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Abstract 
Maximum likelihood models of multisensory integration are theoretically attractive 

because the goals and assumptions of sensory information processing are explicitly stated 

in such optimal models. When subjects perceive stimuli categorically, as opposed to on a 

continuous scale, maximum likelihood integration (MLI) can occur before or after 

categorization—early or late. We introduce early MLI and apply it to the audiovisual 

perception of rapid beeps and flashes. We compare it to late MLI and show that early 

integration is a better fitting and more parsimonious model. We also show that early MLI 

is better able to account for the effects of information reliability, modality 

appropriateness and intermodal attention which affect multisensory perception. 
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Introduction 
Maximum likelihood models of multisensory integration are theoretically attractive 

because the goals and assumptions of sensory information processing are explicitly stated 

in such optimal models. We call this application of the maximum likelihood principle for 

maximum likelihood integration (MLI). Recently, MLI has been studied for continuous 

perception, where stimulus attributes, such as spatial location, are perceived on a 

continuum [2,5-7]. When applied to this type of stimuli, MLI operates on continuous 

probability distributions such as the normal distribution. For categorical perception, 

where stimulus attributes, such the number of events, are perceived in categories, MLI 

has been studied for decades mostly under the name of the Fuzzy Logical Model of 

Perception (FLMP) [12]. When applied to this type of stimuli, MLI operates on discrete 

probability distributions such as the multinomial distribution. Such models can be called 

late MLI because they assume that multisensory integration occurs after categorization. 

But, if categorization is based on an early, continuous internal representation, then MLI 

could operate on this representation prior to categorization. This kind of models can be 

called early MLI.  

 

Here, we shall compare an early and late MLI by applying both models to the counting of 

rapid flashes and beeps. Shams et al. found that a single rapid flash of light was perceived 

as two flashes when accompanied by two rapid tone beeps indicating that audition affects 

vision when counting the number of rapid events [16,17]. In a previous report [4], we 

replicated and extended the findings of Shams et al. Since these data will be used for 

model testing in the current report, we shall briefly summarize them in the following. We 

used an expanded factorial experimental design with visual stimuli of 1-3 flashes, 

auditory stimuli of 1-3 beeps and all 9 audiovisual combinations. For audiovisual stimuli, 

our experiments had two attentional conditions. In the count-flashes condition, the 

participants were instructed to count the flashes and ignore the beeps as in Shams et al.’s 

original experiment. In the count-beeps condition, the instructions were to count the 

beeps while ignoring the flashes. Each stimulus type in each condition was presented 

twenty times in pseudorandom order and the participants responded in categories 1, 2 or 

3. These response counts form the empirical basis for the model testing in this study. 
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Both conditions were included in two experiments. In Experiment 1, the sound level was 

80 db(A) which is a clearly audible sound level close to that used by Shams et al. In 

Experiment 2, the sound level was 10 dB(A) which was close to the participants’ auditory 

threshold.  

 

In Experiment 1 we were able to replicate Shams et al.’s finding in the count-flashes 

condition—i.e. we also found a strong fission illusion. However, contrary to Shams et al., 

we also found a strong fusion illusion—i.e. 2 flashes were often perceived as 1 when 

accompanied by 1 beep. In the count-beeps condition we found no influence from the 

number of flashes on the perceived number of beeps. In the count-flashes condition of 

Experiment 2, both fission and fusion illusions persisted indicating that the effect is very 

robust to variations in stimulus signal-to-noise ratio (SNR). The effects were, however, 

weaker than in Experiment 1. In the count-beeps condition of Experiment 2, we found 

visually induced auditory fission and fusion illusions.  

 

We discussed our results in terms of four hypotheses on what determines the relative 

influence from each modality on the multisensory percept. Three of these apply to 

multisensory integration in general and any quantitative model of multisensory 

integration should therefore be able to account for them.  

 

The information reliability hypothesis states that the modality receiving the more reliable 

information (e.g. through a high SNR) will have a greater effect on perception [15]. Two 

findings agree with this. First, the number of beeps had a stronger influence on the 

number of perceived flashes in Experiment 1, where auditory information reliability was 

higher, than in Experiment 2. Second, the number of flashes had a weaker influence on 

the number of perceived beeps in Experiment 1 than in Experiment 2. 

