 2.2 to create a universal binary, provides troubleshooting
information, and lists relevant build options. You’ll find that the software development workflow on
an Intel-based Macintosh computer is exactly the same as the software development workflow on a
PowerPC-based Macintosh.

Build Assumptions

Before you build your code as a universal binary, you must ensure that:

 ■ Your application already builds for Mac OS X. Your application can use any of the Mac OS X
development environments: Carbon, Cocoa, Java, or BSD UNIX.

 ■ Your application uses the Mach-O executable format. Mach-O binaries are the only type of binary
that run natively on an Intel-based Macintosh computer. If you are already using the Xcode
compilers and linkers, your application is a Mach–O binary. Carbon applications based on the
Code Fragment Manager Preferred Executable Format (PEF) must be changed to Mach-O.

 ■ Your Xcode target is a native Xcode target. If it isn’t, in Xcode you can choose Project > Upgrade
All Targets in Project to Native.

Build Assumptions 13
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

 ■ Your code project is ported to GCC 4.0. Xcode uses GCC 4.0 for targeting Intel-based Macintosh
computers. You may want to look at the document GCC Porting Guide to assess whether you need
to make any changes to your code to allow it to compile using GCC 4.0.

 ■ You installed the Mac OS X v10.4 universal SDK. The installer places the SDK in this location:

/Developer/SDKs/MacOSX10.4u.sdk

Building Your Code

If you have already been using Xcode to build applications on a PowerPC-based Macintosh, you’ll
see that building your code on an Intel-based Macintosh computer is accomplished in the same way.
By default, Xcode compiles code to run on the architecture on which you build your Xcode project.
Note that your Xcode target must be a native target.

Tip: CodeWarrior users can read Xcode from a CodeWarrior Perspective for a discussion of the
similarities and differences between the two. This information can help you to put your CodeWarrior
experience to work in Xcode.

When you are in the process of developing your project, you’ll want to use the following settings for
the Default and Debug configurations:

 ■ Keep the Architectures settings set to $(NATIVE_ARCH).

 ■ Change the Mac OS X Deployment Target settings to Mac OS X 10.4.

 ■ Make sure the SDKROOT setting is /Developer/SDKs/MacOSX10.4u.sdk.

You can set the SDK root for the project by following these steps:

1. Open your project in Xcode 2.2 or later.

Make sure that your Xcode target is a native target. If it isn’t, you can choose Project > Upgrade
All Targets in Project to Native.

2. In the Groups & Files list, click the project name.

3. Click the Info button to open the Info window.

4. In the General pane, in the Cross-Develop Using Target SDK pop-up menu, choose Mac OS X
10.4 (Universal).

If you don’t see Mac OS X 10.4 (Universal) as a choice, look in the following directory to make
sure that the universal SDK is installed:

/Developer/SDKs/MacOSX10.4u.sdk

If it’s not there, you’ll need to install this SDK before you can continue.

5. Click Change in the sheet that appears.

14 Building Your Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

The Debug build configuration turns on ZeroLink, Fix and Continue, and debug-symbol generation,
among other settings, and turns off code optimization.

When you are ready to test your application on both architectures, you’ll want to use the Release
configuration. This configuration turns off ZeroLink and Fix and Continue. It also sets the
code-optimization level to optimize for size. As with the Default and Debug configurations, you’ll
want to set the Mac OS X Deployment Target to Mac OS X 10.4 and the SDK root to MacOSX10.4u.sdk.
To build a universal binary, the Architectures setting for the Release configuration must be set to
build on Intel and PowerPC.

You can change the Architectures setting by following these steps:

1. Open your project in Xcode 2.2 or later.

2. In the Groups & Files list, click the project name.

3. Click the Info button to open the Info window.

4. In the Build pane (see Figure 1-1), choose Release from the Configuration pop-up menu.

Figure 1-1 The Build pane

Building Your Code 15
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

5. Select the Architectures setting and click Edit. In the sheet that appears, select the PowerPC and
Intel options, as shown in Figure 1-2.

Figure 1-2 Architectures settings

6. Close the Info window.

7. Build and run the project.

If your application doesn’t build, see “Debugging” (page 17).

If your application builds but does not behave as expected when you run it as a native binary on an
Intel-based Macintosh computer, see “Troubleshooting Your Built Application” (page 17).

If your application behaves as expected, don’t assume that it also works on the other architecture.
You need to test your application on both PowerPC Macintosh computers and Intel-based Macintosh
computers. If your application reads data from and writes data to disk, you should make sure that
you can save files on one architecture and open them on the other.

16 Building Your Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

Note: Xcode has per-architecture SDK support. For example, you can target Mac OS X versions 10.3
and 10.4 for PowerPC while also targeting Mac OS X v10.4 and later for Intel-based Macintosh
computers.

For information on default compiler settings, architecture-specific options, and Autoconf macros, see
“Build Options” (page 19).

For information on building with version-specific SDKs for PowerPC (Mac OS X v10.3, v10.2, and so
forth) while still building a universal binary for both PowerPC and Intel-based Macintosh computers,
see the following resources:

 ■ Using Cross Development in Xcode, in Xcode 2.3 User Guide.

 ■ Cross Development and Universal Binaries in the Cross-Development Programming Guide provides
details on to create executable files that contain object code for both Intel-based and PowerPC-based
Macintosh computers.

Debugging

Xcode uses GDB for debugging, so you’ll want to review the Debugging chapter in Xcode 2.3 User
Guide. Xcode provides a powerful user interface to GDB that lets you step through your code, set
breakpoints and view variables, stack frames, and threads.

Debugging with GDB—an Open Source document that explains how to use GDB—is another useful
resource that you’ll want to look at. It provides a lot of valuable information, including how to get a
list of breakpoints for debugging.

If you are moving code to GCC 4.0, you can find remedies for most linking issues and compiler
warnings by consulting GCC Porting Guide. You can find additional information on the GCC options
you can use to request or suppress warnings in Section 3.8 of the GNU C/C++/Objective-C 4.0.1 Compiler
User Guide.

Troubleshooting Your Built Application

Here are the most typical behavior problems you’ll observe when your application runs natively on
an Intel-based Macintosh computer:

 ■ The application crashes.

 ■ There are unexpected numerical results.

 ■ Color is displayed incorrectly.

 ■ Text is not displayed properly—characters from the Last Resort font or unexpected Chinese or
Japanese characters appear.

 ■ Files are not read or written correctly.

 ■ Network communication does not work properly.

Debugging 17
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

The first two problems in the list are typically caused by architecture-dependent code. On an Intel-based
Macintosh computer, an integer divide-by-zero exception results in a crash, but on PowerPC the same
operation returns zero. In these cases, the code must be rewritten in an architecture-independent
manner. “Architectural Differences” (page 23) discusses the major differences between Macintosh
computers that use PowerPC and Intel microprocessors. That chapter can help you determine which
code is causing the crash or the unexpected numerical results.

The last four problems in the list are most often caused by byte-ordering differences between
architectures. These problems are easily remedied by taking the byte order into account when you
read and write data. The strategies available for handling byte ordering, as well as an in-depth
discussion of byte-ordering differences, are provided in “Swapping Bytes” (page 29). Keep in mind
that Mac OS X ensures that byte-ordering is correct for anything it is responsible for. Apple-defined
resources (such as menus) won’t result in problem behavior. Custom resources provided by your
application, however, can result in problem behavior. For example, if images in your application
seem to have a cyan tint, it’s quite likely that your application is writing alpha channel data to the
blue channel. For this specific issue, depending on the APIs that you are using, you’d want to consult
the sections “GWorlds” (page 51), “Pixel Data ” (page 58), or other graphics-related sections in
“Guidelines for Specific Scenarios” (page 47).

Apple engineers prepared a lot of code to run natively on an Intel-based Macintosh
computer—including the operating system, most Apple applications, and Apple tools. The guidelines
in this book are the result of their work. In addition to the more common issues discussed in
“Architectural Differences” (page 23) and “Swapping Bytes” (page 29), the engineers identified a
number of narrowly focused issues. These are described in “Guidelines for Specific Scenarios” (page
47). You will want to at least glance at this chapter to see if your code can benefit from any of the
information.

Determining Whether a Binary Is Universal

You can determine whether an application has a universal binary by looking at the Kind entry in the
General section of the Info window for the application (see Figure 1-3). To open the Info window,
click the application icon and press Cmd-I.

18 Determining Whether a Binary Is Universal
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

Figure 1-3 The Chess application has a Universal binary

On an Intel-based Macintosh computer, when you double-click an application that doesn’t have an
executable for the native architecture, it might launch. Whether or not it launches depends on how
compatible the application is with Rosetta. For more information, see “Rosetta” (page 65).

Build Options

This section contains information on the build options that you need to be aware of when using Xcode
2.2 and later on an Intel-based Macintosh computer. It lists the default compiler options, discusses
how to set architecture-specific options, and provides information on using GNU Autoconf macros.

Default Compiler Options

In Xcode 2.2 and later on an Intel-based Macintosh computer, the defaults for compiler flags that
differ from standard GCC distributions are listed in Table 1-1.

Build Options 19
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

Table 1-1 Default values for compiler flags on an Intel-based Macintosh computer

Specifies toDefault valueCompiler flag

Use SSE instructions for floating-point math.sse-mfpmath

Enable the MMX, SSE, and SSE2 extensions in the Intel instruction
set architecture.

On by default-msse2

Architecture-Specific Options

Most developers don’t need to use architecture-specific options for their projects.

In Xcode, to set one flag for an Intel-based Macintosh and another for PowerPC, you use the
PER_ARCH_CFLAGS_i386 and PER_ARCH_CFLAGS_ppc build settings variables to supply the
architecture-specific settings.

For example to set the architecture-specific flags -faltivec and -msse3, you would add the following
build settings:

PER_ARCH_CFLAGS_i386 = -msse3
PER_ARCH_CFLAGS_ppc = -faltivec

Similarly, you can supply architecture-specific linker flags using the OTHER_LDFLAGS_i386 and
OTHER_LDFLAGS_ppc build settings variables.

You can pass the -arch flag to gcc, ld, and as. The allowable values are i386 and ppc. You can specify
both flags as follows:

-arch ppc -arch i386

For more information on architecture-specific options, see Building Universal Binaries in Xcode 2.3
User Guide.

Autoconf Macros

If you are compiling a project that uses GNU Autoconf and trying to build it for both PowerPC-based
and Intel-based Macintosh computers, you need to make sure that when the project configures itself,
it doesn't use Autoconf macros to determine the endian type of the runtime system. For example, if
your project uses the Autoconf AC_C_BIGENDIAN macro, the program won't work correctly when it
is run on the opposite architecture from the one you are targeting when you configure the project.
To correctly build for both PowerPC-based and Intel-based Macintosh computers, use the
compiler-defined __BIG_ENDIAN__ and __LITTLE_ENDIAN__ macros in your code.

For more information, see Using GNU Autoconf in Porting UNIX/Linux Applications to Mac OS X.

20 Build Options
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

See Also

These resources provide information related to compiling and building applications, and measuring
performance:

 ■ Xcode 2.3 User Guide contains all the instructions needed to compile and debug any type of Xcode
project (C, C++, Objective C, Java, AppleScript, resource, nib files, and so forth).

 ■ GCC Porting Guide provides advice for how to modify your code in ways that make it more
compatible with GCC 4.0.

 ■ GNU C/C++/Objective-C 4.0.1 Compiler User Guide provides details about the GCC implementation.
Xcode uses the GNU compiler collection (GCC) to compile code.

The assembler (as) used by Xcode supports AT&T System V/386 assembler syntax in order to
maintain compatibility with the output from GCC. The AT&T syntax is quite different from Intel
syntax. The major differences are discussed in the GNU documentation.

 ■ C++ Runtime Environment Programming Guide provides information on the GCC 4.0 shared C++
runtime that is available in Panther 10.3.9 and later.

 ■ Porting UNIX/Linux Applications to Mac OS X. Developers porting from UNIX and Linux
applications who want to compile a universal binary, will want to read the section Compiling for
Multiple Architectures.

 ■ Kernel Extension Concepts contains information about debugging KEXTs on Intel-based Macintosh
computers.

 ■ Performance tools. Shark, MallocDebug, ObjectAlloc, Sampler, Quartz Debug, Thread Viewer,
and other Apple-developed tools (some command-line, others use a GUI) are in the /Developer
directory. Command-line performance tools are in the /usr/bin directory.

 ■ Code Size Performance Guidelines and Code Speed Performance Guidelines discuss optimization
strategies for a Mach-O executable.

See Also 21
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

22 See Also
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Building a Universal Binary

The PowerPC and the x86 architectures have some fundamental differences that can prevent code
written for one architecture from running properly on the other architecture. The extent to which you
need to change your PowerPC code so that it runs natively on an Intel-based Macintosh computer
depends on how much of your code is processor specific. This chapter describes the major differences
between architectures, organized alphabetically by topic. You can use the information to identify the
parts of your code that are likely to be problematic.

Alignment

All PowerPC instructions are 4 bytes in size and must be 4-byte aligned. x86 instructions are variable
in size (from 1 to >10 bytes), and as a consequence do not need to be aligned.

Bit Fields

The value of a signed, 1-bit bit field is either 0, 1, or –1, depending on the compiler, architecture,
optimization level, and so forth. Code that compares the value of a bit field to 1 may not work if the
bit field is signed, so you will want to use unsigned 1-bit bit fields. Keep in mind that the order of bit
fields in memory can be reversed between architectures.

For more information on issues related to endian format, see “Swapping Bytes” (page 29). See also
“Archived Bit Fields” (page 47) and “Structures and Unions” (page 26).

Byte Order

Microprocessor architectures commonly use two different byte-ordering methods (little-endian and
big-endian) to store the individual bytes of multibyte data formats in memory. This difference becomes
critically important if you try to read data from files that were created on a computer that uses a
different byte ordering than yours. You also need to consider byte ordering when you send and
receive data through a network connection and handle networking data. The difference in byte
ordering can produce incorrect results if you do not account for this difference. For example, the order
of bytes in memory of a scalar type is architecture-dependent, as shown in Listing 2-1 (page 24).

Alignment 23
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architectural Differences

Listing 2-1 Code that illustrates byte-ordering differences

unsigned char charVal;
unsigned long value = 0x12345678;
unsigned long *ptr = &value;
charVal = *(unsigned char*)ptr;

On a processor that uses little-endian addressing the variable charVal takes on the value 0x78. On a
processor that uses big-endian addressing the variable charVal takes on the value 0x12. To make this
code architecture-independent, change the last line in Listing 2-1 to the following:

charVal = (unsigned char)*ptr;

For a detailed discussion of byte ordering and strategies that you can use to account for byte-ordering
differences, see “Swapping Bytes” (page 29).

Calling Conventions

The x86 C-language calling convention (application binary interface, or ABI) specifies that arguments
to functions are passed on the stack. The PowerPC ABI specifies that arguments to functions are
passed in registers. Also, x86 has far fewer registers, so many local variables use the stack for their
storage. Thus, programming errors, or other operations that access past the end of a local variable
array or otherwise incorrectly manipulate values on the stack may be more likely to crash applications
on x86 systems than on PowerPC.

For detailed information about the IA-32 ABI, see Mac OS X ABI Function Call Guide. This document
describes the function-calling conventions used in all the architectures supported by Mac OS X. See
also “Application Binary Interface” (page 81).

Code on the Stack: Disabling Execution

Intel processors include a bit that prevents code from being executed on the stack. On Intel-based
Macintosh computers, this bit is always set to On.

Data Type Conversions

For some data type conversions, such as casting a string to a long and converting a floating-point
type to an integer type, the PowerPC and x86 architectures perform differently. When the
microprocessor converts a floating-point type to an integer type, it discards the fractional part of the
value. The behavior is undefined if the value of the integral part cannot be represented by the integer
type.

Listing 2-2 shows an example of the sort of code that is architecture-dependent. You would need to
modify this code to make it architecture-independent. On a PowerPC microprocessor, the variable x
shown in the listing is equal to 7fffffff or INTMAX. On an x86 microprocessor, the variable x is equal
to 80000000 or INTMIN.

24 Calling Conventions
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architectural Differences

Listing 2-2 Architecture-dependent code

int main (int argc, const char * argv[])
{

double a;
int x;

a = 5000000.0 * 6709000.5; // or any really big value
x = a;
printf("x = %08x \n",x);
return 0;

}

Data Types

A long double is 16 bytes on both architectures, but only 80 bits are significant in long double data
types on Intel-based Macintosh computers.

A bool data type is a single byte on an x86 system, but four bytes on a PowerPC architecture. This
size difference can cause alignment problems. You should use fixed-size data types to avoid alignment
problems. (The bool data type is not the Carbon Boolean type, which is a fixed size of 1 byte.)

Existing document formats that include the bool data type as part of a data structure that is written
directly to disk can be problematic because the data structure might not be laid out the same on both
architectures. If you update the data structure definition to use the UInt32 data type or another
fixed-size four-byte data type, the structure should then be portable, although you must swap bytes
appropriately.

Divide-By-Zero Operations

An integer divide-by-zero operation is fatal on an x86 system but the operation continues on a PowerPC
system, where it returns zero. (A floating point divide-by-zero behaves the same on both architectures.)
If you get a crash log that mentions EXC_I386_DIV (divide by zero), your program divided by
zero. Mod operations perform a divide, so a mod-by-zero operation produces a divide-by-zero
exception. To fix a divide-by-zero exception, find the place in your program corresponding to that
operation. Then add code that checks for a denominator of zero before performing the divide operation.

For example, change this:

int a = b % c; // Divide by zero can happen here;

to this:

int a;
if (c != 0) {

a = b % c;
} else {

a = 0;
}

Data Types 25
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architectural Differences

Extensible Firmware Interface (EFI)

Intel-based Macintosh computers use extensible firmware interface (EFI). EFI provides a flexible and
adaptable interface between Mac OS X and the platform firmware. This change should be transparent
to most developers, but may affect some, such as those who write boot drivers.

