
Diploma thesis

Monadic Dynamic Logic:
Application and Implementation

Dennis Walter

July 20, 2005

Supervised by
Lutz Schr̈oder and Till Mossakowski

I hereby confirm that I independently worked on and wrote this thesis and that I only used
the references and auxiliary means indicated herein.

Bremen, July 20, 2005

Dennis Walter

‘There must be some way out of here’
said the joker to the thief.

‘There’s too much confusion,
I can’t get no relief ’

Bob Dylan

Contents

1 Introduction 8
1.1 Motivation and Classification. 8
1.2 Problem Setting. 9
1.3 Structure of the Thesis. .10

2 Theoretical Basis 12
2.1 The Lambda Calculus. .12

2.1.1 Syntax and Terminology. 13
2.1.2 Function Evaluation by Reduction. 14
2.1.3 Adding Types and Constants. 15

2.2 Monads in Computer Science. 18
2.2.1 Monads in Haskell. 18
2.2.2 Monads – the Abstract Way. 21
2.2.3 The Meta-language for Strong Monads. 22

3 Monadic Dynamic Logic 25
3.1 Preliminaries .25

3.1.1 Properties of Monadic Programs. 25
3.1.2 Global Dynamic Judgements. 27

3.2 Logical Operators. .30
3.2.1 Primitive Connectives. 30
3.2.2 Boxes and Diamonds. 30

3.3 The Monad-independent Proof Calculus. 33
3.3.1 Hoare Calculi. .34

3.4 Specific Extensions for the Exception Monad. 35
3.4.1 Parameterised Exceptions. 36

4 Verification with Dynamic Logic 45
4.1 Basic Lemmas of Dynamic Logic. 45
4.2 Axiomatising the Queue-Monad. 46
4.3 Specification of a Reference Monad. 49
4.4 Correctness of a Breadth-First Search Algorithm. 50

4.4.1 Basic Facts. .53
4.4.2 Auxiliary Rules. .55
4.4.3 Proof of Total Correctness. 56

Contents 6

5 The Theorem Prover Isabelle 62
5.1 The Meta-logic .62

5.1.1 Basic Syntax and Terminology. 63
5.1.2 Defining Logics. .63
5.1.3 Meta-logic Rules. .64

5.2 Higher-order Logic (HOL). 65
5.2.1 Constants. .65
5.2.2 Definitions .66

5.3 Proof Methods .68
5.3.1 Higher-order Resolution. 68
5.3.2 A Different Perspective. 70
5.3.3 Advanced Proof Methods. 71
5.3.4 An Example Proof. 71

5.4 The Isar Proof Language. .72
5.4.1 Introducing Isar by Example. 73

6 Implementation in Isabelle 75
6.1 Theory Files. .75
6.2 Monads in Isabelle. .77

6.2.1 The do-Notation .78
6.2.2 Properties of Monadic Programs. 78
6.2.3 Equational Reasoning in Isar. 80
6.2.4 Lifting HOL Constants. 81

6.3 Setting up the Logic. .82
6.3.1 Basic Proof Rules. .83
6.3.2 Proving Tautologies Automatically. 83
6.3.3 Modal Operators and the Proof Calculus. 84
6.3.4 Theorems and Proof Rules Involving Modal Operators. 86

6.4 A Specification of Parser Combinators. 88
6.4.1 Specification of the Basic Parsers. 88
6.4.2 Defining Complex Parsers. 89

6.5 A Specification of Russian Multiplication. 90
6.5.1 Proof Sketch. .92
6.5.2 Similarity to Hoare Logic Proofs. 94

7 Conclusion and Outlook 95

A Haskell Implementation of mbody 97

B Table of Rules of Isabelle/HOL 100

C Isabelle Theories 101
C.1 Basic Monad Definitions and Laws.. .101
C.2 Basic Notions of Monadic Programs. .102

C.2.1 Discardability and Copyability. .102
C.2.2 Introducing the Subtype ofdsefPrograms.106

C.3 Introducing Propositional Connectives. .110
C.3.1 Propositional Connectives. .110

Contents 7

C.3.2 Setting up the Simplifier for Propositional Reasoning. 114
C.3.3 Proof Rules. .115

C.4 Monadic Equality. .119
C.5 The Proof Calculus of Monadic Dynamic Logic.120

C.5.1 Types, Rules and Axioms. .120
C.5.2 Derived Rules of Inference. .122
C.5.3 Examples. .128

C.6 A Deterministic Parser Monad with Fall Back Alternatives.129
C.6.1 Specifying Simple Parsers in Terms of the Basic Ones. 131
C.6.2 Auxiliary Lemmas .132
C.6.3 Correctness of the Monadic Parser.133

C.7 A Simple Reference Monad withwhile andif134
C.7.1 General Auxiliary Lemmas. .136
C.7.2 Problem-Specific Auxiliary Lemmas.137
C.7.3 Correctness of Russian Multiplication.139

1 Introduction

1.1 Motivation and Classification

The study of formal methods, i. e. the mathematically rigorous specification, design and anal-
ysis of software systems, has a long tradition in the – by itself relatively short – history of
computer science. It has, however, not gained as much attention for being an effective and
efficient means of software design as for example object oriented software design or UML
[7] modelling have. Quite the contrary, it is often considered a very complex and demand-
ing way of creating software, requiring specialised skills in mathematics of all developers
involved and taking a long time to finish. Its application is therefore often rejected and re-
garded as too expensive. A similar situation can be found in the field of software verification
and validation, where the predominant method of operation is to perform clever and extensive
testing.

Despite these facts, we consider formal methods to be a very valuable arrow in a com-
puter scientist’s quiver; the use of formal methods is the only known way to actually prove
the absence of errors in a system, whereas other methods, e. g. testing, can only show their
presence. Experience has shown (see [17, 36]) that there are applications in which formal
methods is a means of not only writing better software, but writing it in proper time. Exam-
ples include the verification of AMD’s floating point processing unit of the K7 CPU, which
Intel also did for their Pentium Pro CPU, the verification of several cryptographic protocols,
and the employment of various model-checkers in hardware design. We consider essential
two features when using formal methods: firstly, it must be reasonably easy to understand
and use and, secondly, there has to be a software tool that assists the user and relieves him of
the duty of performing trivial but highly detailed proof steps.

Within the subject of formal methods, there are three major branches that are concerned
with giving meaning to programs and programming languages and in particular with proving
equivalences of programs; these are

• Operational semantics, in which the execution of programs is described by a transition
(or evaluation) relation between program fragments, an overall state and the value in
which an expression is supposed to result. Among the various incarnations of oper-
ational semantics, an approach popularised by Plotkin is used very commonly. This
method employs rules that are structurally similar to those found in deduction systems
to determine the evaluation of a program in a syntax directed way (see [29]).

Other known examples of operational semantics, which are quite close to actual im-
plementations of the respective language include Warren’s abstract machine for inter-
preting Prolog programs or the SECD machine for evaluation of lambda terms.

• Denotational semantics, in which so-called semantic functions are defined, which map
language elements into their intended interpretation in a mathematical model of the
programming language at hand. In simple cases this is quite similar to giving a model

1.2 Problem Setting 9

for a language of first-order logic, but in common applications (e. g. when giving a
semantics for a functional language featuring some kind of recursion) rather sophis-
ticated mathematics (in concrete terms: the field ofdomain theorywith its notions
of least upper bounds, continuous functions and fixed points) become involved, cf.
[30, 40]. A cornerstone of this kind of semantics is the compositionality of its seman-
tic functions, i. e. semantic functions for composite terms can be explained through the
meaning of their component parts alone.

• Program logics(often called axiomatic semantics), which differ from the above meth-
ods as they do not directly assign meaning to programs, but rather embed the pro-
gramming language into a logical framework that allows for making statements about
a program’s behaviour and, hence, its correctness. Hoare’s article [9] is the classic
introductory paper about program logics, a special kind of which therefore are termed
Hoare logics.

In this thesis we describe, apply and implement a program logic named(propositional)
monadic dynamic logic[34] which allows one to prove properties of monadic programs. The
logic allows to reason about partial correctness of programs, but also to prove termination and
thus total correctness in one and the same framework.

Monads constitute an elegant technique for consistently abstracting and analysing several
kinds of language features, e. g. side effects, nondeterminism, exceptions, input and output
as well as combinations of these. The use of a logic of monadic programs is twofold: it
can be used to rather directly reason about programming languages that support the notion
of a monad (such as Haskell), but it can also be used to reason about programs written in
imperative first-order languages, if one creates a monadic model of the key features of such
a language and translates programs into this model. For Java this has been done recently
(see [11]) and the calculus described in this thesis has been extended to deal with Java-
like abnormal termination. This extension does not solely cover actual exceptions but also
termination of a method through areturn statement, or the interruption of execution of a
while-loop through abreak or continue statement.

An important feature of the logic is the fact that it is monad independent, which means that
the general logical framework is applicable to every monad that allows the interpretation of
dynamic logic, which is the case for nearly all computationally relevant monads. A notable
exception to this is the continuation monad. Instantiations of the logic for concrete monads
are realised through additional axioms determining the monad-specific operations, like ref-
erence writing in the state monad, or nondeterministic choice in the nondeterminism monad.
While bearing some resemblance to Pitt’s evaluation logic [27], the calculus described here is
equipped with a purely monadic semantics, whereas Pitts provides a semantics only through
certain hyperdoctrines acting on top of the monad. An alternative, but merely global seman-
tics for the modal operators was given by Moggi [19]. However, a critical property of the
modal operators is theirlocal character, which is retained in the calculus described here. On
top of it, a Hoare calculus for total correctness can easily be formulated.

1.2 Problem Setting

The aim of this work is twofold: on the one hand, it constitutes the first extended application
of the recently developed calculus of monadic dynamic logic and thus demonstrates how

1.3 Structure of the Thesis 10

this calculus can be applied to serious verification tasks. To name two examples, the total
correctness of a breadth-first search algorithm and of a pattern matching algorithm involving
Java-like exception handling have been established.

On the other hand, driven by the insight that due to the complexity even of relatively
small software systems it is not feasible to carry out formal proofs about these manually, the
calculus had to be implemented in some proof assistant tool. Furthermore, the formalisation
within such a tool provides further evidence of the correctness of one’s inferences – provided
one trusts in the correctness of the tool, of course. We chose the generic proof assistant
(often termed ‘theorem prover’) Isabelle/HOL in which we could base our implementation
on a stable and well developed formalisation of higher-order logic. Isabelle/HOL comes
with tools for proving theorems outright (by means of a classical tableau reasoner) as well
as a term rewriting system that allows for equational reasoning and functional programming.
Tasks during this implementation included the definition of a syntax for monadic dynamic
logic, proving the theorems needed as foundations for the logic, and working out theorems
and setting up Isabelle’s automatic proof facilities to make life easier when applying the logic.
The embedding into higher-order logic is a deep one in the sense that we define monadic
logical connectives∧D,−→D, etc. as well as a predicatèasserting the validity of monadic
formulae. HOL formulae may, however, appear in monadic formulae thanks to existence of
an insertion functionRetmapping HOL formulae into those of dynamic logic.

1.3 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 introduces the theoretical background needed for the further development, which
is the lambda calculus in its typed and untyped form, and the categorical concept of a
monad as it is used in computer science.

Chapter 3 contains some preliminary work which eventually leads to the formulation of
the calculus of monadic dynamic logic. This calculus is then extended to deal with
the peculiarities of the exception monad such that a pattern match algorithm can be
specified and proved correct.

Chapter 4 provides basic theorems characteristic of dynamic logics and it contains an ex-
tended application of the calculus to several monads. For example, the correctness of
a tree search algorithm is established.

Chapter 5 gives an overview of the proof assistant Isabelle, its basic concepts, the higher-
order logic HOL and the Isar proof language.

Chapter 6 describes the implementation of the calculus in Isabelle/HOL. This includes
background work on properties of monadic programs as well as the setup of the calcu-
lus itself and the presentation of example specifications and proofs. Also, some differ-
ences between the calculus as laid out in [34] and its implementation are depicted.

Chapter 7 concludes by summarising the achievements and pointing out future work.

The appendix contains a Haskell implementation of the exception monad programs de-
scribed in Section3.4, a list of rules frequently used in Isabelle/HOL, and finally a typeset

1.3 Structure of the Thesis 11

edition of the theory files which make up the calculus of monadic dynamic logic as imple-
mented in Isabelle.

2 Theoretical Basis

We now provide the foundations needed to understand the further development of monadic
dynamic logic and its implementation in Isabelle/HOL. A complete survey of all concepts in-
volved would certainly go beyond the scope of this thesis, so that we assume basic familiarity
with functional programming languages, especially Haskell, which is taught at the university
of Bremen during the undergraduate studies, as well as basic knowledge of first-order logic.
Instead we initially concentrate on two topics that are of fundamental importance in the fol-
lowing. First, we introduce the lambda calculus, in its pure and untyped as well as its typed
form with added constants. A higher-order logic based on the lambda calculus will be de-
scribed in Chapter5 along with other foundations of Isabelle. Second, we devote a section to
the description of monads and their applications in computer science. Although monads are
a concept of category theory, we do not provide an introduction into the latter since we will
merely use its basic terminology.

A good introduction to functional programming in Haskell with a focus on monadic pro-
gramming is given in [10], whereas [1] introduces first-order and higher-order logic in a
mathematically rigorous manner with an eye on historical developments. A book on cate-
gory theory aimed at students of computer science is [26]; [18] delves even deeper into the
topic, but with its focus geared towards readily educated mathematicians.

2.1 The Lambda Calculus

The lambda calculus is a formalism for describing and analysing functions. It has been
developed by Alonzo Church in the 1930’s and has influenced many programming languages
since then. In particular, functional languages such as Haskell or ML have been directly
influenced by the ideas underlying the lambda calculus, in particular its syntax. One of the
key ideas of the lambda calculus is to make a function that takes its argument (say,x) to a
certain expression containing that argument (e. g.x+y) an expression itself (in the example,
this function would be denoted byλx.x+y). Thus, lambda expressions (or: lambda terms)
denote anonymous functions, which can be used as values themselves, for example as input
into another function, like in(λx.x)(λx.x+y), which furthermore indicates that the notation
for function application is simply juxtaposition.

We will now explain some basic concepts on the basis of theuntyped lambda calculus,
in which all expressions are considered to have one universal type, since in this calculus the
concepts are easier to explain. Later on typed calculi will be more important, as they are
the basis of higher-order logic and modern functional programming languages. Nonetheless,
the concepts introduced below provide a good starting point and apply to advanced calculi in
similar form.

2.1 The Lambda Calculus 13

2.1.1 Syntax and Terminology

The untyped lambda calculus is conceptually very simple, but encompasses the whole ex-
pressive power of what is known as the computable functions or the Turing machine, i. e. to
say every computable function can be formalised in the lambda calculus. Given a countably
infinite set of variablesvar (e. g. the variable set{xi | i ∈ N}), the abstract syntax of lambda
expressions can be given as

exp::= var | λvar.exp| exp exp (2.1)

where an expression of the formλx.e is called anabstraction, which is intuitively to be
understood as a function mapping its argumentx to the value denoted by the expressione.
Expressions that have the form of the third alternative are calledapplicationssince they stand
for applications of functions to arguments.

In a lambda expressionλx.e the occurrence of the variablex directly succeeding theλ is
called abinding occurrence, λ itself is called a(variable) binderandx is considered to be
bound in the subexpressione, which is thescopeof the binder. All variables in a lambda
expression that are not bound arefree. An expression that has no free variables is called a
closedexpression. To avoid unnecessary use of brackets when writing down concrete lambda
expressions, we will stick to the common convention that the scope of aλ extends to the
right as far as possible without breaking the existing bracketing hierarchy and that function
application associates to the left.

Example 2.1. The expressionλx.xx is to be read asλx.(xx), whereas(λx.x)(λy.y)λx.xx
denotes((λx.x)(λy.y))(λx.(xx)).

It is often useful to work with the set of all free variables of an expression, which leads to
the following definition.

Definition 2.2. The setFV of free variablesof a lambda expression is defined by induction
on the structure of the expression. Thus, one has

FV(x) = {x}
FV(ee′) = FV(e)∪FV(e′)

FV(λx.e) = FV(e)−{x}
(2.2)

One further elementary concept is needed to formalise the idea of function evaluation in
the untyped lambda calculus: thesubstitutionof a lambda expression for a free variable.

Definition 2.3. The substitution of an expressione′ for the variablex in e, writtene[e′/x] can
be defined as follows

x[e′/x] = e′ (2.3)

y[e′/x] = y providedx 6= y (2.4)

(λx.e0)[e′/x] = λx.e0 (2.5)

(λy.e0)[e′/x] = λy′.e0[y′/y][e′/x] providedx 6= y andy′ /∈ FV(e′)∪{x} (2.6)

(e0e1)[e′/x] = e0[e′/x]e1[e′/x] (2.7)

where (2.5) and (2.6) make sure that the phenomenon of bound variable capture is avoided,
i. e. after substitution all variables free ine′ will be free ine[e′/x]. As a shortcut, one should
let y′ = y in (2.6) whenever possible, i. e. wheny /∈ FV(e′).

2.1 The Lambda Calculus 14

The concepts of binding and bound variables are quite similar to those in first-order logic,
where∀ and∃ are commonly used as binders. Since in both cases bound variables merely
provide a local name with a local meaning that might differ from the meaning outside the
scope of the binder, the lambda calculus also features the concept of bound variable renaming.
Changing an expressione into an expressione′ by renaming some of its bound variables in
subexpressions is calledα-conversion. It is intuitively clear that this process does not change
the meaning of an expression, and in fact this can be shown. Hence, it makes sense to say
that two expressions are equivalent up to renaming of bound variables (notatione≡α e′) if
they can be converted into each other purely by applyingα-conversion. It is often convenient
to mentally identify expressions that are equivalent up toα-conversion, rather than making
this identification a part of the formal system; in fact, it is possible to formalise the lambda
calculus in such a way that allα-equivalent expressions are syntactically equal.

Example 2.4.The simplest case ofα-conversion is to change the name of the bound variable
in the identity function: we haveλx.x≡α λy.y. There are, however, cases where more atten-
tion has to be paid: in renamingλx.λy.xy into the obviously equivalent expressionλy.λx.yx,
the first step involves renaming the inner abstraction with the help of an intermediate vari-
able: λx.λy.xy≡α λy.λx′.yx′ ≡α λy.λx.yx. Otherwise, a bound variable capture would
occur, resulting in the entirely different expression on the right hand:λx.λy.xy 6≡α λy.λy.yy

2.1.2 Function Evaluation by Reduction

The concept of function evaluation is formalised in the lambda calculus through the concept
of reduction. An application expression of the form(λx.e)e′ is called aredex, which is short
for reducible expression. A reduction then is the transformation of(λx.e)e′ into e[e′/x]. The
latter expression appears to be somewhat simpler, but this idea can be misleading, since it is
possible for it to be larger than the former or in fact even equal to it. In any case, it coincides
with the intuition behind function application: the function’s argument (or formal parameter,
in computer science parlance) is substituted by the value (or actual parameter) applied to it.
Reducing an expression or one of its subexpressions in this way is calledβ -reduction. If an
expression contains no redices it is said to be innormal form.

Another way of converting an expression is by the so calledη-contraction, which allows
to convert an expressionλx.ex, whereedoes not containx as a free variable, into the simpler
expressione. The idea is that one may seeλx.ex as a function that takes its argumentx
simply to apply it to the functioneand thus one may identify it withe.

Remark2.5. The syntax of the lambda calculus suggests that there can only be functions that
take exactly one argument; but this does not impose any restrictions concerning the express-
ibility of multi-argument functions, since a function takingn arguments may be expressed as
λx1.λx2. . . .λxn.e(frequently abbreviated toλx1 . . . xn.e). The following reduction sequence
may suggest how this works:(λ f .λx. f x)gy; (λx.gx)y ; gy. The transformation of a
function taking a single argument in form of a tuple into an equivalent one taking ‘each ar-
gument at a time’ as shown above has been proposed by Schönfinkel and Curry. Therefore,
it is often calledcurrying.

One might ask how the simple untyped lambda calculus can be used to express common
functions like addition and multiplication on the natural numbers and, to that effect, how
natural numbers themselves can be represented. Obviously, as there is nothing else available,
they will have to be functions. To provide a short insight into this problem, we will now show

2.1 The Lambda Calculus 15

how to represent even simpler values and functions, namely the booleans and the conjunction
function.

Lemma 2.6. LetTrue, False and(∧) denote the lambda expressions defined below.

True := λx.λy.x False := λx.λy.y e∧e′ := (e e′) False

Then the following holds:

True∧True−→ . . .−→ True True∧False−→ . . .−→ False

False∧True−→ . . .−→ False False∧False−→ . . .−→ False

Proof. By a direct calculation:

True∧True−→ ((λx.λy.x)(λx.λy.x)) False

−→ (λy.(λx.λy.x)) False

−→ λx.λy.x−→ True

True∧False−→ ((λx.λy.x)(λx.λy.y)) False

−→ (λy.(λx.λy′.y′)) False

−→ λx.λy′.y′ −→ False

The remaining cases are analogous.

Upon leaving the untyped calculus and turning our eyes to typed calculi possibly with
additional constants, we state one central theorem that ensures that in what way an expression
might ever be converted, it is always possible to ‘cross the ways’ of other strategies.

Proposition 2.7 (Church-Rosser Theorem).If an expression e can be evaluated to e0 in
arbitrary steps according to the rules given above, and it can also be evaluated to e1, then
there is an expressione such that e0 and e1 can be converted toe.

2.1.3 Adding Types and Constants

Even if one accepts that the untyped lambda calculus is powerful enough to express ev-
ery computable function, and that reduction to normal form is a kind of evaluation of these
functions, it is obviously not very natural to directly work in this calculus. In fact, it took
several decades until a denotational semantics for it was found by Dana Scott, which does
not raise problems similar to those encountered in naive (untyped) set theory like Russell’s
paradox. Modern functional programming languages nowadays rely on type systems, where
every expression is assigned a unique type. This idea goes back to Russell and Whitehead,
who demonstrated the usefulness of types in higher-order logic within their influential work
Principia Mathematica(1913). Church and Curry are the names commonly associated with
typed lambda calculi (see [2] for a detailed comparison).

We will equip a variant of the lambda calculus with types and constants, thereby introduc-
ing some recurrent concepts of formal systems. First of all, the abstract syntax of lambda
terms has to be extended slightly:

exp::=var | exp+exp

| exp exp| λvar.exp

| 〈exp,exp〉 | exp.fst | exp.snd

(2.8)

2.1 The Lambda Calculus 16

where〈e1,e2〉 andn1 + n2 should respectively be interpreted as a pair of expressionse1,e2

and a sum of natural numbersn1,n2. Selection of the first and second components of a tuple
are expressed by attaching.fst or .snd to it. Of course, this syntax alone does not prevent
ill-typed expressions likee1 +e2 where, for example,e1 is a function.

Types can be introduced in the following way. Usually one starts with a given setbtypof
base types(which in common programming languages will include the typeint of integers,
the typefloat of floating point numbers and the typechar of characters). Complex types
can then be formed by applyingtype constructorsto the base types and the already created
compound types. We will take two type constructors(→) (called the function type
constructor) and(×) (called the product type constructor) into the lambda calculus. They
are introduced in a purely syntactic manner, but their intuitive interpretation ought to be that
of a function and product type, respectively. In summary, the abstract syntax of types is the
following:

typ ::= btyp| typ→ typ | typ× typ (2.9)

Next comes the concept of acontext, which is a finite sequenceΓ = [x1 : σ1, . . . ,xn : σn]
of variable/type pairs, subject to the condition thatxi 6= x j for i 6= j. A context is used in
typing judgementsΓ ` e : σ which should be read as “if the variables occurring in the context
Γ have the assigned types, then expressione has typeσ ”. Only typing judgements where
eachx ∈ FV(e) occurs in the contextΓ are allowed. Contexts may be compound, like in
Γ,x : σ ` e : τ, where it is implicitly assumed thatx does not occur inΓ, or Γ,Γ′ ` e : τ, in
which the sets of variables ofΓ andΓ′ have to be disjoint.

We would like to equip the calculus with a typenat representing the natural numbers
and constants0 : nat andSuc: nat→ nat for zero and the successor function. This can be
done in the following way: addnat to the set of base types (or pick an existing base type
when appropriate), and letΓ0 = [0 : nat,Suc: nat→ nat] be thebase context, where0 and
Sucare arbitrary variables which are given mnemonic names here. This context will be
used implicitly in all typing judgements, such thatΓ ` e : σ actually meansΓ0,Γ ` e : σ ,
thus excluding their use as variables of different types due to the convention thatΓ0 andΓ
must have disjoint variables. This will of course not introduce the properties of the natural
numbers, e. g. with respect to addition (commutativity, associativity, zero as a unit element),
but will merely make them available on the type-theoretical level.

Figure2.1 lists the rules of a (decidable) deduction system, which will serve the purpose
of determining whether given typing judgements are valid. These rules are to be read in the
standard way: if the premisses above the horizontal bar are derivable in the calculus, one may
also derive the conclusion below the bar. Now one defines a typing judgement to be valid
if and only if there is a proof (see Definition2.8 below) of the judgement from the given
rules. The presentation of a proof will slightly deviate from the standard structure of a proof
in natural deduction as it will be linearised to make presentation easier.

Definition 2.8. A proof from rulesof a statementS is a sequence of statementsS1, . . . ,Sn

whereSn = Sand for each of theSi one of the following holds:

• Si is an axiom, i. e. a rule without premisses.

• Si is the conclusion of a rule whose premissesP1, . . . ,Pk have been proved, i. e. for all
Pj (1≤ j ≤ k) there is anSj ′ (1≤ j ′ < i) such thatPj = Sj ′ .

2.1 The Lambda Calculus 17

(var)
Γ,x : σ ,Γ′ ` x : σ

(wk)
Γ ` e : σ

Γ,Γ′ ` e : σ

(abs)
Γ,x : σ ` e : τ

Γ ` λx.e : σ → τ
(app)

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` e e′ : τ

(prodI)
Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` 〈e1,e2〉 : σ1×σ2
(add)

Γ ` e1 : nat Γ ` e2 : nat
Γ ` e1 +e2 : nat

(fst)
Γ ` e : σ1×σ2

Γ ` e.fst : σ1
(snd)

Γ ` e : σ1×σ2

Γ ` e.snd : σ2

Figure 2.1: Type inference rules for the simply typed lambda calculus

Example 2.9. Here is a proof of the typing judgement of a function that sums its arguments
and adds one to it; recall that the base context is not shown. The right column indicates which
rule has been used with which previous lines as premisses to obtain the respective statement.

(.1) ` 0 : nat (var)

(.2) ` Suc: nat→ nat (var)

(.3) x : nat,y : nat` Suc0 : nat (app: .2,.1; wk)

(.4) x : nat,y : nat` x : nat (var)

(.5) x : nat,y : nat` y : nat (var)

(.6) x : nat,y : nat` x+y : nat (add: .4, .5)

(.7) x : nat,y : nat` (x+y)+Suc0 : nat (add: .6, .3)

(.8) x : nat` λy.(x+y)+Suc0 : nat→ nat (abs: .7)

(.9) ` λx.λy.(x+y)+Suc0 : nat→ nat→ nat (abs: .8)

The following example shows that certain functions like the identity function are polymor-
phic in the sense that there are proofs of different types of the syntactically identical function
(λx.x):

(.1) x : σ ` x : σ (var)

(.2) x : τ ` x : τ (var)

(.3) ` λx.x : σ → σ (abs: .1)

(.4) ` λx.x : τ → τ (abs: .2)

An important point concerning the introduced ‘simple’ types, however, which partly ex-
plains why they are called that, is the fact that the simply typed lambda calculus lacks a
genuine notion of polymorphism. This means that every function whose type is provable
is assigned a fixed typeσ , such that there is an identity function on the typenat of natural
numbersλx.x : nat→ nat, and an identity functionλx.x : nat×nat→ nat×nat on pairs of
nat’s, but these functions are not identical. This leads to the typical problems (or at least in-
conveniences) found in programming languages that also lack the concept of polymorphism,

2.2 Monads in Computer Science 18

like the necessity to give different names to functions that essentially perform the same ac-
tion (although in the small calculus described here there is no way to give functions a name,
it could be easily extended to allow this, e. g. by the definition oflet-terms). The lack of
polymorphism also motivated the introduction of the projection operationsfst andsnd on the
syntactical level rather than making them constants likeSuc: we could only have expressed
the type offst : σ1×σ2→ σ1 for fixed typesσ1 andσ2, but they are intended to be used on
any kind of tuple.

One might wonder if contexts in typing judgements are really necessary, since the initial
goal was to assign types to expressions, but then one must recall that expressions may contain
free variables, as opposed to (functional) programs, which may be identified with the closed
lambda expressions. Typing judgements, then, essentially tell what the types of the free
variables of an expression are. Furthermore, it is often convenient (and sometimes necessary
to make typing decidable) to extend the syntax of typed calculi in such a way that types
become a part of it. A common place where types are often explicitly annotated is at the
binding occurrences of variables, like inλx : σ .e. We will leave the types of bound variables
implicit whenever possible, i. e. when they are determined by the context.

2.2 Monads in Computer Science

Originally arisen in category theory, monads have been introduced into computer science by
Moggi [20] as an elegant device for dealing with manifold kinds of side effects. Initially, their
value for enabling an abstract treatment of the semantics of several programming language
constructs was appreciated, but it was soon realised that these benefits could also directly
be exploited in purely functional programming languages. Wadler and Peyton Jones [37,
15] advocated the monadic style of functional programming for Haskell and it was finally
included in the Haskell 98 language standard as the definitive way of communicating with
the real world, i. e. for dealing with input and output.

In the field of denotational semantics, monads come into play when equipping a program-
ming language with a categorical semantics – as opposed to a set-theoretic one – such that
one reasons aboutobjectsinstead of sets andmorphismsinstead of functions (see [13] for
a categorical semantics of Java). Monads arise in this setting as a very natural and conve-
nient concept for interpreting many kinds of side effects like exceptions or state changes in a
uniform way.

We will first give some examples of concrete monads from the realm of functional pro-
gramming, then we will introduce the abstract categorical concept of monads, and finally
we will discuss Moggi’s meta-language, which essentially is an equational logic that can be
identified, in a sense yet to be specified, with categories equipped with strong monads.

2.2.1 Monads in Haskell

One of the most well-known applications of a monad is to simulate a global store of assign-
able variables in a way that does not conflict with referential transparency. The simplest idea
to simulate a global store in the absence of assignable variables is to make the store explicit
in every function by letting each function have one further argument that acts as the global
store, e. g. a tuple containing all values involved, and furthermore extending its return value
to be a pair of the actual return value and the possibly modified store. This way of proceeding

2.2 Monads in Computer Science 19

is, however, extremely impractical and by no means modular: if the structure of the store has
to be modified, this adaptation will have to be done in every single function.

The monadic approach to side effects does not suffer from such deficiencies and is thus
much more elegant. The first step in turning the language feature of a global store into a
monad (which is commonly called thestate monad) is to define a datatypeTA that represents
thecomputationsover values of typeA. In this case, computations will simply be functions
that take the global store1 as input and return a value of typeA together with the modified
store. The expressions of typeTA as given below are often calledstate transformers(note
thata is a type variable, so one has typesTA for each concrete typeA).

type T a = (S -> (S, a))

The next step is to define the two basic polymorphic operations on computations, that on
the one hand enable sequencing of computations, and on the other hand let us turn values into
computations that do nothing except return the inserted value. The Haskell-style signatures
of these functions are

(>>=) :: T a -> (a -> T b) -> T b
ret :: a -> T a

where the infix operation(�=) is calledbinding, in which the second parameter is a function
that will be fed the resulting value of the computation which is the first parameter. The overall
result of a computationp�= f will be the result off . To make these ideas clearer, we will
provide the definitions of these operations for the state monad.

p >>= f = \ s-> let (s’, a) = p s in f a s’
ret x = \ s-> (s, a)

where the backslash is Haskell syntax for a lambda abstraction. Recalling thatp actually
is a function from the state to a pair of state and return value, one sees that binding really
implements a kind of sequencing: first, p is given the current state to evaluate to a new state
and a value, which are then given as inputs to f, whose return value is also the return value of
the overall computation.

What is called a monad in this context is the triple(T,�=, ret), i. e. the type constructor
T together with the two basic polymorphic operations. For the state monad to be useful, one
naturally has to introduce further operations for reading the state and for updating it. Other
operations can then be defined in terms of these. A possible signature for the former two
operations is

get :: T S
update :: S -> T ()

get = \ s-> (s, s)
update s1 = \ s0-> (s1, ())

Finally, we present some computationally relevant monads, together with the possible def-
initions of T, �= and ret, respectively. These definitions will be given in a set-theoretic

1The store is treated abstractly as a typeS here, but may be imagined as a finite map of variable-name/value
pairs

2.2 Monads in Computer Science 20

manner, but the translations to Haskell datatypes and functions should not constitute a prob-
lem. This is done so to motivate the more abstract definition of monads in the next section and
because monads can not merely be used as a feature of a concrete programming language,
but also to study programming languages themselves in an abstract way.

• Thestate monadhas been described above. The appropriate definitions are
TA = (S→ S×A) for some fixed setS representing the state, where× denotes the
Cartesian product of sets andX→Y = { f | f : X→Y} denotes the function space of
all functions fromX to Y,
(p�= f) = λs. let 〈s′,a〉= p s in f a s′ and
ret x= λs.〈s,x〉, where〈〉 denotes pairing.

• Theexception monadis used to model abnormal termination. One has
TA= (A+ E), i. e. the disjoint union (corresponding to a sum datatype) of the result
setA with some global setE of exceptions. In the simplest case,E = {⊥}, such that
an exception indicates nontermination or failure,
(p�= f) = case p of (inl a)→ f a | (inr e)→ inr e; this definition models the usual
effect of an exception, in that the right-hand computation is evaluated only if the left-
hand one did not raise an exception. The definition of thecase-construct is standard.
inl andinr stand for the left and right injections (corresponding to constructors of the
same datatype), and
ret x = inl x, which once more makes clear thatret actually is just an embedding of
values into computations.

• Thenondeterminism monadcaptures the effects of multiple possible outputs of a func-
tion by letting
TA= Pfin(A), i. e.T maps a setA to all its finite subsets,
(p�= f) =

⋃
{ f x | x∈ p}; p is a subset ofA, and f is applied to all elements ofp,

the result of which will be a set of sets, which is therefore flattened by taking the union
of all these sets, and
ret x= {x}, i. e. the singleton set containing onlyx.

• A combination of thelist monadand a particular state monad is used in [12] to ele-
gantly implement a library of monadic parser combinators. In it, one has
TA= (List I→ List (List I×A)), whereI is a fixed, finite set of input tokens, andList
maps a setA to the set of all finite lists of elements overA, and
p�= f = λs.concat(map(λ 〈x,s′〉. f x s′) (p s)). Here,concatandmapbehave ex-
actly like the well-known total functions of the same name as defined in the Haskell
prelude. What happens is thatp is applied to the the current state (a list of input to-
kens), returning a list of result pairs. To each result pair, the functionf is applied,
resulting in a list of lists of result pairs. These have to be flattened byconcat, very
much like in the nondeterminism monad. Finally,ret is once more just an embedding:
ret x= λs. [〈s,x〉], where[e] denotes a list containing exactly one elemente.

• Thecontinuation monad, in which TA= (A→ R)→ R for some fixed result typeR,
will not be described further in this thesis, since the continuation monad does not admit
dynamic logic (see [34]).

2.2 Monads in Computer Science 21

2.2.2 Monads – the Abstract Way

We will now give a formal definition of what a monad is originally defined to be. Further-
more, we will give an alternative definition which is more suitable for our purposes and
which comes closer to the intuitive introduction given in Section2.2.1. Although we are
not so much interested in applications of monads in category theory itself, we feel that it is
reasonable to provide the original definition of a monad, as the term even appears in the title
of this thesis. The following Definition2.10is taken from [18, Chapter VI, p. 137].

Definition 2.10. A monadT = (T,η ,µ) in a categoryC consists of an endofunctorT :
C→ C and two natural transformationsη (called the unit) andµ (called multiplication),
i. e. morphismsηA : A→ TA andµA : T2A→ TA for each objectA in C, which make the
following diagrams commute for every morphismf : A→ B in C

A
ηA - TA T2A

µA - TA

B

f

?

ηB

- TB

T f

?
T2B

T2 f

?

µB

- TB

T f

?

TA
ηTA- T2A �TηA

TA T3A
µTA- T2A

TA

µA

?�
id TA

id
TA

-

T2A

TµA

?

µA

- TA

µA

?

where the upper two diagrams simply express the naturalness ofη andµ, whereas the lower
two diagrams express the required interplay of these.

How this definition can be related to the one of Section2.2.1can be seen after the following
definition and lemma:

Definition 2.11. A Kleisli triple on a categoryC is a triple(T,η , ∗) whereT : ObC→ObC
is a function,η is a family of morphismsηA for each objectA in C and (∗) maps each
morphism f : A→ TB to a morphismf ∗ : TA→ TB. The following equations are required
to hold – leaving the composition operation (·) implicit:

η
∗
A = idTA f ∗ηA = f g∗ f ∗ = (g∗ f)∗ (2.10)

The meaning of Equations (2.10) can be understood best with the help of a derived op-
eration calledKleisli composition(◦) that takes morphismsf : A→ TB andg : B→ TC to
g◦ f := g∗ f . Formulated with this operation, Equations (2.10) state that eachηA is a left and
right unit, and that composition is associative:

ηA◦ f = f = f ◦ηA (f ◦g)◦h = f ◦ (g◦h) (2.11)

Another noteworthy point is that the binding operation(p�= f) used above can be ex-
pressed asf ∗(p). The polymorphic operationret can obviously be identified withη of the
Kleisli triple.

2.2 Monads in Computer Science 22

The following Lemma shows that one may equally well use a Kleisli triple as the defining
entity for a monad. Actually, one may even prove a stronger lemma establishing a one-one
correspondence between Kleisli triples and monads.

Lemma 2.12. Every Kleisli triple(T ′,η , ∗) determines a monadT = (T,η ,µ) by taking T
to be the function T′ extended to an endofunctor, defining T f≡def (ηB f)∗ for each morphism
f : A→ B, and by settingµA := (idTA)∗.

Proof. First of all, we must validate that the proposed extensionT actually constitutes a
functor, i. e. we must check compatibility with identities and composition; forf : A→ B and
g : B→C one has

T idA = (ηA idA)∗ = η
∗
A = idTA (2.12)

T(g f) = (ηC g f)∗ = ((ηC g)∗ηB f)∗ = (ηC g)∗ (ηB f)∗ = T f Tg (2.13)

where in (2.13) we used the definition of T applied to morphisms, the property ofη being
right-cancellable, and the special kind of associativity given to∗.