 

The modality appropriateness hypothesis states that the modality more appropriate (i.e. 

sensitive) for the discrimination has a greater effect on perception [21]. In fact, modality 

appropriateness may be seen as a contribution to information reliability so that the more 

appropriate modality provides more reliable information given the same stimulus SNR. 
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For a temporal discrimination task such as counting rapid events, audition, with its 

superior temporal resolution, should be more appropriate. In concordance, to find visual 

influence on audition it was necessary to lower the auditory SNR to near subjects’ 

auditory threshold while auditory influence on vision persisted at that point. 

 

The directed attention hypothesis states that shifting attention between sensory modalities 

affects perception [20]. This effect was clearest in Experiment 1 where counting beeps 

was not influenced by the number of flashes but counting flashes was strongly influenced 

by the number of beeps. The effect was also present in Experiment 2. The clear 

difference between the count-flashes and count-beeps conditions indicates that flashes 

and beeps are not always integrated to a unitary percept. Subjects are able to focus 

attention on either flashes or beeps and this significantly affects the number of events 

they count. This poses a problem for all maximum likelihood based theories of 

integration. Since the stimuli are identical and the maximum likelihood rule is mandatory 

and univalent, an explanation is needed for the difference in the audiovisual percepts. The 

solution lies in a change of the processing of the unimodal stimuli or in a change in prior 

assumptions. One way that attention could affect unimodal perception is, according to the 

gain theory of attention [10,19], to increase the gain of a stimulus with respect to the 

unattended stimulus or background noise. This should be equivalent to increased 

reliability and attending a stimulus would have the effect of increasing the reliability of 

the stimulus. Thus to model the difference between the count-flashes and count-beep 

conditions, we only need to model the change in stimulus reliability resulting from 

shifting attention between vision and audition. 

 

In the following, we shall describe two models of categorical multisensory integration. 

The first is early MLI which consist of MLI of a continuous internal representation and a 

model of classification based on signal-detection theory [9]. The second is late MLI 

which consists of MLI of categorical percepts. This model is also known as the FLMP. 

Both models assume that audition and vision provide independent information. This 

assumption has been used also in previous studies [2,6,10,11,16].   
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Early MLI 
Early MLI describes integration based on a continuous internal representation prior to 

categorization. Maximum likelihood as the principle governing multisensory integration 

has recently been studied for stimuli falling on a continuum [2,6,7]. In these studies, it 

has been assumed that the stimulus, S, causes an internal representation, x, in the brain. In 

the process, perceptual Gaussian noise is added so that the probability of an internal 

representation value given a stimulus is given by 
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where µ  and  r  denote mean and reliability of the internal representation, respectively. 

The reliability, r , relates to the standard deviation, σ ,  of the Gaussian distribution as 
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For audiovisual stimulation, we assume that an auditory stimulus, AS , and a visual 

stimulus, VS , are independently distributed with internal representation means Aµ  and 

Vµ  respectively, and reliabilities Ar  and Vr , respectively. Then the maximum likelihood 

integrated internal representation, AVx , is also Gaussian distributed with mean 
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(5)  VAAV rrr +=  

 

It is reasonable to equate the reliability in this model with that of the information 

reliability hypothesis. Then, this model contains the information reliability hypothesis in 

the form of Eqs. 3-4. When a modality is more reliable it is weighted higher.  

 

Since our stimuli were designed so that, in each experiment, the events within each 

modality had the same duration and SNR we assume that they had the same information 

reliability and therefore we do not allow it to depend on the number of flashes or beeps. 

As we have outlined above, since the effects of modality appropriateness and directed 

attention can be quantified in terms of their effects on information reliability, early MLI 

is able to account for those effects. In accordance with the modality appropriateness 

hypothesis we allow the information reliability to depend on the sensory modality. In 

accordance with the directed attention hypothesis we allow the information reliability to 

vary with attended modality as described by the gain theory of attention [10,19]. This 

means that the reliabilities should actually have two subscripts where the first subscript 

designates the modality of the stimulus and the second subscript the attended modality, so 

that VAVr ,  designates the reliability for the audiovisual count-flashes condition which, 

based on Equation 5, is given by VVVAVAV rrr ,,, += . The reliability, VAr , , is a fictive 

quantity which can be interpreted as the auditory reliability when vision is attended. 