For more information on the EFI specification, see http://www.intel.com/technology/efi/

Floating-Point Equality Comparisons

The results of a floating-point equality comparison are architecture-dependent. Whether the comparison
works depends on a number of things, including the compiler, the surrounding code, all compiler
flags in use (particularly optimization flags), and the current floating-point mode for the thread. If
your floating-point comparison is currently working on PowerPC, you may need to inspect it on an
Intel-based Macintosh computer.

You can use the GCC flag -Wfloat-equal to receive a warning for floating-point equality comparisons.
For details on this option, see Section 3.8 of the GNU C/C++/Objective-C 4.0.1 Compiler User Guide

Structures and Unions

The fields in a structure can be sensitive to their defined order. Structures must either be properly
ordered or accessed by the field name directly.

When a union has components that could be affected by byte order, use a form similar to that shown
in Listing 2-3. Code that sets wch and then reads hi and lo as the high and low bytes of wch will work
correctly. The same is true for the reverse direction. Code that sets hi and lo and then reads wch will
get the same value on both architectures. For another example, see the WideChar union that’s defined
in the IntlResources.h header file.

Listing 2-3 A union whose components can be affected by byte order

union WChar{
unsigned short wch;
struct {

#if __BIG_ENDIAN__
unsigned char hi;
unsigned char lo;

#else
unsigned char lo;
unsigned char hi;

#endif
} s;

}

26 Extensible Firmware Interface (EFI)
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architectural Differences

http://www.intel.com/technology/efi/

See Also

The ISO standard for the C programming language—ISO/IEC 9899—is a valuable reference that you
can use to investigate code portability issues, many of which may not be immediately obvious. You
can find this reference in a number of locations on the web, including:

http://www.iso.org/

See Also 27
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architectural Differences

http://www.iso.org/

28 See Also
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Architectural Differences

Two primary byte-ordering methods (or endian formats) exist in the world of computing. An endian
format specifies how to store the individual bytes of multibyte numerical data in memory. Big-endian
byte ordering specifies to store multibyte data with its most significant byte first. Little-endian byte
ordering specifies to store multibyte data with its least significant byte first. The PowerPC processor
uses big-endian byte ordering. The x86 processor family uses little-endian byte ordering. By convention,
multibyte data sent over the network uses big-endian byte ordering.

If your application assumes that data is in one endian format, but the data is actually in another, then
it will interpret the data incorrectly. You will want to analyze your code for routines that read multibyte
data (16 bits, 32 bits, or 64 bits) from, or write multibyte data to, disk or to the network, as these
routines are sensitive to byte-ordering format. There are two general approaches for handling byte
ordering differences: swap bytes when necessary or use XML or another byte-order-independent
data format such as those offered by Core Foundation (CFPreferences, CFPropertyList, CFXMLParser).

Whether you should swap bytes or use a byte-order-independent data format depends on how you
use the data in your application. If you have an existing file format to support, the binary-compatible
solution is to accept the big-endian file format you have been using in your application, and write
code that swaps bytes when the file is read or written on an Intel-based Macintosh. If you don’t have
legacy files to support, you could consider redesigning your file format to use XML (extensible markup
language), XDR (external data representation), or NSCoding (Objective C) to represent data.

This chapter describes why byte ordering matters, gives guidelines for swapping bytes, describes the
byte-swapping APIs available in Mac OS X, and provides solutions for most of the situations where
byte ordering matters.

Why Byte Ordering Matters

The example in this section is designed to show you why byte ordering matters. Take a look at the C
data structure defined in Listing 3-1. It contains a four-byte integer, a character string, and a two-byte
integer. The listing also initializes the structure.

Listing 3-1 A data structure that contains multibyte and single-byte data

typedef struct {
uint32_t myOptions;
char myStringArray [7];
short myVariable;

} myDataStructure;

Why Byte Ordering Matters 29
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

myDataStructure aStruct;

aStruct.myOptions = 0xfeedface;
strcpy(aStruct.myStringArray, "safari");
aStruct.myVariable = 0x1234;

Figure 3-1 compares how this data structure is stored in memory on big-endian and little-endian
systems. In a big-endian system, memory is organized with the address of each data byte increasing
from most significant to least significant. In a little-endian system, memory is organized with the
address of each data byte increasing from the least significant to the most significant.

Figure 3-1 Big-endian byte ordering compared to little-endian byte ordering

0x00000004
0x00000005
0x00000006
0x00000007

0x00000008
0x00000009
0x0000000A
0x0000000B

0x0000000C
0x0000000D
0x0000000E
0x0000000F

fe

fe

ed
edfa
fa

ce

ce

's' 's'
'a'

'a''a'

'a'
'f' 'f'

'r' 'r'
'i''i'

12
1234
34

\0\0

0x00000000
0x00000001
0x00000002
0x00000003

Address Data

*

*
*

Big-endian

0x00000004
0x00000005
0x00000006
0x00000007

0x00000008
0x00000009
0x0000000A
0x0000000B

0x0000000C
0x0000000D
0x0000000E
0x0000000F

0x00000000
0x00000001
0x00000002
0x00000003

Address Data

*

*
*

Little-endian

Padding bytes used to
maintain alignment

As you look at Figure 3-1, note the following:

 ■ Multibyte data, such as the 32-bit and 16-bit variables shown in the figure, are stored differently
between big-endian and little-endian systems. As you can see in the figure, big-endian systems
store data in memory so that the most significant byte of the data is stored in the address with
the lowest value. Little-endian systems store data in memory so that the most significant byte of
the data is in the address with the highest value. Hence, the least significant byte of the myOptions
variable (0xce) is stored in memory location 0x00000003 on the big-endian system while it is
stored in memory location 0x00000000 on the little-endian system.

 ■ Single-byte data, such as the char values in the myStringArray character array, are stored in the
same memory location on either system regardless of the byte ordering format of the system.

 ■ Each system pads bytes to maintain four-byte data alignment. Padded bytes in the figure are
designated by a shaded box that contains an asterisk.

30 Why Byte Ordering Matters
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

The byte ordering of multibyte data in memory matters if you are reading data written on one
architecture from a system that uses a different architecture and you access the data on a byte-by-byte
basis. For example, if your application is written to access the second byte of the myOptions variable,
then when you read the data from a system that uses the opposite byte ordering scheme, you’ll end
up retrieving the first byte of the myOptions variable instead of the second one.

Suppose the example data values that are initialized by the code shown in Listing 3-1 are generated
on a little-endian system and saved to disk. Assume that the data is written to disk in byte-address
order. When read from disk by a big-endian system, the data is again laid out in memory as shown
in Figure 3-1. The problem is that the data is still in little-endian byte order even though it is interpreted
on a big-endian system. This difference causes the values to be evaluated incorrectly. In this example,
the value of the field myOptions should be 0xfeedface, but because of the incorrect byte ordering it
is evaluated as 0xcefaedfe.

Note: The terms big-endian and little-endian come from Jonathan Swift’s eighteenth-century satire
Gulliver’s Travels. The subjects of the empire of Blefuscu were divided into two factions: those who
ate eggs starting from the big end and those who ate eggs starting from the little end.

Guidelines for Swapping Bytes

The following guidelines, along with the strategies provided later in this chapter, will help ensure
optimal byte-swapping code in your application.

 ■ Keep data structures in native byte-order while in memory. Only swap bytes when you read data
from disk or write it to disk.

 ■ When possible, let the compiler do the work for you. For example, when you use function calls
such as the Core Foundation function CFSwapInt16BigToHost, the compiler determines whether
the function call does something for the processor you are targeting. If the code does nothing,
the compiler won’t call the function. Letting the compiler do the work is more efficient than using
#ifdef statements.

 ■ If you must access a large file, consider arranging the data in a way that limits the byte swapping
that you must perform. For example, you can arrange the most frequently accessed data
contiguously in the file. Then, you need to read and swap bytes only for that chunk of data instead
of for the entire data file.

 ■ Use the __BIG_ENDIAN__ and __LITTLE_ENDIAN__ macros only if you must. Do not use macros
that check for a specific processor type, such as __i386__ and __ppc__.

 ■ Choose a consistent byte-order approach and stick with it. That is, if you are reading and writing
data from disk on a regular basis, choose the endian format you want to use. This eliminates the
need for you to check the byte ordering of the data, and then to possibly have to swap the byte
order.

 ■ Be aware of which functions return big-endian data, and use them appropriately. These include
the BSD Sockets networking functions, the DNSServiceDiscovery functions (for example, TCP
and UDP ports are specified in network byte order), and the ColorSync profile functions (for
which all data is big-endian). The IconFamilyElement and IconFamilyResource data types
(which also include the data types IconFamilyPtr and IconFamilyHandle) are always big-endian.

Guidelines for Swapping Bytes 31
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

There may be other functions and data types that are not listed here. Consult the appropriate API
reference for information on data returned by a function. For more information see
“Network-Related Data” (page 36).

 ■ Keep in mind that swapping bytes comes at a performance cost so swap them only when absolutely
necessary.

Byte-Swapping Routines

The APIs that provide byte-swapping routines are listed below. For most situations it’s best to use
the routines that match the framework you’re programming in. The Core Foundation and Foundation
APIs have functions for swapping floating-point values, while the other APIs listed do not.

 ■ POSIX (Portable Operating System Interface) byte ordering functions (ntohl, htonl, ntohs, and
htons) are documented in Mac OS X Man Pages.

 ■ Darwin byte ordering functions and macros are defined in the header file libkern/OSByteOrder.h.
Even though this header is in the kernel framework, it is acceptable to use it from high-level
applications.

 ■ Core Foundation byte-order functions are defined in the header file
CoreFoundation/CFByteOrder.h and described in the Byte-Order Utilities Reference. For details
on using these functions, see the Byte Swapping article in Memory Management Programming Guide
for Core Foundation.

 ■ Foundation byte-order functions are defined in the header file Foundation/NSByteOrder.h and
described in Foundation Framework Reference.

 ■ The Core Endian API is defined in the header file CarbonCore/Endian.h and described in Core
Endian Reference.

Note: When you use byte-swapping routines, the compiler optimizes your code so that the routines
are executed only if they are needed for the architecture on which your code is running.

Byte-Swapping Strategies

The strategy for swapping bytes depends on the format of the data; there is no universal routine that
can take care of all byte ordering differences. Any program that needs to swap data must know the
data type, the source data endian order, and the host endian order.

This section lists byte-swapping strategies, organized alphabetically, for the following data:

 ■ “Constants” (page 33)

 ■ “Custom Apple Event Data” (page 33)

 ■ “Custom Resource Data” (page 34)

 ■ “Floating-Point Values” (page 34)

 ■ “Integers” (page 35)

32 Byte-Swapping Routines
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

 ■ “Network-Related Data” (page 36)

 ■ “OSType-to-String Conversions” (page 37)

 ■ “Unicode Text Files” (page 37)

 ■ “Values in an Array” (page 39)

Constants

Constants that are part of a compiled executable are in host byte order. You need to swap bytes for
a constant only if it is part of data that is not maintained natively or if the constant travels between
hosts. In most cases you can either swap bytes ahead of time or let the preprocessor perform any
needed math by using shifts or other simple operators.

If you are defining and populating a structure that must use data of a specific endian format in
memory, use the OSSwapConst macros and the OSSwap*Const variants defined in the
libkern/OSByteOrder.h header file. These macros can be used from high-level applications.

Custom Apple Event Data

An Apple event is a high-level event that conforms to the Apple Event Interprocess Messaging
Protocol. The Apple Event Manager sends Apple events between applications on the same computer
or between applications on remote computers. You can define your own Apple event data types, and
send and receive Apple events using the Apple Event Manager API.

Mac OS X manages system-defined Apple event data types for you, handling them appropriately for
the currently executing code. You don't need to perform any special tasks. When the data that your
application extracts from an Apple event is system-defined, the system swaps the data for you before
giving the event to your application to process. You will want to treat system-defined data types from
Apple events as native endian. Similarly, if you put native-endian data into an Apple event that you
are sending, and it is a system-defined data type, the receiver will be able to interpret the data in its
own native endian format.

However, you must account for byte-ordering differences for the custom Apple event data types that
you define. You can accomplish this in one of the following ways:

 ■ Write a byte-swapping callback routine (also known as a flipper) and provide it to the system.
Whenever the system determines that your Apple event data needs to be byte swapped it invokes
your flipper to ensure that the recipient of the data gets the data in the correct endian format. For
details, see “Writing a Callback to Swap Data Bytes” (page 39).

 ■ Choose one endian format to use, regardless of architecture. Then, when you read or write your
custom Apple event data, use big-to-host and host-to-big routines, such as the Core Foundation
Byte Order Utilities functions CFSwapInt16BigToHost and CFSwapInt16HostToBig.

Byte-Swapping Strategies 33
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

Custom Resource Data

In Mac OS X, the preferred way to supply resources is to provide files in your application bundle that
define resources such as image files, sounds, localized text, and archived user-interface definitions.
The resource data types discussed in this section are those defined in Resource Manager-style files
supported by Carbon. The Resource Manager was created prior to Mac OS X. If your application uses
Resource Manager-style resource files, you should consider moving towards Mac OS X–style resources
in your application bundle instead.

Resources typically include data that describes menus, windows, controls, dialogs, sounds, fonts,
and icons. Although the system defines a number of standard resource types (such as 'moov', used
to specify a QuickTime movie, and 'MENU', used to define menus) you can also create your own
private resource types for use in your application. You use the Resource Manager API to define
resource data types and to get and set resource data.

Mac OS X keeps track of resources in memory and allows your application to read or write resources.
Applications and system software interpret the data for a resource according to its resource type.
Although you'll typically let the operating system read resources (such as your application icon) for
you, you can also call Resource Manager functions directly to read and write resources.

Mac OS X manages the system-defined resources for you, handling them appropriately for the currently
executing code. That is, if your application runs on an Intel-based Macintosh, Mac OS X swaps bytes
so that your application icon, menus, and other standard resources appear correctly. You don't need
to perform any special tasks. But if you define your own private resource data types for use in your
application, you need to account for byte-ordering differences between architectures when you read
or write resource data from disk.

You can use either of the following strategies to handle custom Resource Manager-style resource
data. Notice that these are the same strategies used to handle custom Apple event data:

 ■ Provide a byte-swapping callback routine for the system to invoke whenever the system determines
your resource data must be byte swapped. For details, see “Writing a Callback to Swap Data
Bytes” (page 39).

 ■ Always write your data using the same endian format, regardless of the architecture. Then, when
you read or write your custom resource data, use big-to-host and host-to-big routines, such as
the Core Foundation Byte Order Utilities CFSwapInt16BigToHost and CFSwapInt16HostToBig.

Note: If you are revising old code that marks resources with a preload bit, you should remove the
preload bit from any resources that must be byte swapped. In Mac OS X, the preload bit is almost
always unnecessary. If you cannot remove the preload bit, you should swap the resource data after
you read the resource. You will not be able to use a flipper callback to swap bytes automatically
because in Mac OS X a preload bit causes the resources to be read before any of the application code
runs.

Floating-Point Values

Core Foundation defines a set of functions and two special data types to help you work with
floating-point values. These functions allow you to encode 32- and 64-bit floating-point values in such
a way that they can later be decoded and byte swapped if necessary. Listing 3-2 shows you how to
encode a 64-bit floating-point number and Listing 3-3 shows how to decode it.

34 Byte-Swapping Strategies
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

Listing 3-2 Encoding a 64-bit floating-point value

double d = 3.0;
CFSwappedFloat64 swappedDouble;
// Encode the floating-point value.
swappedDouble = CFConvertFloat64HostToSwapped(d);
// Call the appropriate routine to write swappedDouble to disk,
// send it to another process, etc.
write(myFile, &swappedDouble, sizeof(swappedDouble));

The data types CFSwappedFloat32 and CFSwappedFloat64 contain floating-point values in a canonical
representation. A CFSwappedFloat data type is not itself a floating-point value, and should not be
directly used as one. You can however send one to another process, save it to disk, or send it over a
network. Because the format is converted to and from the canonical format by the conversion functions,
there is no need for explicit swapping. Bytes are swapped for you during the format conversion if
necessary.

Listing 3-3 Decoding a 32-bit floating-point value

float f;
CFSwappedFloat32 swappedFloat;
// Call the appropriate routine to read swappedFloat from disk,
// receive it from another process, etc.
read(myFile, &swappedFloat, sizeof(swappedFloat));
f = CFConvertFloat32SwappedToHost(swappedFloat)

The NSByteOrder.h header file defines functions that are comparable to the Core Foundation functions
discussed here.

Integers

The system library byte-access functions, such as OSReadLittleInt16 and OSWriteLittleInt16,
provide generic byte swapping. These functions swap bytes if the native endian format is different
from the endian format of the destination. They are defined in the libkern/OSByteOrder.h header
file.

Note: The OSReadXXX and OSWriteXXX functions provide higher performance than the OSSwapXXX
functions or any other functions in the higher-level frameworks.

Core Foundation provides three optimized primitive functions for swapping bytes— CFSwapInt16,
CFSwapInt32, and CFSwapInt64. All of the other swapping functions use these primitives to accomplish
their work. In general you don’t need to use these primitives directly.

Although the primitive swapping functions swap unconditionally, the higher-level swapping functions
are defined in such a way that they do nothing when swapping bytes is not required—in other words,
when the source and host byte orders are the same. For the integer types, these functions take the
forms CFSwapXXXBigToHost, CFSwapXXXLittleToHost, CFSwapXXXHostToBig, and
CFSwapXXXHostToLittle, where XXX is a data type such as Int32. For example, on a little-endian
machine you use the function CFSwapInt16BigToHost to read a 16-bit integer value from a network
whose data is in network byte order (big-endian). Listing 3-4 demonstrates this process.