The fact thatη andµ actually are natural transformations can be easily calculated, so we
only show that they satisfy the equalities induced by the lower two diagrams. First comes the
left-hand diagram:

µA ηTA = (idTA)∗ηTA = idTA (2.14)

µATηA = (idTA)∗ (ηTAηA)∗

= ((idTA)∗ηTAηA)∗ = η
∗
A = idTA

(2.15)

which proves the required equalityµA ηTA = idTA = µATηA. Finally we have to show that
µATµA = µA µTA, which is expressed through the right-hand diagram.

µATµA = µA(ηTAµA)∗

= (idTA)∗ (ηTA(idTA)∗)∗ = ((idTA)∗ηTA(idTA)∗)∗

= ((idTA)∗)∗ = ((idTA)∗ idT2A)∗ = (idTA)∗ (idT2A)∗

= µA µTA

(2.16)

2.2.3 The Meta-language for Strong Monads

The so called ‘do-notation’ is known from its use in Haskell, where it is deployed to make
the idea of sequential evaluation of monadic programs syntactically evident. This idea is not
so apparent when monadic programs are expressed through�= andret. Nonetheless, the
do-notation is only syntactical sugar for conventional monadic expressions, and the former is
actually reducible to the latter (see [14] for details on how this is done).

Example 2.13. The expressiondo {x← p;q} (whereq is to be regarded as a syntactical
variable for a monadic program and thus may containx as a free variable) is translated into
p�= λx.q. Another example is the expressiondo {p;q}, where the return value ofp is
ignored; a possible translation isp�= λu.q, whereu is a fresh variable, i. e.u does not
occur inq.

2.2 Monads in Computer Science 23

In the domain of categorical semantics one may look at the do-notation as being a concise
language to express morphisms – i. e. the denotations of concreteprograms– in the categories
used to interpret the programming language at hand. Taken this way, the do-notation provides
a formal system to reason about monads, i. e. a basicallylogical view on the semantics, as
opposed to the equational or diagrammatic view of category theory. This approach has been
proposed by Moggi in [20], where a formal system calledmeta-languageis developed which
allows the formation of terms quite similar to do-terms (Moggi used a variant of let-terms
instead, but one easily translates between the two formulations).

This meta-language is defined through term formation rules in much the same way as the
typed lambda calculus has been defined in Section2.1.3, so that terms are formed in a context
and rules guide the way in which terms may be built. Additionally, inference rules for es-
tablishing equalities between terms are given, such that the equivalence of programs that are
described by these do-terms can be established within the formal system. The key to make
this formal system an internal language for (strong) monads is to interpret it in categories
equipped with a strong monad in such a way that there is a one-one correspondence be-
tween the formal system and the category2. The meta-language can furthermore be extended
to describe categories with additional structure, e. g. one might include product terms and
appropriate rules in the language to describe categories that additionally have finite products.

Remark2.14. The terminternal languagehas its origins in the domain of categorical logic.
An internal language is a means to reason about a category in a way that often makes proofs
easier to follow than is possible through the typical ‘diagram chasing’. In essence, an inter-
nal language is to be construed as a formal system giving names to relevant entities of the
category at hand. This system is then given an interpretation in the category in such a way
that theorems of the internal language translate into interesting statements about the category.
For a detailed overview, see [28].

The formal system for the meta-language can on the one hand be used to define mor-
phisms in the underlying category, and on the other hand to prove equivalences between
these morphisms. Thanks to a soundness and completeness theorem provided in [20], one
may abandon reasoning in categories with Kleisli triples and work in an adequate extension
of the meta-language instead, which adds up to reasoning about do-terms in the following
way:

1. Terms are formed in a context (which we shall often omit, as long as the types of all
variables are obvious or do not matter), i. e. they have the structureΓ ` e : τ. It should
be noted that interpretations of terms depend on the context: ifΓ = [x1 : σ1, . . . ,xn :
σn], the interpretations of typesσi are objectsci in the underlying category, andτ is
interpreted as objectc, thenΓ ` e : τ will denote a morphismc1×·· ·×cn→ c.

2. We are given a type constructorT that takes values of typeA into computations of type
TA (the interpretation ofT is exactly the functionT of the Kleisli triple described in
Definition2.11).

3. The polymorphic operationret embeds values into computations; it is polymorphic in
the sense that it exists for each producible type.

2a strong monadis one that is additionally equipped with a natural transformationtA,B : A×TB→ T(A×B),
calledtensorial strengththat must obey certain conditions given in [20]

2.2 Monads in Computer Science 24

4. do-terms of the formdo {x← p;q} allow to simultaneously express binding and se-
quencing, wherex is a variable that gets bound to the resulting value of the computation
p, andq is a computation which may containx.

5. The notion of associativity of binding is reflected by the following equality between
do-terms: for every programr not containingx, one has

(do{y←do{x← p;q}; r}) = (do{x← p;do{y←q}; r})

For notational clarity, repeated do-terms are abbreviated: Writedo {x1← p1;x2←
p2; . . .} for do{x1← p1;do{x2← p2; . . .}}

6. Corresponding to the properties ofη , one has unit laws forret (which actually is inter-
preted asη) in the following way

do{x← p; ret x}= p

do{x← ret a; p}= p[a/x]

7. There are rules about equality, namely reflexivity, symmetry and transitivity, as well
as a rule for substitution, stating that if an equation between termse1 = e2 containing
a variablex can be derived, then so can the equalitye1[e/x] = e2[e/x] for each well-
formed termenot containing free variables that do not occur ine1 or e2.

As a final word on the meta-language, it should be pointed out that it is an equational
theory. It therefore presents an instrument to prove equivalences between programs, i. e. an
equality of the morphisms they denote in the interpretation. The logic that will be developed
in the sequel goes far beyond the ability of proving equivalences. In monadic dynamic logic,
it is possible to make much more specific statements about programs, e. g. one can specify
under what conditions a program will terminate or one can prove that a given program in the
state monad will modify the state in a certain way.

3 Monadic Dynamic Logic

In this chapter, the proof calculus of monadic dynamic logic is presented. First, properties of
monadic programs are introduced that will be needed later on in order to develop the calculus;
these include notions such as discardability and side effect freeness of programs. After that,
the modal operators of dynamic logic are introduced in an axiomatic way and their meaning
in the example monads of Section2.2 is explained. All prerequisites gathered together, the
monad-independent proof calculus for dynamic logic is described in Section3.3. Finally, an
extension of the calculus that is tailored towards the exception monad is developed.

In what follows the type of truth values will be denoted byΩ, and the entire formalisa-
tion is suited for an intuitionistic as well as a classical framework.T will denote the type
constructor mapping a type ofvaluesinto the type ofcomputationsor programsover these
values. Formulae of dynamic logic will be taken to be terms of typeDΩ, where, for eachA,
DA is the subtype ofTA of all deterministically side effect free programs, a notion depicted
below. As a primary feature of the calculus, there will be modal operators[x← p] and
〈x← p〉 for each programp that take a formula of dynamic logicφ (possibly containing
x as a free variable) to another formula which may state properties ofx being the result of
executingp. The modal operators thus act as new variable binders; because we also allow
program sequences to occur inside the operators – as in[x←p;y←q] – they may bind several
variables at once. An initial intuitive understanding of the box and diamond operators can be
most easily given in the nondeterminism monad, where the formula[x←p] (x = 1) should be
interpreted as “after executingp and binding the result tox, (x = 1) will hold for all possible
outcomes ofp”. On the other hand,〈x← p〉(x = 1) states that there will besomeresultx of
p such that(x = 1) is true.

3.1 Preliminaries

The possibility for program sequences to occur inside the box and diamond operators instead
of single bindings should be regarded as a mere notational convenience. That this does not
add to the expressiveness of the operators can be seen by translating multiple bindings into
bindings of tuples, e. g. the bound variablesx andy in [x← p;y←q] can be packaged into the
single variablez= (x,y) in [z←do{x← p;y←q; ret (x,y)}] . Horizontal bars above variables
will indicate that actually a non-empty program sequence is under consideration rather than
a single binding. Let ¯x = [x1, . . . ,xn] andp̄= [p1, . . . , pn]; thenx̄← p̄ will denote the program
do {x1← p1; · · · ;xn← pn; ret (x1, . . . ,xn)} or, if it appears inside a do-statement or a box or
diamond operator, just the binding sequencex1← p1; · · · ;xn← pn.

3.1.1 Properties of Monadic Programs

The property of a monadic program being deterministically side effect free (abbreviated to
dsef in the following) relies on some simpler properties that will now be defined. The main
idea behind the introduction of a subtypeDA of dsef programs is that these programs have

3.1 Preliminaries 26

properties allowing them to be rearranged quite freely within a monadic program sequence.
For example, ifp andq are both dsef programs, the programsdo{x←p;y←q; r} anddo{y←
q;x← p; r} will be equal for every programr (possibly containingx andy, in contrast top
andq, which may not mention them). This is an important fact when introducing connectives
for formulae of dynamic logic: intuitively,φ : DΩ andφ ∧ φ : DΩ should be regarded as
equivalent formulae, but ifφ has side effects or is nondeterministic, this equivalence might
break down. Taking only terms of typeDΩ as formulae makes sure such equivalences are
retained in the calculus.

A more elaborate account of the information provided in this section can be found in [34],
where virtually all lemmas and propositions stated here were proved. To avoid overly repeat-
ing facts already stated elsewhere, only the most important lemmas and some of their proofs
are given here. Independently established proofs can be found in Section3.4covering exten-
sions specific to the exception monad as well as in the chapters on application (Chapter4)
and implementation (Chapter6) of the calculus.

Definition 3.1. Let 1 be the unit type and∗ the single element of this type. A programp : TA
is calleddiscardableif

do{x← p; ret ∗}= ret ∗

• In the state monad,p is discardable if it terminates and does not alter the state; since its
result is not used in the remainder of the program on the left-hand side (i. e. inret ∗),
it might just as well be omitted altogether.

• In the nondeterminism monad,p is discardable if it yields at least one result; in that
case, both sides of the equation yield{∗}.

• The concept of discardability reveals differences between the list monad and the non-
determinism monad: in the list monad,p is discardable if it yields exactly one result,
in which case both sides of the equation equal the singleton list[∗] – which may well
be distinguished from the list[∗,∗] containing the same element twice.

Definition 3.2. Let p : TA be a program.p is calledstatelessif it is of the form p = ret a
for somea : A. Obviously, all stateless programs are discardable which follows immediately
from the basic monad laws.

The following lemma confirms the appropriateness of Definition3.1for indicating when a
program may be discarded at the head of an arbitrary program sequence:

Lemma 3.3. Let p: TA be discardable and q: TB be an arbitrary program. Then

do{p;q}= q

Most proofs of the propositions in this section are by equational reasoning; here is an
example proof of the above lemma.

Proof.

do{p;q}= do{p; ret ∗;q} (sincedo{ret ∗;q}= q)

= do{ret ∗;q} (p discardable)

= q

3.1 Preliminaries 27

While discardability allows one to omit certain programs altogether whose return value is
not used in the remainder, the following concept admits statements about the behaviour of
certain programs when they are executed repeatedly:

Definition 3.4. Let p : TAbe a program.p is calledcopyableif the following equation holds:

do{x← p;y← p; ret (x,y)}= do{x← p; ret (x,x)}

As with discardability, copyability entails a stronger form of program equality which ex-
presses the fact that copyable programs may be doubled (or cancelled, taken the opposite
way) without effect more directly:

Proposition 3.5. Let p : TA be a copyable and r: TB be an arbitrary program possibly
containing y as a free variable. Then one has

do{x← p;y← p; r}= do{x← p; r[x/y]}

For various monads, the deterministically side effect free programs comprise the copyable
and discardable programs. That this type is not empty can easily be seen by considering
stateless programs of the formret a, which are discardable and copyable at any rate. These
programs are also deterministically side effect free in the general sense, which depends on
one further concept.

Definition 3.6. Let p andq be copyable and discardable programs withx /∈ FV(q) andy /∈
FV(p). Thenp commutes with qif the following three equivalent conditions hold:

do{x← p;y←q; ret (x,y)} is a copyable program (3.1)

do{x← p;y←q; ret (x,y)}= do{y←q;x← p; ret (x,y)} (3.2)

do{x← p;y←q; r}= do{y←q;x← p; r} (3.3)

Definition 3.7. A copyable and discardable programp that commutes withall copyable and
discardable programs is calleddeterministically side effect free(dsef).

Proposition 3.8. Dsef programs are stable under sequential composition, i. e. for every se-
quencex̄← p̄ of dsef programs and every dsef program q, the programdo{x̄← p̄;q} is also
dsef.

Remark3.9. As a rather technical aside, Isabelle imposes the restriction of quantifying not
over all programs of all possible types, but merely over all programs of a fixed type. Fortu-
nately, a program already commutes with all discardable and copyable programs if it com-
mutes with all such programs of typeTΩ. Therefore, the property of a programp being dsef
can also be expressed with more stringent type constraints in Isabelle.

3.1.2 Global Dynamic Judgements

Before introducing logical operators for dsef terms (viewed as formulae), we clarify when
such a formula is to be regarded as valid. Contending the global validity of a term of type
TΩ (notation�G φ)1 amounts to saying that

φ = do{a←φ ; ret>}
1note that the typeTΩ indicates that global validity is also defined for ‘formulae’ with side effects

3.1 Preliminaries 28

i. e. basicallyφ evaluates to truth (>) if it yields any results at all. In the state monad (resp.
the exception monad), this equation also holds ifφ is undefined (resp. throws an exception),
while in the nondeterminism monad it also holds ifφ does not produce any results at all. For
the important special case whenφ is discardable,�G φ reduces toφ = ret>.

Although global validity is a sufficiently strong concept to express when a term of typeTΩ
is to be considered valid, there are monads (albeit rather exotic ones such as the free Abelian
group monad, see [34, Section 3]) for which it is too weak to give a semantics to the box and
diamond operators. For this to be possible in a most general manner, the similar but more
powerful notion of aglobal dynamic judgementis necessary: let[x̄← p̄]G φ abbreviate

do{x̄← p̄; ret (x̄,φ)}= do{x̄← p̄; ret (x̄,>)}

(note thatφ : Ω in [x← p]G φ , i. e.φ is an actual formula, whereasψ : TΩ is a monadic term
in �G ψ).

Remark3.10. The monads that serve as examples in this thesis have been calledsimple
in [34]; in simple monads the equivalence of the two statements�G (do {x← p; ret φ}) and
[x← p]G φ holds, such that one of these concepts would actually be sufficient.

The following lemma once more shows that a more general statement (in this case about
global dynamic judgements) drops out of an apparently primitive definition.

Lemma 3.11. If [x̄← p̄]G φ holds,

do{x̄← p̄;q[φ/y]}= do{x̄← p̄;q[>/y]}

for each program q containing y: Ω as a free variable.

Proof. Again, by a direct calculation: letπi denote thei-th projection function and letθ
be the substitution{(π1 ·π1)z/x1, . . . ,(πn ·π1)z/xn,π2z/y} which replacesxi andy by their
respective selection from the tuplez= ((x1, . . . ,xn),y). Then

do{x̄← p̄;q[φ/y]}= do{x̄← p̄;y← ret φ ;q}
= do{x̄← p̄;y← ret φ ;z← ret (x̄,y);(q)θ}
= do{z←do{x̄← p̄;y← ret φ ; ret (x̄,y)};(q)θ}
= do{z←do{x̄← p̄; ret (x̄,φ)};(q)θ}
= do{z←do{x̄← p̄; ret (x̄,>)};(q)θ} (?)
= do{z←do{x̄← p̄;y← ret>; ret (x̄,y)};(q)θ}
= . . . = do{x̄← p̄;q[>/y]}

where to arrive at(?) the assumption[x̄← p̄]G φ has been used.

Corollary 3.12. One has[a← φ]G a if and only if�G φ . The implication from left to right
is a direct consequence of Lemma3.11, recalling thatφ = do {a← φ ; ret a}, whereas the
implication from right to left is, again, a manipulation with the help of unit and associativity
laws of monads.

We will not devote ourselves to developing an entire calculus of global dynamic judge-
ments – which indeed already is expressive enough to formulate a Hoare calculus for partial
correctness with it, as has been done in [32] – but rather make use of it to define the modal
operators of monadic dynamic logic. Global dynamic judgements are also useful to formalise
what it means for a program to terminate:

3.1 Preliminaries 29

Definition 3.13. A programp terminatesif

[x̄← q̄; p]G φ implies [x̄← q̄]G φ

for each program sequence ¯x← q̄ and each formulaφ : Ω.

Example 3.14. Obviously,φ : Ω in [x̄← q̄; p]G φ cannot mention the result ofp since this
result is not bound. To see how the above definition accords with the intuitive understanding
of termination, consider the simplest possible exception monad whereTA= A+{⊥}. In this
setting, it is reasonable to talk of nontermination of a programp if it throws an exception
(i. e. p = ⊥). In this case[x̄← q̄; p]G⊥ will be true for every program sequence ¯x← q̄ since
do{x̄← q̄; p; ret (x̄,⊥)}=⊥= do{x←q; p; ret (x̄,>)} (recall the definition of binding in the
exception monad).[x̄← q̄]G⊥ will however be false for every program sequence ¯x← q̄ not
throwing any exceptions.

Remark3.15. Reasoning about termination in the state monad (recall that hereTA takes
the form S→ S×A, i. e. a function space oftotal functions) only makes sense if either
partial functions are considered or the theory ofcomplete partial orders(cpos) withcontin-
uous functionsbetween them is employed. In a setting where programs are partial functions
f : S⇀ S×A, one finds that the above definition of termination precisely identifies the termi-
nating programs with the total functions – given an adapted definition of binding that takes
the possibility of undefinedness of programs into account. Since in Isabelle/HOL every func-
tion is implicitly total, we also stick to this principle in the overall development, explicitly
indicating when more structure is necessary, e. g. in the definition of arbitrarily recursive
definitions like that of a while-loop.

The greater freedom in treatment that dsef programs are characterised by also shows up
when they appear in global dynamic judgements. Several properties such as the equivalence
of [w̄←q̄;x←p;y←p; z̄← r̄]G φ and[w̄←q̄;x←p; z̄← r̄[x/y]]G φ [x/y] can be proved for a dsef
programp. This leads to three notational conventions that allow one to use dsef programs in
places where actual values are expected, and vice versa. Put concretely, we allow

1. a dsef programp : DA to occur in places where a variablex : A is expected; the program
q[p/x] decodes intodo{x← p;q}.

2. a formulaψ : DΩ to occur in places where a genuine formulaa : Ω can appear in global
dynamic judgements; the judgement[x̄← p̄]G φ [ψ/a] decodes into[x̄← p̄;a←ψ]G φ .
Note that here the evaluation ofψ takes placeafter having evaluated ¯x← p̄, whereas in
(1.) p is evaluatedbefore q.

3. formulae of typeΩ to be inserted in places where actually a formula of typeDΩ is
expected, since the former type can easily be cast to the latter throughret. This is con-
venient if several stateless formulae are involved which, for instance, make statements
about the data on which a program is supposed to work.

The specification of the tree-search algorithm in Section4.4 is an example where this con-
vention is employed. Compare also with Remark6.2 on how this convention is handled in
Isabelle.

3.2 Logical Operators 30

3.2 Logical Operators

3.2.1 Primitive Connectives

The logical operators are defined in terms of already existing logical operators for the type of
truth valuesΩ. So we assume that the background formalism at least allows the formulation
of the standard propositional connectives; this is certainly the case for Isabelle/HOL which
even allows the formulation of higher-order functions and predicates. We will use the same
symbols for both actual formulae of typeΩ as well asformulae of dynamic logicof type
DΩ; it will be clear from the context which of them is meant. Letop stand for conjunction
∧, disjunction∨, implication⇒ or equivalence⇐⇒ of two formulae of dynamic logic
φ ,ψ : DΩ respectively. Then these connectives are defined as

φ op ψ ≡def do{a←φ ;b←ψ; ret (a op b)} (3.4)

Negation is of course similarly defined as

¬φ ≡def do{a←φ ; ret (¬a)}

First-order operators like a universal quantifier are not available for formulae of dynamic
logic; they may however appear instateless formulae, e. g. of the formret (∀x.P(x)), if the
underlying formalism allows their formulation for formulae of typeΩ. An example thereof
can be found in Chapter4 within the specification of a breadth-first search algorithm.

Asserting the validity of a formula of dynamic logic can be done in two equivalent ways,
due to the existence of two different notations and their relation to each other. The ‘global
box’ �G basically serves the purpose of asserting validity of a formula:�G (φ ∧ψ) decodes into
�G (do{a←φ ;b←ψ; ret (a∧b)}) according to the definition of conjunction and is to be read
as “it is globally true thatφ ∧ψ holds”. By Corollary3.12, an equivalent formulation is to
say that[a←φ ;b←ψ]G (a∧b) holds. It is important to note that all propositional tautologies
carry over into the calculus of monadic dynamic logic:φ ⇒ (ψ⇒ φ) is globally valid, since
global validity amounts to[a← φ ;b←ψ;c← φ]G (a⇒ (b⇒ c)) being valid. The latter
judgement is valid because by Lemma3.5 it is equivalent to[a←φ ;b←ψ]G (a⇒ (b⇒ a))
in whicha⇒ (b⇒ a) is a tautology (inΩ), thus equal to>.

3.2.2 Boxes and Diamonds

The key feature of monadic dynamic logic is the existence of modal operators that allow
building formulae(i. e. terms of typeDΩ) stating that after execution of a program some
condition will necessarily or possibly hold. This is in contrast to the global box�G and the
global dynamic judgements which, as the name suggests, merely allow the formulation of
global statements about program sequences and properties of their bound variables. The
semantics of the diamond and box operators[x← p]φ and 〈x← p〉φ is local in the sense
that the state in whichφ is evaluated may be modified byp, but the entire formula does not
modify the state in which itself is evaluated. Hence, it may appear as a sub-formula without
affecting the semantics of surrounding sub-formulae.

Example 3.16. The axiomatic introduction of the box and diamond operators given below
does not quite point to an idea of what they intuitively express. We therefore give their
intended interpretation for the monads described in Section2.2 as a motivation for their
usefulness.

3.2 Logical Operators 31

• In the state monad of total functions[x← p]φ and〈x← p〉φ depend on the state. They
denote the same formula which is true in a states if after execution ofp the resultx will
satisfyφ . If partial functions are involved[x← p]φ is actually weaker than〈x← p〉φ
in that the former is also true ifp is undefined.

• In the exception monad[x← p]φ holds if p throws an exception or yields a value
satisfyingφ , whereas for〈x← p〉φ to hold it is additionally required thatp does not
throw an exception.

• In the nondeterminism monad, wherep : TA is a set of elements ofA, [x← p]φ holds
if all elements inp satisfyφ (which also includes the case wherep = /0) and〈x← p〉φ
is true if and only ifp contains some value satisfyingφ .

• Finally, in the combination of the list monad and the state monad the modal operators
depend on the state as well. Validity of[x← p]φ (or 〈x← p〉φ) in a states means that
all outcomes ofp satisfyφ (or at least one outcome satisfiesφ).

The following definition formalises the essential requirement that a monad must satisfy
in order to allow the interpretation of monadic dynamic logic. The somehow dual operators
[x← p] and 〈x← p〉 are introduced independently of each other in order to make their
particular interpretation possible in intuitionistic logics as well. In a classical setting, one
might define〈x← p〉φ as¬[x← p]¬φ , and in fact this equivalence is shown to hold in
Isabelle later on.

Definition 3.17. A monadadmits dynamic logicif there exist formulae[ȳ← q̄]φ and〈ȳ←
q̄〉φ for each program sequence ¯y← q̄ and each formulaφ : DΩ such that for each program
sequence ¯x← p̄= x1←p1; . . . ;xn←pn containingxi : Ω (1≤ i≤ n) the following equivalences
hold:

[x̄← p̄]G (xi ⇒ [ȳ← q̄]φ) ⇐⇒ [x̄← p̄; ȳ← q̄]G (xi ⇒ φ)
[x̄← p̄]G (〈ȳ← q̄〉φ ⇒ xi) ⇐⇒ [x̄← p̄; ȳ← q̄]G (φ ⇒ xi)

The purpose of using the variablexi is generality: one can express every formulaψ in context
of the otherx j through it: simply putxi = xn and pn = ret ψ. Note also that the above
equivalences make use of the notational convention of letting formulae of monadic logic
appear where a formula of typeΩ is expected: in decoded form the first equivalence reads as

[x̄← p̄;a← [ȳ← q̄]φ]G (xi ⇒ a) ⇐⇒ [x̄← p̄; ȳ← q̄;b←φ]G (xi ⇒ b)

and similar for the second one.

We state some basic properties that accompany the box and diamond operators.

Proposition 3.18 (Unique determination). One can turn the type of dsef programs DΩ
into a partial order by settingφ ≤ χ if and only if φ ⇒ χ. Then[ȳ← q̄]φ is the greatest
formulaψ such that[a←ψ; ȳ← q̄]G (a⇒ φ) and 〈ȳ← q̄〉φ is the smallest formulaψ such
that [a←ψ; ȳ← q̄]G (φ ⇒ a).

A proof of this proposition involves two steps: first, it has to be shown that for each formula
ψ satisfying[a←ψ; ȳ← q̄]G (a⇒ φ) (or [a←ψ; ȳ← q̄]G (φ ⇒ a)) one hasψ ⇒ [ȳ← q̄]φ
(or 〈ȳ← q̄〉φ ⇒ ψ). Second, it must be shown that[ȳ← q̄]φ (〈ȳ← q̄〉φ) in fact satisfy the
judgements. Both parts of the proof follow more or less immediately from the definition of
the box and diamond operators.

3.2 Logical Operators 32

Proposition 3.19 (Global validity of box formulas). Let ȳ← q̄ be an arbitrary program
sequence andφ : DΩ a formula. Then�G ([ȳ← q̄]φ) is equivalent to[ȳ← q̄]G φ .

The following equivalence allows us to reason about termination within the calculus of
monadic dynamic logic without having to fall back to reasoning about global dynamic judge-
ments.

Proposition 3.20 (Termination). A program p terminates in the sense of Definition3.13if
and only if〈p〉> holds.

Defining the Modal Operators

In monads with additional structure that besides imposing some minor logical well-behaved-
ness basically allows one to ‘read the current state’ – a property which virtually all of the
running example monads possess – it is possible to directly define the box operator2. This
definition is shown now as it enlightens the particular locality of the box operator’s semantics.

The general idea is that dsef programs can essentially be regarded as programs that may
read the ‘state’, but not alter it, i. e. there is an isomorphism between the typeDA of dsef
programs overA and the function spaceF → A, whereF is the type of states (see below).
With the help of this isomorphism, one may describe the box operator[x← p]φ as a function
that maps the current state to a global dynamic judgement (hence, a formula of typeΩ)
asserting that after setting this state and executingp, the formulaφ will be true. We need
some definitions to make these ideas precise. The notion of state has to be abstracted from
the set of concrete state valuesS in the state monad to a concept that also makes sense in
other monads.

Definition 3.21. A state is a terminating programs : T1 such that for each dsef program
p : DA there exists an elementa : A such that

do{s; p}= do{s; ret a}

If for each terminating programq one furthermore has

s= do{q;s}

thens is called aforcible state. The subtype ofT1 of all forcible states is denoted byF .

In the state monad, a state as just defined would rather be thought of as an update operation:
the functionupdate s′ = λs : S.(s′,∗) of Section2.2.1yields a state when it is applied to an
element of the set of concrete statesS. In the exception and nondeterminism monads there is
only the trivial stateret ∗, which in both cases is forcible; the special kind of list monad we
have described does not have forcible states: its states take the formsc = λ i : List I. [(c,∗)]
for c : List I, but for the programq = λ i : List I. [(a,∗),(b,∗)] one has

do{q;sc}= λ i : List I. [(j,∗),(j,∗)] 6= sc

The basic problem is that an element can occur multiple times in lists, in contrast to sets so
that forcibility is only available when the latter are used, e. g. in the nondeterminism monad.

2even in the intuitionistic case the diamond operator can then be defined in terms of the box operator, albeit in
a rather contrived way that we will not present here

3.3 The Monad-independent Proof Calculus 33

For the definition of the box operator we need a further operation that allows one to extract
the state. It is determined by the property that accessing the state with the help of it and then
immediately executing this state has no effect (since the state will be the same afterwards as
beforehand):

Definition 3.22. A programd : DF is called astate discloserif the termdo {x←d;x} is
discardable.

It is now possible to establish thatDA∼= (F→A) by defining two isomorphismsκA : DA→
(F → A) and its inverseκ−1

A : (F → A)→ DA for each typeA (the indexA will be omitted
in the following). While to be able to defineκ one needs a Hilbert description operator, its
inverseκ

−1
A can be defined purely by means already available. Letd : DF be a state discloser,

then for each functionf : F → A the programκ−1(f) accesses the current state and applies
f to it, i. e. one has

κ
−1(f) ≡def do{s←d; ret (f s)}

which is a dsef program of typeDA, recalling that bothd andret are dsef programs. This
mapping allows us to describe the box operator as a function inF → Ω, i. e. as a state de-
pendent truth value, and then subsequently inject it intoDA: [ȳ← q̄]φ can be interpreted in
F →Ω as a function that returns the global validity ofφ after executing the states followed
by ȳ← q̄. This is formalised by the following definition of the box operator:

[ȳ← q̄]φ ≡def κ
−1(λs : F. [s; ȳ← q̄]G φ)

3.3 The Monad-independent Proof Calculus

The entire proof calculus for monadic dynamic logic can be formalised by adding the rules
and axioms of Figure3.1to the set of propositional tautologies inDΩ. Certainly the inclusion
of all tautologies is overkill which might be prevented by only including an independent and
complete set of axioms for propositional logic3, but here we are mainly concerned with rules
and axioms for the modal operators. The soundness of the calculus has been established in
[34], whereas its completeness is still an open issue.

The side condition ‘¯x not free in assumptions’ in the necessitation rule is a typical side
condition analogous to the one for the universal quantifier in first-order logic; the termas-
sumptionsis to be understood as it is used in natural deduction and does not refer to the
premissof the rule,φ . The axioms K32 and K33 refer to stateless formulae that are mere
injections of formulaeφ : Ω. The first one expresses the fact that stateless formulae continue
to hold after execution of programs (whereas the inverse is not true due to possible nonter-
mination of the programp), and the second one expresses the fact that stateless formulae
that hold after terminating executions ofp also hold unconditionally. The sequencing axioms
seq2 and seq3 allow one to freely split and join boxes and diamonds.

Essentially theK axioms are the intuitionistic counterpart to the usualK axiom of classi-
cal modal logic, which is calledK1 here (see [35]). FurtherK axioms are however necessary
to be able to prove intuitionistically valid formulae. This is mainly due to the fact that the
box and diamond operators are defined independently of each other. It will be seen in Chap-
ter 6 that the implementation of the calculus in Isabelle behaves classically, so that in it the
classical equivalence of〈x← p〉P and¬[x← p]¬P can be shown.

3complete in the sense that every tautology can be proved from these axioms together with modus ponens

3.3 The Monad-independent Proof Calculus 34

Rules:

(nec)
φ

[x̄← p̄]φ
x̄ not free

in assumptions
(mp)

φ ⇒ ψ; φ

ψ

Axioms:

(K1) [x̄← p̄] (φ ⇒ ψ)⇒ [x̄← p̄]φ ⇒ [x̄← p̄]ψ
(K2) [x̄← p̄] (φ ⇒ ψ)⇒ 〈x̄← p̄〉φ ⇒ 〈x̄← p̄〉ψ
(K32) ret φ ⇒ [p] ret φ

(K33) 〈p〉 ret φ ⇒ ret φ

(K4) 〈x̄← p̄〉(φ ∨ψ)⇒ (〈x̄← p̄〉φ ∨〈x̄← p̄〉ψ)
(K5) (〈x̄← p̄〉φ ⇒ [x̄← p̄]ψ)⇒ [x̄← p̄] (φ ⇒ ψ)
(seq2) [x̄← p̄;y←q]φ ⇐⇒ [x̄← p̄] [y←q]φ
(seq3) 〈x̄← p̄;y←q〉φ ⇐⇒ 〈x̄← p̄〉 〈y←q〉φ
(ctr2) [x← p;y←q]φ ⇒ [y←do{x← p;q}]φ (x /∈ FV(φ))
(ctr3) 〈x← p;y←q〉φ ⇐ 〈y←do{x← p;q}〉φ (x /∈ FV(φ))
(ret2) [x← ret a]φ ⇐⇒ φ [a/x]
(ret3) 〈x← ret a〉φ ⇐⇒ φ [a/x]
(dsef2) [x← p]P ⇐⇒ P[p/x] (p is dsef)
(dsef3) 〈x← p〉P ⇐⇒ P[p/x] (p is dsef)

Figure 3.1: The generic proof calculus of monadic dynamic logic

Two further axioms that are needed in Chapter6 can only be proved in so calledlogically
regular monads(cf. [34, Def. 5.14]). Essentially, logical regularity means that arbitrary
formulaec : Ω implying some global dynamic judgement can be moved into the scope of that
judgement, as follows

c⇒ [x← p]G φ implies [x← p]G (c⇒ φ)

This restriction is only necessary in the intuitionistic case; if the underlying logic is classical
one can show that all monads are logically regular. Even in the intuitionistic case all monads
that are under consideration here are logically regular. The axioms allow one to substitute
equals for equals inside boxes and diamonds:

Axioms:
(eq2) p = q⇒ [x← p]φ ⇒ [x←q]φ
(eq3) p = q⇒ 〈x← p〉φ ⇒ 〈x←q〉φ

3.3.1 Hoare Calculi

The calculus of monadic dynamic logic can be applied in order to define a Hoare logic for
partial as well as one for total correctness of monadic programs. In Hoare logics for partial
correctness of imperative programs one has assertions of the form{φ} p{ψ}, which are to
be understood as “if the preconditionφ holds before execution ofp, then the postcondition
ψ will hold afterwards ifp terminates”. This idea also makes sense for monadic programs,
but in fact it is already incorporated in dynamic logic by formulae of the formφ ⇒ [p]ψ.
Likewise, one can give meaning to Hoare assertions for total correctness by adding the re-
quirement that a program terminates. This leads to the following definition.

3.4 Specific Extensions for the Exception Monad 35

Definition 3.23. A Hoare assertion for partial correctnessof monadic programs is a formula

φ ⇒ [x̄← p̄]ψ (written as {φ} p{ψ})

A Hoare assertion for total correctnessalso requires the termination of the program under
consideration and hence takes the following form:

φ ⇒ ([x̄← p̄]ψ ∧〈x̄← p̄〉>) (written as [φ] p[ψ])

Classical Hoare rules like a sequencing rule or a context weakening rule

[φ] x̄← p̄[ψ]
[ψ] ȳ← q̄[χ]

[φ] x̄← p̄; ȳ← q̄[χ]

[φ] x̄← p̄[ψ]
φ ′⇒ φ

∀x̄.ψ ⇒ ψ ′

[φ ′] x̄← p̄[ψ ′]

(which of course also exist for partial correctness assertions) are easily derived in the proof
calculus of dynamic logic. In the next section we will make use of a Hoare logic definable
in this way for specifying and proving correct a pattern match algorithm. While Hoare logic
represents a convenient way of reasoning about programs in the state monad (which naturally
comes quite close to reasoning about simple imperative programming languages), e. g. the
queue monad used in the next chapter does not lend itself to an axiomatisation simply by
means of Hoare assertions about the basic queue operations. Hence, proofs about the queue
monad will be conducted in the calculus of dynamic logic.

3.4 Specific Extensions for the Exception Monad

We have mentioned in Example3.14that non-termination in the (simple) exception monad
means that an exception has been thrown. So, given an operationraise : E → TA which
raises an exception from the setE of exceptions, one has[raise e]⊥ so that “anything can
be proved in the presence of an exception”. This might be acceptable as long as exceptions
simply indicate some kind of failure and it does not matter much which error eventually
occurred. In this case, partial correctness explicitly doesnot say anything about whether
the program actually terminated and total correctness excludes all situations in which an
exception occurred. But as soon as exceptions are employed to deliberately manipulate the
control flow and if they may carry values (e. g. in the monad for Java of [13, 11]) this turns out
to be a serious lack of expressiveness. An extension of the basic Hoare calculus described
above has been given in [33] which makes it possible to reason about so calledabnormal
postconditionsrequired to hold if an exception has been thrown (as opposed to thenormal
postconditionwhich must be satisfied in case of regular termination). This extension relies
on the presence of an operation to turn an exceptional state back into a normal one, which is,
of course, the well-knowncatch: TA→ T(A+E) operation. As indicated by this signature,
catchsimply makes an exception visible rather than additionally requiring a handler to cope
with the exceptional situation, as in Haskell’scatch: TA→ (E→ TA)→ TA. The latter is
easily definable in terms of the former. In [33] a categorical definition of exception monads
is given4, from which however one can derive all equations that may intuitively be expected

4in whichcatchis taken to be a natural transformation betweenT andT(+E) such that it equalises the strong
monad morphismscatch +E andT inl

3.4 Specific Extensions for the Exception Monad 36

to hold, e. g.

catchdo{x← p;q x}=
do{y←catch p;case y of inl a→ catch(q a) | inr e→ ret (inr e)}

catch(ret x) = ret (inl x)
catch(raise e) = ret (inr e)

(3.5)

where the first equation states howcatchbehaves under sequential composition of programs
(in particular the second programq is only executed ifp did not throw any exceptions), the
second one states thatret does not throw any exceptions and the third one expresses howcatch
interacts withraise, namely that it precisely returns the exception thrown by this operation.

With these defining equations forcatchavailable, one may reason in the regular Hoare
calculus by wrapping up all programs with acatchand doing a case distinction about the
return value ofcatchin the postcondition:

{φ}y←(catch x← p){case y of inl x→ ψ | inr e→ S e}

The abnormal postconditionS: E→ DΩ is a stateful predicate on exception values and may
not mention the normal return valuex, whereasψ of the normal postcondition may contain
x freely. This scheme can be given a more convenient notation by explicitly distinguishing
between normal and abnormal postcondition and leaving the ubiquitouscatchunmentioned:

{φ}x← p{ψ ‖S}

It is now possible to derive a Hoare calculus to reason about exception monads, including
rules for sequential composition of programs, a rule forraise as well as one forcatch, etc.
Figure 3.3 lists all rules that apply to arbitrary exception monads; in particular note rule
(raise) which shows how the problem of giving a reasonable postcondition forraisehas been
resolved.