Similarly, the reliability for the audiovisual count-beeps condition is given by 

AVAAAAV rrr ,,, += . The reliabilities of unimodal stimuli, AVAAVVVA rrrr ,,,, ,,, , are free 

parameters. Directed attention affects also the weight, w, according to Equation 4, so that 

the weight for the count-flashes condition is 
VVVA
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r
w
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The mean of the internal representation, µ , depends both on the number of flashes or 

beeps and on the modality. For the current data set there is an internal representation 

mean for each of the three unimodal stimuli in both the auditory and the visual modality. 

These are free parameters. They are combined using Equation 3 to give an internal 

representation mean for each of the 9 audiovisual stimuli in both the count-flashes and 

count-beeps conditions. 

 

In the above model, the stimulus could be categorical as well as continuous. In order to 

test the model for categorical responses, a model of categorization is needed. A category, 

C, is defined by an interval, min max[ , ]C Cx x of internal representation values. One endpoint 

may be replaced with plus or minus infinity if appropriate. When an internal 

representation value falls inside the interval, the stimulus is estimated to belong to the 

category; when it falls outside the interval, the stimulus is estimated not to belong to the 

category. The probability of a stimulus being classified as belonging to category C is then 
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where Φ  is the standard normal probability function. For the current experiments the 

categories were 1, 2 and 3 and the corresponding response probabilities are: 

 

(7)  

( )

( )

( ) 





 −

Φ==







 −

Φ−





 −

Φ==







 −

Φ−==

σ
µ

σ
µ

σ
µ

σ
µ

23

2312

12

|3

|2

1|1

xSCP

xxSCP

xSCP

 



  9/18 
 

where 12x  is the boundary between category 1 and 2; and 23x  is the boundary between 

category 2 and 3. The category boundaries 12x  and 23x  are free parameters. 

 

To summarize, the free parameters of the model are the information reliability for each 

modality and each attentional state (4 in total), the means of the internal representations 

for each unimodal stimulus (6 in total) and the category boundaries (2 in total). The 

model thus has 12 free parameters. If only either the count-flashes or count-beeps 

condition is modeled, then the number of free parameters is reduced by one to 11, 

because there is one attentional condition less.  

 

Many of the free parameters only have sensible values within a certain interval. The 

means of the internal representations should not be far from what is expected from 

stimulus values. Using unrestricted optimization, the internal representation could take 

nonsensical values like very large and/or negative values. We restricted the means of the 

internal representations to lie in the interval [0; 4]. In the strictest sense, this implies that 

the normal distributions of Equations 6-7 should be truncated but since, in practice, their 

means never came within one standard deviation of interval limits, the effect of 

truncation would have been small. The category endpoints should lie between the internal 

representation values of the categories so that the category boundary between category 1 

and 2 should lie between values x=1 and x=2.  

Late MLI 
Late MLI is based on response probabilities and does not address stimulus processing 

prior to classification. The integrated percept is the normalized product of the unimodal 

response probabilities: 
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where catN  is the number of response categories. This model is known as the FLMP in 

audiovisual speech research [12] and as the baseline category logit in the literature on 

Generalized Linear Models [1].  

 

When modeling only one attentional condition, the free parameters of late MLI are 

simply the unimodal response probabilities. In our experiment, there were 3 response 

categories of which only 2 were independent because the total number of stimulus 

presentations was constant. Therefore, 2 free parameters are required for each of the 6 

unimodal stimuli so that late MLI has 12 free parameters when modeling only one 

attentional condition. 

 

Since late MLI does not specify the categorization process, it leaves no room for 

modeling the effect of information reliability, modality appropriateness or directed 

attention. Therefore, the only way to account for the results of both attentional conditions 

is to model them separately which doubles the number of free parameters to 24. 

Results 
The models were fitted to the data with an iterative optimization algorithm by 

maximizing the multinomial likelihood, L, of the response counts  
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where N is the number of times each stimulus was presented (N=20) and n is the response 

counts. The index p runs over all participants; index, s, runs over all auditory, visual and 

audiovisual stimuli, and the index, r, runs over the three response categories. 

 

We first fitted both models to the count-flashes and count-beeps conditions separately. 