Byte-Swapping Strategies 35
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

Listing 3-4 Swapping a 16-bit integer from big-endian to host-endian

SInt16 bigEndian16;
SInt16 swapped16;
// Swap a 16-bit value read from the network.
swapped16 = CFSwapInt16BigToHost(bigEndian16);

Suppose the integers are in the fields of a data structure. Listing 3-5 demonstrates how to swap bytes.

Listing 3-5 Swapping integers from little-endian to host-endian

// Swap the bytes of the values if necessary.
aStruct.int1 = CFSwapInt32LittleToHost(aStruct.int1)
aStruct.int2 = CFSwapInt32LittleToHost(aStruct.int2)

The code swaps bytes only if necessary. If the host is a big-endian architecture, the functions used in
the code sample swap the bytes in each field. The code does nothing when run on a little-endian
machine—the compiler ignores the code.

Network-Related Data

Network-related data typically uses big-endian format (also known as network byte order), so you
may need to swap bytes when communicating between the network and an Intel-based Macintosh
computer. You probably never had to adjust your PowerPC code when you transmitted data to, or
received data from, the network. On an Intel-based Macintosh computer you must look closely at
your networking code and ensure that you always send network-related data in the appropriate byte
order. You must also handle data received from the network appropriately, swapping the bytes of
values to the endian format appropriate to the host microprocessor.

You can use the following POSIX functions to convert between network byte order and host byte
order. (Other byte-swapping functions, such as those defined in the OSByteOrder.h and
CFByteOrder.h header files, can also be useful for handling network data.)

 ■ network to host:

uint32_t ntohl (uint32_t netlong);

uint16_t ntohs (uint16_t netshort);

 ■ host to network:

uint32_t htonl (uint32_t hostlong);

uint16_t htons (uint16_t hostshort);

These functions are documented in Mac OS X Man Pages.

The sin_saddr.s_addr and sin_port fields of a sockaddr_in structure should always be in network
byte order. You can find out the appropriate endian format of any argument to a BSD networking
function by reading the man page documentation.

When advertising a service on the network, you use getsockname to get the local TCP or UDP port
that your socket is bound to, and then pass my_sockaddr.sin_port unchanged, without any byte
swapping, to the DNSServiceRegister function.

36 Byte-Swapping Strategies
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

In CoreFoundation code, you can use the same approach. Use the CFSocketCopyAddress function
as shown below, and then pass my_sockaddr.sin_port unchanged, without any byte swapping, to
the DNSServiceRegister function.

CFDataRef addr = CFSocketCopyAddress(myCFSocketRef);
struct sockaddr_in my_sockaddr;
memmove(&my_sockaddr, CFDataGetBytePtr(addr), sizeof(my_sockaddr));
DNSServiceRegister(... , my_sockaddr.sin_port, ...);

When browsing and resolving, the process is similar. The DNSServiceResolve function and the BSD
Sockets calls such as gethostbyname and getaddrinfo all return IP addresses and ports already in
the correct byte order so that you can assign them directly to your struct sockaddr_in and call
connect to open a TCP connection. If you byte-swap the address or port, then you program will not
work.

The important point is that when you use the DNSServiceDiscovery API with the BSD Sockets
networking APIs, you do not need to swap anything. Your code will work correctly on both PowerPC
and Intel-based Macintosh computers as well as on Linux, Solaris, and Windows.

OSType-to-String Conversions

You can use the functions UTCreateStringForOSType and UTGetOSTypeFromString to convert an
OSTypedata type to or from a CFString object (CFStringRef data type). These functions are discussed
in Uniform Type Identifiers Overview and defined in the UTType.h header file, which is part of the
Launch Services framework.

When you use four-character literals, keep in mind that “abcd” != 'abcd'. Rather 'abcd' ==
0x61626364. You must treat 'abcd' as an integer and not string data, as 'abcd' is a shortcut for a
32-bit integer. (A FourCharCode data type is a UInt32 data type.) The compiler does not swap this
for you. You can use the shift operator if you need to deal with individual characters.

For example, if you currently print an OSType or FourCharCode type using the standard C printf-style
semantics, use

printf("%c%c%c%c", (char) (val >> 24), (char) (val >> 16),
(char) (val >> 8), (char) val)

instead of the following:

printf("%4.4s", (const char*) &val)

Unicode Text Files

Mac OS X often uses UTF-16 to encode Unicode; a UniChar data type is a double-byte value. As with
any multibyte data, Unicode characters are sensitive to the byte ordering method used by the
microprocessor. A byte order mark written to the beginning of a file informs the program reading
the data which byte ordering method was used to write the data. The Unicode standard states that
in the absence of a byte order mark (BOM) the data in a Unicode data file is to be taken as big-endian.
Although a BOM is not mandatory, you should make use of it to ensure that a file written on one
architecture can be read from the other architecture. The program can then act accordingly to make
sure the byte ordering of the Unicode text is compatible with the host.

Byte-Swapping Strategies 37
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

Table 3-1 lists the standard byte order marks for UTF-8, UTF-16, and UTF-32. (Note that the UTF-8
BOM is not used for endian issues, but only as a tag to indicate that the file is UTF-8.)

Table 3-1 Byte order marks

Encoding formByte order mark

UTF-8EF BB BF

UTF-16/UCS-2, little endianFF FE

UTF-16/UCS-2, big endianFE FF

UTF-32/UCS-4, little endianFF FE 00 00

UTF-32/UCS-4, big endian00 00 FE FF

In practice, when your application reads a file, it does not need to look for a byte order mark nor does
it need to swap bytes as long as you follow these steps to read a file:

1. Map the file using mmap to get a pointer to the contents of the file (or string).

Reading the entire file into memory ensures the best performance and is a prerequisite for the
next step.

2. Generate a CFString object by calling the function CFStringCreateWithBytes with the
isExternalRepresentation parameter set to true, or call the function
CFStringCreateWithExternalRepresentation to generate a CFString, passing in an encoding
of kCFStringEncodingUnicode (for UTF-16) or kCFStringEncodingUTF8 (for UTF-8).

Either function interprets a BOM swaps bytes as necessary. Note that a BOM should not be used
in memory; its use is solely for data transmission (files, pasteboard, and so forth).

In summary, with respect to Unicode files, your application performs best when you follow these
guidelines:

 ■ Accept the BOM when taking UTF-16 or UTF-8 encoded files from outside the application.

 ■ Use native-endian UniChar data types internally.

 ■ Generate a BOM when writing UTF-16 to a file. Ideally, you only need to generate a BOM for an
architecture that uses little-endian format, but it is also acceptable to generate a BOM for an
architecture that uses big-endian format.

 ■ When you put data on the Clipboard, make sure that 'utxt' data does not have a BOM. Only
'ut16' data should have a BOM. If you use Cocoa to put an NSString object on the pasteboard,
you don’t need to concern yourself with a BOM.

For more information, see “UTF & BOM,” available from the Unicode website:

http://www.unicode.org/faq/utf_bom.html

The Apple Event Manager provides text constants that you can use to specify the type of your data.
As of Mac OS X v10.4, only two text constants are recommended:

38 Byte-Swapping Strategies
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

http://www.unicode.org/faq/utf_bom.html

 ■ typeUTF16ExternalRepresentation, which specifies Unicode text in 16-bit external representation
with optional byte order mark (BOM). The presence of this constant guarantees that either there
is a BOM or the data is in UTF-16 big-endian format.

 ■ typeUTF8Text, which specifies 8-bit Unicode (UTF-8 encoding).

The constant typeUnicodeText indicates utxt text data, in native byte ordering format, with an
optional BOM. This constant does not specify an explicit Unicode encoding or byte order definition.

The Scrap Manager provides the flavor type constant kScrapFlavorTypeUTF16External which
specifies Unicode text in 16-bit external representation with optional byte order mark (BOM).

Values in an Array

The routine in Listing 3-6 shows an approach that you can use to swap the bytes of values in an array.
On a big-endian system, the compiler optimizes away the entire function; you don’t need to use
#ifdef statements to swap these sorts of arrays.

Listing 3-6 A routine for swapping the bytes of the values in an array

static inline void SwapUInt32ArrayBigToHost(UInt32 *array, UInt32 count) {
int i;

for(i = 0; i < count; i++) {
array[i] = CFSwapInt32BigToHost(array[i]);

}
}

Writing a Callback to Swap Data Bytes

You can provide a byte-swapping callback routine, also referred to as a flipper, to the system for
custom resource data, custom pasteboard data, and custom Apple event data. When you install a
byte-swapping callback, you specify which domain that the data type belongs to. There are two data
domains—Apple event and resource. The resource data domain specifies custom pasteboard data or
custom resource data. If the callback can be applied to either domain (Apple event and resource), you
can specify that as well.

The Core Endian API defines a callback that you provide to swap bytes for custom resource and
Apple event data. You must provide one callback for each type of data you want to swap bytes. The
prototype for the CoreEndianFlipProc callback is:

typedef CALLBACK_API (OSStatus, CoreEndianFlipProc)
(OSType dataDomain,
OSType dataType,
short id,
void *dataPtr,
UInt32 dataSize,
Boolean currentlyNative,
void *refcon

);

Writing a Callback to Swap Data Bytes 39
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

The callback takes the following parameters:

 ■ dataDomain—An OSType value that specifies the domain to which the flipper callback applies.
The value kCoreEndianResourceManagerDomain signifies that the domain is resource or
pasteboard data. The value kCoreEndianAppleEventManagerDomain signifies that the domain
is Apple event data.

 ■ dataType—The type of data that needs the callback to swap bytes for. This is the four-character
code of the resource type, pasteboard type, or Apple event.

 ■ id—The resource id of the data type. This field is ignored if the dataDomain parameter is not
kCoreEndianResourceManagerDomain.

 ■ dataPtr—On input, points to the data to be flipped. On output, points to the byte swapped data.

 ■ dataSize—The size of the data pointed to by the dataPtr parameter.

 ■ currentlyNative—A Boolean value that indicates the direction to swap bytes. The value true
specifies the data pointed to by the dataPtr parameter uses the byte ordering of the currently
executing code. On a PowerPC Macintosh, true specifies that the data is in big-endian format.
On an Intel-based Macintosh, true specifies that the data is in little-endian format.

 ■ refcon—A 32-bit value that contains, or refers to, data needed by the callback.

The callback returns a result code that indicates whether bytes are swapped successfully. Your callback
should return noErr if the data is byte swapped without error and the appropriate result code to
indicate an error condition—errCoreEndianDataTooShortForFormat,
errCoreEndianDataTooLongForFormat, or errCoreEndianDataDoesNotMatchFormat. The result
code you return is propagated through the appropriate manager (Resource Manager (ResError) or
Apple Event Manager) to the caller.

You do not need to swap bytes for quantities that are not numerical (such as strings, byte streams,
and so forth). You need to provide a callback only to swap bytes data types for which the order of
bytes in a word or long word are important. (For the preferred way to handle Unicode strings, see
“Unicode Text Files” (page 37).)

Your callback should traverse the data structure that contains the data and swap bytes for:

 ■ All counts and lengths so that array indexes are associated with the appropriate value

 ■ All integers and longs so that when you read them into variables of a compatible type, you can
operate correctly on the values (such as numerical, offset, and shift operations)

The Core Endian API provides these functions for working with your callback:

 ■ CoreEndianInstallFlipper registers your callback for the specified data type (custom resource
or custom Apple Event). After you register a byte-swapping callback for an application-defined
resource data type, then any time you call a Resource Manager function that operates on that
resource type, the system invokes your callback if it is appropriate to do so. (If your callback
operates on pasteboard data, the system also invokes the callback at the appropriate time.)
Similarly, if you specify Apple event as the domain for your callback, then any time you call an
Apple Event Manager function that operates on that data type, your callback is invoked when it
is appropriate to do so.

 ■ CoreEndianGetFlipper obtains the callback that is registered for the specified data type. You
can call this function to determine whether a flipper is available for a given data type.

40 Writing a Callback to Swap Data Bytes
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

 ■ CoreEndianFlipData invokes the callback associated with the specified data type. You shouldn’t
need to call this function, because the system invokes your callback whenever it’s needed.

As an example, look at a callback for the custom resource type ('PREF') defined in Listing 3-7. The
MyPreferences structure is used to store preferences data on disk. The structure contains a number
of values and includes two instances of the RGBColor data type and an array of RGBColor values.

Listing 3-7 A declaration for a custom resource

#define kMyPreferencesType 'PREF'

struct MyPreferences {
SInt32 fPrefsVersion;

Boolean fHighlightLinks;
Boolean fUnderlineLinks;

RGBColor fHighlightColor;
RGBColor fUnderlineColor;
SInt16 fZoomValue;

char fCString[32];

SInt16 fCount;
RGBColor fPalette[];

};

You can handle the RGBColor data type by writing a function that swaps bytes in an RGBColor data
structure, such as the function MyRGBSwap, shown in Listing 3-8. This function calls the Core Endian
macro EndianS16_Swap to swap bytes for each of the values in the RGBColor data structure. The
function doesn’t need to check for the currently executing system because the function is never called
unless the values in the RGBColordata type need to have their bytes swapped. The MyRGBSwap function
is called by the byte-swapping callback routine (shown in Listing 3-9 (page 41)) that’s provided to
handle the custom 'PREF' resource (that is defined in Listing 3-7 (page 41)).

Listing 3-8 A flipper function for RGBColor data

static void MyRGBSwap (RGBColor *p)
{

p->red = Endian16_Swap(p->red);
p->blue = Endian16_Swap(p->blue);
p->green = Endian16_Swap(p->green);

}

Listing 3-9 shows a byte-swapping callback for the custom 'PREF' resource. An explanation for each
numbered line of code appears following the listing. Note that the flipper checks for data that is
malformed or is of an unexpected length. If the data passed into the flipper routine is a shorter length
than the flipped type is normally, or (for example) contains garbage data instead of an array count,
the flipper must be careful not to read or write data beyond the end of the passed-in data. Instead,
the routine returns an error.

Listing 3-9 A flipper for the custom 'PREF' resource

#define kCurrentVersion 0x00010400

Writing a Callback to Swap Data Bytes 41
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

// 1static OSStatus MyFlipPreferences (OSType dataDomain,
// 2OSType dataType,
// 3short id,
// 4void * dataPtr,
// 5UInt32 dataSize,
// 6Boolean currentlyNative,
// 7void* refcon)

{
UInt32 versionNumber;

OSStatus status = noErr;
// 8MyPreferences* toFlip = (MyPreferences*) dataPtr;

int count, i;

if (dataSize < sizeof(MyPreferences))
// 9return errCoreEndianDataTooShortForFormat;
// 10if (currentlyNative)

{
count = toFlip->fCount;
versionNumber = toFlip->fPrefsVersion;
toFlip->fPrefsVersion = Endian32_Swap (toFlip->fPrefsVersion);
toFlip->fCount = Endian16_Swap (toFlip->fCount);
toFlip->fZoomValue = Endian16_Swap (toFlip->fZoomValue);

}
// 11else

{
toFlip->fPrefsVersion = Endian32_Swap (toFlip->fPrefsVersion);
versionNumber = toFlip->fPrefsVersion;
toFlip->fCount = Endian16_Swap (toFlip->fCount);
toFlip->fZoomValue = Endian16_Swap (toFlip->fZoomValue);
count = toFlip->fCount;

}
// 12if (versionNumber != kCurrentVersion)

return errCoreEndianDataDoesNotMatchFormat;

// 13MyRGBSwap (&toFlip->fHighlightColor);
// 14MyRGBSwap (&toFlip->fUnderlineColor);

if (dataSize < sizeof(MyPreferences) + count * sizeof(RGBColor))
// 15return errCoreEndianDataTooShortForFormat;

for(i = 0; i < count; i++)
{

// 16MyRGBSwap (&toFlip->fPalette[i]);
}

// 17return status;
}

Here’s what the code does:

1. The system passes to your callback the domain to which the callback applies. You define the
domain when you register the callback using the function CoreEndianInstallFlipper.

2. The system passes to your callback the resource type you defined for the data. In this example,
the resource type is 'PREF'.

42 Writing a Callback to Swap Data Bytes
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

3. The system passes to your callback the resource ID of the data type. If the data is not a resource,
this value is 0.

4. The system passes to your callback a pointer to the resource data that needs to have its bytes
swapped. In this case, the pointer refers to a MyPreferences data structure.

5. The system passes to your callback the size of the data pointed to by the pointer described in the
previous step.

6. The system passes to your callback true if the data in the buffer passed to the callback is in the
byte ordering of the currently executing code. On a PowerPC Macintosh, when currentlyNative
is true, the data is in big-endian order. On a Macintosh that uses an Intel microprocessor, when
currentlyNative is true, the data is in little-endian order. Your callback needs to know this
value, because if your callback uses a value in the data buffer to decide how to process other data
in the buffer (for example, the count variable shown in the code), you must know whether that
value needs to be flipped before the value can be used by the callback.

7. The system passes to your callback a pointer that refers to application-specific data. In this example,
the callback doesn’t require any application-specific data.

8. Defines a variable for the MyPreferences data type and assigns the contents of the data pointer
to the newly-defined toFlip variable.

9. Checks the static-length portion of the structure. If the size is less than it should be, the routine
returns the error errCoreEndianDataTooLongForFormat.

10. If currentlyNative is true, saves the count value to a local variable and then swaps the bytes
for the other values in the MyPreferences data structure. You must save the count value before
you swap because you need it for an iteration later in the function. The fact that currentlyNative
is true indicates that the value does not need to be byte swapped if it is used in the currently
executing code. However, the value does need to be swapped to be stored to disk.

The values are swapped using the appropriate Core Endian macros.