3.4.1 Parameterised Exceptions

As a concrete example, we will now describe how to translate the exception handling mech-
anism of the Java programming language into the calculus described here. It will then appear
that one further extension has to be made, since in Java evenreturn statements terminate
abnormally, resulting in exceptions carrying values of an arbitrary type. The stipulation that
return (andbreak andcontinue) statements terminate abnormally is not specific to the
model of Java given here, but rather settled in the Java language specification [16]. To deal
with this situation a conversion functionmbodyis required that mediates between slightly
different monads. This is due to the fact that every concrete monad may only carry exception
values of a fixed type, as will be seen, whereasreturn exceptionsof different methods may
have entirely unrelated types – which is naturally so, since methods may have different return
types.

The fact that certain statements terminate abnormally suggests the following data type be
used as the type of exceptions – ignoring for the time being the class-hierarchy of exceptions
rooting in classException, i. e. all run-time errors likeArrayOutOfBoundsException or
IOException. The main point to be made here is how to model the hidden exceptions that
do not show up as such within a real Java program. So let

E a= MRet a| FallenOff | Break| Cont| Error

3.4 Specific Extensions for the Exception Monad 37

whereMRet arepresents a return exception carrying the value which was the argument of
the return statement that raised the exception.FallenOff will be raised by the yet to be
definedmbodyoperation to indicate that its argument illegally terminated normally,Break
andContare exceptions raised bybreak andcontinue statements respectively, andError
is an exception that slightly over-simplifyingly models all other cases.

The monad in which the semantics of sequential Java is modelled best is the state monad
extended by exceptions and nontermination (where the latter is treated similar to an exception
by the binding operation)

T a b= S→ S× (b+E a)+1

such thatT a is an exception state monad for each each typea in which binding respects ex-
ceptions, i. e. indo{x← p;q} the programq is only evaluated ifp did not raise an exception.
In this monad one hascatch: T a b→ T a (b+ E a) andraise: E→ T a b for all typesa
andb. The type ofcatchalready points out that it is not possible to switch between mon-
ads of different exception types; this precludes the applicability of this model in situations
where e. g. one method of Java-return typeint is called within another method of return type
boolean. The following example demonstrates the problem.

Example 3.24.Let mret xabbreviateraise(MRet x), then the Java methods

public static int f(int x) {
if (g(x) < 0)

return x + 1;
else

return x - 1;
}

public static boolean g(int x) {
return x*x < 100;

}

might näıvely be translated into the monadic model to obtain

f : Int→ T Int a
f x = do { r←catch(g x);

case r of
inl (MRet b)→ if b then mret(x+1) else mret(x−1)
→ raise Error }

g : Int→ T Ω a
g x= mret(x ·x < 100)

But this results in a type error, since the programcatch(g x) has typeT Ω (a+ Int) in
f , which itself is a monadic computation inT Int. Thus, the two monadic computations
are incompatible. Intuitively, it should be possible to resolve this incompatibility, as the
type of exceptionsg may throw is not of importance to the exception type off (all calls
to methods are enclosed bycatch and hence cannot propagate intof). In fact, this can
be achieved in a way that simultaneously avoids having to enclose every method call by
a catch. The key to this solution is the observation that every exception monadT can be

3.4 Specific Extensions for the Exception Monad 38

obtained by applying theexception monad transformer(well known asErrorT from the
Haskell libraries) to some existing monadRsuch thatT is isomorphic toR(+E). Basically,
this says that for every exception monad there is some underlying monad such that they share
the same structure, but the exception monad only lives on result types enriched by some set
E of exceptions. In the case at hand,R simply is the state monad with non-termination, and
binding inR(+E) = S→S×(+E)+1 means binding as defined for the state monad and
not for the exception monad. The practical consequence of this relationship is that one can
also write programs inR(+E) and convert them toT via ErrorT, which is precisely what
is done formbody. We refer to AppendixA, p. 98, for a Haskell implementation ofmbody
and the exception monad transformer. The pivotal property ofmbodyfrom the viewpoint of
the exception monadT is that it converts the exceptional state of a computation back into
a normal one if a return exception has been raised, but lets all other exceptions pass – thus
making itpolymorphic in its own exception type. Additionally, in case of normal termination
of its argument,mbodywill raise aFallenOff exception. Its type therefore is

mbody: T a b→ T c a

When translating Java methods into the monadic setting, one will thus enclose the trans-
lation m of every method bodym of functionf by mbodyto obtain the translated functionf .
Conducted in this manner, the translation of the above Java methods then is

f : Int→ T a Int
f x = mbody(

do { b←g x;
if b then mret(x+1) else mret(x−1)

})

g : Int→ T b Ω
g x= mbody(mret(x ·x < 100))

Since every programp obtained from a translation of a Java method into the monadic
setting will now contain an occurrence ofmbody, it is necessary at this point to specify
and prove a Hoare rule for this construct which captures its decisive properties (see also
[38]). Fortunately, a single rule suffices for this purpose in the case of partial as well as total
correctness assertions (and both rules look alike so that only one of them is shown), noting
that one will only want to prove properties of programs that terminate abruptly with a return
exception.

(mbody)
{φ}x← p{⊥‖λe.case eof MRet y→ ψ | e→ S e}

{φ}y←mbody p{ψ ‖S}

Correctness of a pattern match algorithm

As an example of how to apply the extended calculus to realistic programs, we will specify
and prove the correctness of a pattern match algorithm which searches for a given sub-pattern
in a given base pattern. The algorithm is implemented in an exception monad with dynamic
references and a while loop; the existence of the latter implicitly presupposes additional
structure on the monad, see [34, Section 7] for details and AppendixA for an implementation.
One therefore has to axiomatise additional operations on the monad (apart fromret and�=);

3.4 Specific Extensions for the Exception Monad 39

the corresponding specification is shown in Figure3.2. A condensed version of this proof
already appeared in [38], while here we provide the full picture.

pmatch: List a→ List a→ T e Nat
pmatch base pat= mbody(do {

r←new0;
s←new0;
while (ret>)

(do { u←∗r;
v←∗s;
if u = len pat

then mret v
else if v+u = len base

then raise Error
else if base!!(v+u) = pat!!u

then r := u+1
else do { s := v+1; r := 0}

})
})

This definition ofpmatchis almost identical to the Haskell implementation to be found
in AppendixA, with slight modifications to retain the notation used so far. It introduces
a type constructorList mapping each typea to the type of lists overa, a length function
len : List a→ Nat and an indexing function !! :List a→ Nat→ a operating on these lists
in the usual way – where the latter is undefined if the index exceeds the bounds of the list.
Further it requires a natural numbers typeNat and makes use ofexistential equalitywhen
comparing elements of lists. This means that a comparisonv!! i = w!! j yields true if and only
if both v!! i andw!! j are defined and equal. An informal specification of this algorithm is as
follows.

• pmatchreturns the first – i. e. least – indexx such that the patternpat occurs inbase
starting at indexx.

• If no such index exists,pmatchwill fail with an exceptionError.

The specification in Figure3.2extends the axiomatisation of the dynamic reference monad
given in [32] by abnormal postconditions, which in most cases are⊥, asserting that the
corresponding operations do not raise exceptions. An exception is the rule (new-distinct),
which states that the subsequent creation of references, with an arbitrary programp (which
may raise exceptions) executed in between, produces distinct references. We prove total
correctness of the algorithm generically, i. e. without further assumptions on the underlying
monad other than the axioms of Figure3.2and the interpretability of awhileconstruct. Figure
3.3 displays the generic Hoare calculus for total exception correctness. The calculus for
partial correctness is essentially identical (where the square brackets are of course replaced
by curly brackets) except for rule (stateless) in which there is no need for a premiss.

For the actual method bodyp, i. e. the argument ofmbodyin functionpmatch, we claim
that it terminates abnormally, raising either a return exception carrying as its value an index
x that is the starting position of the first occurrence of the pattern in the base string, or a

3.4 Specific Extensions for the Exception Monad 40

Operations

read: Ref a→ T b a (read r≡def ∗r)
write : Ref a→ a→ T b 1 (write r x≡def r := x)
new: a→ T b (Ref a)

Axioms

dsef(read) (dsef-read)

[] r := x [x = ∗r ‖⊥] (read-write)

[x = ∗r ∧¬r = s]s := y[x = ∗r ‖⊥] (read-write-other)

[] r←new x[x = ∗r ‖⊥] (read-new)

[x = ∗r ∧¬r = s]s←new y[x = ∗r ‖⊥] (read-new-other)

[φ] r←new x; p[>‖>]⇒
[φ] r←new x; p;s←new y[¬r = s‖>] (new-distinct)

Figure 3.2: Specification of the exception reference monad

failure exceptionError indicating that there is no occurrence of the pattern in the base string.
Compare this to the specification (3.20) for pmatchitself, which actuallyreturnsthe indexx
if found:

[] p [⊥ ‖ λe. case eof
MRet i→MPOS i∧∀ j. MPOS j⇒ i ≤ j
| Error →¬∃i. MPOS i
| → ⊥]

(3.6)

The abnormal postcondition above will be denoted byPOSTbelow. Here,MPOS istates that
the pattern is matched at positioni in the base string:

MPOS i≡ ∀ j. 0≤ j < len pat⇒ base!!(i + j) = pat!! j.

In order to apply the total exception while rule (while) of Figure3.3, we need to provide a
loop invariantINV and a termination measuret. Putting

INV ≡ (∀i. 0≤ i < ∗r ⇒ base!!(∗s+ i) = pat!! i) ∧
∀i. MPOS i⇒∗s≤ i

(which implies 0≤ ∗r ≤ len patand 0≤ ∗s+ ∗r ≤ len base) guarantees that the dsef term
t = (len base−∗s, len pat−∗r) always yields results of typeNat×Nat, on which we have
the lexicographic ordering as a well-founded relation.

Establishing the invariant upon entrance into the loop is easy, since from the axioms given
above,

[] r←new0;s←new0[∗s= ∗r = 0∧¬(r = s)‖⊥] (3.7)

can be derived by the rules (seq), (conj), (read-new-other) and (new-distinct). Inside the
loop, there are essentially four branches, arising from three applications of the rule (if), so

3.4 Specific Extensions for the Exception Monad 41

(seq)

[φ] x̄← p̄[ψ ‖S]
[ψ] ȳ← q̄[χ ‖S]

[φ] x̄← p̄; ȳ← q̄[χ ‖S]
(ctr)

[φ] . . . ;x← p;y←q; z̄← r̄ [ψ ‖S]
x /∈ FV(r̄)∪FV(ψ)

[φ] . . . ;y←(do{x← p;q}); z̄← r̄ [ψ ‖S]

(conj)

[φ] x̄← p̄[ψ1‖S1]
[φ] x̄← p̄[ψ2‖S2]

[φ] x̄← p̄[ψ1∧ψ2‖S1∧S2]
(disj)

[φ1] x̄← p̄[ψ ‖S]
[φ2] x̄← p̄[ψ ‖S]

[φ1∨φ2] x̄← p̄[ψ ‖S]

(wk)

[φ] x̄← p̄[ψ ‖S]
φ ′⇒ φ ψ ⇒ ψ ′

∀e. S e⇒ S′ e

[φ ′] x̄← p̄[ψ ′ ‖S′]
(stateless)

[ret φ]q[>‖>]
[ret φ]q[ret φ ‖λe. ret φ]

(dsef)
p dsef

[φ]x← p[φ ∧x = p‖⊥]
(if)

[φ ∧b]x← p[ψ ‖S]
[φ ∧¬b]x←q[ψ ‖S]

[φ]x← if b then p else q[ψ ‖S]

(catch)
[φ] x̄← p̄[ψ[inl x̄/y]‖λe.ψ[inr e/y]]

[φ]y←(catchx̄← p̄) [ψ ‖⊥]

(raise)
[φ] raise e0 [⊥‖λe.(φ ∧e= e0)]

(while)

[φ ∧b] p[>‖>]
{φ ∧b∧ t = z} p{φ ∧b∧ t < z‖>}

{φ ∧b} p{>‖S}
[φ]while b p[φ ∧¬b‖S]

Figure 3.3: The generic Hoare calculus for total exception correctness

3.4 Specific Extensions for the Exception Monad 42

that the three premisses of the total exception while rule are split into twelve proof goals
(the two read operationsu←∗r andv←∗s are dealt with by rules (dsef) and (seq)). The
total exception while rule proof obligations, stated informally, are first to prove termination
of the program at hand, then to prove that the invariant is maintained as well as that the
termination measure decreases strictly, and finally to prove that the abnormal postcondition
can be established given the loop invariant as a precondition. We now prove the goals for
each branch, with some of those having obvious proofs omitted. Furthermore, we will leave
the pre- and postcondition¬(r = s) implicit, since it obviously prevails in the whole proof
thanks to rule (stateless).

(i) Returning an Index.

[INV∧∗r = u∧∗s= v∧u = len pat]mret v[>‖>] (3.8)

{INV∧∗r = u∧∗s= v∧u = len pat∧ (len base−v, len pat−u) = z}
mret v (3.9)

{INV∧ (len base−∗s, len pat−∗r) < z ‖ >}

{INV∧∗r = u∧∗s= v∧u = len pat}mret v{>‖POST} (3.10)

By the total and partial variants of rules (raise) and (wk), recalling thatmret v is just an
abbreviation forraise(MRet v) one easily obtains (3.8) and (3.9). It remains to show (3.10);
now from its precondition we inferMPOS v∧∀i.MPOS i⇒ v≤ i, a stateless formula. Further
we may derive{}mret v{⊥‖λe. e= (MRet v)} by (raise). Hence, by (stateless), (conj), and
(wk), we obtain

{INV∧∗r = u∧∗s= v∧∗r = len pat} mret v

{⊥ ‖ λe.e= MRet v∧MPOS v∧∀i.MPOS i⇒ v≤ i}

The formula in the abnormal postcondition impliesPOST, since the kind of exception is
identified asMRetand thus the formula can be extended to the case construct ofPOST. This
means we are finished by another application of (wk).

(ii) Failing to Find an Index.

[INV∧∗r = u∧∗s= v∧¬(u = len pat)∧u+v = len base] raise Error[>‖>] (3.11)

{INV∧ (len base−∗s, len pat−∗r) = z∧ . . .} raise Error{INV∧ . . . ‖>} (3.12)

{INV∧∗r = u∧∗s= v∧¬(u = len pat)∧u+v = len base}
raise Error (3.13)

{> ‖ POST}

Again, (3.11) and (3.12) – which has not even been written out in full; the pattern is as in (i)
– are immediate by rules (raise) and (wk). To show (3.13) we note that by (raise) one has

{} raise Error{⊥‖λe. e= Error} (3.14)

3.4 Specific Extensions for the Exception Monad 43

and lettingP ≡def INV[u/∗r,v/∗s]∧ u+ v = len base∧¬(u = len pat) by (stateless) one
obtains

{P} raise Error{P‖λe.P} (3.15)

After strengthening the precondition of (3.14) by (wk) one may combine it with (3.15) by
rule (conj). But the formula thus obtained in the abnormal postcondition impliesPOST:
informally this can be seen because the exception type isError; the substituted invariant
guarantees that no pattern has been found up tov and none can appear later on as the end of
the pattern has been reached andu is less thanlen pat; this means that no occurrence ofpat
in baseexists.

(iii) Proceeding With a Partial Match. In this branch the first and third goals are triv-
ially proved, since assignment terminates and does not raise exceptions. The second goal
is

{INV∧∗r = u∧∗s= v∧¬(u = len pat)∧¬(u+v = len base)
∧ (len base−v,z= len pat−u)∧base!!(u+v) = pat!!u}

r := u+1 (3.16)

{INV∧ (len base−∗s, len pat−∗r) < z ‖ >}

There are two parts to be shown here: on the one hand it has to be established that the invariant
holds in the postcondition, and on the other hand one must show that the termination measure
t decreases. Both proofs hinge on rules (read-write) and (read-write-other) from which one
infers

{¬(r = s)∧∗s= v} r := u+1{∗s= v∧∗r = u+1‖⊥} (3.17)

so that in (3.16) the value of∗scarries over from the pre- to the postcondition, while the value
of ∗r is increased exactly by one. Taken together, this forces the measuret to decrease strictly.
Regarding the invariant a similar point can be made: analogous to (ii) the invariant withu
andv replacing∗r and∗s respectively carries over from the precondition to the postcondition
since it is stateless. Moreover, the facts that the partial match may be extended, i. e. one has
base!!(u+v) = pat!!u, and (3.17) establish the invariant proper.

(iv) Starting a New Match. Again, the first and third goals are not shown, because the
situation is essentially the same as for (iii), the only difference being that two assignments
are executed instead of one.

{INV∧∗r = u∧∗s= v∧¬(u = len pat)∧¬(v+u = len base)
∧z= (len base−v, len pat−u)∧¬(base!!(u+v) = pat!!u)}

do{s := v+1;r := 0} (3.18)

{INV∧ (len base−∗s, len pat−∗r) < z}

Once more the crucial fact can be obtained from (read-write) and (read-write-other):

{¬(r = s)}s := v+1;r := 0{∗r = 0∧∗s= v+1‖⊥} (3.19)

This forces the termination measure to decrease strictly, and enables one to retain the invariant
in the postcondition. Informally this is valid due to the fact that¬(base!!(u+ v) = pat!!u),

3.4 Specific Extensions for the Exception Monad 44

i. e. the current partial match cannot be completed. It is then legal to increases by one to
search for another match further on, validating the second conjunct of the invariant. By
settingr to zero the first conjunct of the invariant becomes vacuously true.

Altogether, having arrived at proving Formula (3.6) by composing (3.7) with the conclu-
sion of the total exception while rule, we can then apply rule (mbody) to obtain the total
correctness of the whole algorithm:

[] i←mbody p[MPOS i∧∀ j.MPOS j⇒ i ≤ j ‖
λe.case eof Error →¬∃i.MPOS i

| → ⊥].
(3.20)

4 Verification with Dynamic Logic

We will now apply the general calculus as well as monad-specific extensions of it to prove
properties of monadic programs. These proofs will be fairly detailed, which is so because of
their being formal proofs. On the one hand this provides rigorous evidence of their correct-
ness, but on the other hand it definitely prompts for the employment of a (semi-) automatic
proof assistant to dispose of the necessity of doing the most trivial proof steps by hand. We
begin with some standard lemmas which are typical of dynamic logic.

4.1 Basic Lemmas of Dynamic Logic

An important and quite natural fact is that one may prove formulae of the form[x← p] (
∧

φi)
by proving each[x← p]φi separately:

Lemma 4.1. [x← p] (φ ∧ψ) if and only if [x← p]φ ∧ [x← p]ψ

Proof. “⇒” We haveφ ∧ψ⇒ φ , which is a tautology, so by (nec) and one-time application
of modus ponens to (K1) we obtain[x← p] (φ ∧ψ)⇒ [x← p]φ . Dually, we arrive
at [x← p] (φ ∧ψ)⇒ [x← p]ψ when starting fromφ ∧ψ ⇒ ψ. Taken together, the
proposition is proved.

“⇐” Beginning with the tautologyφ ⇒ (ψ ⇒ φ ∧ψ), by (nec) and two-time application of
modus ponens to (K1) we arrive at[x← p]φ ⇒ ([x← p]ψ⇒ [x← p] (φ ∧ψ)) which is
tautologically equivalent to[x← p]φ ∧ [x← p]ψ ⇒ [x← p] (φ ∧ψ).

Lemma 4.2 (Regularity). The following are valid rules of inference.

(reg2)
∀x. φ ⇒ ψ

[x← p]φ ⇒ [x← p]ψ
(reg3)

∀x. φ ⇒ ψ

〈x← p〉φ ⇒ 〈x← p〉ψ

Proof. For (reg2), assume∀x. φ ⇒ ψ, apply necessitation to obtain[x← p]φ ⇒ ψ, from
which the conclusion can be derived by modus ponens with (K1). The proof for rule(reg3)
is identical, except that (K2) has to be used in the final step.

Lemma 4.3. The following two rules that resemble modus ponens, only ‘inside’ boxes and
diamonds, are valid derived rules of inference.

(wk2)
[x← p]φ ∀x.φ ⇒ ψ

[x← p]ψ
(wk3)

〈x← p〉φ ∀x.φ ⇒ ψ

〈x← p〉ψ

Proof. Concerning rule (wk2) we have to deduce the conclusion[x←p]ψ under the assump-
tions [x← p]φ and∀x. φ ⇒ ψ. By regularity, we immediately obtain[x← p]φ ⇒ [x← p]ψ,
which provides the conclusion through an application of modus ponens with the assumption
[x← p]φ . Once again, the proof of (wk3) is dual.

4.2 Axiomatising the Queue-Monad 46

The following lemmas, which can also be found in [8], show some distributivity properties
of the modal operators. It should be pointed out that the implications in the other directions
are not valid (except for the first lemma, where the reverse implication is axiom (K4)).

Lemma 4.4. 〈x← p〉φ ∨〈x← p〉ψ ⇒ 〈x← p〉φ ∨ψ

Proof. This proof is rather typical and the same scheme will be applied to the following ones.
First, we start with the tautology∀x. φ ⇒ φ ∨ψ; strictly speaking this is not a tautology
due to the universal quantifier, but this formula can easily be obtained from the tautologous
φ ⇒ φ ∨ψ by universal generalisation, so we will talk of a formula as being a tautology even
if it is the universal closure of one.

By regularity we derive〈x← p〉φ ⇒ 〈x← p〉φ ∨ψ, and we can also gain〈x← p〉ψ ⇒
〈x← p〉φ ∨ψ in a similar fashion. From these, twofold application of (mp) to the tautology
scheme(Φ⇒ Θ)⇒ (Ψ⇒ Θ)⇒ (Φ∨Ψ⇒ Θ), whereΦ = 〈x← p〉φ ,Ψ = 〈x← p〉ψ and
Θ = 〈x← p〉φ ∨ψ, gives the desired result.

Lemma 4.5. 〈x← p〉φ ∧ψ ⇒ 〈x← p〉φ ∧〈x← p〉ψ

Proof. Here the tautology scheme is(Θ⇒ Φ)⇒ (Θ⇒ Ψ)⇒ Θ⇒ Φ∧Ψ allowing us to
separately prove〈x← p〉φ ∧ψ ⇒ 〈x← p〉φ and 〈x← p〉φ ∧ψ ⇒ 〈x← p〉ψ and then ap-
plying modus ponens twice. But these two formulae are directly provable from the obvious
tautologies and application of rule (reg3).

Lemma 4.6. The following implications are valid in the calculus. Proofs thereof are very
similar to the previous ones and are omitted here. Instead we refer to SectionC.5 in the
Appendix where the formulae have been verified with Isabelle.

〈x← p〉φ ∧ [x← p]ψ ⇒ 〈x← p〉φ ∧ψ

[x← p]φ ∨ [x← p]ψ ⇒ [x← p]φ ∨ψ

4.2 Axiomatising the Queue-Monad

Following the axiomatic approach to reasoning about a particular monad, the first step is
to characterise the monad by the signature of its basic operations and a set of additional
axioms. This is in contrast to the definitional approach of [23], where one preferably defines
the operations of the monad and derives its properties as lemmas in the calculus on hand.
The following is a possible specification of aqueue monad, which comes with operations to
insert an element into the queue, to remove an element from the queue and simultaneously
return it as well as an operation for testing whether the queue is empty. The signature of the
operations is

Operations

enq: A→Q 1

deq: Q A

empty: Q Ω

4.2 Axiomatising the Queue-Monad 47

whereA is a fixed type of queue elements, i. e.enqanddeqare not polymorphic. A possible
implementation of this monad is as a specific state monad that maintains a list of elements of
typeA as its state value.

Axioms

dsef(empty) (dsef-empty)

〈enq〉> (enq-term)

¬empty⇒ 〈deq〉> (deq-term)

empty⇒ [deq]⊥ (empty-deq)

[enq z]¬empty (non-empty)

empty⇒ [enq z;x←deq] (x = z∧empty) (enq-deq)

¬empty∧ [enq z;x←deq]φ ⇐⇒ ¬empty∧ [x←deq;enq z]φ (swap)

With these axioms we are able to establish some simple proofs about the queue monad. For
example, given an empty queue we can insert two items, fetch and bind two items thereafter,
and make a statement about the equality of items inserted and fetched:

Proposition 4.7. empty⇒ [enq a;enq b;x←deq;y←deq](x = a∧y = b)

Proof. We proceed in two steps, first asserting (a)empty⇒ [enq a;enq b;x← deq;y←
deq](x = a), then (b)empty⇒ [enq a;enq b;x←deq;y←deq](y = b) and conclude by com-
bining these two results by Lemma4.1

(a)
empty⇒ [enq a;x←deq](x = a)∧empty by (enq-deq)

Noting thatx = a is stateless and thus applying (K3) and (seq2) we obtain

empty⇒ [enq a;x←deq;enq b](x = a) (4.1)

By (swap) we have

¬empty⇒ [x←deq;enq b]φ ⇒ [enq b;x←deq]φ

to which we apply (nec) and subsequently (K1) twice:

[enq a]¬empty⇒ [enq a][x←deq;enq b]φ
⇒ [enq a][enq b;x←deq]φ

This can be simplified by (non-empty) and (seq2):

[enq a;x←deq;enq b]φ ⇒ [enq a;enq b;x←deq]φ (4.2)

‘Connecting’ (4.1) and (4.2) by rule (wk2) provides

empty⇒ [enq a;enq b;x←deq](x = a)

from which, finally, the proposition (a) can be derived by application of (K3) and
(seq2).

4.2 Axiomatising the Queue-Monad 48

(b) We have to showempty⇒ [enq a;enq b;x←deq;y←deq](y= b) proceeding as follows
and leaving applications of (seq2) implicit. By (enq-deq) we respectively have

empty⇒ [enq a;x←deq]empty

empty⇒ [enq b;y←deq](y = b)

These can be connected (with the help of rule wk2) to form

empty⇒ [enq a;x←deq;enq b;y←deq](y = b) (4.3)

Also, by (swap) we have

¬empty∧ [x←deq;enq b]φ ⇒ [enq b;x←deq]φ

We once more apply (nec) and (K1) which brings us close to our goal:

[enq a]¬empty⇒ [enq a;x←deq;enq b]φ ⇒
[enq a;enq b;x←deq]φ

The premiss can be disposed of by axiom (non-empty) so that we now instantiateφ

with [y←deq](y = b) arriving at

[enq a;x←deq;enq b;y←deq](y = b)⇒
[enq a;enq b;x←deq;y←deq](y = b)

(4.4)

Now connect (4.3) and (4.4) and we are done.

We would now like to maintain an assertion concerning the termination of the program
sequence given above. This amounts to stating

Proposition 4.8. 〈enq a;enq b;deq;deq〉>

Intuitively, one would say that any program sequence containing onlyenq’s anddeq’s in
which every execution ofdeqis preceded by moreenq’s thandeq’s should terminate uncon-
ditionally. Moreover, any program sequence with the stated property and in which the total
number of enq’s exceeds the number of deq’s should enforce the queue not to be empty. This
idea leads to the following definition and theorem, from which the above proposition can be
proved with ease.

Definition 4.9. In chance analogy to [5], we say that a program sequencep in the queue
monad iswell-formediff it is a non-empty sequence of programsenq zi or xi←deqin which
every initial subsequence has the property of containing at least as many programs of the
former type as of the latter type and in whichxi 6= x j for i 6= j.

Example 4.10.(enq a;enq b;x←deq;y←deq) is a well-formed program sequence, whereas
(enq a;x←deq;y←deq) is not.

Theorem 4.11.For every well-formed program sequence p containing more enq’s than deq’s
one has[p]¬empty.

4.3 Specification of a Reference Monad 49

Proof. By induction on the number of occurrences ofenq.
In the base casen= 1 there is only one possible program sequence, namelyenq zfor some

z. Then, axiom (non-empty) gives us[enq z]¬empty.
In the inductive step, w.l.o.g. letp consist of programsenq zi , 1≤ i ≤ n+ 1 andx j←

deq, 1≤ j ≤ m where necessarilym≤ n. We take a look at the final occurrence of anenq
and distinguish two possible cases:

(i) p= (. . . ;enq zn+1), i. e. the finalenqappears at the end of the program sequence. In this
easier case, by repeated application of rule (nec) to[enq zn+1]¬empty, which is an instance
of axiom (non-empty), one obtains[p]¬empty.

(ii) p = (. . . ;enq zn+1;xm− j←deq; . . . ;xm←deq). This can be proved by induction onj.
In the base case, wherej = 0, we havep = (. . . ;enq zn+1;xm←deq) which means we can
apply the ‘outer’ induction hypothesis to the(. . .) part providing[. . .]¬empty. By (swap) we
have

¬empty⇒ [xm←deq;enq zn+1]¬empty⇒ [enq zn+1;xm←deq]¬empty

and it thus suffices to show[xm←deq;enq zn+1]¬emptywhich can be done by applying rule
(nec) to[enq zn+1]¬empty, an instance of axiom (non-empty).

In the inductive step(j−1→ j, j > 0), [. . . ;enq zn+1;xm− j←deq; . . . ;xm←deq]¬emptyhas
to be asserted. By the outer inductive hypothesis we again have[. . .]¬empty, so by (swap) it
suffices to show

[. . . ;xm− j←deq;enq zn+1;xm− j+1←deq; . . . ;xm←deq]¬empty

This is true due to the ‘inner’ inductive hypothesis.

Now we return to the deferred task of proving the termination of the above program se-
quence, i. e. we will prove〈enq a;enq b;deq;deq〉>.

Proof. By Lemma4.11we have

[enq a;enq b]¬empty and [enq a;enq b;x←deq]¬empty (4.5)

Now, 〈enq a〉> and〈enq b〉> which is equivalent to>⇒ 〈enq b〉>. Thus, by rule (wk�) and
(seq�):

〈enq a;enq b〉> (4.6)

We prove〈enq a;enq b〉¬emptyby application of (K2) to (4.5) and (4.6) once again noting
thatφ ⇐⇒ (>⇒ φ).

In order to proceed to〈enq a;enq b;x← deq〉> we apply rule (wk�) with the help of
(deq-term). With the right-hand statement of (4.5) we can, in a very similar manner to the
one just pointed out, assert〈enq a;enq b;x←deq〉¬emptyin which we only need one further
application of rule (wk�) and axiom (deq-term) to finish the proof.

4.3 Specification of a Reference Monad

The algorithm of Section4.4 will make use of a single reference to store a result value in.
Therefore we briefly review the axioms of a monad in which such references are available.

4.4 Correctness of a Breadth-First Search Algorithm 50

Further details can be found in [32]. The reference monadR is equipped with operations for
reading a referencer : Ref A, i. e. a reference containing a value of typeA, and writing to it:

Operations

∗ : Ref A→ RA

(:=) : Ref A→ A→ R1

These operations should behave as expected, so that reading a value should bedsef, after
writing to a reference, it should hold this value, and writing to a reference should not interfere
with existing values of distinct references.

Axioms

dsef(∗r) (dsef-read)

[r := x]x = ∗r (read-write)

〈r := x〉> (write-term)

(x = ∗r)⇒ [s := y] (x = ∗r ∨ r = s) (read-write-other)

4.4 Correctness of a Breadth-First Search Algorithm

Breadth-first search is a commonly used, if memory intensive, technique for finding an ele-
ment in a tree satisfying a certain condition ([31]). Basically, this algorithm will be defined
in the previously axiomatisedqueue monad Q, which is extended so as to include a single
reference of type Awhich will be used to store elements of a tree overA. Although in fi-
nite trees a proper search algorithm will always terminate, its canonical definition requires
the existence of an iteration construct that resembles the while-loop of imperative languages.
This iteration construct is practically by definition not interpretable by a total function – as is
known it is the basic source of nontermination in simple imperative languages. Therefore we
will assume for this section that the underlying monad allows the interpretation of arbitrary
recursive definitions, e. g. via fixed point recursion on cpos. Although quite a far-reaching
condition, there exist monads that allow the interpretation of all operations used in this sec-
tion. Moreover we assume existence of a classical type of truth valuesBool that is needed
to interpret theif-then-elseconstruct in the usual manner – this requirement is of course not
necessary if the underlying logic is classical, so thatBool is the type of truth values anyway.
In this vein we can recursively define a while-loop in the following way:

while : Q Bool→Q1→Q1

while b p= do{x←b; if x then do{p;while b p} else ret ∗}

4.4 Correctness of a Breadth-First Search Algorithm 51

. . .

.

. . .

Figure 4.1: Graphical representation of a finitely branching tree; identically coloured nodes
represent direct neighbours in the sense of≺1

The algorithm whose correctness will be verified is then defined as

bfs: (A→ Bool)→ Tree A→Q 1
bfs p r= do {

x := inl ∗;
enq r;
while (∗x = inl ∗∧¬empty)

do { t←deq;
if (p t) then x := inr t

else enqAll(chld t)
}

}

whereenqAll is a primitive recursive function that simply inserts all given elements into the
queue:

enqAll[] = ret ∗
enqAll(x : xs) = do { enq x;enqAll xs}

To keep the discussion independent of a concrete implementation of a tree of elements
of type A, we simply assume its existence as well as some kind ofaccess function chld
returning a list of a tree’s child nodes.inl and inr are the usual left and right injections for
sum datatypes, while∗ is the single inhabitant of the unit datatype 1, so thatx is a reference
over values of 1+Tree A. In what follows we will talk about a fixed, yet arbitraryfinite tree
r.

The typical property of breadth-first search is that it ‘finds’ the shallowest node in the treer
satisfying the propertyp, i. e. in our case it assigns this node to the referencex. Therefore, we
impose an order≺1 on the elements of the tree by defining a subtreet1 to directly precedea
subtreet2 (written t1≺1 t2) iff t1 lies on the same level ast2 does, i. e. has the same depth, and
the former is its direct left-hand neighbour, ort1 is the rightmost element in some leveln and
t2 is the leftmost element in leveln+1 (with respect to a graphical representation depicted in
Figure4.1). By taking the transitive closure≺ of ≺1

t ≺ t ′ ≡def ∃t1 . . . tn. t ≺1 t1∧ t1≺1 t2∧·· ·∧ tn≺1 t ′

we obtain a means to say that a subtreet precedessome other subtreet ′. From these defini-
tions, it is clear that

t1≺ t2∧¬∃t ∈ r. t1≺ t ≺ t2 iff t1≺1 t2

4.4 Correctness of a Breadth-First Search Algorithm 52

To put it formally, our goal will then be to prove

(∃t ∈ r. p t)⇒ [bfs p r](∗x = inr t0∧ (p t0)∧∀t ∈ r. p t⇒ t = t0∨ t0≺ t)

where, in the following we will be a bit sloppy about the value of∗x and use∗x in place of
the treet if ∗x= inr t , and say∗x= ∗ if actually∗x= inl ∗. This will not lead to ambiguities,
since no tree is of the form∗.
Remark4.12. One hast1≺ t2⇒∀c1 ∈ chld t1,c2 ∈ chld t2. c1≺ c2, which is immediate from
the definition of relation≺. Also, for each treet wherechld t = [c1, . . . ,cn] it is clear that
ci ≺1 ci+1 for 1≤ i < n.

In order to reason about the contents of the current queue, we need two additional monadic
predicatesrelq : (A→ A→Ω)→Q Ω andinq : A→Q Ω which intuitively state that a given
relation holds for adjacent elements in the queue, respectively that an element is contained
in the queue. One could define these predicates by means of the iteration constructiter for
which an inference rule exists (see [34]). In this case, however, the definitions as well as
the proofs involving them become quite unwieldy. We therefore take another approach and
axiomatise one further deterministically side-effect free operationget, which lets uslook
insidethe queue by returning a list of all elements in the queue. We will use notation(x : xs)
for a list with headx and tail listxsas well as(xs↑x) for a list with endmost elementx and
initial partxs.

Axioms

dsef(get) (dsef-get)

(get= xs)⇒ [enq x] (get= (xs↑x)) (enq-app)

(get= (x : xs))⇒ [y←deq] (x = y∧get= xs) (deq-tl)

empty⇐⇒ (get= []) (empty-nil)

An essential operation on queues we will need in our correctness proof islast. With get
available, this is just an abbreviation, assuming there is a functionlst on lists that returns the
last element in the list:

(x = last) ≡def x = (lst get)

Obviously, one has(get= xs↑z)⇒ (last = z).

Definition 4.13 (relq and inq).

relq R ≡def get= q⇒ (∀i. 0≤ i < len q−1⇒ qiRqi+1) (4.7)

inq x ≡def get= q⇒ (∃i. 0≤ i < len q∧qi = x) (4.8)

Whereqi denotes thei-th element of the listq, with the count starting at zero.

The main problem, as often encountered in proofs involving a while-loop, is to establish a
loop invariant, i. e. a condition that holds before the loop and is re-established at each iteration
of the loop. Figure4.2shows the invariant for the while loop of thebfsalgorithm. The first
thing to remain invariant is the in-queue relationrelq ≺1, as we will see. This makes sure
that all items in the tree are searched ‘in order’. Furthermore, ifx has not been assigned a

4.4 Correctness of a Breadth-First Search Algorithm 53

relq ≺1

∧ ∗x = ∗ ⇒ ¬empty∧ [t←deq](NF(t)∧CIN(t))
∨(empty∧¬∃t ∈ r. p t)

∧ ¬(∗x = ∗) ⇒ p∗x∧∀t ∈ r. p t⇒∗x = t ∨∗x≺ t

Figure 4.2: Loop invariantINV for the proposed breadth-first search

value, there are two cases: either the queue is empty, in which case there is no element in the
tree satisfyingp (which would contradict the assumptions), or the queue is not empty and
two conditions hold, abbreviated as follows:

NF(t) ≡def ∀t ′ ∈ r. t ′ ≺ t⇒¬pt′ (4.9)

CIN(t) ≡def ∀c∈ r. inq c ⇐⇒ ∃t ′ ∈ r. c∈ chld t′∧ t ′ ≺ t ≺ c (4.10)

[t←deq]NF(t) states that for all elements precedingt propertyp does not hold, and[t←
deq]CIN(t) states that the elements in the queue are exactly the children of elementst ′ pre-
cedingt, whose children are preceded byt. Finally the case¬(∗x = ∗) must be considered,
where it is said thatp∗x holds and all elements before∗x do not have propertyp.

4.4.1 Basic Facts

Before providing the proof, we note some basic facts we will use later on.

Lemma 4.14. In a non-empty queue, enqAll and deq may be swapped:

¬empty∧ [enqAll xs][t←deq]ϕ
⇐⇒ ¬empty∧ [t←deq][enqAll xs]ϕ

Proof. By induction on the structure ofxs. In the base case,xs= [], by (dsef2) we have
[ret ∗]ϕ ⇐⇒ ϕ and thus[enqAll xs]ϕ ⇐⇒ ϕ by the definition ofenqAll. So the base case
is trivially true.