The error measure is the negative log likelihood, displayed in Table 1. The higher the 

negative log likelihood, the less likely the data given the model, and the worse the fit. For 

Experiment 1, the error measure was lower for early MLI in both conditions. For 
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Experiment 2, the error measure was higher for early MLI in both conditions. Summing 

across experiments and conditions, the error measure was lower for early MLI indicating 

that it fitted the data at least as well as late MLI overall. Furthermore, early MLI had 1 

free parameter less for each subject, attentional condition and experiment so that it in all 

had 38 free parameters less than late MLI. 

 

Table 1 here 

 

For late MLI, separate modeling of each attentional condition is the only option, whereas 

early MLI offers the advantage of modeling the amount of auditory and visual influence 

through the weights, w. We fitted the early MLI model using this option in order to 

compare that to late MLI. The error measures are displayed in Table 2. They were lower 

for early MLI in both Experiments 1 and 2 indicating that it fitted the data at least as well 

as late MLI overall. This is remarkable since early MLI now had 228 free parameters less 

than late MLI. However, late MLI was fitted to the unimodal data points twice—once in 

the count-flashes condition and once again in the count-beeps condition—and the number 

of degrees of freedom was increased accordingly. Early MLI was only fitted to unimodal 

data points once. This results in the data set having the same number of degrees of 

freedom for the two models despite early MLI having fewer free parameters than late 

MLI.  

 

 

Table 2 here 

 

We have described how early MLI quantifies the relative influence of each modality 

through the weight, w, which summarizes the effects of information reliability, modality 

appropriateness and directed attention. We therefore analyze the distributions of weights 

across subjects which are displayed in Figure 1. 

 

Figure 1 here 
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In the count-beeps condition of Experiment 1 where we found no influence from vision, 

the auditory weights were near the maximum of 1 (mean 0.97). In the count-beeps 

condition of Experiment 2 where we found influence from both audition and vision, the 

auditory weights are distributed around a mean of 0.62. Similarly, in the count-flashes 

condition in Experiment 1 we found influence from both modalities, and also here the 

weights were widely distributed, with a mean of 0.52. In the count-flashes condition of 

Experiment 2, the auditory weights were smaller (mean 0.34) which is in agreement with 

our finding that the auditorily induced visual illusions decreased in number compared 

with Experiment 1. 

Discussion 
We have constructed an early MLI model of multisensory integration of categorical 

percepts, tested it on audiovisual integration of rapid flashes and beeps and compared it 

to a late MLI model. We base our evaluation on three principles: goodness-of-fit, model 

flexibility and model interpretability.  

 

The error measure was lower overall for early MLI both when the count-flashes and 

count-beeps conditions were modeled separately and when they were modeled together. 

The error measure is, in itself, not a good measure of model adequacy without knowing 

its distribution. Both early and late MLI belong to the class of generalized linear models 

for which the deviance or root mean square error is used as error measure because it is 

asymptotically chi-squared distributed and thus provides p-values as an indicator of 

model adequacy. However, for sparse data, such as ours, the error measure is not chi-

squared distributed [1] and we have therefore not attempted to obtain p-values. Our 

conclusion is therefore only that early MLI fitted the data at least as well as late MLI 

overall. 

 

The number of free parameters was lower for early MLI than for late MLI regardless of 

whether it was fitted to the count-flashes and count-beeps blocks separately or whether 

the difference between the blocks was modeled through a change in information 

reliability. In the former case, early MLI employed 38 fewer free parameters than late 

MLI and in the latter case it employed 228 fewer free parameters. We base our main 
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conclusion on this: Early MLI is preferable since it provides a more parsimonious 

explanation for the underlying mechanism of audiovisual integration—especially so 

when the effect of attentional condition is parameterized as a change in information 

reliability. The fact that only late MLI was fitted to unimodal responses twice in the latter 

case does not alter our conclusions for two reasons. First, two fits are uninformative and 

useless. Second, even though the double fit virtually increases the number of data points, 

the data still have no more degrees of freedom for late MLI than for early MLI. 

 

The double fitting of late MLI to the unimodal parameters can be interpreted as an 

attempt at capturing the effect of directed attention under the assumption that the effect 

on unimodal perception is small even if it propagates to a large effect on bimodal 

perception. This assumption is unfounded but the literature on modeling categorical 

integration has consistently made it [12]. At first, it might seem appropriate to model 

audiovisual responses from auditory and visual responses but this neglects that auditory 

responses were given when audition was attended and visual responses were given when 

vision was attended. The paradox only clearly manifests itself when audiovisual 

responses are given when either audition or vision is attended and a clear effect is seen. 