11. If currentlyNative is false, flips the values in the MyPreferences data structure before it saves
the count value to a local variable. The fact that currentlyNative is false indicates that the
count value needs to have its bytes swapped before it can be used in the callback.

12. Checks to make sure the version of the data structure is supported by the application. If the
version is not supported, then your callback would not swap bytes for the data and would return
the result errCoreEndianDataDoesNotMatchFormat.

13. Calls the MyRGBSwap function (shown in Listing 3-8 (page 41)) to swap the bytes of the
fHighlightColor field of the data structure.

14. Calls the MyRGBSwap function to swap the bytes of the fUnderlineColor field of the data structure.

15. Checks the data size to make sure that it is less than it should be. If not, the routine returns the
error errCoreEndianDataTooLongForFormat.

16. Iterates through the elements in the fPalette array, calling the MyRGBSwap function to swap the
bytes of the data in the array.

17. Returns noErr to indicate that the data is flipped without error.

Writing a Callback to Swap Data Bytes 43
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

Although the sample performs some error checking, it does not include all the error-handling code
that it could. When you write a flipper you may want to include such code.

Note: The callback does not flip any of the Boolean values in the MyPreferences data structure
because these are single character values. The callback also ignores the C string.

You register a byte-swapping callback routine by calling the function CoreEndianInstallFlipper.
You should register the callback when your application calls its initialization routine or when you
open your resources. For example, you would register the flipper callback shown in Listing 3-9 (page
41) using the following code:

OSStatus status = noErr;
status = CoreEndianInstallFlipper (kCoreEndianResourceManagerDomain,

kMyPreferencesType,
MyFlipPreferences,
NULL);

The system invokes the callback for the specified resource type and data domain when
currentlyNative is false at the time a resource is loaded and true at the time the resource is set
to be written. For example, the sample byte-swapping callback gets invoked any time the following
line of code is executed in your application:

MyPreferences** hPrefs = (MyPreferences**) GetResource ('PREF', 128);

After swapping the bytes of the data, you can modify it as much as you’d like.

When the Resource Manager reads a resource from disk, it looks up the resource type (for example,
'PREF') in a table of byte-swapping routines. If a callback is installed for that resource type, the
Resource Manager invokes the callback if it is appropriate to do so. Similar actions are taken when
the Resource Manager writes a resource to disk. It finds the appropriate routine and invokes the
callback to swap the bytes of the resource if it is appropriate to do so.

When you copy or drag custom data from an application that has a callback installed for pasteboard
data, the system invokes your callback at the appropriate time. If you copy or drag custom data to a
native application, the data callback is not invoked. If you copy or drag custom data to a nonnative
application, the system invokes your callback to swap the bytes of the custom data. If you paste or
drop custom data into your application from a nonnative application, and a callback exists for that
custom data, the system invokes the callback at the time of the paste or drop. If the custom data is
copied or dragged from another native application, the callback is not invoked.

Note that different pasteboard APIs use different type specifiers. The Scrap Manager and Drag
Manager use OSType data types. The Pasteboard Manager uses Uniform Type Identifiers (UTI), and
the NSPasteboard class uses its own type mechanism. In each case, the type is converted by the system
to an OSType data type to discover if there is a byte-swapping callback for that type.

Apple event data types are typically swapped to network byte order when sent over a network. The
callback you install is called only if a custom data type that you define is sent to another machine, or
if another machine sends Apple event data to your application. The byte ordering of Apple events
on the network is big-endian.

For cases in which the system would not normally invoke your byte-swapping callback, you can call
the function CoreEndianFlipData to invoke the callback function installed for the specified data type
and domain.

44 Writing a Callback to Swap Data Bytes
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

See Also

The following resources are available in the ADC Reference Library:

 ■ Byte-Order Utilities Reference describes the Core Foundation byte order utilities API.

 ■ Byte Swapping, in Core Foundation Memory Management, shows how to swap integers and
floating-point values using Core Foundation byte-order utilities.

 ■ File-System Performance Guidelines provides information useful for mapping Unicode files to
memory.

See Also 45
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

46 See Also
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Swapping Bytes

This chapter lists an assortment of scenarios that relate to a specific technology or API. Although
many of these scenarios are uncommon, you will want to at least glance at the topics to determine
whether anything applies to your application. The topics are organized alphabetically.

Aliases

Aliases are big-endian on all systems. Applications that add extra information to the end of an
AliasHandle must ensure that the extra data is always endian-neutral or of a defined endian type,
preferably big-endian.

The AliasRecord data structure is opaque when building your application with the Mac OS X
v10.4(Universal) SDK. Code that formerly accessed the userType field of an AliasRecord must use
the Alias Manager functions GetAliasUserType, GetAliasUserTypeFromPtr, SetAliasUserType,
or SetAliasUserTypeFromPtr. Code that formerly accessed the aliasSize field of an AliasRecord
must use the functions GetAliasSize or GetAliasSizeFromPtr.

These Alias Manger functions are available in Mac OS X v10.4 and later. For more information, see
Alias Manager Reference.

Archived Bit Fields

It’s best not to use the NSArchiver class to archive any structures that contain bit fields as integers.
Individual values are stored in the archives in an architecture and compiler dependent manner. In
cases where archives already contain such structures, you can read a structure correctly by changing
its declaration so that the bit fields are swapped appropriately, as shown in Listing 4-1.

You might want to examine your code to make sure such changes don’t affect other code. Note that
this workaround is specific to GCC.

Listing 4-1 A structure that swaps bit fields

typedef struct {
#ifdef __BIG_ENDIAN__

unsigned int rotatedFromBase:1;
unsigned int aboutToResize:1;

Aliases 47
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

unsigned int stuff:30;
#else

unsigned int stuff:30;
unsigned int aboutToResize:1;
unsigned int rotatedFromBase:1;

#endif
} _flags;

Automator Scripts

AppleScript actions are platform-independent and do not need any changes to run on Intel-based
Macintosh computers. However, any action that contains Cocoa code, whether it is a solely Cocoa
action or an action that uses both AppleScript and Cocoa code, must be built as a universal binary to
run correctly on both architectures.

For more information, see Automator Programming Guide.

Bit Shifting

When you shift a value by the width of its type or more, the fill bits are undefined regardless of the
architecture. In fact, two different compilers on the same architecture could differ on the value of y
after these two statements:

uint32_t x = 0xDEADBEEF;

uint32_t y = x >> 32;

Bit Test, Set, and Clear Functions: Carbon and POSIX

Don’t mix using the C bitwise operators with the Carbon functions BitTst, BitSet, and BitClr and
the POSIX macros setbit, clrbit, isset, and isclr. If you consistently use the Carbon and POSIX
functions and avoid the C bitwise operators, your code will function properly. Keep in mind, however,
that you must use the Carbon and POSIX functions on the correct kind of data. The Carbon and POSIX
functions perform a byte-by-byte traversal, which causes problems on an Intel-based Macintosh when
they operate on data types that are larger than 1 byte. You can use these functions only on a pointer
to a string of endian-neutral bytes. When you need to perform bit manipulation on integer values
you should use functions such as (int32 & (1 << 26)) instead of BitTst(&int32, 5L).

You’ll encounter problems when you use the function BitTst to test for 24-bit mode. For example,
the following bit test returns false, which indicates that the process is running in 24-bit mode, or at
least that the code is not running in 32-bit mode. The POSIX equivalents perform similarly:

Gestalt(gestaltAddressingModeAttr, &gestaltResult);
if (!(BitTst(&gestaltResult,31L))) /*If 24 bit

You can use any of the bit testing, setting, and clearing functions if you pass a pointer to data whose
byte order is fixed. Used in this way, these functions behave the same on both architectures.

48 Automator Scripts
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

For more information, see the ToolUtils.hheader file in the Core Services framework and Mathematical
and Logical Utilities Reference.

CPU Subtype

Don't try to build a binary for a specific CPU subtype. Since the CPU subtype for Intel-based Macintosh
computers is generic, you can't use it to check for specific functionality. If your application requires
information about specific CPU functionality, use the sysctlbyname function, providing an appropriate
selector. See Mac OS X Man Pages for information on using sysctlbyname.

Dashboard Widgets

Dashboard widgets typically contain platform-independent elements such as HTML, JavaScript, CSS,
and image files. If you create a widget that contains only these elements, it should work on both
PowerPC and Intel-based Macintosh computers without any modification on your part. However, if
your widget contains a plug-in, you must build the plug-in as a universal binary for it to run natively
on an Intel-based Macintosh computer.

For more information, see Dashboard Programming Topics.

Deprecated Functions

Many deprecated functions, such as those that use PICT + PS data, have byte swapping issues. You
may want to replace deprecated functions at the same time you prepare your code to run as a universal
binary. You’ll not only solve byte swapping issues, but your code will use functions that ultimately
benefit future development.

A function that is deprecated has an availability statement in its header file that states the version of
Mac OS X in which the function is deprecated. Many API reference documents provide a list of
deprecated functions. In addition, compiler warnings for deprecated functions are on by default in
Xcode 2.2 and later.

Disk Partitions

The standard disk partition format on an Intel-based Macintosh computer differs from the disk
partition format of a PowerPC-based Macintosh computer. If your application depends on the
partitioning details of the disk, it may not behave as expected. Partitioning details can affect tools
that examine the hard disk at a low level.

CPU Subtype 49
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

By default, internal hard drives on Intel-based Macintosh computers use the GUID Partition Table
(GPT) scheme and external drives use the Apple Partition Map (APM) partition scheme. To create an
external USB or FireWire disk that can boot an Intel-based Macintosh computer, select the GPT disk
partition scheme option using Apple Disk Utility. Starting up an Intel-based Macintosh using an APM
disk is not supported.

Double-Precision Values: Bit-by-Bit Sensitivity

Although both architectures are IEEE 754 compliant, there are differences in the rounding procedure
used by each when operating on double-precision numbers. If your application is sensitive to bit-by-bit
values in double-precision numbers, be aware that the same computation performed on each
architecture may produce a different numerical result.

For more information, see Volume 1 of the Intel developer software manuals, available from the
following website:

http://developer.intel.com/design/Pentium4/documentation.htm

Finder Information and Low-Level File System Operations

If your code operates on the file system at a low level and handles Finder information, keep in mind
that the file system does not swap bytes for the following information:

 ■ The finderInfo field in the HFSPlus data structures HFSCatalogFolder, HFSPlusCatalogFolder,
HFSCatalogFile, HFSPlusCatalogFile, and HFSPlusVolumeHeader.

 ■ The FSPermissionInfodata structure, which is used when the constant kFSCatInfoPermissions
is passed to the HFSPlus functions FSGetCatalogInfo and FSGetCatalogInfoBulk.

The value of multibyte fields on disk always uses big-endian format. When running on a little-endian
system, you must swap the bytes of any multibyte fields.

The getattrlist function retrieves the metadata associated with a file. The getxattr function, added
in Mac OS X v10.4, retrieves extended attributes—those that are an extension of the basic set of
attributes. When using the getxattr function to access the legacy attribute "com.apple.FinderInfo",
note that as with getattrlist, the information returned by this call is not byte swapped. (For more
information on the getxattr and getattrlist functions see Mac OS X Man Pages.)

50 Double-Precision Values: Bit-by-Bit Sensitivity
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

http://developer.intel.com/design/Pentium4/documentation.htm

Note: This issue pertains only to code that operates below CarbonCore. Calls to Carbon functions
such as FSGetCatalogInfo are not affected.

FireWire Device Access

The FireWire bus uses big-endian format. If you are developing a universal binary version of an
application that accesses a FireWire device, see “FireWire Device Access on an Intel-Based Macintosh”
in FireWire Device Interface Guide for a discussion of the issues you can encounter.

Font-Related Resources

Font-related resource types (FOND, NFNT, sfnt, and so forth) are in big-endian format on both PowerPC
and Intel-based Macintosh computers. If your application accesses font-related resource types directly,
you must swap the fields of font-related resource types yourself.

The following functions from the ATS for Fonts API obtain font resources that are returned in
big-endian format:

 ■ ATSFontGetTableDirectory

 ■ ATSFontGetTable

 ■ ATSFontGetFontFamilyResource

The following functions from the Font Manager API obtain font resources that are returned in
big-endian format. Note that Font Manager API is based on QuickDraw technology, which was
deprecated in Mac OS X v10.4.

 ■ FMGetFontTableDirectory

 ■ FMGetFontTable

 ■ FMGetFontFamilyResource

GWorlds

When the QuickDraw function NewGWorld allocates storage for the pixel buffer, and the depth
parameter is 16 or 32 bits, the byte ordering within each pixel matters. The pixelFormat field of the
PixMapdata structure can have the values k16BE555PixelFormat or k16LE555PixelFormat for 2-byte
pixels, and k32ARGBPixelFormat or k32BGRAPixelFormat for 4-byte pixels. (These constants are
defined in the Quickdraw.h header file.) By default, NewGWorld always creates big-endian pixel
formats (k16BE555PixelFormat or k32ARGBPixelFormat), regardless of the endian format of the
system.

FireWire Device Access 51
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

For best performance, it is generally preferable for you to use a pixel format that corresponds to the
native byte ordering of the system. When you pass kNativeEndianPixMap in the flags parameter
to NewGWorld, the byte ordering of the pixel format is big-endian on big-endian systems, and
little-endian on little-endian systems.

Note: QuickDraw does not support little-endian pixel formats on big-endian systems.

You can use the GWorld pixel storage as input to the Quartz function CGBitmapContextCreate or
as a data provider for the Quartz function CGImageCreate. The byte ordering of the source pixel
format needs to be communicated to Quartz through additional flags in the bitmapInfo parameter.
These flags are defined in the CGImage.h header file. Assuming that your bitmapInfo parameter is
already set up, you now need to combine it (by using a bitwise OR operator) with
kCGBitmapByteOrder16Host or kCGBitmapByteOrder32Host if you created the GWorld with a
kNativeEndianPixMap flag. Similarly, you should use kCGBitmapByteOrder16Big or
kCGBitmapByteOrder32Big when you know that your pixel byte order is big-endian.

Java Applications

Pure Java applications do not require any code changes to run on Intel-based Macintosh computers.
However, Java applications that interface with PowerPC-based native code will not run successfully
using Rosetta on Intel-based Macintosh computers.

Specifically, the following must be built as universal binaries:

 ■ JNI libraries built for PowerPC-based Macintosh computers are not loaded using Rosetta because
the Java Virtual Machine has already launched without using Rosetta. Java applications fail on
Intel-based Macintosh computers when trying to load PowerPC-only binaries.

 ■ Native applications that use the VM Invocation Interface to start a Java Virtual Machine must be
built as universal binaries to run on Intel-based Macintosh computers. The Java VM must run
natively; attempts by an application running using Rosetta to instantiate a JVM fail.

For more information, see Technical Q &A QA1295: Java on Intel-based Macintosh Computers in the ADC
Reference Library.

Java I/O API (NIO)

The I/O API (NIO) that was introduced in JDK 1.4 allows the use of native memory buffers. If you
are a Java programmer who uses this API, you may need to revise your code. NIO byte buffers have
a byte ordering that by default is big-endian. If you have Java code originally written for Mac OS X
on PowerPC, when you create java.nio.ByteBuffers you should call the function
ByteBuffer.order(ByteOrder.nativeOrder()) to set the byte order of the buffers to the native
byte order for the current architecture. If you fail to do this, you will obtain flipped data when you
read multibyte data from the buffer using JNI.

52 Java Applications
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

http://developer.apple.com/technicalqas/Java/index-title.html
http://developer.apple.com/technicalqas/Java/index-title.html

Machine Location Data Structure

The Memory Management Utilities data type MachineLocation contains information about the
geographical location of a computer. The ReadLocation and WriteLocation functions use the
geographic location record to read and store the geographic location and time zone information in
extended parameter RAM.

If your code uses the MachineLocation data structure, you need to change it to use the
MachineLocation.u.dls.Delta field that was added to the structure in Mac OS X version 10.0.

To be endian-safe, change code that uses the old field:

MachineLocation.u.dlsDelta = 1;

to use the new field:

MachineLocation.u.dls.Delta = 1;

The gmtDelta field remains the same—the low 24 bits are used. The order of assignment is important.
The following is incorrect because it overwrites results:

MachineLocation.u.dls.Delta = 0xAA; // u = 0xAAGGGGGG; G=Garbage
MachineLocation.u.gmtDelta = 0xBBBBBB; // u = 0x00BBBBBB;

This is the correct way to assign the values:

MachineLocation.u.gmtDelta = 0xBBBBBB; // u = 0x00BBBBB;
MachineLocation.u.dls.Delta = 0xAA; // u = 0xAABBBBBB;

For more details see Memory Management Utilities Reference.

Mach Processes: The Task for PID Function

The task_for_pid function returns the task associated with a process ID (PID). This function can be
called only if the process is owned by the procmod group or if the caller is root.

Metrowerks PowerPlant

Applications that use Metrowerks PowerPlant framework and its PPob resources need to make changes
to the PowerPlant code. See “Using PowerPlant” (page 83) for details.

Machine Location Data Structure 53
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

Multithreading

Multithreading is a technique used to improve performance and enhance the perceived responsiveness
of applications. On computers with one processor, this technique can allow a program to execute
multiple pieces of code independently. On computers with more than one processor, multithreading
can allow a program to execute multiple pieces of code simultaneously. If your application is
single-threaded, consider threading your application to take advantage of hardware multithreading
processor capabilities. If your application is multithreaded, you’ll want to ensure that the number of
threads is not hard coded to a fixed number of processors.

Dual-core technology improves performance by providing two physical cores within a single physical
processor package. Multiprocessor and dual-core technology all exploit thread-level parallelism to
improve application and system responsiveness and to boost processor throughput.

When you prepare code to run as a universal binary, the multithreading capabilities of the
microprocessor are transparent to you. This is true whether your application is threaded or not.
However, you can optimize your code to take advantage of the specific way hardware multithreading
is implemented for each architecture.