In the inductive step, letxs= (y : ys), so we need to show

¬empty∧ [enq y;enqAll ys][t←deq]ϕ
⇐⇒ ¬empty∧ [t←deq][enq y;enqAll ys]ϕ

By the inductive hypothesis, the left-hand part of the formula can be equivalently reformu-
lated as¬empty∧ [enq y][t←deq][enqAll ys]ϕ and then, by axiom (swap) this is equivalent
to the right-hand side of the formula

Lemma 4.15. Under the stated conditions, we can add an element into the queue without
losing property relq R:

(i) ¬empty∧ last R x∧ relq R⇒ [enq x]relq R

(ii) empty⇒ [enq x]relq R

4.4 Correctness of a Breadth-First Search Algorithm 54

Proof. For (i), we reformulate¬emptyasget= xs↑y (which indeed is an existential state-
ment: there are somexsandy with this property), from which it follows thatlast R xis yRx
andrelq Rsimplifies to∀i. 0≤ i < len xs⇒ (xs↑y)iR(xs↑y)i+1. The latter two formulae are
stateless, such that together with axiom (get-app) one has

get= (xs↑y)∧yRx∧∀i. 0≤ i < len xs⇒ (xs↑y)iR(xs↑y)i+1⇒
[enq x]get= (xs↑y↑x)∧yRx∧∀i. 0≤ i < len xs⇒ (xs↑y)iR(xs↑y)i+1

where the formula in the scope of the box operator impliesrelq R, which finishes the proof
by an application of rule (wk2).

Concerning (ii), the conclusion is obvious from the premiss and the definition ofget and
relq.

Remark4.16. One can generalise Lemma4.15in the sense that it is also possible to insert
lists of items[x1, . . . ,xn] for all n∈N if xiRxi+1 for i ∈ {1, . . . ,n−1} andx1 may be enqueued
without breaking the relationrelq R. The proof thereof proceeds by structural induction on
the to-be-inserted list.

Lemma 4.17. If the relation R holds in the queue, i. e. relq R, then after removing one ele-
ment, R still holds: relq R⇒ [x←deq]relq R.

Proof. For get= [], the formula holds trivially, so assumeget= (y : ys). From the definition
of relq, we can deduce∀i. 0≤ i < len(y : ys)−1⇒ (y : ys)iR(y : ys)(i+1), so in particularR
holds for all adjacent elements inys. By (deq-tl) we obtain the desired result.

Lemma 4.18. After inserting some elements xs into the queue, for each x∈ xs we have inq x.
Put formally:

[enqAll xs](∀x∈ xs. inq x) for all lists xs

Proof. Sinceget is dsef and thus always defined, we always haveget= ys for some listys.
Now as usual we proceed by induction on the structure ofxs and leave out the base case,
whereenqAll does nothing and there are no elements to make a statement about. So let
xs= (x′ : xs′). It then follows by (get-app) that[enq x′](get= (ys↑x′)) and so[enq x′](inq x′).
By the induction hypothesis we have

[enqAll xs′](∀x∈ xs′. inq x)

and by application of (nec) we obtain

[enq x′][enqAll xs′](∀x∈ xs′. inq x)

The missing ingredient for finishing the proof is

inq x⇒ [enqAll xs]inq x for all x andxs

But this fact is again provable by induction on the mentionedxsand follows quite directly.
Altogether we arrive at

[enq x′][enqAll xs′](∀x∈ xs′. inq x∧ inq x′)

which actually is what we claimed, recalling that(x′ : xs′) = xs

4.4 Correctness of a Breadth-First Search Algorithm 55

Lemma 4.19. If the relation≺ (or in fact any other strict partial order) holds in the queue,
then after removing an element x from it, there is no element y in the queue with x= y

relq ≺ ⇒ [x←deq](¬inq x)

Proof. We only need to consider the case whereget= (y : ys). Assumingrelq ≺ amounts to
saying that

∀i. 0≤ i < len (y : ys)−1⇒ (y : ys)i ≺ (y : ys)i+1 (4.11)

holds. By (deq-tl), after dequeuing only theysremain in the queue:

get= (y : ys)⇒ [x←deq](get= ys) (4.12)

Noting that≺ is a transitive and irreflexive relation (i. e.∀xyz. x≺ y∧ y≺ z⇒ x≺ z and
∀x. x 6≺ x) we may by (4.11) infer that there is noy′ in yssuch thaty′ = y. But then, by (4.12),
we are already done: after dequeuingx, theysremain, in which there is no element equal to
x.

Lemma 4.20. Dequeuing an element does not affect existence of other elements inside the
queue:

inq x⇒ [y←deq](x = y∨ inq x)

Proof. For get= [], inq x is obviously false for everyx. For get= [x1, . . . ,xn], assuming
inq x amounts to saying that there is anxi = x for somei, 1 ≤ i ≤ n. By (deq-tl) have
[y←deq](y = x1∧get = [x2, . . . ,xn] and thus forx = x1 have[y←deq](x = y) whereas for
x 6= x1 – i. e.x= xi for 1< i ≤ n – have[y←deq](inq x), so altogether[y←deq](x= y∨ inq x)
(cf. also Lemma4.6).

4.4.2 Auxiliary Rules

In merging the specifications of the queue monad and the reference monad, a typical frame-
problem arises: The question‘what remains the same in a changing world?’can be instanti-
ated here as‘what happens to references if we modify the queue?’The answer will certainly
be ‘nothing’, which we formalise as follows.

(x = ∗r)⇒ [qop](x = ∗r) for qop∈ {deq,enq,empty} (4.13)

The simplest way to answer the converse question‘what happens to the queue if we modify
a reference?’is by relatingget to reference writing:

(get= xs)⇒ [r := x](get= xs) (4.14)

Reference to one of these axioms will be indicated by (frame).
In [34] a Hoare calculus for total correctness has been developed, in which Hoare rules

such as

(seq)
[ϕ]x← p[ψ]
[ψ]y←q[χ]

[ϕ]x← p;y←q[χ]

appear. It has been said in Section3.3.1that a Hoare rule[ϕ]x← p[ψ] is meant to be inter-
preted asϕ ⇒ (〈x← p〉>∧ [x← p]ψ). In this way, partial correctness as well as termination
of a program sequencep and thus total correctness are concisely captured.

4.4 Correctness of a Breadth-First Search Algorithm 56

Because we are working with formulae of dynamic logic and do not want to switch into
the Hoare calculus, yet we would like to use the results of the latter, we simply translate some
Hoare rules of [34] back into rules for dynamic logic.

(dsef1)
p dsef

ϕ ⇒ [p]ϕ
(if)

b dsef
ϕ ∧b⇒ [x← p]ψ

ϕ ∧¬b⇒ [x←q]ψ
ϕ ⇒ [x← if b then p else q]ψ

(while)

t : DB
< : B×B→Ω is well-founded

ϕ ∧b⇒ 〈p〉>
(ϕ ∧b∧ t =B z)⇒ [p](ϕ ∧ t < z)

ϕ ⇒ [while b p] (ϕ ∧¬b)∧〈while b p〉>

In rule (while) termination is ensured by letting the termt decrease strictly in every itera-
tion. Since< is well-founded, it is impossible for the final premiss to be true infinitely often.
The so calledghost variable z: B does not appear within the program and simply serves the
purpose of relating the value oft before and after execution ofp. In particular,t is not equal
to z as a computation, but rather its value equalsz.

Now we are equipped with all we need to prove total correctness of the programbfs, in
particular – as can be seen from the rule for while – termination of the while-loop.

4.4.3 Proof of Total Correctness

In what follows, we try not to be too formalistic and therefore make reference to common
laws such as transitivity of equivalence or other obvious validities without proving them for
each separate instance. We further assume that the underlying formalism is classical, i. e. we
allow reasoning by case distinction over some formulaφ ∨¬φ . In a Hilbert-style calculus
with essentially only modus ponens available as an inference rule, methods such as proof
by contradiction are to be conceived as first proving¬P⇒ False and then applying (mp) to
the tautologous(¬P⇒ False)⇒ P. Likewise, substitutivity of equivalence makes use of the
tautology scheme(P ⇐⇒ Q)⇒ R[P/x]⇒ R[Q/x].

It will now first be established thatINV, the loop invariant, holds before the while loop,
i. e. withPRE≡def ∃t ∈ r. p t (a stateless formula) we show

PRE∧empty⇒ [x := ∗;enq r](INV) (4.15)

By (read-write) and (frame)

[x := ∗;enq r](∗x = ∗) (4.16a)

From the definition ofrelq we can infer

empty⇒ [enq r](relq ≺) (4.16b)

which by (frame) can be extended to

empty⇒ [x := ∗;enq r](relq ≺) (4.16c)

4.4 Correctness of a Breadth-First Search Algorithm 57

Again with (frame), (enq-deq) gives us

empty⇒ [x := ∗;enq r][t←deq](r = t ∧empty) (4.16d)

Now from r = t we can deduceNF(t), because there simply is no elementt ′ ≺ r in r.
Similarly, we inferCIN(t) becauseinq c is false for every element inr and again there is no
elementt ′ ≺ r, so the equivalence inCIN holds. Combining (4.16a), (4.16c) and (4.16d) we
obtain the desired result.

The while Rule The next step is to gather the premisses of the (while) rule as stated
above to draw the conclusion of selfsame. The premissINV ∧∗x = ∗∧¬empty⇒ 〈body〉>
asserting termination of the loop bodybody is quite obvious, since the only source of non-
termination is thedeq-operation, which will however only be executed if the queue is not
empty. The formalisation of this argument can be conducted along the lines of the following
proof of the most integral part:

INV ∧∗x = ∗∧¬empty∧vol = z⇒
[t←deq; if p t then x := inl t else enqAll chld t](INV ∧vol < z)

(4.17)

where we introduce the termination measurevol which computes the total number of el-
ements reachable from any subtree contained in the queue. Employing the list functions
sum: [Nat]→ Nat andmap: (A→ B)→ [A]→ [B] – whose definitions are straightforward
and can be found, e. g., in the Haskell Prelude – it might be defined like this:

vol : Q Nat
vol = do { q←get;

ret sum(map volume q)
wherevolume: Tree A→ Nat

volume t= 1+sum(map volume(chld t))

The intuition behind this approach is that the overall volume of the queue must strictly
decrease after dequeuing some subtreet and enqueuing its children, because the volume oft is
defined to be by 1 larger than the sum of volumes of its children.vol is a dsef operation since
it is composed solely of dsef operations (it has been shown in Isabelle that dsef programs are
stable under composition).

We note the following equivalence which we shall use for simplification purposes and
whose right-hand part we will denote bySI.

INV ∧∗x = ∗∧¬empty (4.18)

⇐⇒ relq ≺1∧¬empty∧ [t←deq](NF(t)∧CIN(t))∧∗x = ∗

By Lemma4.17we have
SI⇒ [t←deq](relq≺1)

so by (frame)relq still holds after assignment tox:

SI⇒ [t←deq][x := t](relq≺1) (4.19)

4.4 Correctness of a Breadth-First Search Algorithm 58

Then-branch Working our way through the then-branch of the loop body, we also need
the next statement. This is obtained from (read-write) and the fact thatNF and p t are
stateless.

NF(t)∧ p t⇒ [x := t](∗x = t ∧ p ∗x∧NF(t)) (4.20)

Now, NF(t)∧ p ∗x∧ ∗x = t, i. e. that all elements in the tree smaller thant do not have
property p, but t and therefore∗x does, can be reformulated asp ∗x∧∀t ∈ r. p t⇒ ∗x =
t ∨∗x≺ t.

In combining (4.19) and (4.20) we obtain the following, where the formula in the scope of
the[x := t] box is in fact stronger thanINV

relq≺1∧NF(t)∧ p t
⇒ [x := t](∗x = t ∧ p ∗x∧ relq≺1

∧ (∀t ′ ∈ r. p t⇒∗x = t ′∨∗x≺ t ′)
(4.21)

Else-branch Because all ingredients needed for the then-part are now assembled, we turn
our eyes to the else-part, which actually is the harder one. ‘Inside’ the[t← deq] box of
(4.17) we haveCIN(t)∧NF(t)∧ relq≺1∧∗x = ∗. We will, in accordance with the if-rule,
furthermore assume¬p t and prove the following, in which again the formula inside the
[enqAll(chld t)] box impliesINV

CIN(t)∧NF(t)∧ relq≺1∧¬p t∧∗x = ∗
⇒ [enqAll(chld t)](relq≺1∧∗x = ∗

∧ (¬empty∧ [t ′←deq](NF(t ′)∧CIN(t ′))
∨ (empty∧¬∃t ′′ ∈ r. p t′′)))

(4.22)

This can by Lemma4.1be done in three steps, each asserting the truth of the above formula
reduced to one of the three conjunct clauses in the scope of the enqAll box.

Part i
∗x = ∗ ⇒ [enqAll(chld t)] (∗x = ∗)

Now this is an obvious generalisation of one of the (frame) axioms.

Part ii

CIN(t)∧NF(t)∧ relq≺1∧¬p t∧∗x = ∗
⇒ [enqAll(chld t)] (relq≺1)

This formula asserts that we may enqueuet ’s children without destroying the relationrelq ≺1

inside the queue. Forchld t = [] we must then prove

. . .∧ relq≺1∧ . . .⇒ [ret ∗] relq≺1

which essentially is given by (ret2). So letchld t= (x : xs). Then by Remark4.16all children
may be inserted throughenqAllwithout invalidatingrelq ≺1 if x may be enqueued through
enq. For emptythis is clearly true, so consequently we’ll add the premiss¬empty. Then
CIN(t) tells usinq c holds for exactly all the child elementsc of predecessors oft. Thus
last≺ x certainly holds (cf. Remark4.12). Because¬∃a∈ r. last≺ a≺ x, evenlast≺1 x is

4.4 Correctness of a Breadth-First Search Algorithm 59

true, providing all the premisses of Lemma4.15and letting us draw the desired conclusion.
¬∃a∈ r. last≺ a≺ x can be shown by contradiction: assume∃a∈ r. last≺ a≺ x; Then it
directly follows that there ist ′′ such thata ∈ chld t′′ andt ′′ ≺ t (t ′′ = t cannot be the case
sincea≺ x, and for the same reasont ≺ t ′′ neither). But then, because ofCIN(t), inq aholds,
which together withlast≺ a violates the given premissrelq≺1. We conclude that part ii is
true.

Part iii

CIN(t)∧NF(t)∧ relq≺1∧¬p t∧∗x = ∗
⇒ [enqAll(chld t)] (¬empty∧ [t ′←deq](NF(t ′)∧CIN(t ′))

∨ (empty∧¬∃t ′′ ∈ r. p t′′))

This part makes sure that after insertingt ’s child elements we either have seen each element in
the tree and none satisfiesp, or there are elements left and after dequeuing another elementt ′

all its predecessors don’t have propertyp and the elements remaining in the queue are exactly
the children of predecessors oft ′, which themselves are succeedingt ′.

We proceed by case distinction overempty∨¬empty. We have

empty⇒ [enqAll(chld t)] empty iff chld t = []

But in this case, i. e. whenemptyholds in the box,t must be the final element in the treer
since all children of predecessors would otherwise be in the queue (byCIN). ExtendNF(t)
and¬p t to ¬∃t ′′ ∈ r. p t′′ and obtain[enqAll (chld t)](empty∧¬∃t ′′ ∈ r. p t′′) making the
conclusion of part (iii) true. Forchld t = (x : xs) one hasempty⇒ [enqAll(chld t)](¬empty).
Here,t ≺1 x must hold, i. e. t’s first child element is its direct successor, because no element
beforet has child elements that are in the queue byCIN(t)∧empty. Now

[enq x;enqAll xs][t ′←deq](NF(t ′)∧CIN(t ′)))

is by Lemma4.14equivalent to

[enq x; t ′←deq][enqAll xs](NF(t ′)∧CIN(t ′))

and because of (enq-deq) one has:

empty⇒ [enq x; t ′←deq;enqAll xs](x = t ′)

So it suffices to prove the implication

. . .⇒ [enq x; t ′←deq][enqAll xs](CIN(t ′)∧NF(t ′))

where. . . denotes the premisses¬pt, t≺1x, CIN(t), NF(t) andempty.
The NF part is fairly easy to see: one certainly hasNF(t)∧ t≺1t ′ ∧¬pt inside the box,

which impliesNF(t ′), wheret ′ replacedx due to their being equal.CIN(t ′), which decodes
into CIN(t ′) ≡def ∀c∈ r. inq c ⇐⇒ ∃t ′′ ∈ r. c∈ chld t′′∧ t ′′ ≺ t ′ ≺ c, is true due to the fact
that exactly thexsare in the queue, and for eachx′ ∈ xswe havex′≺x. That finishes the case
whereemptyis true.

4.4 Correctness of a Breadth-First Search Algorithm 60

Now for the case where¬emptyis taken as a premiss and – to restate the other ones –
CIN(t), NF(t), relq ≺1 and¬pt. Obviously one then has. . .⇒ [enqAll(chld t)](¬empty),
so it remains to be proved that

. . .⇒ [enqAll(chld t)][t ′←deq](NF(t ′)∧CIN(t ′))

or, equivalently and quite similar to the case above we can show

. . .⇒ [t ′←deq][enqAll(chld t)](NF(t ′)∧CIN(t ′))

For NF(t ′) alone, this can be done if. . .⇒ [t ′←deq](t≺1t ′) can be shown, because unlike
CIN(t ′), NF(t ′) is indeed a stateless formula about a property of the treer and not about the
monadic queue. HenceNF(t ′)⇒ [enqAll(chld t)](NF(t ′)) by (K32). For the same reason,
however,NF(t) holds after execution ofdeq: NF(t)⇒ [t ′←deq](NF(t)) so that at least for
NF(t ′) the proof goes through: we have

. . .⇒ [t ′←deq](NF(t)∧ t≺1t
′) (4.23)

because the direct successor oft must be in the queue, asserted byCIN(t) together with
¬empty, and it must be ‘the next one to drop out of it’, given byrelq≺1. From this and¬pt
we infer

[t ′←deq](NF(t ′))

And then by the argument given above

. . .⇒ [t ′←deq][enqAll(chld t)](NF(t ′))

Continuing with the premisses¬emptyandCIN(t)∧NF(t), relq ≺1 and¬pt we will now
show the final piece of the puzzle, viz. that these imply

[t ′←deq][enqAll(chld t)](CIN(t ′)) (4.24)

We proceed as follows; letget= [x1, . . . ,xn], n≥ 1. By Lemma4.19and fact (4.23) we
have

. . .⇒ [t ′←deq](¬inq t′∧get= [x2, . . . ,xn]∧ t≺1t
′∧ t ′ = x1)

CIN(t) tells us that thexi (1≤ i ≤ n) are exactly those elements for whichxi ∈ chld ti ∧
ti ≺ t ≺ xi is true for appropriateti . With t ≺1 t ′ it is clear that all elementsc satisfying
c∈ chld ti ∧ ti ≺ t ′ ≺ c for appropriateti arex2, . . . ,xn (a possibly empty sequence) plus the
child elements oft (pointing out thatt ′ cannot be a child oft becauset ′ = x1 and therefore is
a child of some predecessor oft by CIN(t)). With chld t = [c1, . . . ,ck] one has by structural
induction

get= [x1, . . . ,xn]⇒ [t ′←deq][enqAll(chld t)](get= ((. . .([x2, . . . ,xn]↑c1)↑ . . .)↑ck))

or slightly more readable

[t ′←deq][enqAll(chld t)](get= [x2, . . . ,xn,c1, . . . ,ck])

from which we conclude by the foregoing argument that for the given premisses we can show

. . .⇒ [t ′←deq][enqAll(chld t)](CIN(t ′))

4.4 Correctness of a Breadth-First Search Algorithm 61

Assembling the Results

We may finally apply rule (if) to formulae (4.21) and (4.22) repeating that in both ones, the
sub-formulae inside the boxes implyINV

CIN(t)∧NF(t)∧ relq≺1∧∗x = ∗
⇒ [if p t then x := t else enqAll(chld t)] (INV)

(4.25)

Referring to (4.18), we can say

SI⇒ [t←deq](CIN(t)∧NF(t)∧ relq≺1∧∗x = ∗) (4.26)

Regarding the decrease in volume, which has silently been passed over until now, one has
¬empty⇐⇒ get= [x1, . . . ,xn] for some elementsxi and somen and thus by (deq-tl) and the
definition ofvol resp.volume

volume x> 0

SI∧get= [x1, . . . ,xn]∧vol = z

⇒ [t←deq](get= [x2, . . . ,xn]∧vol = (z−volume x1))
so by (frame)

SI∧get= [x1, . . . ,xn]∧vol = z (4.27)

⇒ [t←deq;x := t](vol < z)

Now in addition letchld t = [c1, . . . ,ck] such that after enqueuing these one still has a smaller
volume than before dequeuingt, sincet ’s volume is defined to be by one larger than the sum
of volumes of its child elements:

volume t= 1+∑k
i=1(volume ci)

SI∧get= [x1, . . . ,xn]∧vol = z
⇒ [t←deq;enqAll(chld t)](get= [x2, . . . ,xn,c1, . . . ,ck]∧vol < z)

(4.28)

Having ascertained the termination of the loop by (4.27), (4.28), we apply rule (wk2) to
(4.25), (4.26) to finally verify the premisses of rule (while) (cf. (4.17)) and thus conclude

INV⇒ [while cond prog](INV ∧ (x 6= ∗∨empty))
where cond = x = ∗∧¬empty

prog = t←deq; if p t then x := t else enqAll(chld t)

The definitely last step is now to derive the postcondition

(p ∗x∧∀t ∈ r.p t⇒∗x = t ∨∗x≺ t)

from what the while loop left us with:

(INV ∧ (x 6= ∗∨empty))

but this can be done easily, recalling that the stateless formula warranting existence of an
element satisfyingp still holds after execution ofbfs

(∃t ∈ r. p t)⇒ [bfs pr](∃t ∈ r. p t)

5 The Theorem Prover Isabelle

Isabelle is an interactive theorem proving environment, i. e. an assistant for performing formal
proofs. The fact that Isabelle is generic in the sense that it allows one to define and reason
within several kinds of logics distinguishes it from most other proof assistants. Examples
of logics that have been defined within Isabelle’s framework are classical first-order logic
(FOL), constructive type theory (CTT), or higher-order logic (HOL) which constitutes the
base logic in our development of monadic dynamic logic.

We will now introduce the foundations of Isabelle which are the so called meta-logic, its
syntax and inference rules. We then introduce higher-order logic as formalised in Isabelle.
Finally, we provide insight into basic proof methods whose knowledge is necessary to com-
prehend or at least read printed Isabelle proofs. A full account of all facilities that were ap-
plied cannot be given in this thesis; very readable introductions to Isabelle and Isabelle/Isar
can be found in [22, 23]

But first, a note about terminology and the development of Isabelle is in order: Initially,
communicating with Isabelle meant sequentially applying ML functions, since Isabelle is
written in this functional language. This user interface has recently been discharged in favour
of an independent proof and theory language calledIsar, making proofs substantially more
readable (and maintainable). The combination of Isabelle with Isar is named Isabelle/Isar,
which becomes Isabelle/Isar/HOL when referring to the specific logic HOL, expressed in
Isar. In the following, we will often use the term Isabelle for all these phrases, stating once
and for all that the formal proofs in this thesis are presented in Isabelle/Isar with HOL as the
underlying logic.

5.1 The Meta-logic

Isabelle lets the user define his own logics, so that he does not have to work within a fixed
logic that might not suit his needs. In doing so, one needs some means to express the syntax
of one’s newly defined logic, to express inference rules, and to impose side conditions on
these rules. Take the following natural deduction rule governing the introduction of the∀-
quantifier as an example:

P(x)
∀x.P(x)

(x not free in assumptions) (5.1)

The annotation ‘x not free in. . .’ is a very typical side condition, while the horizontal bar
expresses a possible logical inference from the premisses (displayed above the bar) to the
conclusion (below the bar).

Besides determining the basic syntax of all definable logics, it is the task of themeta-logic
to enable the formulation of such ‘meta-logical’ constructs, i. e. to formalise properties of
concrete object-logics. Put shortly, the meta-logic is an intuitionistic higher-order logic with
polymorphic functions in the style of ML or Haskell that possesses a universal quantifier,
implication and equality as its constants.

5.1 The Meta-logic 63

5.1.1 Basic Syntax and Terminology

The meta-logic is syntactically based on the simply typed lambda calculus as described in
Section2.1.3 (although without product types). The additional possibility to define poly-
morphic functions means that function types may containtype variables, e. g. the identity
function id : α→ α exists foreverytypeα. Type declarationsallow the introduction of new
base types, whereastype classesmay be seen as collections of types that share some struc-
ture (a well-known example is the classord, which the types with a notion of order among
their elements belong to). The latter concept comes close to Haskell’s type classes, but is not
powerful enough to embrace Haskell’s constructor classes as well. In particular, the notion
of a type constructor being an instance of a monad cannot be specified in Isabelle. A remark
about how this problem has been resolved in the implementation can be found in Section6.2.

Some peculiarities of Isabelle’s syntax should be noted before proceeding:

• The base type of truth values is namedprop.

• Type annotations are denoted by two successive colons instead of one.

• Function types may be built from existing types by means of the function type con-
structor⇒, such thatf :: σ ⇒ τ is Isabelle’s notation forf : σ → τ. The type con-
structor⇒ associates to the right.

• The types of curried functions takingn arguments,f :: σ1⇒ ··· ⇒ σn⇒ σ may be
written in a list-like notationf :: [σ1, . . . ,σn]⇒ σ .

• Type variables are written as Latin letters prefixed with an apostrophe (′), e. g.′a, ′b, ′b1

are type variables. Inside normal text we will however not use this style.

The constants of the meta-logic are a universal quantifier, (denoted by the symbol
∧

),
implication (=⇒1) and equality (≡). An interesting property of higher-order logics that
spring from the lambda calculus is the fact that no variable binders other thanλ are needed:
predicates are simply interpreted as functions into truth values (e. g. a predicate on the type
nat of natural numbers might be expressed as a functionP : nat→ prop), and quantifiers are
interpreted as higher-order functions from predicates to truth values. Thus, the type of the
universal quantifier is ∧

α
:: (α ⇒ prop)⇒ prop (5.2)

for each typeα; the polymorphism of Isabelle is restricted in the same way as in ML or
Haskell in that it does not allow higher-order functions to take polymorphic functions as
arguments. This is made explicit here by indexing the quantifier with the appropriate type
under consideration.

5.1.2 Defining Logics

Users are not expected to work within the meta-logic itself, but rather to formalise their own
logics by extending the meta-logic through the introduction of new types and constants and
through axioms capturing the properties of these constants. An example is given in Section

1note the difference between this symbol and the shorter one for the function type constructor⇒; both however
associate to the right and there also is a list-like notation for repeated implication of the formJφ1; . . . ;φnK =⇒
ψ

5.1 The Meta-logic 64

5.2, where the formalisation of HOL within the meta-logic is described. The outline of such
a formalisation is as follows:

1. Introduce a new type for truth values, thereby distinguishing it from the type of truth
values of the meta-logic. Furthermore introduce a predicateTruepropconverting from
object-level truth to meta-level truth; it has proved sensible to keep these two kinds of
truth values apart. Other useful types may be added as well, of course.

2. Name and assign types to the constants that will serve as basic functions of the logic
to be defined; examples include propositional connectives∧, −→, etc., or even modal
operators. It is possible to decorate constants with concrete syntax (by so calledmixfix
annotations, cf. [25]) that makes operations more readable than is possible with the
minimalistic syntax of the lambda calculus. One way or the other, functions of the
respective object-logic conventionally have higher precedence than those of the meta-
logic.

3. Extend the meta-logic by further axioms that capture the properties of these constants
and types. The basic idea is that axioms of the meta-logic are to be interpreted as rules
in the object logic. For example, the typical rules for conjunction introduction and
universal generalisation in first-order logic

P Q
P∧Q

Px
∀x.Px

(x not free in assumptions)

might be formalised as

JP;QK =⇒ P∧Q and (
∧

x.Px) =⇒∀x.Px

Proofs from rules within the object-logic are then basically proofs from corresponding ax-
ioms within the meta-logic.

5.1.3 Meta-logic Rules

To perform such proofs inside the meta-logic, a collection of meta-rules is necessary. These
rules are hard-wired into Isabelle, which means they are implemented as ML functions op-
erating on meta-logic terms rather than being terms of the meta-logic itself. A complete
exposition of these rules can be found in [24, Section 2.4], which we do not repeat here,
since the meta-rules are virtually never applied in proofs inside object-logics. Instead, we
merely summarise the rules, giving an idea of the relative compactness of the meta-logic.

The meta-rules can roughly be put into three categories:

1. Introduction and elimination rules for the constants
∧

, =⇒ and≡;

2. Rules concerning lambda terms; put concretely, there is a rule forα-conversion, a rule
for β -reduction admitting the conclusiona[b/x] from the premiss(λx.a) b, and a rule
of extensionality;

3. Finally, there are basic rules for equality.

5.2 Higher-order Logic (HOL) 65

Constant Term written as

Not :: bool⇒ bool Not P ¬P

True:: bool

False:: bool

If :: [bool,′a,′a]⇒′ a If b p q ifbthenpelseq

The:: (′a⇒ bool)⇒′ a The P THE x.P x

All :: (′a⇒ bool)⇒ bool All P ∀x.P x

Ex :: (′a⇒ bool)⇒ bool Ex P ∃x.P x

Let :: [′a,′a⇒′ b]⇒′ b Let t λx.e letx = tine

=:: [′a,′a]⇒ bool a = b

∧,∨,−→ :: [bool,bool]⇒ bool P∧Q, etc.

Table 5.1:Constants extending the meta-logic to HOL

5.2 Higher-order Logic (HOL)

In this section we introduce the formalisation of the simply typed higher-order logic HOL.
The outstanding feature of higher-order logics is their capability of expressing higher-order
functions (in a sense similar to that of functional programming languages), but also of ex-
pressing predicates and quantification on arbitrarily typed terms. For example, one may state
the property of a setSbeing infinite by expressing that there is an injective function fromS
into a proper subsetS′ ⊂ S:

S infinite iff ∃S′. S′ ⊂ S∧∃ f :: S⇒ S′. f injective

Because of the quantification on the functionf this statement is inherently higher-order; it
cannot even be expressed equivalently in first-order languages. In HOL all functions are
required to be total; an extension incorporating concepts from domain theory that allows the
formulation of arbitrary computable functions is HOLCF [21]. For in-depth descriptions of
higher-order logic and its implementation in Isabelle, see [1, 23].

5.2.1 Constants

HOL as implemented in Isabelle extends the meta-logic by a number of constants that are
to be interpreted as the usual logical connectives, like conjunction, universal quantification,
or boolean case distinction (the familiarif-then-elseconstruct). Differing from the notation
used so far, implication is denoted by a simple long arrow−→. Some of the operations come
in two flavours, namely their functional form (as actual constants in the lambda calculus of
the meta-logic) and with some syntactical sugaring; Table5.1 lists the most important ones.
The functionTheis adefinite description operator; THE x.P x is meant to be interpreted as
“the x, such thatP xholds” and will yield an arbitrary value of the appropriate type if no such
x exists. The interpretation of the remaining functions and values is standard, but one should
note that quantification exists for arbitrary types, just as equality,if-then-elseandlet do.

HOL inherits the ability to express functions as lambda terms from the meta-logic by

5.2 Higher-order Logic (HOL) 66

identifying HOL types and functions with the types and functions of the meta-logic2. This
way, HOL also exploits Isabelle’s built-in type checker, which is a great help in immediately
refuting ill-typed expressions. Nonetheless it has its own type of truth values, classically
namedbool. In fact, HOL is a classical logic (as opposed to a constructive or intuitionistic
logic) featuring the law of excluded middle (cf. ruleTrue-or-Falsein Table5.2).

There is an interesting difference between variables in HOL and the more syntactical vari-
ables encountered in the definition of logics ‘on paper’, where a rule of substitutivity of
equality might be defined as follows

a = b φ

φ [b/a]
(5.3)

In this rule,φ is a syntactical variable in the sense that it stands for an arbitrary formula (i. e.
a term of typebool in HOL), probably containinga as a free variable – otherwise substituting
b for a would be pointless. To the contrary, in HOL there is no need for an explicit notion of
substitution, and the rule under consideration is expressed as

a = b φ a
φ b

(5.4)

makingφ :: σ ⇒ boola function variable provided thata,b : σ . Here is a simple example to
visualise the difference.

Example 5.1. Assuming some proof has reached a state such thata = b and f a = gx have
been proved. In this case,φ of (5.3) can be instantiated tof a = gx, whereasφ of (5.4) is
λy. f y = gx. Applying rule (5.4) yields(λy. f y = gx) b which can be converted tof b = gx
by theβ -rule of the meta-logic.

5.2.2 Definitions

To avoid unnecessary redundancy, logics – including HOL – often only axiomatise the prop-
erties of a minimal set of constants, with everything else being defined in the form of ab-
breviations (the definition of implication through negation and disjunction is a case in point,
although in HOL implication is the basic connective). It is here, where the constants of
the meta-logic come into play: we may use meta-equality to describe definitions, meta-
implication to express rules and the use of meta-quantification is a convenient way to capture
many common side conditions. Table5.2shows the axiomatisation of HOL as an extension
of the meta-logic, where the usual connectives are still missing; their definitions are presented
in Table5.3. Within the latter, the left column shows the logical constants with their types,
while their definition is presented in the right column.

Remark5.2. To ensure that this representation of higher-order logic is actually sensible, one
would now go on and prove a kind of equivalence between a higher-order logic defined in the
usual way (by axioms and rules with side conditions) and this extension of the meta-logic,
showing that for every proof in the one system, there is always a corresponding proof in the
other system. This meta-proof cannot be expressed within Isabelle, though.

2this might seem an obvious choice, but some logics follow a different approach to make type systems possible
that do not fit into the one provided by the meta-logic, cf. e. g. the formulations of Zermelo-Fraenkel set
theory or CTT

5.2 Higher-order Logic (HOL) 67

eq-reflection (x = y) =⇒ (x≡ y)

refl (x = x)

subst Js= t;PsK =⇒ Pt

ext (
∧

x. f x = gx) =⇒ λx. f x = λx.gx

the-eq-trivial (εx.x = a) = a

impI (P =⇒Q) =⇒ P−→Q

mp JP−→Q;PK =⇒Q

iff (P−→Q)−→ (Q−→ P)−→ (P = Q)

True-or-False P= True∨P = False

Table 5.2:Axiomatisation of HOL in Isabelle

Constant Definition

True:: bool True ≡ (λx :: bool.x) = λx.x

All :: (′a⇒ bool)⇒ bool ∀x.Px ≡ P = λx.True

Ex :: (′a⇒ bool)⇒ bool ∃x.Px ≡ ∀b. (∀x.Px−→ b)−→ b

False:: bool False ≡ ∀b. b

Not :: bool⇒ bool ¬P ≡ P−→ False

∧ :: [bool,bool]⇒ bool P∧Q ≡ ∀R. (P−→Q−→ R)−→ R

∨ :: [bool,bool]⇒ bool P∨Q ≡ ∀R. (P−→ R)−→ (Q−→ R)−→ R

Table 5.3:Definitions of some common logical constants in HOL

5.3 Proof Methods 68

Example 5.3. To make the definitions of Table5.3 a little bit more convincing, we take a
closer look at two of them:

• The most basic notion of HOL is equality, so it is tempting to define truth in terms
of equality: True≡ (λx :: bool.x) = λx.x. This term is entirely closed, i. e. it neither
contains free term variables nor free type variables, which is why this definition is used
instead of the seemingly simplerx = x.

• Universal quantification is a predicate on predicates: ifAllP or equivalently∀x.Px is
true, this says thatP is a predicate that constantly yields true, no matter what argument
it is applied to (of course, all arguments must have the appropriate type). So, one can
define(∀x.Px)≡ (P = λx.True).

5.3 Proof Methods

Performing proofs from rules in an object-logic – in examples this will always be HOL –
means proving theorems in the meta-logic. Such proofs would be incredibly tedious if only
the meta-rules described in Section5.1.3had to be used. Fortunately, there is a powerful
proof method whose correctness is assured by the axiomatic properties of

∧
and=⇒: higher-

order resolution. As with first-order resolution, known from logic programming in Prolog,
this concept involves theunification of terms. As usual, ifθ is a unifier of termst1 and
t2, i. e. an assignment of terms to variables, the simultaneous substitution of all variables
mentioned inθ by the according terms is written as(t1)θ and(t2)θ , respectively. Due to
the fact that Isabelle employs the lambda calculus as its formal basis, it sometimes has to
unify lambda abstractions that do not have amost general unifier(mgu), which is in contrast
to first-order unification, where two terms either are not unifiable or have exactly one mgu
(up to equivalence). The effect of this problem mainly is that sometimes the user must assist
Isabelle in finding a unifier by supplying instantiations of variables.

Remark5.4. Isabelle distinguishes two kinds of variables that logically have the same mean-
ing. On the one hand there are the usual variables with standard lexical syntax (x, y, x1, P are
variables of this kind). On the other hand there areschematic variableswhich may be used
as variables for substitution during unification. These are prefixed with a question mark to
emphasise their role as placeholders (e. g. ?x, ?P). The usual way of proceeding is that theo-
rems are stated solely with normal variables. After they have been proved, Isabelle internally
converts all free variables of the theorem into schematic variables. This is in accordance with
intuition: in proving a theoremT, one would certainly not wantT ’s variables to be replaced
by some concrete term; but one should be able to replace the free variables of already proved
theorems, as they eventually represent arbitrary terms.

5.3.1 Higher-order Resolution

In what follows we will talk of the left-hand side of a meta-implication as the premiss (or
premisses, if theJ. . .K notation is used) and of the right-hand side as the conclusion, to em-
phasise the role of meta-implication for object-logics. Given two theoremsJP1, . . . ,PnK =⇒P
andJQ1, . . . ,QmK =⇒Q in the meta-logic, such that(Pi ≡Q)θ holds for somei ∈ {1, . . . ,n}
and some unifierθ , resolution allows us to prove a new theorem that hasP as its conclusion

5.3 Proof Methods 69

and all thePj andQ j exceptPi as premisses, but withθ applied to the whole term

JP1, . . . ,PnK =⇒ P JQ1, . . . ,QmK =⇒Q
(JP1, . . . ,Pi−1,Q1, . . . ,Qm,Pi+1, . . . ,PnK =⇒ P)θ

(5.5)

Apart from the substitutionθ , this rule is intuitively clear: if theQ j imply Q andQ≡Pi , then
theQ j are a suitable surrogate forPi as premisses for the conclusionP. The involvement of
substitution makes this idea even more general by admitting terms that are only equal under
a given substitutionθ .