 

Another model evaluation criterion is interpretability which is a more loosely defined 

model selection criterion. Decades of multisensory research have indicated that 

information reliability, modality appropriateness and directed attention affect the relative 

influence of the sensory modalities on multimodal perception. These effects were also 

clearly demonstrated using conventional hypothesis testing in our previous report [4]. 

Early MLI captures both the magnitude and the direction of these effects in the weighting 

factor, w, which reflects the relative influence of audition and vision. In comparison, late 

MLI can detect a change but cannot account for its cause, magnitude or direction. 

Therefore, we conclude that early MLI is more interpretable than late MLI. 

 

Both early and late MLI claim to be optimal under the assumption that audition and 

vision provide independent information..The crucial difference between them is in their 

assumptions on perceptual noise. Whereas perceptual noise is pivotal to early MLI, late 
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MLI has no explicit assumptions on perceptual noise. Implicitly, however, late MLI 

actually assumes noiseless perception—i.e. it assumes that the unimodal response 

probabilities are known with infinite precision. This is the basis of a very severe criticism 

of late MLI: If a very small unimodal response probability doubles in magnitude, it may 

also double the bimodal response probability which might not be small so that a very 

small change in unimodal perception might propagate to a large change in bimodal 

perception [3,14]. This hyper-flexibility enables the model to account for a broad class of 

data. Hyper-flexibility is indicative of too many free parameters and as we have seen 

here, an early model can describe the data better with fewer free parameters. 

Furthermore, assuming significant perceptual noise, as has been done by e.g. the classical 

signal detection theory, has been successful in describing several perceptual phenomena. 

Therefore, the noisy early MLI is in better agreement with our general knowledge on the 

perceptual system than is late MLI . 

 

Shams and co-workers conducted an event-related potentials (ERP) study of the illusory 

flash occurring when one flash is accompanied by two beeps [18]. They found that the 

illusory flash elicited an ERP similar to that of an actual flash. The onset of this ERP was 

approximately 170 ms after the onset of the actual flash indicating activity in what is 

traditionally thought of as modality specific visual cortex. Other ERP studies, using 

different types of stimuli, have also concluded that crossmodal interactions occur at short 

latencies in cortical areas considered to be modality-specific [8,11,13]. These 

neurophysiological findings support the notion of early rather than late audiovisual 

integration. 

 

In conclusion, we find that for the audiovisual integration of rapid flashes and beeps, 

early MLI accounts for the experimental results with fewer free parameters than late 

MLI. Early MLI also offers an immediate and direct interpretation of the free parameters 

and can account for the effects of information reliability, modality appropriateness and 

directed attention. 

 

 



  15/18 
 

References 
 
[1] Agresti, A., Categorical Data Analysis, John Wiley and Sons, Hoboken, New 

Jersey, 2002. 
[2] Alais, D. and Burr, D., The ventriloquist effect results from near-optimal bimodal 

integration, Curr Biol, 14 (2004) 257-62. 
[3] Andersen, T.S., Tiippana, K. and Sams, M., Using the Fuzzy Logical Model of 

Perception in Measuring Integration of Audiovisual Speech in Humans. 
Proceedings of the First International NAISO Congress on Neuro Fuzzy 
Technologies, NAISO, Havana, Cuba, 2002. 

[4] Andersen, T.S., Tiippana, K. and Sams, M., Factors influencing audiovisual 
fission and fusion illusions, Cogn Brain Res, 21 (2004) 301-308. 

[5] Battaglia, P.W., Jacobs, R.A. and Aslin, R.N., Bayesian integration of visual and 
auditory signals for spatial localization, J Opt Soc Am A, 20 (2003) 1391-7. 

[6] Ernst, M.O. and Banks, M.S., Humans integrate visual and haptic information in a 
statistically optimal fashion, Nature, 415 (2002) 429-33. 

[7] Ernst, M.O. and Bulthoff, H.H., Merging the senses into a robust percept, Trends 
Cogn Sci, 8 (2004) 162-169. 

[8] Giard, M.H. and Peronnet, F., Auditory-visual integration during multimodal 
object recognition in humans: a behavioral and electrophysiological study, J Cogn 
Neurosci, 11 (1999) 473-90. 