Objective-C: Messages to nil

In Objective-C, it is valid to send a message to a nil object. The Objective-C runtime assumes that
the return value of a message sent to a nil object is nil, as long as the message returns an object or
any integer scalar of size less than or equal to sizeof(void*).

On Intel-based Macintosh computers, messages to a nil object always return 0.0 for methods whose
return type is float, double, long double, or long long. Methods whose return value is a struct,
as defined by the Mac OS X ABI Function Call Guide to be returned in registers, will return 0.0 for
every field in the data structure. Other struct data types will not be filled with zeros. This is also
true under Rosetta. On PowerPC Macintosh computers, the behavior is undefined.

Objective-C Runtime: Sending Messages

The information in this section is only for developers who use the Objective-C runtime library, which
is used primarily for developing bridge layers between Objective-C and other languages, or for
low-level debugging. Most developers do not need to use the Objective-C runtime library directly
when programming in Objective-C.

If your application directly calls the Objective-C runtime function objc_msgSend_stret, you need
to change your code to have it work correctly on an Intel-based Macintosh.

The x86 ABI for struct-return functions differs from the ABI for struct-address-as-first-parameter
functions, but the two ABIs are identical on PowerPC. When you call objc_msgSend_stret, you
must cast the function to a function pointer type that uses the expected struct return type. The same
applies for calls to objc_msgSendSuper_stret.

For other details on the ABI, see “Application Binary Interface” (page 81).

54 Multithreading
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

If your application directly calls the Objective-C runtime function objc_msgSend, you should always
cast to the appropriate return value. For instance, for a method that returns a BOOL data type, the
following code executes properly on a PPC Macintosh but might not on an Intel-based Macintosh
computer:

BOOL isEqual = objc_msgSend(string, @selector("isEqual:"), otherString);

To ensure that the code does executes properly on an Intel-based Macintosh computer, you would
change the code to the following:

BOOL isEqual = ((BOOL (*)(id, SEL, id))objc_msgSend)(object,
@selector("isEqual:"), otherString);

Open Firmware

Macintosh computers that use an Intel microprocessor do not use Open Firmware. Although many
parts of the I/O registry are present and work as expected, information that is provided by Open
Firmware on a PowerPC Macintosh (such as a complete device tree) is not available in the I/O registry
on a Macintosh that uses an Intel microprocessor. You can obtain some of the information from
IODeviceTree by using the sysctlbyname or sysctl commands.

OpenGL

When defining an OpenGL image or texture, you need to provide a type that specifies to OpenGL
which format the texture is in. Most of these functions (for example, glTexImage2D) take format and
type_ parameters that specify how the texture is laid out on disk or in memory. OpenGL supports a
number of different image types; some are endian-neutral but others are not.

For example, a common image format is GL_RGBA with a type of GL_UNSIGNED_BYTE. This means that
the image has a byte that specifies the red color data followed by a byte that specifies the green color
data, and so forth. This format is not endian-specific; the bytes are in the same order on all architectures.
Another common image format is GL_BGRA, often specified by the type
GL_UNSIGNED_INT_8_8_8_8_REV. This type means that every 4 bytes of image data are interpreted
as an unsigned int, with the most significant 8 bits representing the alpha data, the next most
significant 8 bits representing the red color data, and so forth. Because this format is specific to the
integer format of the host, the format is interpreted differently on little-endian systems than on
big-endian systems. When using GL_UNSIGNED_INT_8_8_8_8_REV, the OpenGL implementation
expects to find data in byte order ARGB on big-endian systems, but BGRA on little-endian systems.

Because there is no explicit way in OpenGL to specify a byte order of ARGB with 32-bit or 16-bit
packed pixels (which are common image formats on Macintosh PowerPC computers), many
applications specify GL_BGRA with GL_UNSIGNED_INT_8_8_8_8_REV. This practice works on a
big-endian system such as PowerPC, but the format is interpreted differently on a little-endian system
and causes images to be rendered with incorrect colors.

Applications that have this problem are those that use the OpenGL host-order format types, but
assume that the data referred to is always big-endian. These types include, but are not limited to the
following:

Open Firmware 55
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

GL_SHORT
GL_UNSIGNED_SHORT
GL_INT
GL_UNSIGNED_INT
GL_FLOAT
GL_DOUBLE
GL_UNSIGNED_BYTE_3_3_2
GL_UNSIGNED_SHORT_4_4_4_4
GL_UNSIGNED_SHORT_5_5_5_1
GL_UNSIGNED_INT_8_8_8_8
GL_UNSIGNED_INT_10_10_10_2
GL_UNSIGNED_SHORT_5_6_5
GL_UNSIGNED_BYTE_2_3_3_REV
GL_UNSIGNED_SHORT_5_6_5_REV
GL_UNSIGNED_SHORT_4_4_4_4_REV
GL_UNSIGNED_SHORT_1_5_5_5_REV
GL_UNSIGNED_INT_8_8_8_8_REV
GL_UNSIGNED_INT_2_10_10_10_REV

If your application does not use any of these types, it is unlikely to have any problems with OpenGL.
Note that an application is not necessarily incorrect to use one of these types. Many applications might
already present host-order data tagged with one of these formats, especially with existing
cross-platform code, because the Mac OS X implementation behaves the same way as a Windows
implementation.

If an application incorrectly uses one of these types, its OpenGL textures and images are rendered
with incorrect colors. For example, red might appear green, or the image might appear to be tinted
purple.

You can fix this problem in one of the following ways:

1. If the images are generated or loaded algorithmically, change the code to generate the textures
in host-order format that matches what OpenGL expects. For example, a JPEG decoder can be
modified to store its output in 32-bit integers instead of four 8-bit bytes. The resulting data is
identical on big-endian systems, but on a little-endian system, the bytes are in a different order.
This matches the OpenGL expectation, and the existing OpenGL code continues to work on both
architectures. This is the preferred approach.

In many cases, rewriting the algorithms may prove a significant amount of work to implement
and debug. If that’s the case, an approach that asks OpenGL to interpret the texture data differently
might be a better approach for you to take.

2. If the application uses GL_UNSIGNED_INT_8_8_8_8_REV or GL_UNSIGNED_INT_8_8_8_8, it can
switch between them based on the architecture. Since these two types are exactly byte swapped
versions of the same format, using GL_UNSIGNED_INT_8_8_8_8_REV on a big-endian system is
equivalent to using GL_UNSIGNED_INT_8_8_8_8 on a little-endian system and vice versa. Code
might look as follows:

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_BGRA_EXT,
#if __BIG_ENDIAN__

GL_UNSIGNED_INT_8_8_8_8_REV,
#else

GL_UNSIGNED_INT_8_8_8_8,
#endif

data);

56 OpenGL
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

If this is a common idiom, it might be easiest to define it as a macro that can be used multiple
times:

#if __BIG_ENDIAN__
#define ARGB_IMAGE_TYPE GL_UNSIGNED_INT_8_8_8_8_REV
#else
#define ARGB_IMAGE_TYPE GL_UNSIGNED_INT_8_8_8_8
#endif
/* later on, use it like this */
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB,

width, height, 0, GL_BGRA_EXT,
ARGB_IMAGE_TYPE, data);

Note that switching between GL_UNSIGNED_INT_8_8_8_8_REV and GL_UNSIGNED_INT_8_8_8_8
works only for this particular 32-bit packed-pixel data type. For 16-bit ARGB data stored using
GL_UNSIGNED_SHORT_1_5_5_5_REV, there is no corresponding byte swapped type. Keep in mind
that GL_UNSIGNED_SHORT_5_5_5_1 is not a replacement for GL_UNSIGNED_SHORT_1_5_5_5_REV
on an Intel-based Macintosh computer. The format is interpreted as bit-order arrrrrbbbbbggggg
on a big-endian system, and as bit order ggrrrrrabbbbbggg on a little-endian system.

3. If you can’t use the previous approaches, you should either generate/load your data in the native
endian format of the system and use the same pixel type on both architectures or use the
GL_UNPACK_SWAP_BYTES pixel store setting to instruct OpenGL to swap the bytes of any texture
loaded on a little-endian system. This setting applies to all texture or image calls made with the
current OpenGL context, so it needs to be set only once per OpenGL context, for example:

#if __LITTLE_ENDIAN__
glPixelStorei(GL_UNPACK_SWAP_BYTES, 1);

#endif

This method causes images that use the problematic formats to be loaded as they would be on
PowerPC. You should consider this option only if no other option is available. Enabling this
option causes OpenGL to use a slower rendering path than normal. Performance-sensitive OpenGL
applications may be significantly slower with this option enabled than with it off. Although this
method can get an OpenGL-based program up and running in as little time as possible, it is highly
recommended that you use one of the other two methods.

Note: Using the GL_UNSIGNED_INT_8_8_8_8 format for GL_BGRA data is not necessarily faster than
using GL_UNPACK_SWAP_BYTES. In some cases, performance decreases for rendering textures that use
either of those two methods compared to using a data type such as GL_UNSIGNED_INT_8_8_8_8_REV.
It’s advisable that you use Shark or other tools to analyze the performance of your OpenGL code and
make sure that you are not encountering particularly bad cases.

OSAtomic Functions

The kernel extension functions OSDequeueAtomic and OSEnqueueAtomic are not available on an
Intel-based Macintosh.

For more information on these functions, see Kernel Framework Reference.

OSAtomic Functions 57
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

Pixel Data

Applications that store pixel data in memory using ARGB format must take care in how they read
data. If the code is not written correctly, it’s possible to misread the data; the result is colors or alpha
that appear wrong.

If you see colors that appear wrong when your application runs on an Intel-based Macintosh computer,
the following strategy may help you identify where pixel data is being read incorrectly.

Create a test image whose pixel data is easy to identify. For example, set each pixel so that alpha is
ff, red is aa, green is bb, and blue is cc. Then read that image into your application. Figure 4-1 shows
such an image.

Figure 4-1 A test image that can help locate the source of color problems

It's also helpful to go through your code and cast pixel data to the unsigned char data type.

Start with the portion of your code that reads the image. Use the following GDB command to examine
the pixel data as hexadecimal bytes:

x/<number_bytes>xb <address of first byte>

This command prints the specified number of bytes, starting with the first byte of the first pixel. You
should easily be able to see whether what’s displayed onscreen matches the values of the pixels in
the test image. If the values you see do not match the test image, then you've identified the misreading
problem. If the values match, then you need to identify other portions of your code that modify or
transform pixel data, and inspect the pixel data after each transformation.

PostScript Printing

If you are using the Carbon Printing Manager, note that the PICT with PostScript ('pictwps') printing
path is not available on Intel-based Macintosh computers except under Rosetta. If you need only to
support EPS data you can use Quartz drawing together with the function
PMCGImageCreateWithEPSDataProvider to allow the inclusion of EPS data as part of your Quartz
drawing. If you need to generate the PostScript code for your application drawing you should use
the function PMPrinterPrintWithFile.

58 Pixel Data
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

Quartz Bitmap Data

The Quartz constants shown in Table 4-1 specify the byte ordering of pixel formats. These constants,
which are defined in the CGImage.h header file, are used in the bitmapInfo parameter. To specify
byte ordering to Quartz, use a bitwise OR operator to combine the appropriate constant with the
bitmapInfo parameter.

Table 4-1 Quartz constants that specify byte ordering

SpecifiesConstant

The byte order maskkCGBitmapByteOrderMask

16-bit, big-endian formatkCGBitmapByteOrder16Big

32-bit, big-endian formatkCGBitmapByteOrder32Big

16-bit, little-endian formatkCGBitmapByteOrder16Little

32-bit, little-endian formatkCGBitmapByteOrder32Little

16-bit, host-endian formatkCGBitmapByteOrder16Host

32-bit, host-endian formatkCGBitmapByteOrder32Host

QuickDraw Routines

If you have existing code that directly accesses the picFrame field of the QuickDraw Picture data
structure, you should use the QuickDraw function QDGetPictureBounds to get the appropriately
swapped bounds for a Picture. This function is available in Mac OS X version 10.3 and later. Its
prototype is as follows:

Rect * QDGetPictureBounds(
PicHandle picH,
Rect *outRect)

If you have existing code that uses the QuickDraw DeltaPoint function or the HIToolbox PinRect
function (defined in MacWindows.h), make sure that you do not cast the function result to a Point
data structure. The horizontal difference is returned in the low 16 bits, and the vertical difference is
returned in the high 16 bits. You can obtain the horizontal and vertical values by using code similar
to the following:

Point pointDiff;
SInt32 difference = DeltaPoint (p1, p2);
pointDiff.h = LoWord (difference);
pointDiff.v = HiWord (difference);

Quartz Bitmap Data 59
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

Tip: The best solution is to convert your QuickDraw code to Quartz 2D. QuickDraw was deprecated
starting in Mac OS X v10.4. For help with converting to Quartz 2D, see Quartz Programming Guide for
QuickDraw Developers.

QuickTime Components

The Component Manager recognizes which architectures are supported by a component by looking
at the 'thng' resource for the component, not the architecture of the file. You must specify the
appropriate architectures in the 'thng' resource. To accomplish this, in the .r file where you define
the 'thng' resource, modify your ComponentPlatformInfo array to look similar to the following:

#if defined(__ppc__)
kMyComponentFlags, kMyCodeType, kMyCodeID, platformPowerPCNativeEntryPoint,
#endif
#if defined(__i386__)
kMyComponentFlags, kMyCodeType, kMyCodeID, platformIA32NativeEntryPoint,
#endif

Then, rebuild your component. For details, see “Building a Universal Binary” (page 13).

QuickTime Metadata Functions

When you call the function QTMetaDataGetItemProperty and the type of the key whose value you
are retrieving is code, the data returned is an OSType, not a buffer of four characters. (You can determine
the key type by calling the function QTMetaDataGetItemPropertyInfo.) To ensure that your code
runs properly on both PowerPC and Intel-based Macintosh computers, you must use a correctly-typed
buffer so that the endian format of the data returned to you is correct. If you supply a buffer of the
wrong type, for example a buffer of UInt8 instead of a buffer of OSType, the endian format of the data
returned in the buffer will be wrong on Intel-based Macintosh Computers.

Runtime Code Generation

If your application generates code at runtime, keep in mind that the compiler assumes that the stack
must be 16-byte aligned when calling into Mac OS X libraries or frameworks. 16-byte stack alignment
is enforced on Intel-based Macintosh computers, which means that you need to ensure that your code
is 16-byte aligned to avoid having your application crash.

For more information, see Mac OS X ABI Function Call Guide.

60 QuickTime Components
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

Spotlight Importers

A Spotlight importer is a plug-in bundle that extracts information from files created by an application.
The Spotlight engine uses importers to gather information about new and existing files. Spotlight
importers are not compatible with Rosetta. To run an importer on an Intel-based Macintosh as well
as on a PowerPC-based Macintosh, you must compile it as a universal binary.

For more information on Spotlight, see Spotlight Overview andSpotlight Importer Programming Guide.

System-Specific Predefined Macros

The C preprocessor has several predefined macros whose purpose is to indicate the type of system
and machine in use. If your code uses system-specific predefined macros, evaluate whether you really
need to use them. In most cases applications need to know the capabilities available on a computer
and not the specific system or machine on which the application is running. For example, if your
application needs to know whether it is running on a little-endian or big-endian microprocessor, you
should use the __BIG_ENDIAN__ or __LITTLE_ENDIAN__ macros or the Core Foundation function
CFByteOrderGetCurrent. Do not use the __i386__ and __ppc__ macros for this purpose.

See GNU C 4.0 Preprocessor User Guide for additional information.

USB Device Access

USB uses little-endian format. If you are developing a universal binary version of an application that
accesses a USB device, see “USB Device Access in an Intel-Based Macintosh” in USB Device Interface
Guide for a discussion of the issues you may encounter.

See Also

In addition to the following resources, check the ADC website periodically for updates and technical
notes that might address other specific situations:

 ■ Quartz Programming Guide for QuickDraw Developers which provides information on moving code
from the deprecated QuickDraw API to Quartz

 ■ IA-32 Intel Architecture Optimization Reference Manual, available from:

http://developer.intel.com/design/pentium4/manuals/index_new.htm

Spotlight Importers 61
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

http://developer.intel.com/design/pentium4/manuals/index_new.htm

62 See Also
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Guidelines for Specific Scenarios

This chapter is relevant only for those developers who want to start writing vector-based code or
whose applications already directly use the AltiVec extension to the PowerPC instruction set. AltiVec
instructions, because they are processor specific, must be replaced on Intel-based Macintosh computers.
You can choose from these two options:

 ■ Use the Accelerate framework. This is the recommended option because the framework provides
a layer of abstraction that lets you perform vector-based operations without needing to use
low-level vector instructions yourself. See “Accelerate Framework” (page 63).

 ■ Port AltiVec code to the Intel instruction set architecture (ISA). This solution is available for
developers who have performance needs that can’t be met by using the Accelerate framework.
See “Rewriting AltiVec Instructions” (page 64).

Accelerate Framework

The Accelerate framework, introduced in Mac OS X v10.3 and expanded in v10.4, is a set of
high-performance vector-accelerated libraries. You don’t need to be concerned with the architecture
of the target machine because the routines in this framework abstract the low-level details. The system
automatically invokes the appropriate instruction set for the architecture that your code runs on.

This framework contains the following libraries:

 ■ vImage is the Apple image processing framework that includes high-level functions for image
manipulation—convolutions, geometric transformations, histogram operations, morphological
transformations, and alpha compositing—as well as utility functions that convert formats and
perform other operations. See Optimizing Image Processing With vImage.