A complication concerning the applicability of resolution arises when the premisses of a
meta-theorem contain a meta-implication or meta-quantification themselves, as in the derived
HOL rule (impI): (A =⇒ B) =⇒ A−→ B. The single premiss of this meta-theorem will only
be unifiable with the conclusion of another meta-theorem if the latter consists of a variable
or is of the formX =⇒ Y, but both forms seldom appear in theorems. To circumvent this
problem, Isabelle is able tolift a rule into a context, which can be formalised by the rule

JP1, . . . ,PnK =⇒ P
JQ =⇒ P1, . . . ,Q =⇒ PnK =⇒ (Q =⇒ P)

(5.6)

This transformation is done automatically during resolution if necessary.
Although forward proof is also possible in Isabelle– mainly to derive new theorems from

existing ones in a rather direct manner – theorems are usually proved in a backward style:
By applying rules backwards, a theorem is reduced into simpler parts until the remaining
propositions are trivially true (in particular by reducing propositions to axioms, of course).
The ideas presented so far can best be understood with the help of an example.

Example 5.5. The backward proof a theoremT within the object-logic always starts with
the trivial meta-theoremT =⇒ T. This theorem is then transformed by the meta-rules and
resolution untilT has been derived. The following are HOL rules, derivable from the axioms
given in Table5.2.

(?A =⇒?B) =⇒ ?A−→ ?B (impI)

J?A;?BK =⇒ ?A∧?B (conjI)

J?A∧?BK =⇒ ?A (conjunct1)

J?A∧?BK =⇒ ?B (conjunct2)

Here is a proof ofA∧B−→ B∧A from these rules:

(.1) (A∧B−→ B∧A) =⇒ (A∧B−→ B∧A)
(.2) JA∧B =⇒ B∧AK =⇒ (A∧B−→ B∧A) (impI)

(.3) JA∧B =⇒ B;A∧B =⇒ AK =⇒ (A∧B−→ B∧A) (conjI, lifted)

(.4) JA∧B =⇒?A∧B;A∧B =⇒ AK =⇒ (A∧B−→ B∧A) (conjunct2, lifted)

(.5) (A∧B =⇒ A) =⇒ (A∧B−→ B∧A) (assumption)

(.6) (A∧B =⇒ A∧?B) =⇒ (A∧B−→ B∧A) (conjunct1, lifted)

(.7) (A∧B−→ B∧A) (assumption)

To derive (.2), the premiss of (.1) has been resolved with the conclusion of rule (impI),
where ?A has been unified with(A∧B) and ?B has been instantiated to(B∧A). To arrive at

5.3 Proof Methods 70

(.3) lifting is necessary, because there is no rule that would otherwise match the premiss of
(.2). Lifting rule (conjI) (to becomeJ?C =⇒ ?A;?C =⇒ ?BK =⇒ (?C =⇒ ?A∧?B)) makes it
possible to resolve it with the premiss of (.2). The step from (.3) to (.4) is justified by lifting
rule (conjunct2) and then resolving with the first premiss of (.3). Note that at this point a new
schematic variable ?A is introduced which is entirely independent fromA. This introduction
is due to the fact that (conjunct2) contains ?A in its premiss, but not in the conclusion. We
arrive at (.5) by dismissing an assumption which is trivially true after unification of ?A with
A. This type of proof step is calledproof by assumption. The remaining steps are analogous.

5.3.2 A Different Perspective

Another way to look at a proof of theoremT that is a bit more natural is to start withT =⇒ T,
but ignore the conclusionT and simply look at the premisses, regarding them asgoals, i. e.
statements that are yet to be proved in order to finish the proof ofT. Thus, the initial goal
is the theorem itself. Resolution of the theorem at hand with other theorems as described
above can then be imagined as the application of rules to the current goal. For example, if the
current goal is to showA−→ B for some formulaeA andB in the proof ofT (i. e. internally
the theoremA−→ B =⇒ T has been derived), we may ‘apply the rule (impI)’ to turn this
goal intoA =⇒ B. Making one further step of abstraction, this term can be taken as the goal
B, to be proved from theassumption A. Lifting of rules into a context suddenly takes the
form of preservation of assumptions: In the above proof ofA∧B−→ B∧A the step from (.2)
to (.3) preserves the assumptionA∧B for the two newsubgoals A∧B=⇒B andA∧B=⇒A.

One speaks of applying arule in Isabelle parlance if it is applied in this standard way.
There are other ways of applying a rule that do not enlarge the set of provable theorems, but
that come in quite handy sometimes. Assume the current subgoal isJP1; . . . ;PnK =⇒ P and
we try to apply the ruleJT1; . . . ;TkK =⇒ T, which is an already proved theorem.

• The standard rule application unifiesP with T giving a unifierθ . It then replaces the
subgoal byk new subgoals(JJP1; . . . ;PnK =⇒ T1; . . . ;JP1; . . . ;PnK =⇒ TkK)θ .

• Applying a drule (for destruction rule) is useful to modify a subgoal’s assumptions.
It unifies T1 with some assumption – which for simplicity we assume to beP1 – and
yields the subgoals

(JJP2; . . . ;PnK =⇒ T2; . . . ;JP2; . . . ;PnK =⇒ Tk;JP2; . . . ;Pn;TK =⇒ PK)θ

The idea is thatT1 is among the current assumptions (it is unifiable withP1 here) and
can thus be proved trivially. It then remains to proveT2 to Tk, but if this can be done,
it is reasonable to takeT as an assumption in provingP, since all ofT ’s premisses can
be proved from the current assumptions.

• The application of anerule (for elimination rule) letsP be unified withT and simul-
taneously unifiesT1 (called themajor premissin this context) with one of the current
assumptions (let it beP1). It replaces the current subgoal with the new ones

(JJP2; . . . ;PnK =⇒ T2; . . . ;JP2; . . . ;PnK =⇒ TkK)θ

This rule application is obviously quite similar to the standard way, but it deletes the
assumptionP1 and it proves one subgoal immediately.

5.3 Proof Methods 71

5.3.3 Advanced Proof Methods

For a proof assistant to be helpful in serious verification tasks, one may expect it to come with
more powerful proof methods than just the application of axiomatically established rules in
a backward proof. We now shortly present some important principles supported by Isabelle
and which are regularly encountered in proofs.

• Derived rules.Every theorem that has been proved in Isabelle can be given a name
and subsequently be used as if it were a rule of the object-logic. The rules (conjI),
(impI), etc. shown above are examples for derived rules: they represent valid modes of
reasoning in HOL and extend the logic in a conservative way, i. e. they do not enlarge
the set of provable statements in HOL. In practice the largest part of rules applied in
a proof will be derived rules of inference. A list of customary rules can be found in
AppendixB.

• The simplifier.Isabelle provides a powerful and extensible term rewriting (or simplifi-
cation) tool. Term rewriting works by subsequently transforming terms with the help
of rewrite rulesin a bottom-up fashion. The set of applicable rewrite rules is comprised
of definitions and theorems. Adding the definition of Pierce’s arrowP ↓Q≡ ¬P∧¬Q
to the set of rewrite rules lets the simplifier replace occurrences of↓ by the defining
term; this can be useful if no theorems about↓ are known yet, but for∧ and¬ there
are some. Certain theorems are also good candidates for term rewriting; given asso-
ciativity and commutativity of addition, the simplifier is able to prove equations like
(a+b)+(c+d) = (a+(b+(d+c))) outright, relieving the user of several applications
of these rules by hand.

To avoid looping on so-called permutative rewrite rules in which the left-hand side of
the equation is equal to the right-hand side up to a renaming of variables – e. g. the
rule a+ b = b+ a – the simplifier performsordered rewritingso that terms are only
rewritten by permutative rules if they become lexicographically smaller. Hence,a+b
may be rewritten tob+a, but not the other way round.

• A classical tableau prover.In contrast to the simplifier – which can be employed as
an intermediate proof step leaving a goal that is simpler to prove by hand, and which
is able to manipulate arbitrary terms – there also is a tool for proving logical formulae
directly. This tool is known as theblast method and it is capable of proving theorems
like (∃y.∀x.P x y)−→ (∀x.∃y.P x y) without intervention from the user (this theorem
could not even be altered by the simplifier in any way). It cannot modify theorems
however, e. g. to make the structure of the problem more apparent: if it fails to finish
the proof, it fails completely.

5.3.4 An Example Proof

Concluding the presentation of Isabelle, we provide a short example proof, thereby explain-
ing basic syntactic elements.

lemma imp-uncurry: P−→ (Q−→ R) =⇒ (P∧ Q) −→ R
apply (rule impI)
apply (erule conjE)
apply (drule mp)

5.4 The Isar Proof Language 72

apply assumption
by (drule mp)

Read as a rule of the object-logic HOL,imp-uncurry says that given the implication
P −→ (Q −→ R), one may conclude(P∧Q) −→ R. These formulae are well known to
be equivalent, so we might even have proposed(P−→Q−→ R) = (P∧Q−→ R) (omitting
all unnecessary parentheses) which we have not done to keep the example short. Let’s walk
through this proof step by step: As has been said, the initial goal is the theorem (or lemma)
itself. Applying rule (impI) turns the goal into

JP−→Q−→ R;P∧QK =⇒ R

i. e. it assumesP∧Q and imposes the proof ofR. The next step uses the elimination rule
(conjE) which is

J?P∧?Q;J?P;?QK =⇒ ?RK =⇒ ?R (conjE)

This results in the subgoal

JP−→Q−→ R;P;QK =⇒ R (5.7)

What happens is that ?P∧?Q is matched againstP∧Q and ?R is matched againstR. The
only remaining subgoal is then to proveJP;QK =⇒ R from the assumptionP−→ Q−→ R
for which (5.7) is just a different notation. As a final step of detailed analysis we show what
subgoals are yielded by applying rule (mp) destructively:

JJP;QK =⇒ P;JP;Q;Q−→ RK =⇒ RK

The rest of the proof consists of proof by assumption and another application of drule (mp).
Theby statement concludes a proof, possibly undertaking further steps of proof by assump-
tion if necessary.

5.4 The Isar Proof Language

The proof style displayed in Section5.3.4above – occasionally termed theapply styledue
to its excessive use of theapply method – has two major drawbacks. The first one is that
proof scripts comprising a long sequence ofapplys are hard to read, because there is no
information about intermediate proof states shown. The second one, which becomes evident
in the presence of large numbers of theories, is maintainability: if, for example, the simplifier
by changing its configuration becomes more powerful, an application of thesimpmethod
which previously resulted in a certain proof state might now result in quite a different one.
This often means that subsequent rules of the original proof script are no longer applicable,
so that the script has to be adjusted.

Another issue is that pure backward-oriented proofs are sometimes quite unnatural to per-
form. This is especially true for proofs involving applications of modus ponens. If at some
point in a proof the goalA remains, which one wants to prove from the globally given factsB
andB−→ A, then an application of rule (mp) results in the two new subgoals ?P−→ A and
?P, thus introducing a new unification variable ?P. In this simple case the structure of the
goals containing the unification variable is very similar to the structure of the given facts, but
in practice their relation can be hard to guess, since ?P may stand for any formula. This prob-
lem is of course closely related to the reason why cut-freeness and the sub-formula property
are desired properties of logical calculi (see [1]).

5.4 The Isar Proof Language 73

5.4.1 Introducing Isar by Example

The Isar proof language has been conceived as a formalism for writing proof scripts that
are both machine- and human-readable. Strictly speaking, one already works within Isar
when employing the apply style, sinceapply is an Isar command rather than one of basic
Isabelle. However, this mode of usage closely resembles the original Isabelle style in which
ML functions were called directly. Full Isar comes with several advanced features which are
best introduced with the help of a simple example. This is how a proof of the above lemma
imp-uncurrylooks like in Isar:

lemma imp-uncurry2: P−→ (Q−→ R) =⇒ (P∧ Q) −→ R
proof
assumea1: P−→ Q−→ R
assumea2: P∧ Q
showR
proof −
from a2haveP by (rule conjunct1)
with a1haveqr: Q−→ Rby (rule mp)
from a2haveQ ..
with qr show?thesis..

qed
qed

Compound Isar proofsare commenced by the keywordproof. In its pure form this state-
ment tries to find a rule that can be applied to the goal – in the example, the implication
introduction rule (impI) is selected. This kind of implicit rule application, which is much the
same asapplying a rule in a backward-oriented proof, can be avoided by appending a hyphen
‘−’ or the rule selection can be made explicit by providing a concrete rule. Applying (impI)
here results in the Isabelle proof state

JP−→Q−→ R;P∧QK =⇒ R

which is exactly mirrored by the following twoassumecommands introducing the valid
assumptions (which may be given a name for future reference) in the proof script. Moreover,
the succeedingshowcommand precisely depicts the statement that remains to be shown. In
every compound proof there occurs exactly oneshow. To proveR another compound proof
has to be initiated, this time without applying a backward rule. From the given assumptions
a1 anda2 it is very natural to proveR by forward reasoning: basically, two applications of
modus ponens to assumptiona1 should yield the desired result. This is exactly what we find
in the proof script: first, we deriveP from P∧Q by rule (conjunct1) as an intermediate fact,
then we may apply modus ponens toa1 to obtain factqr, i. e.Q−→ R. The same procedure
can be executed once more (this time onqr) to finally show the thesis.

Several concepts of Isar have been used to achieve this result. Theby command represents
basic proofswhich are finished immediately through an application of the rule handed to it
(e. g. rule (conjunct1) or (mp)) and possibly further steps of proof by assumption. But how
can a rule having itself some premisses be used to prove a pending subgoal? For this purpose
the from command is needed, which feeds facts into a proof so that these are unified with
the premisses of the applied rule. In the concrete example, the factP∧Q is fed into the proof
by rule (conjunct1) to obtainP. A handy abbreviation iswith , which behaves likefrom ,
but additionally feeds the most recent fact into the subsequent proof. For example, to obtain

5.4 The Isar Proof Language 74

Q−→ R by (mp), one must feed the two premissesP−→ Q−→ R andP into the proof,
whereP is the most recently established result. Hence,with a1 yields all that is required to
finish the proof by modus ponens. Finally,qedconcludes a compound proof and two dots ‘..’
are shorthand forby standard rules, i. e. a basic proof established through the standard rule
set which includes (mp), (impI), (conjunct1) and many more. See AppendixB for frequently
used rules in HOL and refer to [22, 39] for further details about the Isar proof language.
Some more specialised features will also be explained in Chapter6 as required.

6 Implementation in Isabelle

In this chapter we describe how the calculus of propositional dynamic logic has been imple-
mented in Isabelle. The implementation can roughly be divided into three parts, which are
first prerequisites like introducing the basic operations of a monad and setting up a convenient
syntax – namely the do-notation – for compound monadic programs, second the definition
or derivation of the logical operators as well as several proof rules accompanying these, and
third two substantial example specifications from the realms of monadic parser combinators
and a classical while-program performing Russian multiplication.

To keep the notation within the main text and the inserted Isabelle example specifications
consistent, we will use the notation of Isabelle throughout this chapter. One major change
caused thereby is that we will write′a⇒ ′b T for the type of a polymorphic function which
would otherwise be denoted bya→ T b (cf. Section5.1.1). Because the commonly used
symbols for the propositional connectives like∧ or −→ are reserved for HOL, monadic
connectives will be indexed by aD, as in∧D or−→D. Note also that implication is denoted
by a simple arrow−→ and not by a double arrow⇒.

6.1 Theory Files

The following listing of the theory files that have been created provides a more detailed
explanation of the overall structure of the implementation. Besides that, Figure6.1shows the
dependency graph of these theories. In this diagram, a link between two theories indicates
that the theory below imports all theorems and definitions of the one above. In this way
a simple acyclic theory hierarchy can be created in Isabelle. The figure moreover visualises
the fact that the calculus directly builds on HOL, Isabelle’s formulation of higher-order logic.
TheoryPure is Isabelle’s meta-logic, hence the base theory for every other logic.

Monads first of all defines a type constructorT that takes values of type′a to monadic
programs (or computations) of type′a T. Further it defines the monadic primitive
operations�=, � andret for binding, sequencing and creating monadic programs.
Finally, a do-notation quite similar to the one found in Haskell is defined through
Isabelle’s syntax facility.

MonProp formalises the notions of discardability, copyability and deterministic side-effect
freeness of monadic programs and the properties that these programs possess. The
subtype′a D of dsef programs in′a T is introduced and operationsliftM , liftM2, etc.,
are defined allowing to lift HOL functions into the monadic setting. These will be used
to define the propositional connectives.

MonLogic constitutes the setup of the propositional part of monadic dynamic logic. It de-
fines the propositional connectives in terms of the ones of HOL, enables the simplifier
to solve propositional tautologies in the new logic automatically and proves ‘lifted’
analogues of standard HOL rules likeconjI, disjE or excluded-middle.

6.1 Theory Files 76

Monads

MonProp

MonLogic

PDL MonEq

Parsec State

[Pure]

[HOL]

Figure 6.1: Dependency graph of the Isabelle theories

PDL completes the setup of the basic calculus by declaring the box and diamond operators,
providing a convenient syntax for these, and formalising the proof calculus for dynamic
logic of Section3.3. Additionally, it is shown how the classical relationship between
the box and diamond operator is automatically established by basing the logic on HOL,
which itself is classical. The theory file ends with several proof rules that are derived
from the basic calculus.

MonEq is a rather short theory file adding equality to the set of lifted operations. Rules
representing transitivity, reflexivity and symmetry of monadic equality are also given.

Parsec contains the axiomatisation of the basic operations of a monad for parser combina-
tors in the style of [12]. Subsequently, the specification and verification of a parser for
natural numbers which is defined in terms of the basic parsers is presented.

State specifies a monad with readable and writable references as well as a while loop. In
this monad, the algorithm for Russian multiplication is specified and proved correct.

6.2 Monads in Isabelle 77

6.2 Monads in Isabelle

While in Haskell the common ground of all (computable) monads can at least be captured
at the level of operation types1, Isabelle’s concept ofaxiomatic type classesis not strong
enough to suit this purpose. Axiomatic type classes are like Haskell’s type classes, with
the supplementary possibility of specifying what properties the operations over a certain
type class must satisfy. For example, the type classparord of partial orders requires its
instances to provide the operations< and≤, but additionally demands that the latter satisfies
the usual properties of transitivity, reflexivity and antisymmetry. For the specification of
monads however one does not require a class of types but rather a class of type constructors,
namely the class of all those type constructors mapping a given base type into the type of
specific computations over this type.

Due to the lack of this concept our implementation simply declares a polymorphic abstract
type ′a T, whereT is supposed to stand for the monad in question. This way of proceeding
precludes the exact definition of concrete monads and their primitive operations, since the
structure of the monad is not visible. From the viewpoint of Isabelle’sdefinitional approach
– where HOL is supposed to be supplemented only by further definitions and theorems rather
than axioms – this may be considered an imperfection, because additional operations acting
on the structure of the monad have to be described axiomatically. For instance, there will
be no way to define what precisely the operations of writing to or reading a reference in the
state monad do, but these can only be described via their logical effects. Nonetheless, the
way chosen here adheres to the one suggested in [34] and, in any case, the alternative would
have been to have distinct base theories for all concrete monads, which is hard to maintain
and tedious to implement.

typedecl ′a T

consts
bind :: ′a T⇒ (′a⇒ ′b T)⇒ ′b T (infixl �= 20)
ret :: ′a⇒ ′a T

constdefs
seq:: ′a T⇒ ′b T⇒ ′b T (infixl � 20)
p� q≡ (p�= (λx. q))

This is the concrete Isabelle notation for the introduction of the type′a T of monadic
programs and the basic operationsbind, ret and seq, where the latter is defined in terms
of the binding. The so-calledmixfix annotationson the right margin declare infix notation,
�= for bind and� for seq, which in their simple form given here resemble the syntax
annotations for infix operators in Haskell. As stated abovebind andret can only be declared
as abstract constants through aconstsdeclaration, whileseqcan be given a declaration as
well as a concrete definition (albeit in terms of the abstractly defined operationbind, of
course) through theconstdefsstatement. The latter combines the effects of the statements
constsanddefs, where thedefsstatement serves the purpose of providing a definition for a
previously introduced constant.

The following is a specification of the monad laws of Equation (2.10) in Isabelle. The

1which is done by making the respective type constructors like[] (being syntactical sugar forList), Maybe,
etc., instances of the constructor classMonad

6.2 Monads in Isabelle 78

[simp] instruction makes Isabelle hand a theorem or axiom to the simplifier as a rewrite rule
automatically. We have included a specification thatret is injective. From these axioms we
can prove the associativity of� immediately.

axioms
bind-assoc[simp]: (p�= (λx. f x�= g)) = (p�= f �= g)
ret-lunit [simp]: (ret x�= f) = f x
ret-runit [simp]: (p�= ret) = p
ret-inject: ret x= ret z=⇒ x = z

lemmaseq-assoc[simp]: (p� (q� r)) = (p� q� r)
by (simp add: seq-def)

6.2.1 The do-Notation

Next comes the setup of the do-notation by means of Isabelle’s syntax translation facility.
This basically is a term-rewriting mechanism on abstract syntax trees which can be con-
figured by adding rewrite rules for either the transformation of concrete input into a valid
Isabelle term or vice versa. We will not go into the details of this mechanism, which is laid
out in the Isabelle reference manual [25]. The implementation can be found in AppendixC,
p. 101.

The syntax translations make it possible to write monadic programs in a much more con-
venient way that mirrors the sequentiality inherent in these programs. In the implementation
we make use of this notation exclusively. As an example, one may write the following

do{x← p;q x} do{x← p;y←q; r x y} do{x← p;y←q;z← r; ret (x,y,z)}

instead of

p�= λx.q x p�= (λx.q�= λy. r x y) do{x← p;do{y←q;do{z← r; ret (x,y,z)}}}

where the third column indicates that multiple bindings may be input as a sequence rather
than in a nested fashion.

Remark6.1. The fact that do-terms are simply syntactical sugar also means that we do not
formalise the inference rules of the meta-language for monads described in Section2.2.3, but
rather work with monadic programs and their properties directly and just display them in the
more convenient do-notation. That such a translation can be achieved purely by syntax trans-
formations indicates how closely the meta-language is related to actual monadic programs.

6.2.2 Properties of Monadic Programs

Our main goal for now is to obtain a subtype′a D of deterministically side effect free (dsef)
programs over′a T so that programs of typebool D can be used as formulae of our logic.
The kind of subtyping supported by Isabelle proceeds by defining a new type in terms of a
subset of elements of an existing type. Isabelle then generates a bijection between this subset
of the existing type and the new type which consists of anabstraction functionfrom the
existing type into the new one – which is only sensibly defined for elements that really have

6.2 Monads in Isabelle 79

a corresponding element in the new type – and arepresentation functionmapping elements
of the new type back to their representatives in the existing type.

It is straightforward to formalise the concepts of discardability and copyability, the con-
cepts on which the propertydsef builds. The latter is itself defined in terms of the former
ones as follows.

constdefs
dis :: ′a T⇒ bool
dis(p) ≡ (do{x←p; ret()}) = ret ()

cp :: ′a T⇒ bool
cp(p) ≡ (do{x←p; y←p; ret(x,y)}) = (do{x←p; ret(x,x)})

dsef :: ′a T⇒ bool
dsef(p) ≡ cp(p) ∧ dis(p) ∧ (∀q::bool T. cp(q) ∧ dis(q) −→

cp(do{x←p; y←q; ret(x,y)}))

The definition ofdsef deserves explanation for two reasons. First, it should be repeated
that there are three equivalent formulations of what it means for a program to commute
with some other program (cf. Def.3.6), from which we have chosen (3.1). Second, this
formulation restricts the types of programs that the given programp has to commute with to
those of typebool(see also Definition3.7and Remark3.9). This is required because Isabelle2

does not allow for a quantification over type variables in a definition. But this is exactly what
would be done, if implicitly, in the case that the right-hand side of the definition mentioned an
arbitrary programq :: ′a T. As ′a would be arbitrary, any type might serve as an instantiation.
An explicit lemmacommute-bool-arbis needed to derive the commutativity of a certain
programp with copyable and discardable programs ofany type from the commutativity of
p among copyable and discardable programs of typebool. Because the implementation of
global dynamic judgements was the subject of a different diploma thesis, this ‘lemma’ is
in fact provided as an axiom in this thesis; given a more elaborate infrastructure, it would
however be provable.

Several properties of copyable and discardable programs discussed in Section3.1 have
been formalised, the most frequently employed of which are Lemmas3.3and3.5

lemmacp-arb: cp p=⇒ do{x←p; y←p; r x y} = do{x←p; r x x}
lemmadis-left: dis(p) =⇒ do{p; q} = q

Notice how the substitution ofx for y in r of lemmacp-arbis achieved by makingr a function
of x andy. With the above definitions and lemmas at our disposal the type′a D can be defined.

typedef (Dsef) (′a) D = {p:: ′a T. dsef p}
apply(rule exI[of - ret x])
apply(blast intro: dsef-ret)

done

The proof obligation in the type definition arises due to the restriction that types must not
be empty. We use the programret x as a witness, since stateless programs are always dsef.

2to be precise, this statement is only true for logics like HOL which inherit their type mechanism from Isabelle’s
meta-logic

6.2 Monads in Isabelle 80

This fact has of course been proved as lemmadsef-retin Isabelle beforehand. Thetypedef
statement declares the new type′a D to be in bijective correspondence to the setDsef of
dsef programs in′a T. The definition of this set is subsequently available under the name
Dsef-def. What’s more, two functionsAbs-Dsef:: ′a T⇒ ′a D andRep-Dsef:: ′a D⇒ ′a T
are generated that mediate between these two types. As the functions may appear quite often
in certain formulae, two abbreviations are introduced:⇑ p stands forAbs-Dsef pand⇓ P
stands forRep-Dsef P. This is quite suggestive, in particular in those cases where terms of
the form⇑⇓ P or ⇓⇑ p appear since one is visually reminded that these operations cancel
each other out.

Remark6.2. The reason why terms of the form⇑ p will appear is that one may only write
monadic programs inT, while the formulae of our logic live inD. This means that a com-
pound truth-valued programp= do{x1←p1; · · · ;xn←pn; r x1 · · ·xn} that is dsef will nonethe-
less have typebool T. This program has to be shifted tobool D to form the monadic formula
⇑ p. Furthermore, there are several atomic programs – withret x being the predominant one
– which are dsef and hence may appear in formulae when shifted. We initiate the convention
of defining a formulaProg≡ ⇑ prog for each atomic dsef programprog. Hence the shifted
version ofret is Ret:: ′a⇒ ′a D.

Theory MonProp also contains proofs of characteristic properties of dsef programs which
are not shared by discardable or copyable programs. The two most important facts are that
neighbouring dsef programs may be swapped (Theoremcommute-dsef, p.108) and that dsef
programs are stable under sequential composition (Theoremdsef-seq, p.108). While the first
one is quite immediate from the definitions, the second one asks for a bit more work.

theoremdsef-seq: [[dsef p; ∀x. dsef(q x)]] =⇒ dsef (do{x←p; q x})

According to the definition ofdsefproving thatdo{x← p;q x} (call it r in the following)
is dsef amounts to showing three facts. The first one is thatr is discardable. This follows
from the fact thatp and q x are discardable for allx. The second one, namely thatr is
copyable, follows from the fact thatp andq x commute with each other, so that the defining
equality of copyability holds forr by the copyability ofp andq x. It must be noted here that
while we used condition (3.1)3 as part of the defining property of dsef programs, condition
(3.3)4 can easily be inferred from (3.1), a point that has been shown in lemmacommute-1-3.
The final fact to be shown is thatr commutes with all copyable and discardablebool-valued
programs. This follows similarly to the second fact, noting thatp andq x alone commute
with all discardable and copyablebool-valued programs.

6.2.3 Equational Reasoning in Isar

We will now shortly explain how Isar supports equational reasoning. As it is used in this the-
sis, equational reasoning means reasoning by chains of equations, where each separate step
is justified mainly by substituting equals for equals. Take the following lemma, representing
the formalisation of how to infer (3.2) from (3.1), as an example.

lemmacommute-1-2: [[cp q; cp p; dis q; dis p]] =⇒ cp (do{x←p; y←q; ret(x,y)})
=⇒ do{x←p; y←q; ret(x,y)} = do{y←q; x←p; ret(x,y)}

3stating that the composition of two discardable and copyable programs is again copyable
4which states the property of commutativity more instructively by actually swapping two programs

6.2 Monads in Isabelle 81

proof −
assumea: cp q cp p dis q dis p
assumec: cp (do{x←p; y←q; ret(x,y)})
let ?s= do{x←p; y←q; ret(x,y)}
have?s= do{z←?s; ret (fst z, snd z)} by simp
also from c have. . . = do{w←?s; z←?s; ret (fst z, snd w)} by (simp add: cp-arb)
also from a have. . . = do{v←q; x←p; ret(x,v)} by (simp add: mon-ctr dis-left2)
finally show ?thesis.

qed

After stating the valid assumptions and setting ?s as an abbreviation for the left-hand side
of the equation that is to be shown, a chain of equations starts beginning with ?s and ending
with the right-hand side of the main goal. This kind of successive equational reasoning
is realised in Isar through a sequence ofhave. . .also have. . . statements and a concluding
finally statement. In its simplest form, thealso statement combines two facts of the form
a = b andb = c to yield the facta = c, thus simply exploiting transitivity of equality. The
finally statement reiterates the transitive chain build up so far and feeds it into the concluding
proof – which in the example is precisely the goal thesis. As a convenience, three dots
‘. . . ’ within a term refer to the right-hand side of the most recently established equality.
The main workhorse for performing the intermediate proof steps is the simplifier, since it is
ideally suited for handling equalities and substitution. [3] contains a detailed description of
extended features of this mechanism, showing how it can also be applied to inequalities.

6.2.4 Lifting HOL Constants

The definition of the propositional connectives in Section3.2.1suggests the introduction of
lifting operatorsthat allow one to embed HOL operators into the monadic setting. These
lifting operators are well known from Haskell and their definition in Isabelle does not look
that different. The basic idea is that to apply ann-ary operatorf :: [a1, . . . ,an]⇒ b to n
monadic programsp1 :: a1T, . . . , pn :: anT, one simply evaluates these programs in turn and
applies the operator to the results. In principle all HOL operators like equality, comparisons,
addition, etc. could be lifted this way, but for simplicity we will only lift the propositional
connectives and equality in the sequel.

constdefs
liftM :: [′a⇒ ′b, ′a T]⇒ ′b T
liftM f p ≡ do{x← p; ret (f x)}
liftM2 :: [′a⇒ ′b⇒ ′c, ′a T, ′b T]⇒ ′c T
liftM2 f p q≡ do{x← p; y← q; ret (f x y)}

Thanks to lemmadsef-seqit is very easy to prove that applying a lifted operation to dsef
programs yields a dsef program:

lemmadsef-liftM2: [[dsef p; dsef q]] =⇒ dsef (liftM2 f p q)

This fact is essential when introducing the propositional connectives in this manner, since
e. g. the conjunction of two formulae is of course required to be a formula, hence dsef.

6.3 Setting up the Logic 82

6.3 Setting up the Logic

Apart from a slight visual clutter induced by the occurrences of the shifting functions⇑ and
⇓ the definition of global validity (which we denote here by a turnstile` instead of the global
box �G) and of the propositional connectives is now straightforward. We take conjunction,
disjunction and implication as primitives: the constant for falsity does not have do be defined,
since it is available via the injection ofFalseinto the monad, i. e. viaRet False.

consts
Valid :: bool D⇒ bool ((` -) 15)
∧D :: [bool D, bool D]⇒ bool D (infixr 35)
∨D :: [bool D, bool D]⇒ bool D (infixr 30)
−→D :: [bool D, bool D]⇒ bool D (infixr 25)
defs
Valid-def: ` P≡ ⇓ P = do{x←(⇓ P); ret True}
conjD-def: P∧D Q≡ ⇑ (liftM2 (op∧) (⇓ P) (⇓ Q))
disjD-def: P∨D Q≡ ⇑ (liftM2 (op∨) (⇓ P) (⇓ Q))
impD-def: P−→D Q≡ ⇑ (liftM2 (op−→) (⇓ P) (⇓ Q))

Other operators like equivalence←→ and negation¬ are defined as abbreviations in the
usual way:

constdefs
iffD :: [bool D, bool D]⇒ bool D (infixr ←→D 20)
P←→D Q≡ (P−→D Q) ∧D (Q−→D P)
NotD :: bool D⇒ bool D (¬D - [40] 40)
¬D P≡ P−→D Ret False

The notion of global validity can be simplified, since dsef programs are discardable. This
fact can be stated either as an equality inT or as an equality inD:

lemmaValid-simp: (` p) = (⇓ p = ret True)
lemmaValid-simpD: (` P) = (P = Ret True)

Remark6.3. While the formalisation of the proof calculus as given in [34] is tailored towards
an intuitionistic framework, an immediate consequence of the definitions presented thus far
is thatthe implementation of the calculus in Isabelle is classical. This follows from the fact
that the logical operators are defined in terms of the HOL operators and thatbool is classical,
i. e. contains only two valuesTrue andFalse. A representative theorem confirming that a
logic is classical is the law of excluded middle. The formulation in the monadic setting reads
as

theorempdl-excluded-middle: ` P∨D (¬D P)

The outline of the proof of this theorem is as follows: first, decodeP∨D (¬DP) into the
program⇑ do{a←⇓P;b←⇓P; ret (a∨¬b)}. By copyability of⇓P – noting that all programs
of the form⇓ are dsef, therefore copyable – this program is equal to⇑ do{a←⇓ P; ret (a∨
¬a)}. At this point, reasoning in HOL reducesa∨¬a to True, so that by discardability of
⇓ P the whole program is equal toRet True, hence globally valid.

An interesting connection between theRet function and every operatorop that has been

6.3 Setting up the Logic 83

lifted by theliftM ∗ functions to form an operatoropD is thatRetis a homomorphism between
op-terms in HOL andopD-terms inD. This is reflected by the following equations, which all
hinge on the fact that the operators have simply been lifted.

lemmaconjD-Ret-hom: Ret(a∧b) = ((Ret a) ∧D (Ret b))
lemma impD-Ret-hom: Ret(a−→b) = ((Ret a) −→D (Ret b))
lemmaNotD-Ret-hom: Ret(¬ P) = (¬D (Ret P))

Dual statements hold for disjunction, equivalence and the like.

6.3.1 Basic Proof Rules

Besides theorempdl-excluded-middlethere are several other analogues of proof rules of HOL
given in SectionC.3.3. These include modus ponens, introduction and elimination rules for
conjunction and disjunction, some rules concerning negation and so forth. It would thus be
tempting to try and formulate a natural deduction calculus for the propositional part of the
logic. However, this fails at one critical point: the introduction rule for implication, which
might be formulated as

pdl-impI (` P =⇒`Q) =⇒` P−→D Q

is not provable, and what’s worse, not even valid. This is quite obvious, since one may
not expect any relationship between theglobal validity of P and the global validity of the
formulaP−→D Q. Hence it does not make sense to assume the global validity ofP, prove
` Q and then conclude thatP−→D Q must be globally valid. It is a common phenomenon
that natural deduction systems – and the proof calculus for HOL basically is formulated
as such – have to be modified if they are to be used for modal logics. For simple logics
involving unparameterised modal operators this can be done rather easily (see [6]), but it is
as yet unclear how it might be accomplished for the logic discussed here, which includes
modal operators for every possible program sequence.

The lack of this single rule has quite profound consequences, since the simplest theorems
like ` P−→D Q−→D P cannot be proved ‘logically’, i. e. with the natural deduction rules.
Like every classical tautology this theorem however has a semantic proof which proceeds
in analogy to the proof ofpdl-excluded-middlediscussed above by unfolding the definition
of global validity and then manipulating the resulting do-terms. Having to step back to the
semantic definition of the connectives when proving valid formulae is not desirable since this
does not lend itself easily to automation and it makes proofs very unstructured in comparison
to those conducted in a proof calculus. To obtain a purely Hilbert-style calculus for the
propositional part of the logic it would theoretically suffice to prove an appropriate set of
axiom schemes semantically and then conduct proofs from these axioms by modus ponens.
This way of proceeding would lead to rather cumbersome proofs and substantially blow up
the amount of work required to verify programs of realistic size, so an alternative solution
had to be found.

6.3.2 Proving Tautologies Automatically

The solution that has been adopted in the implementation is to use the simplifier, i. e. to em-
ploy the technique of term rewriting, and enhance it in such a way that it can proveclassical

6.3 Setting up the Logic 84

propositional tautologies automatically. The first step to this solution is to regard the propo-
sitional part of the logic as a Boolean algebra. It is a standard exercise [4, Chapter 5] to
verify that (bool D,∧D,∨D,Ret False,Ret True) is such an algebra which further gives rise
to a boolean ring, i. e. a commutative ring in which all elements are idempotent, i. e.X2 = X
for all X. Taking∧D as the multiplication and exclusive disjunction5 ⊕D as the addition
of the Boolean ring this equation certainly holds, sinceX ∧D X = X is valid. All other re-
quirements of a Boolean ring like distributivity of multiplication over addition, associativity
of these operations etc. are also satisfied. The major insight then is that a complete set of
rewrite rules for ordered rewriting can be given for Boolean rings. A complete set of rewrite
rules is one that is terminating and confluent, such that every term can be rewritten into a
unique normal form and it does not matter which path of possible reductions one follows (cf.
the Church-Rosser property of the untyped lambda calculus in Prop.2.7and the description
of the simplifier in Section5.3.3). But this is exactly what is needed to prove a classical
tautologyT automatically, since it can then be rewritten to its normal formRet True, so that
proving` T amounts to proving the trivial statement` Ret True. This final proof step can of
course be done automatically, too.