[9] Green, D. and Swets, J., Signal Detection Theory and Psychophysics, John Wiley 
and Sons, Inc., New York, 1966, 455 pp. 

[10] Hillyard, S.A., Mangun, G.R., Woldorff, M.G. and Luck, S.J., Neural Systems 
Mediating Selective Attention. In M.S. Gazzaniga (Ed.), The Cognitive 
Neurosciences, MIT Press, Cambridge, Mass., 1995. 

[11] Klucharev, V., Möttönen, R. and Sams, M., Electrophysiological indicators of 
phonetic and non-phonetic multisensory interactions during audiovisual speech 
perception, Cognitive Brain Res, 18 (2003) 65-75. 

[12] Massaro, D., Perceiving talking faces, The MIT Press, Cambridge, , 
Massachusetts, 1998, 495 pp. 

[13] Möttönen, R., Schürmann, M. and Sams, M., Time course of multisensory 
interactions during audiovisual speech perception in humans: a 
magnetoencephalographic study, Neurosci Lett, 363 (2004) 112-5. 

[14] Schwartz, J.-L., Why the FLMP should not be appliced to McGurk data: Or how 
to better compare models in the Bayesian framework. In J.-L. Schwartz, F. 
Berthommier, M.A. Cathiard and D. Sodoyer (Eds.), Audio Visual Speech 
Processing (AVSP 2003), ISCA Tutorial and Research Workshop on Audio Visual 
Speech Processing, St. Jorioz, France, 2003, pp. 77-82. 

[15] Schwartz, J.-L., Robert-Ribes, J. and Escudier, P., Ten years after Summerfield: a 
taxonomy of models for audio-visual fusion in speech perception. In D. Burnham 
(Ed.), Hearing by Eye II: Advances in the Psychology of Speechreading and 
Auditory-visual Speech, Psychology Press, Hove, U.K., 1998, pp. 85-108. 

[16] Shams, L., Kamitani, Y. and Shimojo, S., Illusions. What you see is what you 
hear, Nature, 408 (2000) 788. 



  16/18 
 

[17] Shams, L., Kamitani, Y. and Shimojo, S., Visual illusion induced by sound, 
Cognitive Brain Res, 14 (2002) 147-52. 

[18] Shams, L., Kamitani, Y., Thompson, S. and Shimojo, S., Sound alters visual 
evoked potentials in humans, Neuroreport, 12 (2001) 3849-52. 

[19] Verghese, P., Visual search and attention: a signal detection theory approach, 
Neuron, 31 (2001) 523-35. 

[20] Warren, D.H., Spatial localization under conflict conditions: is there a single 
explanation?, Perception, 8 (1979) 323-37. 

[21] Welch, R.B. and Warren, D.H., Immediate perceptual response to intersensory 
discrepancy, Psychol Bull, 88 (1980) 638-67. 

 
 
 



  17/18 
 

Tables 
 

Table 1 
 

 

Table 1 – The error measure (negative log likelihood) summed across all subjects and the 

number of free parameters, params., for early and late MLI fitted to count-flashes and 

count-beeps conditions separately. The total number of additional free parameters in late 

MLI compared to early MLI is displayed in the rightmost column. 

Table 2 
 

Early MLI Late MLI   

error params.  
/subject error params.  

/subject #subjects ∆params. 

Exp. 1 
80 dB Both together 568 12 675 24 10 120 

Exp. 2 
10 dB Both together 724 12 826 24 9 108 

 Sum 1292 12 1501 24  228 
 
 

Table 2 – The error measure (negative log likelihood) summed across all subjects and the 

number of free parameters for the early and late MLI fitted to count-flashes and count-

beeps conditions together. The total number of additional free parameters in late MLI 

compared to early MLI is displayed in the rightmost column. 

Early MLI Late MLI   
error params.  

/subject 
error params. 

/subject 
#subjects ∆params. 

Count-flashes 437 11 455 12 10 10 Exp. 1 
80 dB Count-beeps 196 11 220 12 10 10 

Count-flashes 411 11 389 12 9 9 Exp. 2 
10 dB Count-beeps 444 11 437 12 9 9 
 Sum 1488 44 1501 48  38 
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Figure 
 

 
 
Figure 1 – Histograms of the auditory weights of early MLI for each experiment and 

attentional condition. 
 
 