 ■ vDSP provides mathematical functions that perform digital signal processing (DSP) for applications
such as speech, sound, audio, and video processing, diagnostic medical imaging, radar signal
processing, seismic analysis, and scientific data processing. The vDSP functions operate on real
and complex data types and include data type conversions, fast Fourier transforms (FFTs), and
vector-to-vector and vector-to-scalar operations.

 ■ vMathLib contains vector-accelerated versions of all routines in the standard math library. See
vecLib Framework Reference.

 ■ LAPACK is a linear algebra package that solves simultaneous sets of linear equations, tackles
eigenvalue and singular solution problems, and determines least-squares solutions for linear
systems.

Accelerate Framework 63
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Preparing Vector-Based Code

 ■ BLAS (Basic Linear Algebra Subroutines) performs basic vector and matrix computations.

 ■ vForce contains routines that take matrices as input and output arguments, rather than single
variables.

Rewriting AltiVec Instructions

Most of the tasks required to vectorize for AltiVec—restructuring data structures, designing parallel
algorithms, eliminating branches, and so forth— are the same as those you’d need to perform for the
Intel architecture. If you already have AltiVec code, you’ve already completed the fundamental
vectorization work needed to rewrite your application for the Intel architecture. In many cases the
translation process will be smooth, involving direct or nearly direct substitution of AltiVec intrinsics
with Intel equivalents.

The MMX, SSE, SSE2, and SSE3 extensions provide analogous functionality to AltiVec. Like the AltiVec
unit, these extensions are fixed-sized SIMD (Single Instruction Multiple Data) vector units, capable
of a high degree of parallelism. Just as for AltiVec, code that is written to use the Intel ISA typically
performs many times faster than scalar code.

Before you start rewriting AltiVec instructions for the Intel instruction set architecture, read AltiVec/SSE
Migration Guide. It outlines the key differences between architectures in terms of vector-based
programming, gives an overview of the SIMD extensions on x86, lists what you need to do to build
your code, and provides an in-depth discussion on alignment and other relevant issues.

See Also

The following resources are relevant for rewriting AltiVec instructions for the Intel architecture:

 ■ “Architecture-Independent Vector-Based Code” (page 75) shows how to write a fast
matrix-multiplication function with a minimum of architecture-specific coding.

 ■ Intel software manuals describe the x86 vector extensions:

http://developer.intel.com/design/Pentium4/documentation.htm

 ■ Perf-Optimization-dev is a list for discussions on analyzing and optimizing performance in Mac
OS X. You can subscribe at:

http://lists.apple.com/mailman/listinfo/perfoptimization-devlists.apple.com

 ■ The SIMD website is aimed at developers who use SIMD microprocessor instructions:

http://www.simdtech.org/home

64 Rewriting AltiVec Instructions
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Preparing Vector-Based Code

http://developer.intel.com/design/Pentium4/documentation.htm
http://lists.apple.com/mailman/listinfo/perfoptimization-dev
http://lists.apple.com/mailman/listinfo/perfoptimization-devlists.apple.com
http://www.simdtech.org/home

Rosetta is a translation process that runs a PowerPC binary on an Intel-based Macintosh computer—it
allows applications to run as nonnative binaries. Many, but not all, applications can run translated.
Applications that run translated will never run as fast as they run as a native binary because the
translation process itself incurs a processing cost.

How compatible your application is with Rosetta depends on the type of application it is. An
application such as a word processor that has a lot of user interaction and low computational needs
is quite compatible. An application that requires a moderate amount of user interaction and has some
high computational needs or that uses OpenGL is most likely also quite compatible. One that has
intense computing needs isn’t compatible. This includes applications that need to repeatedly compute
fast Fourier transforms (FFTs), that compute complex models for 3-D modeling, or that compute ray
tracing.

To the user, Rosetta is transparent. Unlike Classic, when the user launches an application, there aren’t
any visual cues to indicate that the application is translated. The user may perceive that the application
is slow to start up or that the performance is slower than it is on a PowerPC-based Macintosh. The
user can discover whether an application has only a PowerPC binary by looking at the Finder
information for the application. (See “Determining Whether a Binary Is Universal” (page 18).)

This appendix discusses the sorts of applications that can run translated, describes how Rosetta works,
points out special considerations for translated applications, shows how to force an application to
run translated using Rosetta, describes how to programmatically detect whether an application is
running nonnatively, and provides troubleshooting information if your application won’t run translated
but you think that it should.

What Can Be Translated?

Rosetta is designed to translate currently shipping applications that run on a PowerPC with a G3 or
G4 processor and that are built for Mac OS X. That includes CFM as well as Mach-O PowerPC
applications.

Rosetta does not run the following:

 ■ Applications built for any version of the Mac OS earlier than Mac OS X —that means Mac OS 9,
Mac OS 8, Mac OS 7, and so forth

 ■ The Classic environment

What Can Be Translated? 65
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

 ■ Screen savers written for the PowerPC architecture

 ■ Code that inserts preferences in the System Preferences pane

 ■ Applications that require a G5 processor

 ■ Applications that depend on one or more PowerPC-only kernel extensions

 ■ Kernel extensions

 ■ Java applications with JNI libraries

 ■ Java applets in applications that Rosetta can translate; that means a web browser that Rosetta can
run translated will not be able to load Java applets.

Rosetta does not support precise exceptions. Any application that relies on register states being
accurate in exception handlers or signal handlers will not function properly running with Rosetta.

For more information on the limitations of Java applications using Rosetta, see “Java
Applications” (page 52) and Technical Q &A QA1295, Java on Intel-based Macintosh Computers, which
is in the ADC Reference Library.

How It Works

When an application launches on an Intel-based Macintosh computer, the kernel detects whether the
application has a native binary. If the binary is not native, the kernel launches the binary using Rosetta.
If the application is one of those that can be translated, it launches and runs, although not as fast as
it would as a native binary. Behind the scenes, Rosetta translates and executes the PowerPC binary
code.

Rosetta runs in the same thread of control as the application. When Rosetta starts an application, it
translates a block of application code and executes that block. As Rosetta encounters a call to a routine
that it has not yet translated, it translates the needed routine and continues the execution. The result
is a smooth and continual transitioning between translation and execution. In essence, Rosetta and
your application work together in a kind of symbiotic relationship.

Rosetta optimizes translated code to deliver the best possible performance on the nonnative
architecture. It uses a large translation buffer, and it caches code for reuse. Code that gets reused
repeatedly in your application benefits the most because it needs to be translated only once. The
system uses the cached translation, which is faster than translating the code again.

Special Considerations

Rosetta must run the entire process when it translates. This has implications for applications that use
third-party plug-ins or any other component that must be loaded at the time your application launches.
All parts (application, plug-ins, or other components needed at launch time) must run either
nonnatively or natively. For example, if your application is built as a universal binary, but it uses a
plug-in that has only a PowerPC binary, then your application needs to run nonnatively on an
Intel-based Macintosh computer to use the nonnative plug in.

66 How It Works
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

http://developer.apple.com/technicalqas/Java/index-title.html

Rosetta takes endian issues into account when it translates your application. Multibyte data that
moves between your application and any system process is automatically handled for you—you don’t
need to concern yourself with the endian format of the data.

The following kinds of multibyte data can have endian issues if the data moves between:

 ■ Your translated application and a native process that’s not a system process

 ■ A custom pasteboard provided by your translated application and a custom pasteboard provided
by a native application

 ■ Data files or caches provided by your translated application and a native application

You might encounter this scenario while developing a universal binary. For example, if you’ve created
a universal binary for a server process that your application relies on, and then test that process by
running your application as a PowerPC binary, the endian format of the data passed from the server
to your application would be wrong. You encounter the same problem if you create a universal binary
for your application, but have not yet done so for a server process needed by the application.

Structures that the system defines and that are written using system routines will work correctly. But
consider the code in Listing A-1.

Listing A-1 A structure whose endian format depends on the architecture

typedef struct
{

int x;
int y;

} data_t

void savefile(data_t data, int filehandle)
{
write(filehandle, &data, sizeof(data));

}

When run using Rosetta, the application will write a big-endian structure; x and y are both written
as big-endian integers. When the application runs natively on an Intel-based Macintosh, it will write
out a little-endian structure; x and y are written as little-endian integers. It is up to you to define data
formats on disk to be of a canonical endian format. Endian-specific data formats are fine as long as
any application that reads or write the data understands what the endian format of the data is and
treats the data appropriately.

Keep in mind that private frameworks and plug-ins can also encounter these sorts of endian issues.
If a private framework creates a cache or data file, and the framework is a universal binary, then it
will try to access the cache from both native and PPC processes. The framework either needs to account
for the endian format of the cache when reading or writing data or needs to have two separate caches.

Forcing an Application to Run Translated

Assuming that the application meets the criteria described in “What Can Be Translated?” (page 65),
applications that have only a PowerPC binary automatically run as translated on an Intel-based
Macintosh. For testing purposes, there are several ways that you can force applications that have a
universal binary to launch as a PowerPC binary on an Intel-based Macintosh:

Forcing an Application to Run Translated 67
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

 ■ For applications, “Make a Setting in the Info Window” (page 68)

 ■ For command-line tools “Use Terminal” (page 68)

 ■ For an application that you are writing, “Modify the Property List” (page 69)

 ■ Programmatically, “Use the sysctlbyname Function” (page 69)

Each of these methods is described in this section.

Make a Setting in the Info Window

You can manually set which binary to execute on an Intel-based Macintosh computer by selecting
the “Open using Rosetta” option in the Info window of the application. To set the option, click the
application icon, then press Command-I to open the Info window. Make the setting, as shown in
Figure A-1.

Figure A-1 The Info window for the Calculator application

Use Terminal

You can force a command-line tool to run translated by entering the following in Terminal:

68 Forcing an Application to Run Translated
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

ditto -arch ppc <toolname> /tmp/toolname
/tmp/tool

Modify the Property List

You can set the default setting for the “Open using Rosetta” option by adding the following key to
the Info.plist of your application bundle:

<key>LSPrefersPPC</key>
<true/>

This key informs the system that the application should launch as a PowerPC binary and causes the
“Open using Rosetta” checkbox to be selected. You might find this useful if you ship an application
that has plug-ins that are not native at the time of shipping.

Use the sysctlbyname Function

The exec_affinity routine in Listing A-2 controls the preferred CPU type for sublaunched processes.
You might find this routine useful if you are using fork and exec to launch applications from your
application.

The routine calls the sysctlbyname function with the "sysctl.proc_exec_affinity" string, passing
a constant that specifies the CPU type. Pass CPU_TYPE_POWERPC to launch the PPC executable in a
universal binary. (For information on sysctlbyname see Mac OS X Man Pages.)

Listing A-2 A routine that controls the preferred CPU type for sublaunched processes

cpu_type_t exec_affinity (cpu_type_t new_cputype)
{

cpu_type_t ret;
cpu_type_t *newp = NULL;
size_t sz = sizeof (cpu_type_t);

if (new_cputype != 0)
newp = &new_cputype;

if (sysctlbyname("sysctl.proc_exec_affinity",
&ret, &sz, newp, newp ? sizeof(cpu_type_t) : 0) == -1) {

fprintf(stderr, "exec_affinity: sysctlbyname failed: %s\n",
strerror(errno));

return -1;
}
return ret;

}

Preventing an Application from Opening Using Rosetta

To prevent an application from opening using Rosetta, add the following key to the Info.plist:

<key>LSRequiresNativeExecution</key>

Preventing an Application from Opening Using Rosetta 69
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

<true/>

Programmatically Detecting a Translated Application

Some developers may want to determine programmatically whether an application is running using
Rosetta. For example, a developer writing device interface code may need to determine whether the
user client is using the same endian format as the kernel.

Listing A-3 is a utility routine that can call the sysctlbyname function on a process ID (pid). If you
pass a process ID of 0 to the routine, it performs the call on the current process. Otherwise it performs
the call on the process specified by the pid value that you pass. (For information on sysctlbyname
see Mac OS X Man Pages.) The is_pid_native routine shown in Listing A-4 (page 71) calls this
routine, passing the string "sysctl.proc_native".

Listing A-3 A utility routine for calling the sysctlbyname function

static int sysctlbyname_with_pid (const char *name, pid_t pid,
void *oldp, size_t *oldlenp,
void *newp, size_t newlen)

{
if (pid == 0) {

if (sysctlbyname(name, oldp, oldlenp, newp, newlen) == -1) {
fprintf(stderr, "sysctlbyname_with_pid(0): sysctlbyname failed:"

"%s\n", strerror(errno));
return -1;

}
} else {

int mib[CTL_MAXNAME];
size_t len = CTL_MAXNAME;
if (sysctlnametomib(name, mib, &len) == -1) {

fprintf(stderr, "sysctlbyname_with_pid: sysctlnametomib failed:"
"%s\n", strerror(errno));

return -1;
}
mib[len] = pid;
len++;
if (sysctl(mib, len, oldp, oldlenp, newp, newlen) == -1) {

fprintf(stderr, "sysctlbyname_with_pid: sysctl failed:"
"%s\n", strerror(errno));

return -1;
}

}
return 0;

}

Listing A-4 shows a routine that determines whether the specified process is running natively or
translated. The routine returns:

 ■ 0 if the process is running natively on an Intel-based Macintosh computer

 ■ –1 if the process is not native but running translated using Rosetta

 ■ 1 if version of Mac OS X predates Rosetta, which means the process is native and running on a
PowerPC Macintosh computer

70 Programmatically Detecting a Translated Application
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

Listing A-4 A routine that determines whether a process is running natively or translated

int is_pid_native (pid_t pid)
{

int ret = 0;
size_t sz = sizeof(ret);

if (sysctlbyname_with_pid("sysctl.proc_native", pid,
&ret, &sz, NULL, 0) == -1) {

if (errno == ENOENT) {
// sysctl doesn't exist, which means that this version of Mac OS
// pre-dates Rosetta, so the application must be native.
return 1;

}
fprintf(stderr, "is_pid_native: sysctlbyname_with_pid failed:"

"%s\n", strerror(errno));
return -1;

}
return ret;

}

Troubleshooting

If you are convinced that your application falls into the category of those that should be able to run
using Rosetta but it doesn’t run or it has unexpected behavior, you can follow the procedure in this
section to debug your application. This procedure works only for PowerPC binaries—not for a
universal binary—and is the only way you can debug a PowerPC binary on an Intel-based Macintosh.
Xcode debugging does not work for translated applications.

To debug a PowerPC binary on an Intel-based Macintosh, follow these steps:

1. Open Terminal.

2. Enter the following two lines:

For tcsh:

setenv OAH_GDB YES
/<path>/<your_application>.app/Contents/MacOS/<your_application>

For bash:

export OAH_GDB=YES
/<path>/<your_application>.app/Contents/MacOS/<your_application>

Troubleshooting 71
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

You’ll see the Rosetta process launch and wait for a port connection (Figure A-2).

Figure A-2 Rosetta listens for a port connection

3. Open a second terminal window and start up GDB with the following command:

gdb --oah

Using GDB on an Intel-based Macintosh computer is just like using GDB on a PowerPC Macintosh.

4. Attach your application.

attach <your_application>

5. Press Tab.

GDB automatically appends the process ID (pid) to your application name.

6. Press Return.

7. Type c to execute your application.

Important: Do not type run. Typing run will not execute your code. It will leave your application
in a state that requires you to start over from the first step.

Figure A-3 shows the commands for initiating a debugging session for a PowerPC binary. After you
start the session, you can debug in much the same way as you would debug a native process except
that you can’t call functions—either explicitly or implicitly—from within GDB. For example, you
can’t inspect CF objects by calling CFShow.

Keep in mind that symbol files aren’t loaded at the start of the debugging session. They are loaded
after your application is up and running. This means that any breakpoints you set are “pending
breakpoints” until the executable and libraries are loaded.

72 Troubleshooting
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

Figure A-3 Terminal windows with the commands for debugging a PowerPC binary on an Intel-based
Macintosh computer

Note: Debugging Rosetta applications from within either CodeWarrior or Xcode is not supported.

Troubleshooting 73
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

74 Troubleshooting
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Rosetta

The intention of this appendix is to show how to factor a mathematical calculation into
architecture-independent and architecture-specific parts. Using matrix multiplication as an example,
you’ll see how to write a function that works for both the PowerPC and the x86 architectures with a
minimum of architecture-specific coding. You can then apply this approach to other, more complex
mathematical calculations.

The following basic operations are available on both architectures:

 ■ Vector loads and stores

 ■ Multiplication

 ■ Addition

 ■ An instruction to splat a float across a vector

For other types of calculations, you may need to write separate versions of code. Because of the
differences in the number of registers and the pipeline depths between the two architectures, it is
often advantageous to provide separate versions.

Note: There is a function for 4x4 matrix multiplication in the Accelerate framework (vecLib) that is
tuned for both architectures. You can also call sgemm from Basic Linear Algebra Subprograms (BLAS)
(also available in the Accelerate framework) to operate on larger matrices.

Architecture-Specific Code

Listing B-1 (page 76) shows the architecture-specific code you need to support matrix multiplication.
The code calls the architecture-independent function MyMatrixMultiply, which is shown in Listing
B-2 (page 79). The code shown in Listing B-1 works properly for both instruction set architectures
only if you build the code as a universal binary. For more information, see “Building a Universal
Binary” (page 13).

Architecture-Specific Code 75
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

Architecture-Independent Vector-Based
Code

Note: The sample code makes use of a GCC extension to return a result from a code block ({}). The
code may not compile correctly on other compilers. The extension is necessary because you cannot
pass immediate values to an inline function, meaning that you must use a macro.