SectionC.3.2presents all rules the simplifier has to be equipped with to prove tautologies
automatically. For shortage of time the rules were given as axioms, and only some of them
were proved as examples on how such proofs can be carried out. The rules include associa-
tivity and commutativity of∧D as well as⊕D, unit laws for∧D with respect toRet Trueand
absorption laws for∧D. Furthermore, the behaviour of∧D and⊕D with regard to falsity and
the distribution of∧D over⊕D are laid out. All these laws – together with translation rules
that let all connectives be expressed through∧D and⊕D plus falsity – are collected in the
rule setpdl-taut. Tautologies are now proved in one fell swoop:

lemma` (P−→D Q) ∧D (¬D P−→D R)←→D (P∧D Q∨D ¬D P∧D R)
by (simp only: pdl-taut Valid-Ret)

6.3.3 Modal Operators and the Proof Calculus

We will now make up for the definition of the box and diamond operators which have been
overlooked up to this point. Due to the fact that an elaborate formalisation of global dynamic
judgements has been worked out in a different diploma thesis, the box and diamond operators
are in fact notdefinedthrough their unique defining property as given in Proposition3.18,
but rather treated as abstract constants.

consts
Box :: ′a T⇒ (′a⇒ bool D)⇒ bool D ([# -]- [0, 100] 100)
Dmd :: ′a T⇒ (′a⇒ bool D)⇒ bool D (〈-〉- [0, 100] 100)

Each operator maps a program and a formula depending on the return value of the program
into a monadic formula. The syntax annotations make it possible to write, e. g.[# do {x←
p;q}]Q6 or 〈do{x←p;q}〉(λy. P y) – note that bothQ andP are function predicates depend-
ing on the return value of the entire do-term inside the box or diamond respectively, andnot

5recall the definition of exclusive disjunction:A⊕B≡ (A∧¬B)∨ (¬A∧B)
6the sharp sign ‘#’ is needed to disambiguate box formulae from lists, for which the square bracket notation is

already in use

6.3 Setting up the Logic 85

on the variablex bound in these do-terms. This means that the notion of variable binding that
is performed by these operators differs from that which has been proposed in [34], where the
multiple bindings that may occur inside a modal operator all constitute variable binders for
the formula in the scope of the operator.

With the help of some intricate syntax translation instructions it becomes possible to mimic
this kind of multiple variable binding in Isabelle. The idea is to write a sequence of bindings
inside the modal operator and use these bound variables freely in the formula in scope of the
operator, like so:

[# x1← p1; · · · ;xn← pn]P x1 · · ·xn

The binding sequence is then transformed into an actual do-term by collecting all bound
variables to form a tuple and appending aret expression that takes this tuple as its argument.
The free occurrences of these variables in the formula in the scope of the modal operator
become bound by turning the formula into a lambda abstraction that expects the tuple of
variables as an argument. So the result of translating the above binding sequence is

[# do{x1← p1; · · · ;xn← pn; ret (x1, . . . ,xn)}]λ (x1, . . . ,xn).P x1 · · ·xn

The notation thus set up is in particular nice for sequences of length one, because〈x←
p〉(P x ∧D Q x) and 〈p〉(λx.P x ∧D Q x) denote the same formula, with the former one
emphasising the connection between the return valuex of p and its use in the subsequent
conjunction.

With the modal operators readily defined, the proof calculus for propositional dynamic
logic can be implemented, resulting in the following specification.

axioms
pdl-nec: (∀x. ` P x) =⇒ ` [# x←p](P x)
pdl-mp-: [[` (P−→D Q); ` P]] =⇒ ` Q

pdl-k1: ` [# x←p](P x−→D Q x) −→D [# x←p](P x) −→D [# x←p](Q x)
pdl-k2: ` [# x←p](P x−→D Q x) −→D 〈x←p〉(P x) −→D 〈x←p〉(Q x)
pdl-k3B: ` Ret P−→D [# x←p](Ret P)
pdl-k3D: ` 〈x←p〉(Ret P) −→D Ret P
pdl-k4: ` 〈x←p〉(P x∨D Q x) −→D (〈x←p〉(P x) ∨D 〈x←p〉(Q x))
pdl-k5: ` (〈x←p〉(P x) −→D [# x←p](Q x)) −→D [# x←p](P x−→D Q x)
pdl-seqB: ` [# x←p; y←q x](P x y)←→D [# x←p][# y←q x](P x y)
pdl-seqD: ` 〈x←p; y←q x〉(P x y)←→D 〈x←p〉〈y←q x〉(P x y)
pdl-ctrB: ` [# x←p; y←q x](P y) −→D [# y←do{x←p; q x}](P y)
pdl-ctrD: ` 〈y←do{x←p; q x}〉(P y) −→D 〈x←p; y←q x〉(P y)
pdl-retB: ` [# x←ret a](P x)←→D P a
pdl-retD: ` 〈x←ret a〉(P x)←→D P a
pdl-dsefB: dsef p=⇒ ` ⇑ (do{a←p; ⇓ (P a)})←→D [# a←p](P a)
pdl-dsefD: dsef p=⇒ ` ⇑ (do{a←p; ⇓ (P a)})←→D 〈a←p〉(P a)

This specification does not look all that different from the original one presented in Fig-
ure 3.1. The side-condition in the necessitation rule that variablex must not occur free in
the assumptions can be formalised by requiring thatP x holds for allx, since this precludes
any assumptions to be made onx. TheK axioms really are almost identical to the original
specification. The axioms for dsef programs,pdl-dsefBandpdl-dsefD, cannot be stated in
the convenient notation in which dsef programs of type′a T are simply substituted for actual
values of type′a, since this results in a type error. So in the specification one has to resort

6.3 Setting up the Logic 86

to the decoded forms, where the dsef program is evaluated first, and the resulting valuea is
used in the formulaP a.

For the structural rules there also do not appear to be notable differences, but this is not
quite true: the syntax translations transform, e. g., the depicted formulapdl-seqB

[# x← p;y←q x]P x y←→D [# x← p] [# y←q x]P x y

into the genuine Isabelle term

[# do{x← p;y←q x; ret (x,y)}]λ (x,y).P x y←→D [# p]λx. [# q x]λy.P x y

which has a rather complicated structure. This complexity and the fact that theret expression
only appears on the left-hand side of the equivalence will make it hard to apply the axiom
in actual proofs about compound programs, because these will hardly ever unify with the
program structure imposed by the axiom.

It has been shown in [34] that simple monads (cf. Rem.3.10) satisfy the converses of
the contraction axiomspdl-ctrB andpdl-ctrD, i. e. the same formulae with the implication
arrows reversed. These converse axioms make it possible to prove simplified versions of the
sequencing axioms which have turned out to be more effective in practice. Whether there is
a proof for these theorems in monads that are not simple, too, is currently unclear. For the
box operator the corresponding theorem is

axioms
pdl-seqB-simp: ` ([# x←p][# y←q x](P y))←→D ([# y←do{x←p; q x}](P y))

with the equivalence of[# x← p;y←q x]P y and [# y←do {x← p;q x}]P y being the key
fact required for the proof. This equivalence is precisely what is provided by the contraction
rules and their converses.

Although the simpler rendition of the sequencing axiom does not allow for reasoning about
intermediate results – asP only depends on the return value ofq x, but not that ofp – one
has to remember that in rulepdl-seqBthe intermediate results are only made available toP
by packing all of them into a tuple ¯x and makingret x̄ the final expression of the do-term.
The formulation as given inpdl-seqB-simpis more flexible, sinceq xmay or may not consist
of or at least end with such aret expression. In the case where one is in fact not interested
in the value ofx (e. g. when nothing is to be said about intermediate results), it turns out to
be more convenient to dispose of the finalret expression. And the general contraction rules
are too weak to make this possible when working withpdl-seqB. Given some further rules
that will be described below it is easily possible to employpdl-seqB-simpto prove theorems
about the equivalence of multiply split boxes and their ‘joint box’:

lemma` [# do{x1←p1; x2←p2; x3←p3; r x1 x2 x3}]P←→D

[# x1←p1][# x2←p2][# x3←p3][# r x1 x2 x3]P

6.3.4 Theorems and Proof Rules Involving Modal Operators

All theorems of Section4.1 – which include the distribution of the box operator over fi-
nite conjunctions (namedbox-conj-imp-distribhere), the regularity and weakening rules
(pdl-box-reg, pdl-dmd-reg, pdl-wkB, pdl-wkD) as well as several other lemmas – have also

6.3 Setting up the Logic 87

been proved in Isabelle. The proofs thereof are heavily inspired by how they have been car-
ried out ‘on paper’, so we just refer to SectionC.5.2in the Appendix for a formal Isabelle
verification.

A more interesting proof which has not been presented before, because it relies on the
underlying logic being classical, is the relationship between the box and diamond operator.
It has already been stated that the propositional part of the logic behaves classical, but the
following theorem confirms that this is also true for the relation between the modal operators.

theoremdmd-box-rel: ` 〈x←p〉(P x)←→D ¬D [# x←p](¬D P x)

The formula is proved in two steps, each one validating one direction of the equivalence.
The first half, in which the definition of negation7 has already been unfolded, looks as fol-
lows. The Isar keywordis introduces an abbreviation for the term preceding it. In the
case at hand, ?b and ?d are matched against and bound to the box and diamond formulae
[# x← p]P x−→D Ret Falseand〈x← p〉P x respectively.

lemmadmd-box-rel1: ` ([# x←p](P x−→D Ret False) −→D Ret False) −→D 〈x←p〉(P x)
(is ` (?b−→D Ret False) −→D ?d)

proof −
have` (?d−→D Ret False) −→D ?b
proof −
havef1: ` ((?d−→D [# x←p](Ret False)) −→D ?b) −→D

(?d−→D Ret False) −→D ?b
by (simp add: pdl-taut)

havef2: ` (?d−→D [# x←p](Ret False)) −→D ?b
by (rule pdl-k5)

from f1 f2show?thesisby (rule pdl-mp)
qed
thus ?thesisby (simp add: pdl-taut)

qed

The proof proceeds by classical contraposition, i. e. instead of proving the main goal we
initially show the following formula

(〈x← p〉(P x)−→D Ret False)−→D [# x← p] (P x−→D Ret False)

(call it Φ) to hold and let the simplifier conclude the proof by equalisingΦ and the main goal
with the help ofpdl-taut. Noticing thatΦ already looks quite similar to an instance of axiom
pdl-k5– with only the leftmostRetterm to be replaced by the formula[# x← p] (Ret False)
– we recognise that the axiom really implies the goal, i. e. for an appropriate instanceΨ of
axiom pdl-k5 we have thatΨ −→D Φ is a tautology that can once again be proved by the
simplifier. Hence, a final application of modus ponens finishes the proof.

The second half of the equivalence is easily proved, as it is tautologically implied by
pdl-k3Dandpdl-k2:

lemmadmd-box-rel2: ` 〈x←p〉(P x) −→D [# x←p](P x−→D Ret False) −→D Ret False
proof −
have` (〈x←p〉(Ret False) −→D Ret False) −→D

([# x←p](P x−→D Ret False) −→D 〈x←p〉(P x) −→D 〈x←p〉(Ret False)) −→D

7¬DP≡ P−→D Ret False

6.4 A Specification of Parser Combinators 88

〈x←p〉(P x) −→D [# x←p](P x−→D Ret False) −→D Ret False
by (simp add: pdl-taut)

from this pdl-k3D pdl-k2show?thesisby (rule pdl-mp-2x)
qed

6.4 A Specification of Parser Combinators

In this section it is shown how the monad-independent specification of the calculus of dy-
namic logic can be extended by axioms to describe a monad of basic parser combinators.
This specification has been heavily influenced by the Haskell implementation presented in
[12], but in contrast to that work we specified adeterministicparser monad with fall back
alternatives. The basic operations of this parser are

consts
item :: nat T
fail :: ′a T
alt :: ′a T⇒ ′a T⇒ ′a T
getInput :: nat list T
setInput :: nat list⇒ unit T

whereitemparses exactly one natural number from the finite stream of input numbers,fail
is a parser that always fails, thus representing a dead end, the combinatoralt (syntactically
sugared by two parallel bars ‘‖’) takes two parsersp andq and yields a parser that runs the
first argument ofalt – let it bep – first, and only if it fails the second parserq is tried. Every
producible parser thus always yields at most one result. Finally there are operationsgetInput
and setInputto read and set the remaining input stream. As a typical implementation of
this monad one might use a deterministic state monad with an added exception representing
failure.

As an abbreviation we also introduced the operationeot(for ‘end of text’) which is defined
throughgetInputin the obvious way. In accordance with the convention of Remark6.2 the
operationsEot andGetInputdenote the operations inD corresponding to the dsef operations
in T written in lower case.

6.4.1 Specification of the Basic Parsers

axioms
determ: ` 〈x←p〉(P x)←→D [# x←p](P x) ∧D 〈x←p〉(Ret True)
dsef-getInput: dsef getInput
fail-bot: ` [# fail](λx. Ret False)
eot-item: ` Eot−→D [# x←item](Ret False)
set-get: ` 〈setInput x〉(λu. GetInput=D Ret x)
get-item: ` GetInput=D Ret(y#ys) −→D 〈x←item〉(Ret(x = y) ∧D GetInput=D Ret ys)
altB-iff : ` [# x←p‖q](P x)←→D ([# x←p](P x) ∧D 〈x←p〉(Ret True)) ∨D

([# x←q](P x) ∧D [# x←p](Ret False))
altD-iff : ` 〈x←p‖q〉(P x)←→D 〈x←p〉(P x) ∨D (〈x←q〉(P x) ∧D [# x←p](Ret False))

An interesting axiom isdetermwhich captures the fact that we are working in a determin-
istic monad. The characteristic feature of such a monad is that the box and diamond operators

6.4 A Specification of Parser Combinators 89

denote nearly the same formula, with the diamond being stronger in the sense that it addi-
tionally asserts termination. So when formalising the total correctness of parsers in the parser
monad one can either keep partial correctness and termination separated, or one can jointly
specify them by using the diamond operator. The latter has been done in the remainder of the
specification

The operationsgetInput, setInputanditembehave as one would expect, such that reading
the remaining input is deterministically side effect free (dsef-getInput), trying to read further
input when the end has been reached results in an error (eot-item), after setting the input to
x this value can be read bygetInput(set-get) and reading an item when input is available is
a terminating operation that diminishes the remaining input by one item and yields this item
as a result (get-item).

Remark6.4. Attention has to be paid when specifying the equality of a dsef term with a
stateless value. For example, to express that the remaining input equals some list of numbers
l , one cannot writeGetInput= l as this is a type error. It is moreover also wrong to write
GetInput= Ret l instead, since this would generally makeGetInputa stateless program al-
ways yielding the same resultl . So what one actually wants to express is amonadic equality
(denoted by=D) to be defined as the lifted counterpart to standard equality – in the same way
as for the propositional connectives:

a =D b ≡ ⇑ (liftM2(op=)(⇓ a)(⇓ b))

Axiom altB-iff characterises the more complex behaviour of this monad. It states in what
cases a formulaP holds for the outcome of the combined parserp‖q. The fall back behaviour
of this parser with respect toq is captured by the assertion that[# x← p‖q]P x holds if
and only if p makesP true andp terminates, orq makesP true, butp does not terminate.
In the case where both parsers fail[# x← p‖q]P x will always be provable due to axiom
fail-bot. Describing the total correctness behaviour ofalt, i. e. the formula〈x← p‖q〉P x,
axiomaltD-iff looks quite similar, only that one assertion in the left part of the disjunction –
namely thatp must terminate – may be omitted, since it is implied by the formula〈x←p〉P x.

6.4.2 Defining Complex Parsers

One can now define complex parsers in terms of the basic ones. The following are a parser
sat that accepts an item if it satisfies a given predicate and otherwise fails as well as a parser
that accepts numbers between zero and nine, which we will treat asdigits in the sequel.

constdefs
sat :: (nat⇒ bool)⇒ nat T
sat p ≡ do{x←item; if p x then ret x else fail}
digitp :: nat T
digitp ≡ sat(λx. x < 10)

A useful compound parser is one that repeatedly applies a given parserp, collecting the
results ofp until p fails. Sometimes it is useful to require that at least one run ofp has to
yield a result, leading to the definition of the combinatorsmanyandmany1. Unfortunately,
manyhas to be axiomatised rather than defined, because its definition would not result in a
total function (cf. Rem.6.5 in the next section for an exposition).

consts

6.5 A Specification of Russian Multiplication 90

many :: ′a T⇒ ′a list T
many1:: ′a T⇒ ′a list T
axioms
many-unfold: many p= ((do{x← p; xs← many p; ret (x#xs)}) ‖ ret [])
defs
many1-def: many1 p≡ (do{x← p; xs← many p; ret (x#xs)})

Themanycombinator critically depends on thealt operation, as it tries to runp as many
times as possible, but as soon asp fails, it will fall back on its alternative, which is to return an
empty list. The axiommany-unfoldcan be used to formulate a rule formanythat resembles
its operational semantics, i. e. one can prove

lemmamany-step: [[` 〈(do{x← p; xs← many p; ret (x#xs)})〉P∨D

〈ret []〉P∧D [# x←p](Ret False)]] =⇒ ` 〈many p〉P

What one actually would like to have is some kind of introduction rule formany, i. e. one
in which manyoccurs only in the conclusion. Ideally, this would then make proofs about
manymuch like proofs involving while loops in the state monad, where an assertion about a
loop can be reduced to an assertion involving only the loop body. However, as yet we do not
see what such a rule might look like, respectively whether it can be formulated in the calculus
at all.

As an example specification within the monad presented here we define a parser that ex-
tendsdigitp to obtain a parser for natural numbers, i. e. a parser that reads as many digits
as possible and turns them into the corresponding number. For instance, given the input
[1,2,3,42] it is supposed to parse the digits up to and including 3 and yield 123 as a result.
The remaining input is then expected to be[42]. This parser can easily be defined with the
help ofmany1:

constdefs
natp:: nat T
natp≡ do{ns← many1 digitp; ret (foldl (λ r n. 10∗ r + n) 0 ns)}

One can now go on prove thetotal correctness of this parser for concrete inputs. This
can be done rather conveniently, due to the fact that we can cover both partial correctness
and termination by expressing the assertion in terms of the diamond operator. The following
simple example can now be proved in a straightforward manner (cf. SectionC.6.3for the
complete proof).

theoremnatp-corr: ` 〈do{uu←setInput[1]; natp}〉(λn. Ret(n = 1) ∧D Eot)

6.5 A Specification of Russian Multiplication

This final part of the overview of how the calculus of monadic dynamic logic has been im-
plemented in Isabelle describes the specification of a reference monad with while loops. The
specification only allows for partial correctness proofs since we only provide axioms for
the box operator. The extensions required to be able to perform total correctness proofs are
mostly straightforward, with merely the rule for total correctness of while loops being an

6.5 A Specification of Russian Multiplication 91

exception. To specify the latter one has to introduce a termination measure along the lines of
the rule found in Section4.4.2.

consts
newRef :: ′a⇒ ′a ref T
readRef :: ′a ref⇒ ′a T
writeRef :: ′a ref⇒ ′a⇒ unit T ((- := -) [100, 10] 10)
monWhile :: bool D⇒ unit T⇒ unit T (WHILE (4-) /DO (4-) /END)

These are the basic operations of the monad, where′a ref is the type of references con-
taining values of type′a. The syntax annotations for the while-loop operatormonWhilelet
one writeWHILE b DO p ENDinstead ofmonWhile b p. A further syntactical sugaring is
provided by the term∗r which is short for⇑ (readRef r), i. e. the formula representing the
value of referencer; here we have chosen to stick to the convention of using the asterisk
notation∗r instead of introducing an operationReadRef r.

Remark6.5. The while-loop operator is in fact not a truly basic operation of the monad. One
would certainly prefer to define it recursively in the natural way:

monWhile b p ≡ do{a←b; if a then do{p;monWhile b p} else ret ∗}

but this is impossible in HOL since the above equation is not a real definition: it mentions
monWhileon both sides. What one actually wants to state is thatmonWhileis theleastfunc-
tion satisfying this equation (cf. [30] for a discussion of least fixed points). To make such
a statement possible one would either have to add a substantial amount of infrastructure to
HOL to enable it to cope with cpos and function definitions thereupon, or base the calculus of
dynamic logic on HOLCF [21], the framework of computable functions on top of HOL. For-
tunately, it is not so important to be able to definemonWhile, because we are only interested
in its logical characterisation, which can be given in HOL, too.

axioms
dsef-read: dsef (readRef r)
read-write: ` [# r := x](λuu. ∗r =D Ret x)
read-write-other-gen: ` ⇑ (do{u←readRef r; ret (f u)}) −→D

[# s := y](λuu. Ret(r 6=s) −→D ⇑ (do{u←readRef r; ret (f u)}))
while-par: ` P∧D b−→D [# p](λu. P) =⇒ ` P−→D [# WHILE b DO p END](λx. P∧D ¬D b)

Rulewhile-par is really just a translation of the standard while rule for partial correctness
into dynamic logic, such that the formulaP can be thought of as some kind of loop invariant.
A peculiarity of this specification is axiomread-write-other-gen, which constitutes a gen-
eralisation of axiomread-write-otherof Section4.3. It expresses the fact that any stateless
assertion that holds for the value of a referencer – notice that this means that the asserting
formula itself isnotstateless, as it depends on∗r – continues to hold after a value is assigned
to a different references. It is in fact not necessary to employ do-terms to specify this fact
since one can prove the following equivalence and solely work with theRet terms of the
left-hand side.

lemma` ∗r =D Ret b∧D Ret(f b)←→D ⇑ (do{a←readRef r; ret (f a∧ a = b)})

Remark6.6. We have opted to work with do-terms for the following reason. The invariant
P present in the rule for while loops virtually always involves some non-trivial arithmetical

6.5 A Specification of Russian Multiplication 92

rumult a b x y r≡
do {x := a; y := b; r := 0;

WHILE (0 < ∗x)
DO do {if (odd∗x) then r := (∗r +∗y) else ret ∗;

x := ∗x div2;

y := ∗y∗2 }
END;

∗r }

Figure 6.2: Simplified specification of the Russian multiplication algorithm

relation between the references occurring in the program. To state this relation in terms
of monadic formulae one would have to lift several arithmetical operations like addition,
multiplication, integer division, etc. to form monadic operators. But for these, there would
be no automatic proof procedure available – and it would indeed require a quite an amount
of work to change this fact. We found it preferable to go along with the slightly less readable
do-notation and in turn be able to employ the arithmetical reasonerarith that is built into
HOL. As an example, take the following two formulae which are equivalent and both valid,
but where the second one requires a lifted multiplication·D and where to prove the second
formula one would initially have to decode it into the first formula manually.

` ⇑ do{a← readRef r;b← readRef s; ret (b = 0−→ a·b = 0)}
` ∗s=D Ret0−→D ∗r ·D ∗s=D Ret0

It is now possible to verify the partial correctness of several imperative programs. The
specification in Figure6.2determines a program performing the so-calledRussian multipli-
cation that carries out the multiplication of two natural numbers loosely resembling the way
how (unoptimised) multiplication is performed in hardware. The specification as well as the
following proof outline is presented in a stylised form as it is done in Chapter4; we refer
to SectionC.7for the concrete Isabelle definition which lacks the notational conventions ap-
plied to dsef terms here. The functionrumult expects referencesx, y andr and two valuesa
andb. It will set the referencer to the value ofa·b, making auxiliary use ofx andy.

6.5.1 Proof Sketch

The partial correctness specification for the Russian multiplication algorithm is straightfor-
ward: assuming there are three distinct variablesx, y andr, execution ofrumultwill yield the
valuea·b.

` Ret(x 6= y∧y 6= r ∧x 6= r)−→D [# rumult a b x y r] (λx.Ret(x = a·b))

The major proof steps as conducted in Isabelle are documented in SectionC.7.3, so we
only convey the basic ideas here. The first part of the proof is to make one’s way up to the
while loop, i. e. one has to unfold the definition ofrumult and employ the rulesread-write

6.5 A Specification of Russian Multiplication 93

andread-write-otherandpdl-k3B. These cannot be applied directly however; several appli-
cations of structuring rules have to be interspersed that manipulate the unification variable
representing the desired ‘postcondition’ so as to obtain the right form. To make this idea
clearer, take the following as an example. Imagine one has arrived at the proof goal

A−→D [# x := a]?B (6.1)

with ?B being the unification variable that must be instantiated, or the ‘postcondition’8 that
has to be found. Given the rules

A−→D [# x := a]C and A−→D [# x := a]D (6.2)

one has to invent, i. e. prove, a structuring rule like

A−→D [# x := a]C
A−→D [# x := a]D

A−→D [# x := a] (C∧D D)
so that an application of this rule to (6.1) unifies ?B with C∧D D and one can prove the
resulting two new goals by the given facts of (6.2). Of course onecanprove (6.1) with each
of the two given facts, but this would make the instantiation of ?B too weak a formula to be
useful in the sequel in many cases.

The heart of the invariant of the while loop is the relation between the referencesx, y and
r. We state explicitly

INV ≡def ∗x · ∗y+∗r = a·b∧D Ret(x 6= y∧y 6= r ∧x 6= r)

i. e. all references remain distinct and the value of∗r added to the product of∗x and∗y is
equal to the desired resulta ·b. Since∗x = 0 will hold after termination of the while loop,
one will be able to infer that∗r = a·b holds, so that the final read operation onr (cf. Fig.6.2)
makesrumult yield the specified result.

Having applied the while rulewhile-par in the proof, it remains to be shown that the
loop invariant can be re-established after a single execution of the loop body. The main
arithmetical facts exploited within the loop body relate to integer division by two. One has

(n div2+n div2) = n if n is even

(n div2+n div2)+1 = n if n is odd

so the following assertion can be shown

INV −→D [# if (odd∗x) then r := (∗r +∗y) else ret ∗] ((∗x div2+∗x div2) · ∗y+∗r = a·b)

The remaining two assignments tox andy inside the loop body then transform the formula
in the scope of the box back into the loop invariant. The stateless formula ensuring the
distinctness of all three references prevails in the whole body by virtue ofpdl-k3B.

To obtain atotal correctness verificationof this algorithm in an extended specification of
the reference monad, one essentially needs to find a termination measure living in a type
equipped with a well-founded relation. This measure then has to decrease strictly (with
respect to the well-founded relation) in each run of the loop body. The obvious candidate for
such a measure is∗x, which will unconditionally be decreased in each run, since the assertion
provided by the loop exit condition(0 < ∗x) ensures that∗x is strictly greater than∗x div2.

8we speak of a postcondition here, since the structure of the formula is precisely that which may be used to
interpret Hoare assertions in dynamic logic

6.5 A Specification of Russian Multiplication 94

6.5.2 Similarity to Hoare Logic Proofs

Proofs in the reference monad are basically just Hoare logic proofs retranslated into the syn-
tax of dynamic logic. A reference monad containing a while loop as its sole algorithmically
expressive construct is just the monadic model of a simple while-language. It is to such a
language that Hoare logics have been applied successfully first, and they can indeed be re-
garded as a natural way of doing verification in such a language. Recalling that a Hoare triple
{A}x← p{B} can be encoded by the formulaA−→D [# x← p] (B x), the sequencing rule of
an appropriate Hoare calculus

{A}x← p{B}
{B}y←q{C}

{A}x← p;y←q{C}
is basically just the weakening rule(wk2) of Lemma4.3 which has been implemented as
rule pdl-wkB in Isabelle. This is to say that proofs about programs in the monad presented
here proceed stepwise – i. e. by handling each atomic expression separately – by applications
of the following rule. This rule combines the effects of the weakening and sequencing rules.

(pdl-plugB-lifted1)

` A−→D [# x← p] (B x)
∀x. ` B x−→D [# y←q x] (C y)
A−→D [# x← p;y←q x] (C y)

In a backward proof this rule introduces two goals with an initially uninstantiated formula
variableB. To look for an optimal initialisation of this variable with respect to the first pre-
miss is the same as trying to find thestrongest postconditionof the corresponding Hoare as-
sertion{A}x← p{?}, i. e. an instantiationP of B such that for every other formulaQ making
A−→D [# x← p] (Q x) true, one has∀x. P x−→D Q x. The notion of strongest postcondi-
tion might be well worth being formalised in our calculus, but in the example verification of
the algorithm for Russian multiplication we have only established those ‘postconditions’ that
suffice for the remaining proof to go through.

7 Conclusion and Outlook

In this thesis we have described a program logic for programs formulated in the do-notation
of monads. After having recalled that monads are an elegant and effective means to model
several kinds of computational effects like state, input and output, exceptions, or nondeter-
minism we have depicted the development of thismonadic dynamic logic. The prominent
features of the logic are that

1. Programs with certain well-behavedness properties making them deterministically side
effect free are taken as formulae of the logic

2. Modal operators allow one to make statements of the form “after execution of the
programp, the formulaφ will hold”

3. The modal operators are entirely interpreted within the underlying monad (presup-
posing the monad satisfies certain additional conditions); no additional structure is
required.

The calculus has been extended by further axioms, rules and thembodyoperation to evolve
into a suitable logic for reasoning about abrupt termination in Java. In this extension the cor-
rectness of a pattern match algorithm has been verified. Back in the basic calculus we have
then specified and proved correct an implementation of a breadth-first search algorithm in the
queue monad, which represents a rather complex example on how to apply the general calcu-
lus to realistic programs. Finally, the calculus has been implemented on top of higher-order
logic in the proof assistant Isabelle. In this formalisation further monads like the reference
monad and a monad for parser combinators have been specified. To help automatise simple
proof obligations, Isabelle’s simplifier has been extended to become able to prove tautologies
of dynamic logic automatically.

The implementation in Isabelle made it obvious that the formulation of the calculus in
Hilbert-style, i. e. with several axioms and only the two proof rules necessitation and modus
ponens, makes proofs of rather simple theorems quite expensive in terms of the required
proof steps. The extension of the simplifier to solve tautologies automatically is already a
great help, but of course tautologies do not constitute the most interesting part of the valid
formulae of dynamic logic. It has been pointed out that the major problem why we cannot
provide a natural deduction system for the calculus is the lack of an appropriate rule for
implication introduction. This also obviates the employment of Isabelle’s classical reasoner;
it is thus an interesting question whether a sequent or tableaux calculus can be found for the
logic that allows for more automation than has been achieved in this thesis.

It has turned out that proofs in monads where a Hoare calculus for total correctness can
be given – most notably this applies to the state monad – proofs as conducted in dynamic
logic actually resembled the proof style for Hoare logics. This is to say that proofs mostly
proceeded in a sequential fashion in which the modal operators were mainly indexed by the
program fragment to be verified; thus the only necessary modal expression was to state what
will hold after execution of the main program. It might therefore turn out to be useful to

7 Conclusion and Outlook 96

formulate a Hoare calculus on top of the formalisation of dynamic logic in Isabelle in which
modal formulae do not appear in the precondition or postcondition. The formulation of such
a calculus for total correctness would have the additional benefit of removing the duplicate
proof obligations that arose in dynamic logic due to the fact that in the latter termination and
correctness are expressed by two distinct formulae.

Finally, it would be nice to undermine the implementation provided in this thesis with
further foundations to make several axioms unnecessary. In particular, the formalisation of
global dynamic judgements would make it possible for several monads to actually define
the modal operators. Since this formalisation is currently being worked out in a different
diploma thesis this should not constitute a major problem. Given a definition of the modal
operators, it would also be much more rewarding to actually define concrete monads instead
of just axiomatising their characteristic properties, because then one could go on and actually
establish these properties as theorems.

Acknowledgements

First and foremost, I want to thank my family and Jenny for their love and support especially
in but of course not limited to the time during which I wrote this thesis. Thanks also to my
fellow students Martin K̈uhl and Tina Kraußer for fruitful discussions and suggestions on
how to improve this thesis. Last but not least thanks go to my supervisors Lutz Schröder and
Till Mossakowski who always offered their expertise and advice when problems arose.

Appendix A

Haskell Implementation of mbody

We present here a complete Haskell implementation of thembodyconstruct described in
Section3.4.1. As an example application the pattern match algorithm that has been verified
in Section3.4.1and in [38] is used.

module MBodyTrans
where

import Control.Monad.Error
import Control.Monad.State

data Exception a = Excpt String
| Ret a
| DropOff
deriving (Show)

-- Needed for class dependencies; actually only for fail
-- which is not used in our calculus.
instance Error (Exception a) where

noMsg = Excpt ""
strMsg = Excpt

Rather than defining the binding in an exception monad by ourselves, we make use of the
exception monad transformerErrorT from the Haskell libraries. The type of exceptions
consists of three alternatives; exceptions either signal failure throughExcpt with a message
attached, or they carry a return value of some method, or they indicate that a method has
illegally terminated normally (DropOff). For simplicity,continue andbreak have been
left out, but could easily be added.

For every monadm we can construct a monad(Ex m e) that behaves just likem in the
absence of an exception, but also allows exceptions to be thrown and caught.

type Ex m e a = ErrorT (Exception e) m a

Recall the instance definition ofErrorT from the Haskell libraries:

instance (Monad m, Error e) => Monad (ErrorT e m) where
return a = ErrorT $ return (Right a)
m >>= k = ErrorT $ do

a <- runErrorT m

Appendix A Haskell Implementation of mbody 98

case a of
Left l -> return (Left l)
Right r -> runErrorT (k r)

fail msg = ErrorT $ return (Left (strMsg msg))

which precisely captures the intended behaviour of the binding in the presence of an excep-
tion, namely that the right-hand argument is only evaluated if the left one terminated nor-
mally. The functionrunErrorT simply unpacks the inner monad, i. e. drops the constructor
ErrorT.

The concrete state monad that will be used below needs a single reference of typeInt, but
the general variable mapping can be defined as follows. A variable map consists of an ID for
the next reference and a function mapping references to their values:

type Ref = Int

type VMap a = (Int, Ref -> a)

Next comes thembody construction that catchesRet exceptions and converts them into
normal return values. All other exceptions are propagated unchanged. This implementation
is polymorphic in the exception type of the result and thus allows for switching between
monads. Whether the input computation should be polymorphic in its return type or whether
∗ should be enforced is a matter of taste.mret emulates the actual Javareturn statements –
whereasreturn is the usual monadicret function.

mret :: Monad m=> e -> Ex m e a
mret x = throwError (Ret x)

mbody :: Monad m=> Ex m e () -> Ex m e1 e
mbody p = ErrorT $ do

a <- runErrorT p -- binding in the "inner" monad
case a of

Right () -> return (Left DropOff)
Left e -> case e of
Ret x -> return (Right x)
Excpt s -> return (Left (Excpt s))
DropOff -> return (Left DropOff)

There are three state-related operations on exception state monads: reading, writing and
creation of variables. A generic while loop for the exception state monad is also easily
defined.

readVar :: Ref -> Ex (State (VMap a)) e a
readVar r = do (_, f) <- get

return (f r)

wrtVar :: Ref -> a -> Ex (State (VMap a)) e ()
wrtVar r x = do (n, f) <- get

put (n, \ k-> if k == r then x else f k)

Appendix A Haskell Implementation of mbody 99

newVar :: a -> Ex (State (VMap a)) e Ref
newVar v = do (n, f) <- get

put (n+1, \ k-> if k == n then v else f k)
return n

while :: Monad m=> Ex m e Bool -> Ex m e () -> Ex m e ()
while b p = do v <- b

if v then do p; while b p
else return ()

The pattern match algorithm, as described in [38, 11]. For testing purposes, here’s how to
evaluate pmatch with an initial state with all references defaulting to 0:

evalState (runErrorT (pmatch base1 pat1)) (0, const 0)

which will evaluate (correctly) toRight 9

pmatch :: String -> String -> Ex (State (VMap Int)) e Int
pmatch base pat = mbody $ do

r <- newVar 0
s <- newVar 0
while (return True)

(do u <- readVar r
v <- readVar s
if u == length pat

then mret v
else if v + u == length base
then throwError (Excpt "Pattern not found")
else if base!!(v+u) == pat!!u

then wrtVar r (u+1)
else do wrtVar s (v+1); wrtVar r 0)

-- Some sample patterns
base1 :: String
base1 = "puff the magic dragon"

pat1 :: String
pat1 = "magic"

pat2 :: String
pat2 = "mary"

Appendix B

Table of Rules of Isabelle/HOL

Since the main purpose of the implementation in Isabelle was to set up a new logic, only
few deep theorems of Isabelle/HOL itself, on which the logic is based, have been made use
of. Further, many rules are applied implicitly when employing the simplifier or the classical
reasoner. The following is a list of the rules that appear verbatim in the implementation.

allI (
∧

x.Px) =⇒∀x.Px

arg cong x= y =⇒ f x = f y

cong J f = g; x = yK =⇒ f x = g y

conjE JP∧Q; JP; QK =⇒ RK =⇒ R

conjI JP; QK =⇒ P∧Q

conjunct1 JP∧QK =⇒ P

exE J∃x.P x;
∧

x.P x=⇒QK =⇒Q

FalseE False=⇒ P

iffD1 JQ = P; QK =⇒ P

iffD2 JP = Q; QK =⇒ P

iffI JP =⇒Q; Q =⇒ PK =⇒ P = Q

impI (P =⇒Q) =⇒ P−→Q

mp JP−→Q; PK =⇒Q

notE J¬P; PK =⇒ R

notI (P =⇒ False) =⇒¬P

refl t = t

spec ∀x. P x=⇒ P y

subst Js= t; P sK =⇒ P t

Table B.1: Derived rules of inference for HOL

Appendix C

Isabelle Theories

The following sections present the concrete implementation of the calculus of dynamic logic
in Isabelle. The typesetting has been automatically taken care of by theisatool mechanism
of the Isabelle distribution, which directly extracts this information from the given theory
files. The proofs of some rather technical statements which are only used as auxiliary lemmas
in other proofs have been omitted. This chapter is intended for reference usage and not so
much for being perused sequentially. Refer to Chapter6 for a conceptual description of the
implementation.

C.1 Basic Monad Definitions and Laws.

theory Monads= Main:

For the lack of constructor classes in Isabelle, we initially use functorT as a parameter
standing for the monad in question.

typedecl ′a T

arities T :: (type)type

Monadic operations, decorated with Haskell-style syntax.

consts
bind :: ′a T⇒ (′a⇒ ′b T)⇒ ′b T (infixl �= 20)
ret :: ′a⇒ ′a T

constdefs
seq:: ′a T⇒ ′b T⇒ ′b T (infixl � 20)
p� q≡ (p�= (λx. q))

The usual monad laws for bind and ret (not the Kleisli triple ones) including injectivity of
ret for convenience.

axioms
bind-assoc[simp]: (p�= (λx. f x�= g)) = (p�= f �= g)
ret-lunit [simp]: (ret x�= f) = f x
ret-runit [simp]: (p�= ret) = p
ret-inject: ret x= ret z=⇒ x = z

lemmaseq-assoc[simp]: (p� (q� r)) = (p� q� r)
by (simp add: seq-def)

This sets up a Haskell-style ‘do {x←p; q}’ syntax with multiple bindings inside onedo
term.