Listing B-1 Architecture-specific code needed to support matrix multiplication

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

// For each vector architecture...
#if defined(__VEC__)
// AltiVec

// Set up a vector type for a float[4] array for each vector type
typedef vector float vFloat;

// Define some macros to map a virtual SIMD language to
// each actual SIMD language. For matrix multiplication, the tasks
// you need to perform are essentially the same between the two
// instruction set architectures (ISA).
#define vSplat(v, i) ({ vFloat z = vec_splat(v, i);

/* return */ z; })
#define vMADD vec_madd
#define vLoad(ptr) vec_ld(0, ptr)
#define vStore(v, ptr) vec_st(v, 0, ptr)
#define vZero() (vector float) vec_splat_u32(0)

#elif defined(__SSE__)
// SSE

// The header file xmmintrin.h defines C functions for using
// SSE and SSE2 according to the Intel C programming interface
#include <xmmintrin.h>

// Set up a vector type for a float[4] array for each vector type
typedef __m128 vFloat;

// Also define some macros to map a virtual SIMD language to
// each actual SIMD language.

// Note that because i MUST be an immediate, it is incorrect here
// to alias i to a stack based copy and replicate that 4 times.
#define vSplat(v, i)({ __m128 a = v; a = _mm_shuffle_ps(a, a, \

_MM_SHUFFLE(i,i,i,i)); /* return */ a; })
inline __m128 vMADD(__m128 a, __m128 b, __m128 c)
{

return _mm_add_ps(c, _mm_mul_ps(a, b));
}
#define vLoad(ptr) _mm_load_ps((float*) (ptr))
#define vStore(v, ptr) _mm_store_ps((float*) (ptr), v)

#define vZero() _mm_setzero_ps()

#else
// Scalar

#warning To compile vector code, you must specify -faltivec,
-msse, or both- faltivec and -msse

#warning Compiling for scalar code.

76 Architecture-Specific Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

Architecture-Independent Vector-Based Code

// Some scalar equivalents to show what the above vector
// versions accomplish

// A vector, declared as a struct with 4 scalars
typedef struct
{

float a;
float b;
float c;
float d;

}vFloat;

// Splat element i across the whole vector and return it
#define vSplat(v, i) ({ vFloat z; z.a = z.b = z.c = z.d = ((float*)

&v)[i]; /* return */ z; })

// Perform a fused-multiply-add operation on architectures that support it
// result = X * Y + Z
inline vFloat vMADD(vFloat X, vFloat Y, vFloat Z)
{

vFloat result;

result.a = X.a * Y.a + Z.a;
result.b = X.b * Y.b + Z.b;
result.c = X.c * Y.c + Z.c;
result.d = X.d * Y.d + Z.d;

return result;
}

// Return a vector that starts at the given address
#define vLoad(ptr) ((vFloat*) ptr)[0]

// Write a vector to the given address
#define vStore(v, ptr) ((vFloat*) ptr)[0] = v

// Return a vector full of zeros
#define vZero() ({ vFloat z; z.a = z.b = z.c = z.

d = 0.0f; /* return */ z; })

#endif

// Prototype for a vector matrix multiply function
void MyMatrixMultiply(vFloat A[4], vFloat B[4], vFloat C[4]);

int main(void)
{

// The vFloat type (defined previously) is a vector or scalar array
// that contains 4 floats
// Thus each one of these is a 4x4 matrix, stored in the C storage order.
vFloat A[4];
vFloat B[4];
vFloat C1[4];
vFloat C2[4];
int i, j, k;

// Pointers to the elements in A, B, C1 and C2

Architecture-Specific Code 77
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

Architecture-Independent Vector-Based Code

float *a = (float*) &A;
float *b = (float*) &B;
float *c1 = (float*) &C1;
float *c2 = (float*) &C2;

// Initialize the data
for(i = 0; i < 16; i++)
{

a[i] = (double) (rand() - RAND_MAX/2) / (double) (RAND_MAX);
b[i] = (double) (rand() - RAND_MAX/2) / (double) (RAND_MAX);
c1[i] = c2[i] = 0.0;

}

// Perform the brute-force version of matrix multiplication
// and use this later to check for correctness
printf("Doing simple matrix multiply...\n");
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)
{

float result = 0.0f;

for(k = 0; k < 4; k++)
result += a[i * 4 + k] * b[k * 4 + j];

c1[i * 4 + j] = result;
}

// The vector version
printf("Doing vector matrix multiply...\n");
MyMatrixMultiply(A, B, C2);

// Make sure that the results are correct
// Allow for some rounding error here
printf("Verifying results...");
for(i = 0 ; i < 16; i++)

if(fabs(c1[i] - c2[i]) > 1e-6)
printf("failed at %i,%i: %8.17g %8.17g\n", i/4,

i&3, c1[i], c2[i]);

printf("done.\n");

return 0;
}

The 4x4 matrix multiplication algorithm shown in Listing B-2 (page 79) is a simple matrix
multiplication algorithm performed with four columns in parallel. The basic calculation is as follows:

C[i][j] = sum(A[i][k] * B[k][j], k = 0... width of A)

It can be rewritten in mathematical vector notation for rows of C as the following:

C[i][] = sum(A[i][k] * B[k][], k = 0... width of A)

Where:

C[i][] is the ith row of C
A[i][k] is the element of A at row i and column k

78 Architecture-Specific Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

Architecture-Independent Vector-Based Code

B[k][] is the kth row of B

An example calculation for C[0][] is as follows:

C[0][] = A[0][0] * B[0][] + A[0][1] * B[1][] + A[0][2] * B[2][] + A[0][3] * B[3][]

This calculation is simply a multiplication of a scalar times a vector, followed by addition of similar
elements between two vectors, repeated four times, to get a vector that contains four sums of products.
Performing the calculation in this way saves you from transposing B to obtain the B columns, and
also saves you from adding across vectors, which is inefficient. All operations occur between similar
elements of two different vectors.

Architecture-Independent Matrix Multiplication

Listing B-2 (page 79) shows architecture-independent vector code that performs matrix multiplication.
This code compiles as scalar if you do not set up the appropriate compiler flags for PowerPC
(-faltivec) or x86 (-msse), or if AltiVec is unavailable on the PowerPC. The matrices used in the
MyMatrixMultply function assume the C storage order for 2D arrays, not the FORTRAN storage
order.

Listing B-2 Architecture-independent code that performs matrix multiplication

void MyMatrixMultiply(vFloat A[4], vFloat B[4], vFloat C[4])
{

vFloat A1 = vLoad(A); //Row 1 of A
vFloat A2 = vLoad(A + 1); //Row 2 of A
vFloat A3 = vLoad(A + 2); //Row 3 of A
vFloat A4 = vLoad(A + 3); //Row 4 of A
vFloat C1 = vZero(); //Row 1 of C, initialized to zero

vFloat C2 = vZero(); //Row 2 of C, initialized to zero

vFloat C3 = vZero(); //Row 3 of C, initialized to zero

vFloat C4 = vZero(); //Row 4 of C, initialized to zero

vFloat B1 = vLoad(B); //Row 1 of B
vFloat B2 = vLoad(B + 1); //Row 2 of B
vFloat B3 = vLoad(B + 2); //Row 3 of B
vFloat B4 = vLoad(B + 3); //Row 4 of B

//Multiply the first row of B by the first column of A (do not sum across)
C1 = vMADD(vSplat(A1, 0), B1, C1);
C2 = vMADD(vSplat(A2, 0), B1, C2);
C3 = vMADD(vSplat(A3, 0), B1, C3);
C4 = vMADD(vSplat(A4, 0), B1, C4);

// Multiply the second row of B by the second column of A and
// add to the previous result (do not sum across)
C1 = vMADD(vSplat(A1, 1), B2, C1);
C2 = vMADD(vSplat(A2, 1), B2, C2);
C3 = vMADD(vSplat(A3, 1), B2, C3);
C4 = vMADD(vSplat(A4, 1), B2, C4);

Architecture-Independent Matrix Multiplication 79
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

Architecture-Independent Vector-Based Code

// Multiply the third row of B by the third column of A and
// add to the previous result (do not sum across)
C1 = vMADD(vSplat(A1, 2), B3, C1);
C2 = vMADD(vSplat(A2, 2), B3, C2);
C3 = vMADD(vSplat(A3, 2), B3, C3);
C4 = vMADD(vSplat(A4, 2), B3, C4);

// Multiply the fourth row of B by the fourth column of A and
// add to the previous result (do not sum across)
C1 = vMADD(vSplat(A1, 3), B4, C1);
C2 = vMADD(vSplat(A2, 3), B4, C2);
C3 = vMADD(vSplat(A3, 3), B4, C3);
C4 = vMADD(vSplat(A4, 3), B4, C4);

// Write out the result to the destination
vStore(C1, C);
vStore(C2, C + 1);
vStore(C3, C + 2);
vStore(C4, C + 3);

}

80 Architecture-Independent Matrix Multiplication
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

Architecture-Independent Vector-Based Code

Mac OS X ABI Function Call Guide describes the function-calling conventions used in all the architectures
supported by Mac OS X. For detailed information about the IA-32 ABI, read the section “IA-32 Function
Calling Conventions,” which:

 ■ Lists data types, sizes, and natural alignment

 ■ Describes stack structure

 ■ Discusses prologs and epilogs

 ■ Provides details on how arguments are passed and results are returned

 ■ Tells which registers preserve their value after a procedure call and which ones are volatile

81
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X C

Application Binary Interface

82
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X C

Application Binary Interface

You can use PowerPlant on an Intel-based Macintosh computer only after you make the changes
detailed in this section. Most of the substantial changes that you need to make are to the PowerPlant
LStream class. PowerPlant uses LStream for a number of different I/O tasks, of which the most
important is reading to and writing from 'PPob' resources. “Changing LStream Code” (page 83)
provides a detailed description of all the LStream-related changes that are required.

Applications using PowerPlant should also set the CSResourcesFileMapped flag to false in the
Info.plist file. This is because the PowerPlant UTextTraits.cp file contains a method that writes
to a dereferenced handle, as shown in the following code line. This handle is obtained from the
GetResource function.

void UTextTraits::LoadTextTraits (TextTraitsPtr ioTextTraits)

If you use the LDataBrowser PowerPlant class and the 'DBC#' resource, you might also need to write
a resource flipper. See “Flipping the 'DBC#' Resource Type” (page 91).

Changing LStream Code

The changes discussed in this section cause LStream to always read and write big-endian data. You
have the following outcomes after you make these changes:

 ■ PPob resources will work correctly on both PowerPC-based and Intel-based Macintosh computers,
with the possible exception of custom types used by your application. Custom types will also
work correctly if you ensure that the LStream constructors used by your custom types employ
the streaming methods of LStream rather than the byte-manipulation methods.

 ■ Data read from and written to disk or to the network and that is written with LStream will be
portable between PowerPC-based and Intel-based Macintosh computers, with the exception of
calls to the methods shown in Listing D-1. For calls to those methods, your code should either
swap bytes to big-endian format or switch to using the streaming methods of LStream.

Make sure that you evaluate all calls to the methods in Listing D-1 (including calls to any subclassed
versions of these methods) to see if they require byte swapping.

Listing D-1 Calls that may require swapping bytes

LStream::PutBytes
LStream::WriteData

Changing LStream Code 83
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

LStream::WriteBlock
LStream::operator << (Handle inHandle)
LStream::GetBytes
LStream::ReadData
LStream::ReadBlock
LStream::PeekData
LStream::operator >> (Handle &outHandle)
LStream::WritePtr
LStream::ReadPtr
LStream::WriteHandle
LStream::ReadHandle

If you have custom classes in a PPob resource, you should change their LStream constructors to avoid
calling LStream::ReadData. Specifically, you need to change the code in the same way as the LStream
constructors for LControl, LListBox, and other PowerPlant classes are changed in the following
sections. The sections, organized by the files you need to change, describe the required code changes:

 ■ “LStream.h” (page 84)

 ■ “LStream.cp” (page 86)

 ■ “LControl.cp” (page 87)

 ■ “LListBox.cp” (page 87)

 ■ “LPane.cp” (page 88)

 ■ “LPrintout.cp” (page 88)

 ■ “LScroller.cp” (page 88)

 ■ “LTable.cp” (page 89)

 ■ “LView.cp” (page 89)

 ■ “LWindow.cp” (page 89)

 ■ “LPopupGroupBox.cp” (page 90)

 ■ “LControlView.cp” (page 90)

 ■ “LScrollerView.cp” (page 90)

 ■ “LPageController.cp” (page 90)

LStream.h

Change the operator << (const Rect &inRect) method from a single WriteBlock call to the
following:

Rect rect;
rect.top = CFSwapInt16HostToBig(inRect.top);
rect.left = CFSwapInt16HostToBig(inRect.left);
rect.right= CFSwapInt16HostToBig(inRect.right);
rect.bottom = CFSwapInt16HostToBig(inRect.bottom);
WriteBlock(&rect, sizeof(rect));

Change the operator << (const Point &inPoint) method from a single WriteBlock call to the
following:

84 Changing LStream Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

Point pt;
pt.v = CFSwapInt16HostToBig(inPoint.v);
pt.h = CFSwapInt16HostToBig(inPoint.h);
WriteBlock(&pt, sizeof(pt));

Change the operator << (SInt16 inNum) method from a single WriteBlock call to the following:

SInt16 n;
n = CFSwapInt16HostToBig(inNum);
WriteBlock(&n, sizeof(n));

Change the operator << (UInt16 inNum) method from a single WriteBlock call to the following:

UInt16 n;
n = CFSwapInt16HostToBig(inNum);
WriteBlock(&n, sizeof(n));

Change the operator << (SInt32 inNum) method from a single WriteBlock call to the following:

SInt32 n;
n = CFSwapInt32HostToBig(inNum);
WriteBlock(&n, sizeof(n));

Change the operator << (UInt32 inNum) method from a single WriteBlock call to the following:

UInt32 n;
n = CFSwapInt32HostToBig(inNum);
WriteBlock(&n, sizeof(n));

Change the operator << (float inNum) method from a single WriteBlock call to the following:

CFSwappedFloat32 swappedFloat;
swappedFloat = CFConvertFloat32HostToSwapped(inNum);
WriteBlock(&swappedFloat, sizeof(swappedFloat));

Change the operator << (bool inBool) method from a single WriteBlock call to the following:

Note: This code writes 4-byte bool values. If you need compatibility with existing resources, you
may need to modify the code to write 1-byte bool values.

UInt32 boolValue;
boolValue = CFSwapInt32HostToBig(inBool);
WriteBlock(&boolValue, sizeof(boolValue));

In the operator >> (Rect &outRect) method, add this after the ReadBlock call:

outRect.top = CFSwapInt16BigToHost(outRect.top);
outRect.left = CFSwapInt16BigToHost(outRect.left);
outRect.right= CFSwapInt16BigToHost(outRect.right);
outRect.bottom = CFSwapInt16BigToHost(outRect.bottom);

In the operator >> (Point &outPoint) method, add the following after the ReadBlock call:

outPoint.v = CFSwapInt16BigToHost(outPoint.v);
outPoint.h = CFSwapInt16BigToHost(outPoint.h);

In the operator >> (SInt16 &outNum) method, add the following after the ReadBlock call:

Changing LStream Code 85
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

outNum = CFSwapInt16BigToHost(outNum);

In the operator >> (UInt16 &outNum) method, add the following after the ReadBlock call:

outNum = CFSwapInt16BigToHost(outNum);

In the operator >> (SInt32 &outNum) method, add the following after the ReadBlock call:

outNum = CFSwapInt32BigToHost(outNum);

In the operator >> (UInt32 &outNum) method, add the following after the ReadBlock call:

outNum = CFSwapInt32BigToHost(outNum);

In the operator >> (float &outNum) method, replace the ReadBlock call with the following:

CFSwappedFloat32 swappedFloat;
ReadBlock(&swappedFloat, sizeof(swappedFloat));
outNum = CFConvertFloat32SwappedToHost(swappedFloat);

In the operator >> (bool &outBool) method, replace the ReadBlock call with the following:

Note: This code reads 4-byte bool values. If you need compatibility with existing resources, you may
need to modify the code to read 1-byte bool values.

UInt32 boolValue;
ReadBlock(&boolValue, sizeof(boolValue));
outBool = CFSwapInt32BigToHost(boolValue);

LStream.cp

In the operator << (double inNum)method, change the #if TARGET_CPU_PPC block to the following:

#if TARGET_CPU_PPC || TARGET_CPU_X86
// PowerPC and Intel doubles -- they're 8 bytes already, so just swap
// if necessary and write.

Assert_(sizeof(inNum) == 8);
CFSwappedFloat64 swappedDouble = CFConvertDoubleHostToSwapped(inNum);
WriteBlock(&swappedDouble, sizeof(swappedDouble));

In the operator >> (double& outNum) method, change the #if TARGET_CPU_PPC block to the
following:

#if TARGET_CPU_PPC || TARGET_CPU_X86
// PowerPC and Intel doubles -- they're 8 bytes already, so just read
// and swap if necessary.