C.2 Basic Notions of Monadic Programs 102

nonterminals
monseq

syntax (xsymbols)
-monseq:: monseq⇒ ′a T ((do{(-)}) [5] 100)
-mongen:: [pttrn, ′a T, monseq]⇒ monseq ((-←(-);/ -) [10, 6, 5] 5)
-monexp:: [′a T, monseq]⇒ monseq ((-;/ -) [6, 5] 5)
-monexp0:: [′a T]⇒ monseq ((-) 5)

translations
— input macros; replace do-notation byop�=/op�
-monseq(-mongen x p q) ⇀ p�= (%x. (-monseq q))
-monseq(-monexp p q) ⇀ p� (-monseq q)
-monseq(-monexp0 q) ⇀ q
— Retranslation of into the do-notation
-monseq(-mongen x p q) ↽ p�= (%x. q)
-monseq(-monexp p q) ↽ p� q
— Normalization macros ‘flattening’ do-terms
-monseq(-mongen x p q) ↽ -monseq(-mongen x p(-monseq q))
-monseq(-monexp p q) ↽ -monseq(-monexp p(-monseq q))

Actually, this rule does not contract, but rather expand monadic sequences, but for histori-
cal reasons. . .

lemmamon-ctr: (do{x← (do{y← p; q y}); f x}) = (do{y← p; x← q y; f x})
by(rule bind-assoc[symmetric])

end

C.2 Basic Notions of Monadic Programs

theory MonProp= Monads:

C.2.1 Discardability and Copyability

Properties of monadic programs which are needed for the further development, e.g. for the
definition of a subtype′a D of deterministically side-effect free (dsef) programs.

constdefs
— Discardable programs
dis :: ′a T⇒ bool
dis(p) ≡ (do{x←p; ret()}) = ret ()
— Copyable programs
cp :: ′a T⇒ bool
cp(p) ≡ (do{x←p; y←p; ret(x,y)}) = (do{x←p; ret(x,x)})
— dsefprograms arecpanddisand commute with all such programs
dsef :: ′a T⇒ bool
dsef(p) ≡ cp(p) ∧ dis(p) ∧ (∀q::bool T. cp(q) ∧ dis(q) −→

cp(do{x←p; y←q; ret(x,y)}))

C.2 Basic Notions of Monadic Programs 103

lemmadsef-cp: dsef p=⇒ cp p
apply(unfold dsef-def)

by blast

lemmadsef-dis: dsef p=⇒ dis p
apply(unfold dsef-def)

by blast

This is Lemma 4.5 of [34] that allows us to actually discard discardable programs in front
of arbitrary programs.

lemmadis-left: dis(p) =⇒ do{p; q} = q
proof −
assumed: dis(p)
havedo{p; q} = do{p; ret (); q}
by (simp add: seq-def)

also from d have. . . = do{ret (); q}
by (simp add: dis-def seq-def del: ret-lunit)

also have. . . = q by (simp add: seq-def)
finally show ?thesis.

qed

Essentially the same asdis-left, but expressed with binding.

lemmadis-left2: dis p=⇒ do{x←p; q} = q
proof −
assumea: dis p
havedo{x←p; q} = do{p; q} by (simp only: seq-def)
also from a have. . . = q by (rule dis-left)
finally show ?thesis.

qed

This is Lemma 4.22 of [34] which allows us to insert or remove copies ofcp programs
whose result values may be substituted for each other in the following program sequencer.

lemmacp-arb: cp p=⇒ do{x←p; y←p; r x y} = do{x←p; r x x}
proof (unfold cp-def)
assumec: do{x←p; y←p; ret (x, y)} = do{x←p; ret (x, x)}
havedo{x←p; y←p; r x y} = do{x←p; y←p; z←ret(x,y); r (fst z) (snd z)}
by (simp)

also have. . . = do{z←do{x←p; y←p; ret(x,y)}; r (fst z) (snd z)}
by (simp add: mon-ctr)

also from c have. . . = do{z←do{x←p; ret(x,x)}; r (fst z) (snd z)}
by simp

also have. . . = do{x←p; z←ret (x,x); r (fst z) (snd z)}
by (simp add: mon-ctr)

also have. . . = do{x←p; r x x}
by simp

finally show ?thesis.
qed

This is Lemma 4.23 of [34], asserting a weak composability of copyable programs. It is
generally not the case that sequences of copyable programs constitute a copyable program.

lemmaweak-cp-seq: cp p=⇒ cp (do{x←p; ret (f x)})
proof −

C.2 Basic Notions of Monadic Programs 104

assumec: cp p
let ?q= do{x←p; ret (f x)}
havedo{u←?q; v←?q; ret(u,v)} = do{x←p; u←ret (f x); y←p; v←ret (f y); ret(u,v)}
by (simp add: mon-ctr)

also have. . . = do{x←p; y←p; ret (f x, f y)}
by simp

also from c have. . . = do{x←p; ret (f x, f x)}
by (simp add: cp-arb)

also have. . . = do{x←p; u←ret (f x); ret(u,u)}
by simp

also have. . . = do{u←?q; ret(u,u)}
by (simp add: mon-ctr)

finally show ?thesisby (simp add: cp-def)
qed

One can reduce the copyability of a program of a certain form to a simpler form.

lemmacp-seq-ret: cp (do{x←p; y←q; ret(x,y)}) =⇒ cp (do{x←p; y←q; ret (f x y)})
proof −
assumecp (do{x←p; y←q; ret(x,y)})
hencec: cp (do{u←do{x←p; y←q; ret(x,y)}; ret (f (fst u) (snd u))})
by (simp add: weak-cp-seq)

havedo{u←do{x←p; y←q; ret(x,y)}; ret (f (fst u) (snd u))}
= do{x←p; y←q; ret (f x y)}

by (simp add: mon-ctr)
with c show?thesisby simp

qed

We also have a weak notion of stability under sequencing fordsefprograms.

lemmaweak-dis-seq: dis p=⇒ dis (do{x←p; ret (f x)})
proof −
assumed: dis p
havedo{z←do{x←p; ret (f x)}; ret ()} = do{x←p; z←ret (f x); ret ()}
by (simp only: mon-ctr)

also have. . . = do{x←p; ret()}
by simp

also from d have. . . = ret () by (simp add: dis-def)
finally show ?thesisby (simp add: dis-def)

qed

The following lemmascommute-X-Yare proofs of the Propositions 4.24 of [34] whereX
is the respective premiss andY is the conclusion.

lemmacommute-1-2: [[cp q; cp p; dis q; dis p]] =⇒ cp (do{x←p; y←q; ret(x,y)})
=⇒ do{x←p; y←q; ret(x,y)} = do{y←q; x←p; ret(x,y)}

proof −
assumea: cp q cp p dis q dis p
assumec: cp (do{x←p; y←q; ret(x,y)})
let ?s= do{x←p; y←q; ret(x,y)}
have?s= do{z←?s; ret (fst z, snd z)} by simp
also from c have. . . = do{w←?s; z←?s; ret (fst z, snd w)} by (simp add: cp-arb)
also from a have. . . = do{v←q; x←p; ret(x,v)} by (simp add: mon-ctr dis-left2)
finally show ?thesis.

qed

C.2 Basic Notions of Monadic Programs 105

lemmacommute-2-3: [[cp q; cp p; dis q; dis p]] =⇒
do{x←p; y←q; ret(x,y)} = do{y←q; x←p; ret(x,y)} =⇒
∀ r. do{x←p; y←q; r x y} = do{y←q; x←p; r x y}

proof
fix r
assumea: cp q cp p dis q dis p
assumeb: do{x←p; y←q; ret(x,y)} = do{y←q; x←p; ret(x,y)}
havedo{x←p; y←q; r x y} = do{x←p; y←q; z←ret(x,y); r (fst z) (snd z)}
by simp

also have. . . = do{z←do{x←p; y←q; ret(x,y)}; r (fst z) (snd z)}
by (simp only: mon-ctr)

also from b have. . . = do{z←do{y←q; x←p; ret(x,y)}; r (fst z) (snd z)}
by simp

also have. . . = do{y←q; x←p; r x y} by (simp add: mon-ctr)
finally show do{x←p; y←q; r x y} = do{y←q; x←p; r x y} .

qed

In this case, type annotations are necessary, since we cannot quantify over types of pro-
grams. The type forr given here is precisely what is needed for the proof to go through.

lemmacommute-3-1: [[cp q; cp p; dis q; dis p]] =⇒
∀ r:: ′a⇒ ′b⇒ ((′a∗ ′b)∗(′a∗ ′b)) T.
do{x←p; y←q; r x y} = do{y←q; x←p; r x y} =⇒

cp (do{x←p; y←q; ret(x,y)::(′a ∗ ′b) T})
proof −
let ?s= do{x←p; y←q; ret(x,y)}
assumea: cp q cp p dis q dis p
assumec: ∀ r:: ′a⇒ ′b⇒ ((′a∗ ′b)∗(′a∗ ′b)) T.

do{x←p; y←q; r x y} = do{y←q; x←p; r x y}
havedo{w←?s; z←?s; ret (w,z)} = do{u←p; v←q; x←p; y←q; ret((u,v),(x,y))}
by (simp add: mon-ctr)

also from c have. . . = do{u←p; x←p; v←q; y←q; ret((u,v),(x,y))} by simp
also from a have. . . = do{u←p; v←q; ret((u,v),(u,v))} by (simp only: cp-arb)
also have. . . = do{w←?s; ret(w,w)} by (simp add:mon-ctr)
finally show ?thesisby (simp add: cp-def)

qed

lemmacommute-1-3: [[cp q; cp p; dis q; dis p]] =⇒
cp (do{x←p; y←q; ret(x,y)}) =⇒
∀ r. do{x←p; y←q; r x y} = do{y←q; x←p; r x y}

— More or less just transitivity of implication
apply(rule commute-2-3)
apply(simp-all)
apply(rule commute-1-2)
apply(simp-all)

done

This weird axiom is needed to obtain the general commutativity of a discardable and copy-
able program from its commuting with allbool-valued programs.

axioms

C.2 Basic Notions of Monadic Programs 106

commute-bool-arb: [[dis p; cp p; ∀q1::bool T. cp(q1) ∧ dis(q1) −→
cp(do{x←p; y←q1; ret(x,y)})]] =⇒

(∀q. cp(q) ∧ dis(q) −→ cp(do{x←p; y←q; ret(x,y)}))

In order to introduce the subtype ofdsefprograms, we must prove it is not empty.

theoremdsef-ret[simp]: dsef(ret x)
proof (unfold dsef-def)
havecp (ret x) by (simp add: cp-def)
moreover havedis (ret x) by (simp add: dis-def)
moreover have(∀q. cp q∧ dis q−→ cp (do{x←ret x; y←q; ret (x, y)}))
by (simp add: weak-cp-seq)

ultimately show cp (ret x) ∧ dis (ret x) ∧
(∀q. cp q∧ dis q−→ cp (do{x←ret x; y←q; ret (x, y)}))

by blast
qed

C.2.2 Introducing the Subtype of dsef Programs

Introducing the subtype′a D of ′a T comprising thedsefprograms; since Isabelle lacks true
subtyping, it is simply declared as a new type with coercion functionsRep-Dsef:: ′a D⇒ ′a
T andAbs-Dsef:: ′a T⇒ ′a D whereAbs-Dsef pis of course only sensibly defined ifdsef p
holds.

typedef (Dsef) (′a) D = {p:: ′a T. dsef p}
apply(rule exI[of - ret x])
apply(blast intro: dsef-ret)

done

Minimizing the clutter caused byAbs-DsefandRep-Dsef.

syntax
-absdsef :: ′a T⇒ ′a D (⇑ - [200] 199)
-repdsef :: ′a D⇒ ′a T (⇓ - [200] 199)

translations
⇑ p
 Abs-Dsef p
⇓ p
 Rep-Dsef p

All representatives of terms of type′a D are dsef and thus in particular discardable and
copyable.

lemmadsef-Rep-Dsef[simp]: dsef (⇓ a)
proof (induct a rule: Abs-Dsef-induct)
fix a
assumea : Dsef
thus dsef(⇓ (⇑ a))
by (simp add: Abs-Dsef-inverse Dsef-def)

qed

lemmadis-Rep-Dsef: dis (⇓ a)
apply(insert dsef-Rep-Dsef[of a])
apply(unfold dsef-def)
apply(blast)

done

lemmacp-Rep-Dsef: cp (⇓ a)

C.2 Basic Notions of Monadic Programs 107

apply(insert dsef-Rep-Dsef[of a])
apply(unfold dsef-def)
apply(blast)

done

Convention: We will denote functions inD that are simply abstracted versions of appro-
priate functions inT by the same name with the first letter capitalised.

constdefs
Ret:: ′a⇒ ′a D
Ret x≡ ⇑ (ret x)

lemmaRet-ret: ⇓ (Ret x) = ret x
proof −
have⇓ (Ret x) = ⇓ (⇑ (ret x)) by (simp only: Ret-def)
also have. . . = ret x by (simp add: Dsef-def Abs-Dsef-inverse)
finally show ?thesis.

qed

Lifting operations will allow us to introduce monadic connectives∧, ∨, etc. by simply
lifting the HOL ones. Theoremdsef-retwill assert these to bedsef (see below).

constdefs
liftM :: [′a⇒ ′b, ′a T]⇒ ′b T
liftM f p ≡ do{x← p; ret (f x)}
liftM2 :: [′a⇒ ′b⇒ ′c, ′a T, ′b T]⇒ ′c T
liftM2 f p q≡ do{x← p; y← q; ret (f x y)}
liftM3 :: [′a⇒ ′b⇒ ′c⇒ ′d, ′a T, ′b T, ′c T]⇒ ′d T
liftM3 f p q r ≡ do{x← p; y← q; z← r; ret (f x y z)}
— The most general form of lifting; the above may be expressed by it
ap :: [(′a⇒ ′b) T, ′a T]⇒ ′b T (infixl $$100)
ap m p≡ do{f ← m; x← p; ret (f x)}

lemma liftM-ap: liftM f x = (ret f $$x)
by (simp add: ap-def liftM-def)

lemma liftM2-ap: liftM2 f x y = (ret f $$x $$y)
by (simp add: mon-ctr ap-def liftM2-def)

lemma liftM3-ap: liftM3 f x y z= ret f $$x $$y $$z
by(simp add: mon-ctr ap-def liftM3-def)

theoremdsef-ret-ap: dsef p=⇒ dsef (ret f $$p)
apply(simp add: ap-def dsef-def)
apply(clarify)
apply(rule conjI)
apply(erule weak-cp-seq)
apply(rule conjI)
apply(erule weak-dis-seq)
apply(clarify)
apply(drule-tac x= q in spec)
apply(simp add: mon-ctr weak-cp-seq)
apply(simp(no-asm-simp) only: cp-seq-ret)

C.2 Basic Notions of Monadic Programs 108

done

dsefprograms may be swapped.

lemmacommute-dsef: [[dsef p; dsef q]] =⇒
∀ r. do{x←p; y←q; r x y} = do{y←q; x←p; r x y}

apply(rule commute-1-3)
apply(simp-all add: dsef-def)
apply(clarify)
apply(drule commute-bool-arb)
apply(assumption)+
apply(drule-tac x= q in spec)

by(blast)

lemmacommute-bool: [[dsef p; cp (q::bool T); dis q]] =⇒
∀ r. do{x←p; y←q; r x y} = do{y←q; x←p; r x y}

by (rule commute-1-3, simp-all add: dsef-def)

A formalisation of the essential fact thatdsefprograms are actually stable under sequenc-
ing; this has only been proposed in [34], but has not been shown.

theoremdsef-seq: [[dsef p; ∀x. dsef(q x)]] =⇒ dsef (do{x←p; q x})
proof −
assumea1: dsef p
assumea2: ∀x. dsef (q x)
from a1havedisp: dis pby (rule dsef-dis)
from a1havecpp: cp pby (rule dsef-cp)
from a2havedisq: ∀x. dis (q x) by (unfold dsef-def, blast)
from a2havecpq: ∀x. cp (q x) by (unfold dsef-def, blast)
let ?s= do{x←p; q x}
— The proof proceeds in three parts, each one asserting some property stated in the definition ofdsef

terms. Firstly,dsef terms are discardable.
havedis ?s
proof −
havedo{x←?s; ret ()} = do{x←p; q x; ret ()} by (simp add: seq-def)
also from disp disq
have. . . = ret () by (simp add: dis-left dis-left2)
finally show ?thesisby (simp add: dis-def)

qed
— dsef terms are also copyable. We unfold the definition and prove the required equation directly.
moreover havecp ?s
proof −
havedo{x←?s; y←?s; ret (x,y)} =
do{u←p; x←q u; v←p; y←q v; ret (x,y)}
by simp

also have. . . = do{u←p; v←p; x←q u; y←q v; ret (x,y)}
proof −

— This swapping step is a bit more difficult; we have to assist the simplifier by the following
general statement:

have∀u. do{x←q u; v←p; y←q v; ret (x,y)} = do{v←p; x←q u; y←q v; ret (x,y)}
(is ∀u. ?A u= ?B u)

proof
fix u
from a2havedsef (q u) by (rule spec)
from this a1

C.2 Basic Notions of Monadic Programs 109

have∀ r:: ′b⇒ ′a⇒(′b∗ ′b) T. do{x←q u; v←p; r x v} = do{v←p; x←q u; r x v}
by (rule commute-dsef)

thus ?A u= ?B uby (rule spec)
qed
thus ?thesisby simp

qed
also from cpp cpqhave. . . = do{u←p; x←q u; ret (x,x)}
by (simp add: cp-arb)

finally show ?thesisby (simp add: cp-def)
qed
— The final step is thatp�= q commutes with bool-valued programs:
moreover have∀q::bool T. cp q∧ dis q−→ cp (do{x←?s; y←q; ret(x,y)})
proof

— The proof is carried out by a so called raw proof block, where the succeeding application of
blast spares us having to do the trivial proof steps.

fix qa
{ assumecpqa: cp (qa::bool T)
assumedisqa: dis qa
havecp (do{x←do{u←p; q u}; y←qa; ret (x, y)})
proof −
let ?w= do{x←do{u←p; q u}; y←qa; ret (x, y)}
havedo{x←?w; y←?w; ret (x,y)} =

do{u←p; x←q u; y←qa; u′←p; x′←q u′; y′←qa; ret((x,y),(x′,y′))}
by (simp del: bind-assoc add: mon-ctr)

also from a1 cpqa disqa
have. . . = do{u←p; x←q u; u′←p; y←qa; x′←q u′; y′←qa; ret((x,y),(x′,y′))}
by (simp add: commute-bool)

also from a1 a2
have. . . = do{u←p; u′←p; x←q u; y←qa; x′←q u′; y′←qa; ret((x,y),(x′,y′))}
proof −
— This fact is needed to help the simplifier solve the goal
have∀u. do{x←q u; u′←p; y←qa; x′←q u′; y′←qa; ret((x,y),(x′,y′))} =

do{u′←p; x←q u; y←qa; x′←q u′; y′←qa; ret((x,y),(x′,y′))}
(is ∀u. ?A u= ?B u)

proof
fix u
from a2havedsef (q u) by (rule spec)
from this a1have∀ r. do{x←q u; u′←p; r x u′} = do{u′←p; x←q u; r x u′}
by (rule commute-dsef)

thus ?A u= ?B uby (rule spec)
qed
thus ?thesisby simp

qed
also from a2 cpqa disqa
have. . . = do{u←p; u′←p; x←q u; x′←q u′; y←qa; y′←qa; ret((x,y),(x′,y′))}
by (simp add: commute-bool)

also from cpp cpq cpqahave. . . = do{u←p; x←q u; y←qa; ret((x,y),(x,y))}
by (simp add: cp-arb)

finally show ?thesisby (simp del: bind-assoc add: mon-ctr cp-def)
qed
}
thus cp (qa::bool T) ∧ dis qa−→ cp (do{x←do{u←p; q u}; y←qa; ret (x, y)})
by blast

C.3 Introducing Propositional Connectives 110

qed
ultimately show dsef ?sby (simp add:dsef-def)

qed

Given thatdsef programs are stable under sequencing, this weak form, which comes in
handy sometimes, can easily be proved.

lemmaweak-dsef-seq: dsef p=⇒ dsef(do{x←p; ret (f x)})
by(simp add: dsef-seq)

With the help of theoremdsef-seqthe following proof is immediate.

lemmadsef-liftM2: [[dsef p; dsef q]] =⇒ dsef (liftM2 f p q)
proof −
assumea1: dsef pand a2: dsef q
from a1havedsef (do{x←p; y←q; ret (f x y)})
proof (rule dsef-seq)
show ∀x. dsef (do{y←q; ret (f x y)})
proof
fix x from a2showdsef(do{y←q; ret (f x y)})
proof (rule dsef-seq)
show ∀y. dsef(ret (f x y))
proof
fix y showdsef (ret (f x y)) by (rule dsef-ret)

qed
qed

qed
qed
thus dsef (liftM2 f p q) by (simp only: liftM2-def)

qed

lemmaAbs-Dsef-inverse-liftM2[simp]: [[dsef p; dsef q]] =⇒
⇓ (⇑ (liftM2 f p q)) = liftM2 f p q

by (simp add: Abs-Dsef-inverse Dsef-def dsef-liftM2)

end

C.3 Introducing Propositional Connectives

theory MonLogic= MonProp:

C.3.1 Propositional Connectives

As usual in intuitionistic logics, we introduce conjunction, disjunction and implication inde-
pendently of each other.

consts
Valid :: bool D⇒ bool ((` -) 15)
∧D :: [bool D, bool D]⇒ bool D (infixr 35)
∨D :: [bool D, bool D]⇒ bool D (infixr 30)
−→D :: [bool D, bool D]⇒ bool D (infixr 25)

C.3 Introducing Propositional Connectives 111

According with the definition in [34], the connectives are simply lifted from HOL, and
validity amounts to being equal to a program always returningTrue.

defs
Valid-def: ` P≡ ⇓ P = do{x←(⇓ P); ret True}
conjD-def: P∧D Q≡ ⇑ (liftM2 (op∧) (⇓ P) (⇓ Q))
disjD-def: P∨D Q≡ ⇑ (liftM2 (op∨) (⇓ P) (⇓ Q))
impD-def: P−→D Q≡ ⇑ (liftM2 (op−→) (⇓ P) (⇓ Q))

constdefs
iffD :: [bool D, bool D]⇒ bool D (infixr ←→D 20)
P←→D Q≡ (P−→D Q) ∧D (Q−→D P)
NotD :: bool D⇒ bool D (¬D - [40] 40)
¬D P≡ P−→D Ret False

Because of discardability, the definition ofValid, which was simply taken over from the
definition of global validity of terms of typebool T, can be simplified.

lemmaValid-simp: (` p) = (⇓ p = ret True)
proof
assumevp: ` p
show⇓ p = ret True
proof −
from vphave⇓ p = do{⇓ p; ret True}
by (simp only: Valid-def seq-def)

also have. . . = ret Trueby (rule dis-left, rule dis-Rep-Dsef)
finally show ?thesis.

qed
next
assume⇓ p = ret True
hence⇓ p = do{x←⇓ p; ret True} by simp
thus ` p by (simp only: Valid-def)

qed

lemmaValid-simpD: (` P) = (P = Ret True)
apply(simp add: Valid-simp Ret-ret Ret-def)
apply(induct-tac P rule: Abs-Dsef-induct)
apply(simp add: Dsef-def Abs-Dsef-inverse)
apply(rule Abs-Dsef-inject[symmetric])
by (simp-all add: Dsef-def)

There is a notion of homomorphism associated with lifted operations. The formulation
does not really make clear what is intended, but the subsequent lemmas should illuminate the
idea.

theorem lift-Ret-hom: (⇑ (liftM2 f (⇓ (Ret a)) (⇓ (Ret b))))
= Ret(f a b)

proof −
have⇑ (liftM2 f (⇓ (Ret a)) (⇓ (Ret b)))

= ⇑ (do{x←(⇓ (Ret a)); y←(⇓ (Ret b)); ret (f x y)})
by (simp only: liftM2-def)

also have. . . = ⇑ (do{x←(⇓ (⇑ (ret a)));
y←(⇓ (⇑ (ret b))); ret (f x y)})

by (simp add: Ret-def)

C.3 Introducing Propositional Connectives 112

also have. . . = ⇑ (do{x←ret a; y←ret b; ret(f x y)})
by (simp add: Dsef-def Abs-Dsef-inverse)

also have. . . = ⇑ (ret (f a b)) by simp
also have. . . = Ret(f a b) by (simp only: Ret-def)
finally show ?thesis.

qed

lemmaconjD-Ret-hom: Ret(a∧b) = ((Ret a) ∧D (Ret b))
by (simp add: lift-Ret-hom conjD-def)

lemmadisjD-Ret-hom: Ret(a∨b) = ((Ret a) ∨D (Ret b))
by (simp add: lift-Ret-hom disjD-def)

lemma impD-Ret-hom: Ret(a−→b) = ((Ret a) −→D (Ret b))
by (simp add: lift-Ret-hom impD-def)

lemmaNotD-Ret-hom: Ret(¬ P) = (¬D (Ret P))
by(simp add: NotD-def impD-Ret-hom[symmetric])

If a formula depending on variablex is valid for allx, then we may also ‘substitute’ it by a
dsef term.

lemmadsef-form: ∀x. ` P x=⇒ ∀b. ` ⇑ (do{a←⇓ b; ⇓ (P a)})
proof
fix b
assumea1: ∀x. ` P x
hence⇓ (⇑ (do{a←⇓ (b:: ′a D); ⇓ (P a)})) =
⇓ (⇑ (do{a←⇓ (b:: ′a D); ret True}))

by (simp add: Valid-simp)
also have. . . = do{a←⇓ b; ret True}
proof (rule Abs-Dsef-inverse)
havedsef (do{a←⇓ b; ret True})
by (simp add: dsef-ret dsef-Rep-Dsef dsef-seq)

thus do{a←⇓ b; ret True} ∈ Dsef by (simp add: Dsef-def)
qed
also have. . . = ret Trueby (simp add: dis-left2 dsef-dis[OF dsef-Rep-Dsef])
finally show ` ⇑ (do{a←⇓ (b:: ′a D); ⇓ (P a)})
by (simp add: Valid-simp)

qed

Every true formula may be injected intobool Dby Retto yield a valid formula of dynamic
logic. And the converse also holds!

theoremValid-Ret[simp]: (` Ret P) = P
proof
assumep: P
have⇓ (Ret P) = do{x←⇓ (Ret P); ret True}
proof −
havedsef (⇓ (Ret P)) by (rule dsef-Rep-Dsef)
henceds: dis (⇓ (Ret P)) by (simp only: dsef-def)
have⇓ (Ret P) = ret Pby (rule Ret-ret)
also from p have. . . = ret Trueby simp
also from dshave. . . = do{⇓ (Ret P); ret True} by (rule dis-left[symmetric])
finally show ?thesisby (simp only: seq-def)

qed
thus ` Ret Pby (simp only: Valid-def)

C.3 Introducing Propositional Connectives 113

next
assumerp: ` Ret P
hence⇓ (Ret P) = ret Trueby (rule iffD1[OF Valid-simp])
henceret P= ret True
by (simp add: Ret-def Dsef-def Abs-Dsef-inverse)

henceP = Trueby (rule ret-inject)
thus P by rules

qed

A bit more tedious, but conversely toValid-simpit is also true that every valid formula that
is a negation equalsret False.

lemmaValid-not-eq-ret-False: (` ¬D b) = (⇓ b = ret False)
proof
assumè ¬D b
hencent: ⇓ (¬D b) = ret Trueby (simp add: Valid-simp)
show⇓ b = ret False
proof −
havedsef (do{x←⇓ b; ret (¬ x)})
by (rule weak-dsef-seq, rule dsef-Rep-Dsef)

hencebnnb: b = (¬D (¬D b))
by (simp add: NotD-def impD-def liftM2-def

Ret-ret Abs-Dsef-inverse Dsef-def mon-ctr Rep-Dsef-inverse)
from nt have⇑ (⇓ (¬D b)) = Ret Trueby (simp add: Ret-def)
hence(¬D b) = Ret Trueby (simp only: Rep-Dsef-inverse)
hence(¬D (¬D b)) = (¬D (Ret True)) by simp
with bnnbhaveb = Ret(¬ True) by (simp add: NotD-Ret-hom[symmetric])
thus ?thesisby (simp add: Ret-ret)

qed
next
assume⇓ b = ret False
hence⇑ (⇓ b) = ⇑ (ret False) by simp
hencebf : b = Ret Falseby (simp add: Rep-Dsef-inverse Ret-def)
have⇓ (¬D b) = ret True
proof −
from bf have⇓ (¬D b) = ⇓ (Ret False−→D Ret False)
by (simp add: NotD-def)

also have. . . = ⇓ (Ret True)
proof −
have(Ret False−→D Ret False) = Ret(False−→ False)
by (rule impD-Ret-hom[symmetric])

thus ?thesisby simp
qed
also have. . . = ret Trueby (rule Ret-ret)
finally show ?thesis.

qed
thus ` ¬D b by (simp only: Valid-simp)

qed

LemmasValid-simp, Valid-not-eq-ret-Falseand Valid-Retshow that, since the classical
typebool is taken as the carrier of truth values, the whole calculus is classical.

C.3 Introducing Propositional Connectives 114

C.3.2 Setting up the Simplifier for Propositional Reasoning

Since natural deduction rules don’t get us far in the calculus of global validity judgments (in
particular, we do not have an analogon for the implication introduction rule), we algebraize
it and perform proofs by term manipulation.

All these axioms are in fact provable; it is just the shortage of time that forces us to impose
them directly.

constdefs
xorD :: [bool D, bool D]⇒ bool D (infixr ⊕D 20)
xorD P Q ≡ (P∧D ¬D Q) ∨D (¬D P∧D Q)

axioms
apl-and-assoc: ((P∧D Q) ∧D R) = (P∧D (Q∧D R))
apl-xor-assoc: ((P⊕D Q) ⊕D R) = (P⊕D (Q⊕D R))
apl-and-comm: (P∧D Q) = (Q∧D P)
apl-xor-comm: (P⊕D Q) = (Q⊕D P)
apl-and-LC: (P∧D (Q∧D R)) = (Q∧D (P∧D R))
apl-xor-LC: (P⊕D (Q⊕D R)) = (Q⊕D (P⊕D R))
apl-and-True-r: (P∧D Ret True) = P
apl-and-True-l: (Ret True∧D P) = P
apl-and-absorb: (P∧D P) = P
apl-and-absorb2: (P∧D (P∧D Q)) = (P∧D Q)
apl-and-False-l: (Ret False∧D P) = Ret False
apl-and-False-r: (P∧D Ret False) = Ret False
apl-xor-False-r: (P⊕D Ret False) = P
apl-xor-False-l: (Ret False⊕D P) = P
apl-xor-contr: (P⊕D P) = Ret False
apl-xor-contr2: (P⊕D (P⊕D Q)) = Q
apl-and-ldist: (P∧D (Q⊕D R)) = ((P∧D Q) ⊕D (P∧D R))
apl-and-rdist: ((P⊕D Q) ∧D R) = ((P∧D R) ⊕D (Q∧D R))
— Expressing the connectives by conjunction and exclusive or
apl-imp-xor: (P−→D Q) = ((P∧D Q) ⊕D P⊕D Ret True)
apl-or-xor: (P∨D Q) = (P⊕D Q⊕D (P∧D Q))
apl-not-xor: (¬D P) = (P⊕D Ret True)
apl-iff-xor: (P←→D Q) = (P⊕D Q⊕D Ret True)

pdl-taut is the collection of all these rules, so that they can be handed over to the simplifier
conveniently.

This set of rewrite rules is complete with respect to normalisation of propositional tautolo-
gies to their normal formRet True. Hence, we can prove monadic tautologies in one fell
swoop by applying the tactic(simp only: pdl-taut Valid-Ret).

lemmaspdl-taut= — . . . all axioms above

lemmasmon-prop-reason= Abs-Dsef-inverse dsef-liftM2
Dsef-def conjD-def disjD-def impD-def NotD-def

A proof showing in what manner the above axioms may be proved.

lemma (P∧D (¬D P)) = Ret False
apply(simp add: mon-prop-reason, simp only: liftM2-def)
apply(unfold Ret-def)

C.3 Introducing Propositional Connectives 115

apply(rule cong[of Abs-Dsef Abs-Dsef], rule refl)
apply(simp add: Abs-Dsef-inverse Dsef-def)
apply(simp add: mon-ctr del: bind-assoc)
apply(simp add: cp-arb dsef-cp[OF dsef-Rep-Dsef])
apply(rule dis-left2)
apply(rule dsef-dis[OF dsef-Rep-Dsef])

done

And another one, following the same scheme, only that the simplifier now needs help from
the classical reasoner to finish.

lemma (P⊕D Q) = (Q⊕D P)
apply(simp add: disjD-def conjD-def NotD-def impD-def liftM2-def xorD-def Ret-def)
apply(simp add: Abs-Dsef-inverse Dsef-def dsef-seq dsef-Rep-Dsef mon-ctr del: bind-assoc)
apply(simp add: commute-dsef[of ⇓ Q ⇓ P])
apply(simp add: dsef-cp cp-arb)
apply(subgoal-tac∀x y. (x∧ ¬ y∨ ¬ x∧ y) = (y∧ ¬ x∨ ¬ y∧ x), simp)
by blast

C.3.3 Proof Rules

Proof rules, which can all be proved to be correct, since we have the semantics built into the
logic (i.e. we can access it within HOL). Some proofs however simply employ the above
tautology reasoner.

theorempdl-excluded-middle: ` P∨D (¬D P)
by (simp add: pdl-taut)

theorempdl-mp: [[` P−→D Q; ` P]] =⇒ ` Q
by(simp add: Valid-simp impD-def liftM2-def Rep-Dsef-inverse)

Disjunction introduction

theorempdl-disjI1: ` P =⇒ ` (P∨D Q)
proof −
assumè P
hencept: ⇓ P = ret Trueby (simp only: Valid-simp)
have⇓ (P∨D Q) = ret True
proof −
have⇓ (⇑ (liftM2 op∨ (⇓ P) (⇓ Q))) = ret True
proof −
have⇓ (⇑ (do{x←⇓ Q; ret True})) = ret True
proof −
have⇓ (⇑ (do{x←⇓ Q; ret True})) =
do{x←⇓ Q; ret True}
by (simp add: Abs-Dsef-inverse Dsef-def weak-dsef-seq)

also have. . . = do{⇓ Q; ret True} by (simp only:seq-def)
also have. . . = ret Trueby (simp add: dis-Rep-Dsef dis-left)
finally show ?thesis.

qed
with pt show?thesisby (simp add: liftM2-def)

qed
thus ?thesisby (simp only: disjD-def)

qed

C.3 Introducing Propositional Connectives 116

thus ` (P∨D Q) by (simp only: Valid-simp)
qed

Entirely analogous for this dual rule.

theorempdl-disjI2: ` Q =⇒ ` (P∨D Q)

The following proof proceeds by a standard pattern: First insert the assumptions into some
specifically tailored do-term and then reduce this do-term toret Truewith the simplifier.

theorempdl-disjE: [[` P∨D Q; ` P−→D R; ` Q−→D R]] =⇒ ` R
proof −
assumea1: ` P∨D Q ` P−→D R` Q−→D R
notecopy= dsef-cp[OF dsef-Rep-Dsef]
notedsc = dsef-dis[OF dsef-Rep-Dsef]
— 1st part: blow up program⇓ R to some giant term:
have⇓ R= do{u←ret True; v←ret True; w←ret True; r←⇓ R; ret(u−→v−→w−→r)}
by simp

also from a1have. . . = do{u←(⇓ (P∨D Q));
v←(⇓ (P−→D R));
w←(⇓ (Q−→D R));
r←⇓ R; ret (u−→v−→w−→r)}

by (simp add: Valid-simp)
— 2nd part: reduce this giant program toret Trueexploiting properties of dsef programs
also have. . . = ret True
apply(simp add: mon-prop-reason liftM2-def dsef-Rep-Dsef dsef-seq mon-ctr del: bind-assoc)
apply(simp add: commute-dsef[of ⇓ Q ⇓ P])
apply(simp add: commute-dsef[of ⇓ R⇓ Q])
apply(simp add: dsef-cp[OF dsef-Rep-Dsef] cp-arb del: bind-assoc)
apply(simp add: dsef-dis[OF dsef-Rep-Dsef] dis-left2)
done

finally show ?thesisby (simp only: Valid-simp)
qed

theorempdl-conjI: [[` P; ` Q]] =⇒ ` P∧D Q
proof −
assumea: ` P ` Q
from a have⇓ P = ret Trueby (simp add: Valid-simp)
moreover
from a have⇓ Q = ret Trueby (simp add: Valid-simp)
ultimately
have⇓ (P∧D Q) = ret True
by (simp add: mon-prop-reason liftM2-def)

thus ?thesisby (simp add: Valid-simp)
qed

Derived rules of inference

theorempdl-FalseE: ` Ret False=⇒ ` R
proof −
assumè Ret False
henceFalseby (rule iffD1[OF Valid-Ret])
thus ` Rby (rule FalseE)

qed

C.3 Introducing Propositional Connectives 117

lemmapdl-notE: [[` P; ` ¬D P]] =⇒ ` R
proof (unfold NotD-def)
assumep: ` P and np: ` P−→D Ret False
from np phave` Ret Falseby (rule pdl-mp)
thus ` Rby (rule pdl-FalseE)

qed

lemmapdl-conjE: [[` P∧D Q; [[` P; ` Q]] =⇒ ` R]] =⇒ ` R
proof −
assumea1: ` P∧D Q
assumea2: [[` P; ` Q]] =⇒ ` R
have` P
proof (rule pdl-mp)
show` P∧D Q−→D P by (simp add: pdl-taut)

qed
moreover
have` Q
proof (rule pdl-mp)
show` P∧D Q−→D Q by (simp add: pdl-taut)

qed
moreover notea1 a2
ultimately
show` Rby (rules)

qed

Some further typical rules.

lemmapdl-notI: [[` P; ` Ret False]] =⇒ ` ¬D P
by(rule pdl-FalseE)

lemmapdl-conjunct1: ` P∧D Q =⇒ ` P
proof −
assumè P∧D Q
thus ` P
proof (rule pdl-conjE)
assumè P
thus ?thesis.

qed
qed

lemmapdl-conjunct2: assumespq: ` P∧D Q shows` Q
proof −
from pqshow` Q
proof (rule pdl-conjE)
assumè Q
thus ?thesis.

qed
qed

lemmapdl-iffI : [[` P−→D Q; ` Q−→D P]] =⇒ ` P←→D Q
proof (unfold iffD-def)