Assert_(sizeof(outNum) == 8);
CFSwappedFloat64 swappedDouble;
ReadBlock(&swappedDouble, sizeof(swappedDouble));
outNum = CFConvertDoubleSwappedToHost(swappedDouble);

86 Changing LStream Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

LControl.cp

In the LStream constructor, replace this line:

inStream->ReadData(&controlInfo, sizeof(SControlInfo));

with the following lines:

*inStream >> controlInfo.valueMessage;
*inStream >> controlInfo.value;
*inStream >> controlInfo.minValue;
*inStream >> controlInfo.maxValue;

LListBox.cp

In the LStream constructor, replace this line:

inStream->ReadData(&listInfo, sizeof(SListBoxInfo));

with the following lines:

*inStream >> listInfo.hasHorizScroll;
*inStream >> listInfo.hasVertScroll;
*inStream >> listInfo.hasGrow;
*inStream >> listInfo.hasFocusBox;
*inStream >> listInfo.doubleClickMessage;
*inStream >> listInfo.textTraitsID;
*inStream >> listInfo.LDEFid;
*inStream >> listInfo.numberOfItems;

In the RestorePlace(LStream *inPlace) method, replace the following line:

inPlace->ReadData(&theRect, sizeof(Rect));

with this line:

*inPlace >> theRect;

Further down in the method, just under the if (vScroll != nil) line, replace this line:

inPlace->ReadData(&theRect, sizeof(Rect));

with this line:

*inPlace >> theRect;

And once more in the same method, just under the if (hScroll != nil) line, replace this line:

inPlace->ReadData(&theRect, sizeof(Rect));

with this line:

*inPlace >> theRect;

Changing LStream Code 87
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

LPane.cp

In the LStream constructor, replace this line:

inStream->ReadData(&thePaneInfo, sizeof(SPaneInfo));

with the following lines:

SInt32 viewPtr;
*inStream >> thePaneInfo.paneID;
*inStream >> thePaneInfo.width;
*inStream >> thePaneInfo.height;
*inStream >> thePaneInfo.visible;
*inStream >> thePaneInfo.enabled;
*inStream >> thePaneInfo.bindings.left;
*inStream >> thePaneInfo.bindings.top;
*inStream >> thePaneInfo.bindings.right;
*inStream >> thePaneInfo.bindings.bottom;
*inStream >> thePaneInfo.left;
*inStream >> thePaneInfo.top;
*inStream >> thePaneInfo.userCon;
*inStream >> viewPtr;
thePaneInfo.superView = reinterpret_cast<LView *>(viewPtr);

LPrintout.cp

In the LStream constructor, replace this line:

inStream->ReadData(&thePrintoutInfo, sizeof(SPrintoutInfo));

with the following lines:

*inStream >> thePrintoutInfo.width;
*inStream >> thePrintoutInfo.height;
*inStream >> thePrintoutInfo.active;
*inStream >> thePrintoutInfo.enabled;
*inStream >> thePrintoutInfo.userCon;
*inStream >> thePrintoutInfo.attributes;

LScroller.cp

In the LStream constructor, replace this line:

inStream->ReadData(&scrollerInfo, sizeof(SScrollerInfo));

with the following lines:

*inStream >> scrollerInfo.horizBarLeftIndent;
*inStream >> scrollerInfo.horizBarRightIndent;
*inStream >> scrollerInfo.vertBarTopIndent;
*inStream >> scrollerInfo.vertBarBottomIndent;
*inStream >> scrollerInfo.scrollingViewID;

88 Changing LStream Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

LTable.cp

In the LStream constructor, replace this line:

inStream->ReadData(&tableInfo, sizeof(STableInfo));

with the following lines:

*inStream >> tableInfo.numberOfRows;
*inStream >> tableInfo.numberOfCols;
*inStream >> tableInfo.rowHeight;
*inStream >> tableInfo.colWidth;
*inStream >> tableInfo.cellDataSize;

LView.cp

In the LStream constructor, replace this line:

inStream->ReadData(&viewInfo, sizeof(SViewInfo));

with the following lines:

*inStream >> viewInfo.imageSize.width;
*inStream >> viewInfo.imageSize.height;
*inStream >> viewInfo.scrollPos.h;
*inStream >> viewInfo.scrollPos.v;
*inStream >> viewInfo.scrollUnit.h;
*inStream >> viewInfo.scrollUnit.v;
*inStream >> viewInfo.reconcileOverhang;

LWindow.cp

In the LStream constructor, replace this line:

inStream->ReadData(&windowInfo, sizeof(SWindowInfo));

with the following lines:

*inStream >> windowInfo.WINDid;
*inStream >> windowInfo.layer;
*inStream >> windowInfo.attributes;
*inStream >> windowInfo.minimumWidth;
*inStream >> windowInfo.minimumHeight;
*inStream >> windowInfo.maximumWidth;
*inStream >> windowInfo.maximumHeight;
*inStream >> windowInfo.standardSize.width;
*inStream >> windowInfo.standardSize.height;
*inStream >> windowInfo.userCon;

Changing LStream Code 89
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

LPopupGroupBox.cp

In the LStream constructor, replace this line:

inStream->ReadData(&cInfo, sizeof(SControlInfo));

with the following lines:

*inStream >> cInfo.valueMessage;
*inStream >> cInfo.value;
*inStream >> cInfo.minValue;
*inStream >> cInfo.maxValue;

LControlView.cp

In the LStream constructor, replace this line:

inStream->ReadData(&cInfo, sizeof(SControlInfo));

with the following lines:

*inStream >> cInfo.valueMessage;
*inStream >> cInfo.value;
*inStream >> cInfo.minValue;
*inStream >> cInfo.maxValue;

LScrollerView.cp

In the LStream constructor, replace this line:

inStream->ReadData(&scrollerInfo, sizeof(SScrollerViewInfo));

with the following lines:

*inStream >> scrollerInfo.horizBarLeftIndent;
*inStream >> scrollerInfo.horizBarRightIndent;
*inStream >> scrollerInfo.vertBarTopIndent;
*inStream >> scrollerInfo.vertBarBottomIndent;
*inStream >> scrollerInfo.scrollingViewID;

LPageController.cp

In the LStream constructor, replace these lines:

inStream->ReadData(&mBackColor, sizeof(RGBColor));
inStream->ReadData(&mFaceColor, sizeof(RGBColor));
inStream->ReadData(&mPushedTextColor, sizeof(RGBColor));

with the following lines:

*inStream >> mBackColor.red;

90 Changing LStream Code
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

*inStream >> mBackColor.green;
*inStream >> mBackColor.blue;
*inStream >> mFaceColor.red;
*inStream >> mFaceColor.green;
*inStream >> mFaceColor.blue;
*inStream >> mPushedTextColor.red;
*inStream >> mPushedTextColor.green;
*inStream >> mPushedTextColor.blue;

Flipping the 'DBC#' Resource Type

If you use the LDataBrowser PowerPlant class, you might be using a 'DBC#' resource. If so, you will
need to write a resource flipper similar to that shown in Listing D-2.

Listing D-2 Code that flips the 'DBC#' resource type

struct DataBrowserColumnSetup {
DataBrowserTableViewColumnID propertyID; // UInt32
DataBrowserPropertyType propertyType; // unsigned long
SInt32 nameStrIndex;
DataBrowserPropertyFlags propertyFlags; // UInt32
UInt16 minimumWidth;
UInt16 maximumWidth;
UInt16 initialWidth;
ControlContentType btnContentType; // SInt16
ControlButtonGraphicAlignment btnContentAlign; // SInt16
SInt16 btnContentDataID;
ControlButtonGraphicAlignment titleAlignment; // SInt16
ControlButtonTextPlacement titlePlacement; // SInt16
SInt16 titleFontTypeID;
SInt16 titleFontStyle;
SInt16 titleFontSize;
UInt16 titleOffset;

};
typedef struct DataBrowserColumnSetup DataBrowserColumnSetup;

OSStatus FlipDBC_(OSType dataDomain, OSType dataType,
short id, void* dataPtr, UInt32 dataSize,
Boolean currentlyNative, void* refcon)

{
DataBrowserColumnSetup *dbc;
UInt16 count;
int i;

UInt16* countPtr = (UInt16*) dataPtr;

if (currentlyNative) {
count = * countPtr;
*countPtr = EndianU16_NtoB(count);
dataPtr = (void*)&countPtr[1];

} else {
*countPtr = EndianU16_BtoN(*countPtr);
count = *countPtr;
dataPtr = (void*) &countPtr[1];

Flipping the 'DBC#' Resource Type 91
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

}

dbc = (DataBrowserColumnSetup *) dataPtr;
for(i = 0; i < count; i++, dbc++) {

dbc->propertyID = Endian32_Swap(dbc->propertyID);
dbc->propertyType = Endian32_Swap(dbc->propertyType);
dbc->nameStrIndex = Endian32_Swap(dbc->nameStrIndex);
dbc->propertyFlags = Endian32_Swap(dbc->propertyFlags);
dbc->minimumWidth = Endian16_Swap(dbc->minimumWidth);
dbc->maximumWidth = Endian16_Swap(dbc->maximumWidth);
dbc->initialWidth = Endian16_Swap(dbc->initialWidth);
dbc->btnContentType = Endian16_Swap(dbc->btnContentType);
dbc->titleAlignment = Endian16_Swap(dbc->titleAlignment);
dbc->titlePlacement = Endian16_Swap(dbc->titlePlacement);
dbc->titleFontTypeID = Endian16_Swap(dbc->titleFontTypeID);
dbc->titleFontStyle = Endian16_Swap(dbc->titleFontStyle);
dbc->titleFontSize = Endian16_Swap(dbc->titleFontSize);
dbc->titleOffset = Endian16_Swap(dbc->titleOffset);

}
return noErr;

}

92 Flipping the 'DBC#' Resource Type
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X D

Using PowerPlant

This table describes the changes to Universal Binary Programming Guidelines, Second Edition.

NotesDate

Made a few minor technical corrections.2006-07-24

Revised “Network-Related Data” (page 36).

Clarified how Listing A-4 (page 71) works.

Fixed link.2006-06-28

Added “PostScript Printing” (page 58).

Redirected link from Kernel Extensions Reference to Kernel Framework
Reference.

Removed outdated links and made a few other minor changes.2006-05-23

Revised code in “Flipping the 'DBC#' Resource Type” (page 91) to use an
explicit UInt16 pointer and to assign back to dataptr the advanced
countPtr.

Updated instructions in “Troubleshooting” (page 71).

Added information about the CCSResourcesFileMapped flag to “Using
PowerPlant” (page 83).

Removed links to documentation that is no longer relevant.

Added a note to “LStream.h” (page 84) concerning reading and writing
bool values.

Corrected two function names.2006-04-04

Revised information in “Application Binary Interface” (page 81) so that
it now only provides a link to the primary ABI reference.

Improved wording and added information on Spotlight importers.2006-03-08

93
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Added information to “Objective-C Runtime: Sending Messages” and
“Objective-C: Messages to nil”.

Improved the wording in several sections.2006-02-07

Revised wording in “Bit Shifting” (page 48), “Bit Test, Set, and Clear
Functions: Carbon and POSIX” (page 48), “Troubleshooting” (page 71),
and “Guidelines for Swapping Bytes” (page 31).

Revised code in Listing A-4 (page 71) by adding a statement to handle
versions of Mac OS that pre-date Rosetta.

Updated content for Mac OS X v10.4.4.2006-01-10

Removed the note about preliminary documentation from “Introduction
to Universal Binary Programming Guidelines” (page 9).

Changed Xcode 2.1 to Xcode 2.2 in various places throughout the document
because this is the recommended version for building a universal binary.

Updated screenshots.

Updated information in “Disk Partitions” (page 49), “Finder Information
and Low-Level File System Operations” (page 50), “Multithreading” (page
54), “Objective-C: Messages to nil” (page 54), “QuickTime
Components” (page 60), “Runtime Code Generation” (page 60), and
“Values in an Array” (page 39).

Added the sections “Code on the Stack: Disabling Execution” (page 24),
“Extensible Firmware Interface (EFI)” (page 26), and “Mach Processes:
The Task for PID Function” (page 53).

In “Rosetta” (page 65), updated the sections “What Can Be
Translated?” (page 65) and “Forcing an Application to Run
Translated” (page 67).

In “Rosetta” (page 65), added the section “Programmatically Detecting a
Translated Application ” (page 70).

Made refinements to existing content.2005-12-06

Added code that shows how to swap bytes for values in an array. See
“Values in an Array” (page 39).

Added “Automator Scripts” (page 48), “Dashboard Widgets” (page 49),
and “QuickTime Metadata Functions” (page 60).

Updated for Xcode 2.2; includes pointers to newly revised tools
documentation as well as improved guidelines and tips.

2005-11-09

Revised “Building Your Code” (page 14).

Added “Debugging” (page 17).

94
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Added information to “Pixel Data ” (page 58) on how to track down color
problems.

Added the section “Quartz Bitmap Data” (page 59).

Added information about IP addresses and other “false” numerical values.

In several places throughout the book, added cross references to newly
revised, relevant documentation.

Added clarification on the long double data type. See “Data Types” (page
25).

Added information about using the PinRect function. See “QuickDraw
Routines” (page 59).

Added information about the need for Xcode targets to be native. See
“Build Assumptions” (page 13) and “Building Your Code” (page 14).

Corrected information about how ATS for Fonts handles font resources.
See “Font-Related Resources” (page 51).

Changed extended markup language to extensible markup language.

Improved the grammar in “Objective-C: Messages to nil” (page 54).

Fixed a link to information on Hyper-Threading Technology. See the “See
Also” (page 61) section in “Guidelines for Specific Scenarios” (page 47).

Made numerous editorial changes throughout.

Made technical improvements and minor editorial changes throughout.2005-10-04

Added a few resources to See Also in “Building a Universal Binary” (page
13).

Changed the title of the Appendix Fast Matrix Multiplication to
“Architecture-Independent Vector-Based Code” (page 75).

Added new sections to the chapter “Guidelines for Specific Scenarios” (page
47). See “FireWire Device Access” (page 51) and “USB Device
Access” (page 61).

Added information about a relevant technical note to “QuickTime
Components” (page 60).

Added an example of a color issue to “Troubleshooting Your Built
Application” (page 17).

Revised the section “Objective-C: Messages to nil” (page 54).

Revised the code for swapping floating-point values. See “Floating-Point
Values” (page 34).

95
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Add a reference to Cross-Development Programming Guide in the chapter
“Building a Universal Binary” (page 13).

Made corrections to the section “OpenGL” (page 55).

Updated a substantial amount of task and conceptual information.2005-09-08

Completely replaced information related to PowerPlant. See “Using
PowerPlant” (page 83).

Removed most of the content from “Preparing Vector-Based Code” (page
63) because the document AltiVec/SSE Migration Guide provides a more
complete discussion of porting AltiVec code to SSE.

Removed most of the content from the appendix titled Application Binary
Interface because the document Mac OS X ABI Function Call Guide provides
a more complete description of the IA-32 ABI for Intel-based Macintosh
computers.

Added a section—“Java Applications” (page 52)—that provides
information about Java on Intel-based Macintosh computers, including
what happens under Rosetta. Added cross-references to a technical note
on this topic to “Rosetta” (page 65).

Numerous minor technical and editorial changes throughout.2005-08-11

Removed the appendix titled x86 Equivalent Instructions for AltiVec
Instructions.”

Made numerous minor technical refinements and fixed a few typographical
errors.

2005-07-07

Fixed typographical and linking errors. Made several improvements to
technical content.

2005-06-17

New document that describes the architectural differences between
PowerPC and Intel and provides tips for writing code that can run on both.

2005-06-07

96
2006-07-24 | © 2005, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

	Universal Binary Programming Guidelines, Second Edition
	Contents
	Tables, Figures, and Listings
	Introduction
	Building a Universal Binary
	Build Assumptions
	Building Your Code
	Debugging
	Troubleshooting Your Built Application
	Determining Whether a Binary Is Universal
	Build Options
	Default Compiler Options
	Architecture-Specific Options
	Autoconf Macros

	See Also

	Architectural Differences
	Alignment
	Bit Fields
	Byte Order
	Calling Conventions
	Code on the Stack: Disabling Execution
	Data Type Conversions
	Data Types
	Divide-By-Zero Operations
	Extensible Firmware Interface (EFI)
	Floating-Point Equality Comparisons
	Structures and Unions
	See Also

	Swapping Bytes
	Why Byte Ordering Matters
	Guidelines for Swapping Bytes
	Byte-Swapping Routines
	Byte-Swapping Strategies
	Constants
	Custom Apple Event Data
	Custom Resource Data
	Floating-Point Values
	Integers
	Network-Related Data
	OSType-to-String Conversions
	Unicode Text Files
	Values in an Array

	Writing a Callback to Swap Data Bytes
	See Also

	Guidelines for Specific Scenarios
	Aliases
	Archived Bit Fields
	Automator Scripts
	Bit Shifting
	Bit Test, Set, and Clear Functions: Carbon and POSIX
	CPU Subtype
	Dashboard Widgets
	Deprecated Functions
	Disk Partitions
	Double-Precision Values: Bit-by-Bit Sensitivity
	Finder Information and Low-Level File System Operations
	FireWire Device Access
	Font-Related Resources
	GWorlds
	Java Applications
	Java I/O API (NIO)
	Machine Location Data Structure
	Mach Processes: The Task for PID Function
	Metrowerks PowerPlant
	Multithreading
	Objective-C: Messages to nil
	Objective-C Runtime: Sending Messages
	Open Firmware
	OpenGL
	OSAtomic Functions
	Pixel Data
	PostScript Printing
	Quartz Bitmap Data
	QuickDraw Routines
	QuickTime Components
	QuickTime Metadata Functions
	Runtime Code Generation
	Spotlight Importers
	System-Specific Predefined Macros
	USB Device Access
	See Also

	Preparing Vector-Based Code
	Accelerate Framework
	Rewriting AltiVec Instructions
	See Also

	Appendix A: Rosetta
	What Can Be Translated?
	How It Works
	Special Considerations
	Forcing an Application to Run Translated
	Make a Setting in the Info Window
	Use Terminal
	Modify the Property List
	Use the sysctlbyname Function

	Preventing an Application from Opening Using Rosetta
	Programmatically Detecting a Translated Application
	Troubleshooting

	Appendix B: Architecture-Independent Vector-Based Code
	Architecture-Specific Code
	Architecture-Independent Matrix Multiplication

	Appendix C: Application Binary Interface
	Appendix D: Using PowerPlant
	Changing LStream Code
	LStream.h
	LStream.cp
	LControl.cp
	LListBox.cp
	LPane.cp
	LPrintout.cp
	LScroller.cp
	LTable.cp
	LView.cp
	LWindow.cp
	LPopupGroupBox.cp
	LControlView.cp
	LScrollerView.cp
	LPageController.cp

	Flipping the 'DBC#' Resource Type

	Revision History