C.3 Introducing Propositional Connectives 118

assumea: ` P−→D Q and b: ` Q−→D P
show` (P−→D Q) ∧D (Q−→D P)
by (rule pdl-conjI)

qed

lemmapdl-iffE: [[` P←→D Q; [[` P−→D Q; ` Q−→D P]] =⇒ ` R]] =⇒ ` R
apply(unfold iffD-def)
apply(erule pdl-conjE)
by blast

lemmapdl-sym: (` P←→D Q) =⇒ (` Q←→D P)
apply(erule pdl-iffE)

by(rule pdl-iffI)

lemmapdl-iffD1: ` P←→D Q =⇒ ` P−→D Q
by(erule pdl-iffE)

lemmapdl-iffD2: ` P←→D Q =⇒ ` Q−→D P
by (erule pdl-iffE)

lemmapdl-conjI-lifted:
assumes̀ P−→D Q and ` P−→D Rshows` P−→D Q∧D R
proof −
have` (P−→D Q) −→D (P−→D R) −→D (P−→D Q∧D R)
by (simp add: pdl-taut)

thus ?thesisby (rule pdl-mp[THEN pdl-mp])
qed

lemmapdl-eq-iff: [[P = Q]] =⇒ ` P←→D Q
by (simp only: pdl-taut Valid-Ret)

lemmapdl-iff-sym: ` P←→D Q =⇒ ` Q←→D P
by (simp only: pdl-taut Valid-Ret)

lemmapdl-imp-wk: ` P =⇒ ` Q−→D P
proof −
assumè P
have` P−→D Q−→D P by (simp add: pdl-taut)
thus ?thesisby (rule pdl-mp)

qed

lemmapdl-False-imp: ` Ret False−→D P
by (simp add: pdl-taut)

lemmapdl-imp-trans: [[` A−→D B; ` B−→D C]] =⇒ ` A−→D C
proof −
assumea1: ` A−→D B and a2: ` B−→D C
have` (A−→D B) −→D (B−→D C) −→D A−→D C by (simp only: pdl-taut Valid-Ret)
from this a1 a2show?thesisby (rule pdl-mp[THEN pdl-mp])

qed

C.4 Monadic Equality 119

Some applications of the enhanced simplifier, which is now capable of proving prop. tau-
tologies immediately.

lemma` A−→D B−→D A
by (simp only: pdl-taut Valid-Ret)

lemma` (P∧D Q−→D R)←→D (P−→D Q−→D R)
by (simp only: pdl-taut Valid-Ret)

lemma` (P−→D Q) ∨D (Q−→D P)
by (simp only: pdl-taut Valid-Ret)

lemma` (P−→D Q) ∧D (¬D P−→D R)←→D (P∧D Q∨D ¬D P∧D R)
by (simp only: pdl-taut Valid-Ret)

end

C.4 Monadic Equality

theory MonEq= MonLogic:

constdefs
MonEq :: [′a D, ′a D]⇒ bool D (infixl =D 60)
MonEq a b≡ ⇑ (liftM2 (op=) (⇓ a) (⇓ b))

lemmaMonEq-Ret-hom: ((Ret a) =D (Ret b)) = (Ret(a=b))
by (simp add: lift-Ret-hom MonEq-def)

Transitivity of monadic equality.

lemmamon-eq-trans: [[` a =D b; ` b =D c]] =⇒ ` a =D c
proof −
assumeab: ` a =D b and bc: ` b =D c
have` (a =D b) −→D (b =D c) −→D (a =D c)
apply(simp add: MonEq-def impD-def liftM2-def)
apply(simp add: Abs-Dsef-inverse dsef-Rep-Dsef Dsef-def dsef-seq mon-ctr del: bind-assoc)
apply(simp add: cp-arb dsef-cp[OF dsef-Rep-Dsef])
apply(simp add: commute-dsef[of ⇓ c ⇓ a])
apply(simp add: commute-dsef[of ⇓ b ⇓ a])
apply(simp add: cp-arb dsef-cp[OF dsef-Rep-Dsef] del: bind-assoc)
apply (simp add: dsef-dis[OF dsef-Rep-Dsef] dis-left2)
apply(subst Ret-def[symmetric])
by simp

from this ab bcshow?thesisby (rule pdl-mp[THEN pdl-mp])
qed

Reflexivity of monadic equality.

lemmamon-eq-refl: ` a =D a

C.5 The Proof Calculus of Monadic Dynamic Logic 120

apply(simp add: MonEq-def liftM2-def)
apply(simp add: cp-arb dsef-cp[OF dsef-Rep-Dsef])
apply(simp add: dis-left2 dsef-dis[OF dsef-Rep-Dsef])
apply(subst Ret-def[symmetric])
by (simp)

Auxiliary lemma, just to help the simplifier.

lemmasym-subst-seq2: ∀x y. c x y= c y x=⇒
(⇑ (do{x←p; y←q; c x y})) = (⇑ (do{x←p; y←q; c y x}))
by simp

Symmetry of monadic equality. The simplifier gets into trouble here, for it must apply
symmetry of real equality inside the scope of lambda terms. We circumvent this problem by
extracting the essential proof obligation throughsym-subst-seq2and then working by hand.

lemmamon-eq-sym: (a =D b) = (b =D a)
apply(simp add: MonEq-def liftM2-def)
apply(simp add: commute-dsef[of ⇓ a ⇓ b])
apply(rule sym-subst-seq2)
apply(clarify)
apply(rule arg-cong[where f = ret])
by (rule eq-sym-conv)

end

C.5 The Proof Calculus of Monadic Dynamic Logic

theory PDL = MonLogic:

C.5.1 Types, Rules and Axioms

Types, rules and axioms for the box and diamond operators of PDL formulas.

consts
Box :: ′a T⇒ (′a⇒ bool D)⇒ bool D ([# -]- [0, 100] 100)
Dmd :: ′a T⇒ (′a⇒ bool D)⇒ bool D (〈-〉- [0, 100] 100)

Syntax translations that let you write e.g.[# x←p; y←q](ret (x=y)) for Box (do {x←p;
y←q; ret (x,y)}) (λ (x,y). ret (x=y)) Essentially, these translations collect all bound variables
inside the boxes and return them as a tuple. The lambda term that constitutes the second
argument of Box will then also take a tuple pattern as its sole argument.

nonterminals
bndseq bndstep

syntax (xsymbols)
-pdlbox :: [bndseq, bool D]⇒ bool D ([# -]- [0, 100] 100)
-pdldmd :: [bndseq, bool D]⇒ bool D (〈-〉- [0, 100] 100)
-pdlbnd :: [idt, ′a T]⇒ bndstep (-←-)
-pdlseq :: [bndstep, bndseq]⇒ bndseq (-;/ -)

:: bndstep⇒ bndseq (-)
-pdlin :: [pttrn, bndseq]⇒ bndseq
-pdlout :: [pttrn, bndseq]⇒ bndseq

C.5 The Proof Calculus of Monadic Dynamic Logic 121

translations
-pdlbox(-pdlseq(-pdlbnd x p) r) phi

⇀ Box(-pdlseq(-pdlbnd x p) (-pdlin x r)) phi
-pdlbox(-pdlbnd x p) phi ⇀ Box p(λx. phi)
-pdldmd(-pdlseq(-pdlbnd x p) r) phi

⇀ Dmd(-pdlseq(-pdlbnd x p) (-pdlin x r)) phi
-pdldmd(-pdlbnd x p) phi ⇀ Dmd p(λx. phi)
-pdlin tpl (-pdlseq(-pdlbnd x p) r)

⇀ -pdlseq(-pdlbnd x p) (-pdlin (tpl, x) r)
-pdlin tpl (-pdlbnd x p)

⇀ -pdlout(tpl,x) (do{x←p; ret(tpl,x)})
-pdlseq(-pdlbnd x p) (-pdlout tpl r)

⇀ -pdlout tpl(do{x←p; r})
Box(-pdlout tpl r) phi

⇀ Box r (λ tpl. phi)
Dmd(-pdlout tpl r) phi

⇀ Dmd r (λ tpl. phi)

The axioms of the proof calculus for propositional dynamic logic.

axioms
pdl-nec: (∀x. ` P x) =⇒ ` [# x←p](P x)
pdl-mp-: [[` (P−→D Q); ` P]] =⇒ ` Q — Only repeated here for completeness.

pdl-k1: ` [# x←p](P x−→D Q x) −→D [# x←p](P x) −→D [# x←p](Q x)
pdl-k2: ` [# x←p](P x−→D Q x) −→D 〈x←p〉(P x) −→D 〈x←p〉(Q x)
pdl-k3B: ` Ret P−→D [# x←p](Ret P)
pdl-k3D: ` 〈x←p〉(Ret P) −→D Ret P
pdl-k4: ` 〈x←p〉(P x∨D Q x) −→D (〈x←p〉(P x) ∨D 〈x←p〉(Q x))
pdl-k5: ` (〈x←p〉(P x) −→D [# x←p](Q x)) −→D [# x←p](P x−→D Q x)
pdl-seqB: ` [# x←p; y←q x](P x y)←→D [# x←p][# y←q x](P x y)
pdl-seqD: ` 〈x←p; y←q x〉(P x y)←→D 〈x←p〉〈y←q x〉(P x y)
pdl-ctrB: ` [# x←p; y←q x](P y) −→D [# y←do{x←p; q x}](P y)
pdl-ctrD: ` 〈y←do{x←p; q x}〉(P y) −→D 〈x←p; y←q x〉(P y)
pdl-retB: ` [# x←ret a](P x)←→D P a
pdl-retD: ` 〈x←ret a〉(P x)←→D P a
pdl-dsefB: dsef p=⇒ ` ⇑ (do{a←p; ⇓ (P a)})←→D [# a←p](P a)
pdl-dsefD: dsef p=⇒ ` ⇑ (do{a←p; ⇓ (P a)})←→D 〈a←p〉(P a)

A simpler notion of sequencing is often more practical in real programs. Essentially this
boils down to admitting just one binding within the modal operators.

axioms
pdl-seqB-simp: ` ([# x←p][# y←q x](P y))←→D ([# y←do{x←p; q x}](P y))
pdl-seqD-simp: ` (〈x←p〉〈y←q x〉(P y))←→D (〈y←do{x←p; q x}〉(P y))

For simple monads [34] both rules can be derived from axiompdl-seqB(or pdl-seqD).
Simplicity is exploited through the use of the converse rule ofpdl-ctrB.

lemma` [# y←do{x←p; q x}](P y) −→D [# x←p; y←q x](P y) =⇒
` ([# p](λx. [# q x]P))←→D ([# do{x←p; q x}]P)

apply(rule pdl-iffI)

C.5 The Proof Calculus of Monadic Dynamic Logic 122

apply(rule pdl-imp-trans)
apply(rule pdl-iffD2[OF pdl-seqB])
apply(rule pdl-ctrB) — dispose of the trailing ret expression

apply(rule pdl-imp-trans)
apply(assumption) — this time dispose by the converse ofpdl-ctrB
apply(rule pdl-iffD1[OF pdl-seqB])

done

Further axioms satisfied by logically regular monads (which we deal with here). Cf. [34,
Page 601]

axioms
pdl-eqB: ` Ret(p = q) −→D [# x←p](P x) −→D [# x←q](P x)
pdl-eqD: ` Ret(p = q) −→D 〈x←p〉(P x) −→D 〈x←q〉(P x)

C.5.2 Derived Rules of Inference

‘Multiple’ modus ponens, provided for convenience.

lemmas
pdl-mp-2x= pdl-mp[THEN pdl-mp] and
pdl-mp-3x= pdl-mp[THEN pdl-mp, THEN pdl-mp]

First half of the classical relationship between diamond and box.

lemmadmd-box-rel1: ` ([# x←p](P x−→D Ret False) −→D Ret False) −→D 〈x←p〉(P x)
(is ` (?b−→D Ret False) −→D ?d)

proof −
— Show a classically equivalent statement
have` (?d−→D Ret False) −→D ?b
proof −
— The ‘usual’ axiomatic proof method
havef1: ` ((?d−→D [# x←p](Ret False)) −→D ?b) −→D

(?d−→D Ret False) −→D ?b
by (simp add: pdl-taut)

havef2: ` (?d−→D [# x←p](Ret False)) −→D ?b
by (rule pdl-k5)

from f1 f2show?thesisby (rule pdl-mp)
qed
thus ?thesisby (simp add: pdl-taut)

qed

. . . and the second half.

lemmadmd-box-rel2: ` 〈x←p〉(P x) −→D [# x←p](P x−→D Ret False) −→D Ret False
proof −
have` (〈x←p〉(Ret False) −→D Ret False) −→D

([# x←p](P x−→D Ret False) −→D 〈x←p〉(P x) −→D 〈x←p〉(Ret False)) −→D

〈x←p〉(P x) −→D [# x←p](P x−→D Ret False) −→D Ret False
by (simp add: pdl-taut)

from this pdl-k3D pdl-k2show?thesisby (rule pdl-mp-2x)
qed

Inheriting the classical theorems from Isabelle/HOL, one also obtains the classical equiv-
alence between the diamond and box operator.

C.5 The Proof Calculus of Monadic Dynamic Logic 123

The proofs ofdmd-box-rel1anddmd-box-rel2implicitly employ classical arguments through
the use of the simplifier, since the algebraization of propositional logic behaves classically.

theoremdmd-box-rel: ` 〈x←p〉(P x)←→D ¬D [# x←p](¬D P x)
apply(rule pdl-iffI)
apply(unfold NotD-def)
apply(rule dmd-box-rel2)
apply(rule dmd-box-rel1)

done

Givendmd-box-rel, one easily obtains a dual one.

theorembox-dmd-rel: ` [# x←p](P x)←→D ¬D 〈x←p〉(¬D P x)
proof −
have` (〈x←p〉(¬D P x)←→D ¬D [# x←p](¬D ¬D P x)) −→D

([# x←p](P x)←→D ¬D ¬D [# x←p](¬D ¬D P x)) −→D

([# x←p](P x)←→D ¬D 〈x←p〉(¬D P x))
by (simp add: pdl-taut)

moreover
have` 〈x←p〉(¬D P x)←→D ¬D [# x←p](¬D ¬D P x)
by (rule dmd-box-rel)

moreover
have` [# x←p](P x)←→D ¬D ¬D [# x←p](¬D ¬D P x)
by (simp add: pdl-taut)

ultimately
show?thesis
by (rule pdl-mp-2x)

qed

A specialized form of the equality rulepdl-eqD that only requires the arguments of a
programp to be equal.

theorempdl-eqD-ext: ` Ret(a = b) −→D 〈p a〉P−→D 〈p b〉P (is ` ?ab−→D ?pa−→D ?pb)
proof −
have` (Ret(a = b) −→D Ret(p a= p b)) −→D

(Ret(p a= p b) −→D ?pa−→D ?pb) −→D

(?ab−→D ?pa−→D ?pb) by (simp add: pdl-taut)
moreover
have` Ret(a = b) −→D Ret(p a= p b)
proof (subst impD-Ret-hom[symmetric])
show` Ret(a = b−→ p a= p b)
proof (rule iffD2[OF Valid-Ret])
showa = b−→ p a= p bby blast

qed
qed
moreover
have` Ret(p a= p b) −→D ?pa−→D ?pb
by (rule pdl-eqD)

ultimately
show?thesisby (rule pdl-mp-2x)

qed

The following are simple consequences of the axioms above; rather than monadic impli-
cation, they use Isabelle’s meta implication (and hence represent rules).

lemmabox-imp-distrib: ` [# x←p](P x−→D Q x) =⇒ ` [# x←p](P x) −→D [# x←p](Q x)

C.5 The Proof Calculus of Monadic Dynamic Logic 124

by(rule pdl-k1[THEN pdl-mp])

lemmadmd-imp-distrib: ` [# x←p](P x−→D Q x) =⇒ ` 〈x←p〉(P x) −→D 〈x←p〉(Q x)
by (rule pdl-mp[OF pdl-k2])

lemmapdl-box-reg: ∀x. ` P x−→D Q x=⇒ ` [# x←p](P x) −→D [# x←p](Q x)
apply(rule box-imp-distrib)
apply(rule pdl-nec)
apply assumption

done

lemmapdl-dmd-reg: ∀x. ` P x−→D Q x=⇒ ` 〈x←p〉(P x) −→D 〈x←p〉(Q x)
apply(rule dmd-imp-distrib)
apply(rule pdl-nec)
apply assumption

done

theorempdl-wkB: [[` [# x←p](P x); ∀x. ` P x−→D Q x]] =⇒ ` [# x←p](Q x)
apply(rule pdl-mp)
apply(rule box-imp-distrib)
by(rule pdl-nec)

theorempdl-wkD: [[` 〈x←p〉(P x); ∀x. ` P x−→D Q x]] =⇒ ` 〈x←p〉(Q x)
proof −
assumea: ` 〈x←p〉(P x) and b: ∀x. ` P x−→D Q x
from b have` [# x←p](P x −→D Q x) by (rule pdl-nec)
hence` 〈x←p〉(P x) −→D 〈x←p〉(Q x) by (rule pdl-k2[THEN pdl-mp])
from this ashow ` 〈x←p〉(Q x) by (rule pdl-mp)

qed

The following rule comes in handy when program sequences occur inside the box.

theorempdl-plugB: [[` [# x←p](P x); ∀x. ` P x−→D [# y←q x](C y)]] =⇒ ` [# do{x←p; q x}]C
apply(drule pdl-wkB, assumption)
by (rule pdl-iffD1[OF pdl-seqB-simp, THEN pdl-mp])

theorempdl-plugD: [[` 〈x←p〉(P x); ∀x. ` P x−→D 〈y←q x〉(C y)]] =⇒ ` 〈do{x←p; q x}〉C
apply(drule pdl-wkD, assumption)
by (rule pdl-iffD1[OF pdl-seqD-simp, THEN pdl-mp])

lemmabox-conj-distrib1: ` [# x←p](P x) ∧D [# x←p](Q x) −→D [# x←p](P x∧D Q x)
proof −
have∀x. ` P x−→D Q x−→D P x∧D Q x
proof
fix x show` P x−→D Q x−→D P x∧D Q x
by (simp only: pdl-taut Valid-Ret)

qed
hencea2: ` [# x←p](P x) −→D [# x←p](Q x−→D (P x∧D Q x))
by (rule pdl-box-reg)

from this pdl-k1have` [# x←p](P x) −→D [# x←p](Q x) −→D [# x←p](P x∧D Q x)
by (rule pdl-imp-trans)

thus ?thesisby (simp only: pdl-taut)

C.5 The Proof Calculus of Monadic Dynamic Logic 125

qed

lemmabox-conj-distrib2: ` [# x←p](P x∧D Q x) −→D [# x←p](P x) ∧D [# x←p](Q x)
proof −
have ∀x. ` P x∧D Q x−→D P x by (simp add: pdl-taut)
hencea1: ` [# x←p] (P x∧D Q x) −→D [# x←p](P x) by (rule pdl-box-reg)
have ∀x. ` P x∧D Q x−→D Q x by (simp add: pdl-taut)
hencea2: ` [# x←p] (P x∧D Q x) −→D [# x←p](Q x) by (rule pdl-box-reg)
let ?P= [# x←p](P x) and ?Q= [# x←p](Q x) and ?PQ= [# x←p](P x∧D Q x)
have` (?PQ−→D ?P) −→D (?PQ−→D ?Q) −→D (?PQ−→D ?P∧D ?Q)
by (simp only: pdl-taut Valid-Ret)

from this a1have` (?PQ−→D ?Q) −→D (?PQ−→D ?P∧D ?Q) by (rule pdl-mp)
from this a2show?thesisby (rule pdl-mp)

qed

The box operator distributes over (finite) conjunction.

theorembox-conj-distrib: ` [# x←p](P x∧D Q x)←→D [# x←p](P x) ∧D [# x←p](Q x)
apply (rule pdl-iffI)
apply (rule box-conj-distrib2)
apply (rule box-conj-distrib1)

done

Split and join rules for boxes and diamonds.

lemmapdl-seqB-split: ` [# do{x←p; y←q x; ret (x, y)}](λ (x, y). P x y)
=⇒ ` [# p](λx. [# q x]P x)

by (rule pdl-seqB[THEN pdl-iffD1, THEN pdl-mp])

lemmapdl-seqB-join: ` [# p](λx. [# q x]P x)
=⇒ ` [# do{x←p; y←q x; ret (x, y)}](λ (x, y). P x y)

by (rule pdl-seqB[THEN pdl-iffD2, THEN pdl-mp])

lemmapdl-seqD-split: ` 〈do{x←p; y←q x; ret (x, y)}〉(λ (x, y). P x y)
=⇒ ` 〈p〉(λx. 〈q x〉P x)

by (rule pdl-seqD[THEN pdl-iffD1, THEN pdl-mp])

lemmapdl-seqD-join: ` 〈p〉(λx. 〈q x〉P x)
=⇒ ` 〈do{x←p; y←q x; ret (x, y)}〉(λ (x, y). P x y)

by (rule pdl-seqD[THEN pdl-iffD2, THEN pdl-mp])

Working in an axiomatic proof system requires a lot of auxiliary rules; especially the lack
of an implication introduction rule ((P =⇒ Q) =⇒ P −→ Q) cries for lots of lemmas that
are essentially just basic lemmas lifted over some premiss.

lemmapdl-wkB-lifted1: [[` A−→D [# p]B; ∀x. ` B x−→D C x]] =⇒ ` A−→D [# p]C
proof −
assumea1: ` A−→D [# p]B and a2: ∀x. ` B x−→D C x
from a2have` [# p]B−→D [# p]C by (rule pdl-box-reg)
with a1show?thesisby (rule pdl-imp-trans)

qed

lemmapdl-wkD-lifted1: [[` A−→D 〈p〉B; ∀x. ` B x−→D C x]] =⇒ ` A−→D 〈p〉C
proof −

C.5 The Proof Calculus of Monadic Dynamic Logic 126

assumea1: ` A−→D 〈p〉B and a2: ∀x. ` B x−→D C x
from a2have` 〈p〉B−→D 〈p〉C by (rule pdl-dmd-reg)
with a1show?thesisby (rule pdl-imp-trans)

qed

lemma box-conj-distrib-lifted1: ` (A −→D [# p](λx. P x ∧D Q x)) ←→D ((A −→D [# p]P) ∧D (A
−→D [# p]Q))
proof (rule pdl-iffI)
show` (A−→D [# p](λx. P x∧D Q x)) −→D (A−→D [# p]P) ∧D (A−→D [# p]Q)
proof −
have` ([# p](λx. P x∧D Q x) −→D [# p]P∧D [# p]Q) −→D

(A−→D [# p](λx. P x∧D Q x)) −→D

(A−→D [# p]P) ∧D (A−→D [# p]Q)
by (simp add: pdl-taut)

from this box-conj-distrib2show?thesisby (rule pdl-mp)
qed

next
show` ((A−→D [# p]P) ∧D (A−→D [# p]Q)) −→D A−→D [# p](λx. P x∧D Q x)
proof −
have` ([# p]P∧D [# p]Q−→D [# p](λx. P x∧D Q x)) −→D

((A−→D [# p]P) ∧D (A−→D [# p]Q)) −→D

A−→D [# p](λx. P x∧D Q x)
by (simp add: pdl-taut)

from this box-conj-distrib1show?thesisby (rule pdl-mp)
qed

qed

lemmapdl-seqB-lifted1: ` (A−→D [# p](λx. [# q x]P))←→D (A−→D [# do{x←p; q x}]P)
proof (rule pdl-iffI)
show` (A−→D [# p](λx. [# q x]P)) −→D A−→D [# do{x←p; q x}]P
proof −
have` ([# p](λx. [# q x]P) −→D [# do{x←p; q x}]P) −→D

(A−→D [# p](λx. [# q x]P)) −→D

(A−→D [# do{x←p; q x}]P)
by (simp add: pdl-taut)

from this pdl-iffD1[OF pdl-seqB-simp] show?thesisby (rule pdl-mp)
qed

next
show` (A−→D [# do{x←p; q x}]P) −→D A−→D [# p](λx. [# q x]P)
proof −
have` ([# do{x←p; q x}]P−→D [# p](λx. [# q x]P)) −→D

(A−→D [# do{x←p; q x}]P) −→D

(A−→D [# p](λx. [# q x]P))
by (simp add: pdl-taut)

from this pdl-iffD2[OF pdl-seqB-simp] show?thesisby (rule pdl-mp)
qed

qed

lemmapdl-seqD-lifted1: ` (A−→D 〈x←p〉〈q x〉P)←→D (A−→D 〈do{x←p; q x}〉P)
proof (rule pdl-iffI)
show` (A−→D 〈p〉(λx. 〈q x〉P)) −→D A−→D 〈do{x←p; q x}〉P
proof −
have` (〈p〉(λx. 〈q x〉P) −→D 〈do{x←p; q x}〉P) −→D

C.5 The Proof Calculus of Monadic Dynamic Logic 127

(A−→D 〈p〉(λx. 〈q x〉P)) −→D

(A−→D 〈do{x←p; q x}〉P)
by (simp add: pdl-taut)

from this pdl-iffD1[OF pdl-seqD-simp] show?thesisby (rule pdl-mp)
qed

next
show` (A−→D 〈do{x←p; q x}〉P) −→D A−→D 〈p〉(λx. 〈q x〉P)
proof −
have` (〈do{x←p; q x}〉P−→D 〈p〉(λx. 〈q x〉P)) −→D

(A−→D 〈do{x←p; q x}〉P) −→D

(A−→D 〈p〉(λx. 〈q x〉P))
by (simp add: pdl-taut)

from this pdl-iffD2[OF pdl-seqD-simp] show?thesisby (rule pdl-mp)
qed

qed

lemmapdl-plugB-lifted1: [[` A−→D [# p]B; ∀x. ` B x−→D [# q x]C]] =⇒ ` A−→D [# do{x←p; q
x}]C
proof −
assumea1: ` A−→D [# p]B and a2: ∀x. ` B x−→D [# q x]C
from a1 a2have` A−→D [# p](λx. [# q x]C) by (rule pdl-wkB-lifted1)
thus ?thesisby (rule pdl-iffD1[OF pdl-seqB-lifted1, THEN pdl-mp])

qed

lemmapdl-plugD-lifted1: [[` A−→D 〈p〉B; ∀x. ` B x−→D 〈q x〉C]] =⇒` A−→D 〈do{x←p; q x}〉C
proof −
assumea1: ` A−→D 〈p〉B and a2: ∀x. ` B x−→D 〈q x〉C
from a1 a2have` A−→D 〈x←p〉〈q x〉C by (rule pdl-wkD-lifted1)
thus ?thesisby (rule pdl-iffD1[OF pdl-seqD-lifted1, THEN pdl-mp])

qed

lemma imp-box-conj1: ` A−→D [# p](λx. B x∧D C x) =⇒ ` A−→D [# p]B
proof (rule pdl-wkB-lifted1)
assumè A−→D [# p](λx. B x∧D C x)
show` A−→D [# p](λx. B x∧D C x) .

next
assumè A−→D [# p](λx. B x∧D C x)
show∀x. ` B x∧D C x−→D B x
proof
fix x show` B x∧D C x−→D B x by (simp add: pdl-taut)

qed
qed

lemma imp-box-conj2: ` A−→D [# p](λx. B x∧D C x) =⇒ ` A−→D [# p]C
proof (rule pdl-wkB-lifted1)
assumè A−→D [# p](λx. B x∧D C x)
show` A−→D [# p](λx. B x∧D C x) .

next
assumè A−→D [# p](λx. B x∧D C x)

C.5 The Proof Calculus of Monadic Dynamic Logic 128

show∀x. ` B x∧D C x−→D C x
proof
fix x show` B x∧D C x−→D C x by (simp add: pdl-taut)

qed
qed

The following lemmas show how one can split and join boxes freely with the help of axiom
pdl-seqB-simp.

lemmapdl-imp-id: ` A−→D A
by (simp add: pdl-taut)

lemma` [# do{x1←p1; x2←p2; x3←p3; r x1 x2 x3}]P−→D

[# x1←p1][# x2←p2][# x3←p3][# r x1 x2 x3]P
apply(rule pdl-imp-trans, rule pdl-iffD2[OF pdl-seqB-simp], rule pdl-box-reg,rule allI)+
by (simp add: pdl-taut)

lemma` [# x1←p1][# x2←p2][# x3←p3][# x4←p4][# r x1 x2 x3 x4]P−→D

[# do{x1←p1; x2←p2; x3←p3; x4←p4; r x1 x2 x3 x4}]P
apply(rule pdl-plugB-lifted1, rule pdl-imp-id, rule allI)+
by (simp add: pdl-taut)

C.5.3 Examples

Examples from [8, Theorem 6].

lemma` 〈x←p〉(P x) ∨D 〈x←p〉(Q x) −→D 〈x←p〉(P x∨D Q x)
proof −
have ∀x. ` P x−→D P x ∨D Q x by (simp add: pdl-taut)
hencea1: ` 〈x←p〉(P x) −→D 〈x←p〉(P x ∨D Q x) by (rule pdl-dmd-reg)
have ∀x. ` Q x−→D P x ∨D Q x by (simp add: pdl-taut)
hencea2: ` 〈x←p〉(Q x) −→D 〈x←p〉(P x ∨D Q x) by (rule pdl-dmd-reg)
let ?P= 〈x←p〉(P x) and ?Q= 〈x←p〉(Q x) and ?PQ= 〈x←p〉(P x∨D Q x)
have` (?P−→D ?PQ) −→D (?Q−→D ?PQ) −→D (?P ∨D ?Q−→D ?PQ)
by (simp only: pdl-taut Valid-Ret)

from this a1have` (?Q−→D ?PQ) −→D (?P ∨D ?Q−→D ?PQ) by (rule pdl-mp)
from this a2show?thesisby (rule pdl-mp)

qed

lemma` 〈x←p〉(P x) ∧D [# x←p](Q x) −→D 〈x←p〉(P x∧D Q x)
proof −
have ∀x. ` Q x−→D P x−→D P x∧D Q x by (simp add: pdl-taut)
hence` [# x←p](Q x) −→D [# x←p](P x −→D P x∧D Q x)
by (rule pdl-box-reg)

moreover have` [# x←p](P x−→D P x∧D Q x) −→D 〈x←p〉(P x) −→D 〈x←p〉(P x∧D Q x)
by (rule pdl-k2)

ultimately have ` [# x←p](Q x) −→D 〈x←p〉(P x) −→D 〈x←p〉(P x∧D Q x)
by (rule pdl-imp-trans) — transitivity of implication

thus ?thesisby (simp only: pdl-taut)
qed

C.6 A Deterministic Parser Monad with Fall Back Alternatives 129

lemmapdl-conj-dmd: ` 〈x←p〉(P x∧D Q x) −→D 〈x←p〉(P x) ∧D 〈x←p〉(Q x)
proof −
— first proving the ‘P-part’
havedp: ` 〈x←p〉(P x∧D Q x) −→D 〈x←p〉(P x)
proof −
havefa: ∀x. ` P x∧D Q x−→D P x by (simp add: pdl-taut)
thus ?thesis
proof −
assume∀x. ` P x∧D Q x−→D P x
thus ` 〈x←p〉(P x∧D Q x) −→D 〈x←p〉(P x) by (rule pdl-dmd-reg)

qed
qed
— the same for Q
moreover
havedq: ` 〈x←p〉(P x∧D Q x) −→D 〈x←p〉(Q x)
proof −
havefa: ∀x. ` P x∧D Q x−→D Q x by (simp add: pdl-taut)
thus ?thesis
proof −
assume∀x. ` P x∧D Q x−→D Q x
thus ` 〈x←p〉(P x∧D Q x) −→D 〈x←p〉(Q x) by (rule pdl-dmd-reg)

qed
qed
— Now assemble the results to arrive at the main thesis
ultimately show ?thesisby (rule pdl-conjI-lifted)

qed

lemma` [# x←p](P x) ∨D [# x←p](Q x) −→D [# x←p](P x∨D Q x)
proof −
have ∀x. ` P x−→D P x ∨D Q x by (simp add: pdl-taut)
hencea1: ` [# x←p](P x) −→D [# x←p](P x ∨D Q x) by (rule pdl-box-reg)
have ∀x. ` Q x−→D P x ∨D Q x by (simp add: pdl-taut)
hencea2: ` [# x←p](Q x) −→D [# x←p](P x ∨D Q x) by (rule pdl-box-reg)
let ?P= [# x←p](P x) and ?Q= [# x←p](Q x) and ?PQ= [# x←p](P x ∨D Q x)
have` (?P−→D ?PQ) −→D (?Q−→D ?PQ) −→D (?P ∨D ?Q−→D ?PQ)
by (simp only: pdl-taut Valid-Ret)

from this a1 a2show?thesisby (rule pdl-mp-2x)
qed

end

C.6 A Deterministic Parser Monad with Fall Back
Alternatives

theory Parsec= PDL + MonEq:

In a typical implementation of this parser monad,T would have the formT A = (S⇒ (E
+ A) × S), i.e. it would be a state monad (over statesS) with exceptions of typeE. The fall
back alternativeq in p‖q would then only be used ifp failed to terminate.

consts
item :: nat T — Parses exactly one character (natural number)

C.6 A Deterministic Parser Monad with Fall Back Alternatives 130

fail :: ′a T — Always fails
alt :: ′a T⇒ ′a T⇒ ′a T (infixl ‖ 140) — Prefer first parser, but fall back on second if necessary

getInput :: nat list T— read the current state
setInput :: nat list⇒ unit T

constdefs
eot :: bool T
eot≡ (do{i ← getInput; ret (null i)})
Eot :: bool D
Eot≡ ⇑ eot
GetInput:: nat list D
GetInput≡ ⇑ getInput

GetInputandEot are the abstractions in′a D of the resp. lower case terms in′a T.

axioms
dsef-getInput: dsef getInput
fail-bot: ` [# fail](λx. Ret False)
eot-item: ` Eot−→D [# x←item](Ret False)
set-get: ` 〈setInput x〉(λu. GetInput=D Ret x)
get-item: ` GetInput=D Ret(y#ys) −→D 〈x←item〉(Ret(x = y) ∧D GetInput=D Ret ys)
altB-iff : ` [# x←p‖q](P x)←→D ([# x←p](P x) ∧D 〈x←p〉(Ret True)) ∨D

([# x←q](P x) ∧D [# x←p](Ret False))
altD-iff : ` 〈x←p‖q〉(P x)←→D 〈x←p〉(P x) ∨D (〈x←q〉(P x) ∧D [# x←p](Ret False))
determ: ` 〈x←p〉(P x)←→D [# x←p](P x) ∧D 〈x←p〉(Ret True)

Axiom determis the typical relationship between〈p〉P and[# p]P when no nondetermin-
ism is involved. AxiomsaltB-iff altD-iff describe the fall back behaviour of the alternative
operation.

dsef getInputimpliesdsef eot.

lemmadsef-eot: dsef eot
by (simp add: eot-def dsef-seq dsef-ret dsef-getInput)

Another way to state the properties of alternation (for the diamond operator).

axioms
altD-left: ` 〈p〉P−→D 〈p‖q〉P
altD-right: ` 〈q〉P−→D 〈p〉(λx. Ret True) ∨D 〈p‖q〉P

Proof thatEot actually is just an abbreviation.

lemmaEot-GetInput: Eot = (GetInput=D Ret[])
proof −
havenull-eq-nil: ∀x. null x = (x = [])
proof
fix x shownull x = (x = [])
proof (cases x)
assumex = [] thus null x = (x = []) by simp

next
fix a list assumex = (a#list) thus null x = (x = []) by simp

qed
qed

C.6 A Deterministic Parser Monad with Fall Back Alternatives 131

show?thesis
by(simp add: Eot-def eot-def GetInput-def MonEq-def liftM2-def

dsef-getInput Abs-Dsef-inverse Dsef-def Ret-def null-eq-nil)
qed

lemmaGetInput-item-fail: ` GetInput=D Ret[] −→D [# item](λx. Ret False)
apply(rule subst[OF Eot-GetInput])
by (rule eot-item)

We can show that an alternative parser terminates iff one of its constituent parsers does.

lemmapar-term: ` 〈x← p‖q〉(Ret True)←→D 〈x←p〉(Ret True) ∨D 〈x←q〉(Ret True)
proof (rule pdl-iffI)
have` (〈x←p‖q〉(Ret True) −→D 〈x←p〉(Ret True) ∨D 〈x←q〉(Ret True) ∧D [# x←p](Ret False))
−→D

〈x←p‖q〉(Ret True) −→D 〈x←p〉(Ret True) ∨D 〈x←q〉(Ret True)
by (simp add: pdl-taut)

moreover notepdl-iffD1[OF altD-iff]
ultimately show ` 〈p ‖ q〉(λx. Ret True) −→D 〈p〉(λx. Ret True) ∨D 〈q〉(λx. Ret True)
by (rule pdl-mp)

next
have` (〈x←p〉(Ret True) ∨D 〈x←q〉(Ret True) ∧D [# x←p](Ret False) −→D 〈x← p ‖ q〉(Ret True)

) −→D

([# x←p](Ret False)←→D ¬D 〈x←p〉(¬D Ret False)) −→D

〈x←p〉(Ret True) ∨D 〈x←q〉(Ret True) −→D 〈x← p ‖ q〉(Ret True)
by (simp add: pdl-taut)

moreover
notepdl-iffD2[OF altD-iff]
moreover
notebox-dmd-rel
ultimately
show` 〈x←p〉(Ret True) ∨D 〈x←q〉(Ret True) −→D 〈x← p ‖ q〉(Ret True)
by (rule pdl-mp-2x)

qed

The following two lemmas are immediate from the axioms.

lemmaparI1: ` [# x←p](P x) ∧D 〈x←p〉(Ret True) −→D [# x←p‖q](P x)

lemmaparI2: ` [# x←p](Ret False) ∧D [# x←q](P x) −→D [# x← p‖q](P x)

C.6.1 Specifying Simple Parsers in Terms of the Basic Ones

constdefs
sat :: (nat⇒ bool)⇒ nat T
sat p≡ do{x←item; if p x then ret x else fail}
digitp :: nat T
digitp≡ sat(λx. x < 10)

The intended semantics ofmanyis that it maps a parserp into one that appliesp as often as
possible and collects the results (which may be none).many1requires at least one successful
run of p.

consts
many :: ′a T⇒ ′a list T

C.6 A Deterministic Parser Monad with Fall Back Alternatives 132

many1:: ′a T⇒ ′a list T

We cannot definemany, since it is not primitive recursive and there is no termination
measure.

axioms
many-unfold: many p= ((do{x← p; xs← many p; ret (x#xs)}) ‖ ret [])

defs
many1-def: many1 p≡ (do{x← p; xs← many p; ret (x#xs)})

This is the most convenient and expressive rule we can hope for at the moment.

lemmamany-step: [[` 〈(do{x← p; xs← many p; ret (x#xs)})〉P∨D

〈ret []〉P∧D [# x←p](Ret False)]] =⇒ ` 〈many p〉P
constdefs
natp:: nat T
natp≡ do{ns← many1 digitp; ret (foldl (λ r n. 10∗ r + n) 0 ns)}

The parser for natural numbersnatpworks on an input stream that conists of natural num-
bers and reads numbers between 0 and 9 (inclusive) until no such number can be read. Then
it transforms its result list into a number by folding an appropriate function into the list.
Of course, one might just as well consider an input stream of bounded numbers (e.g. ASCII
characters in their numeric representation) and then read ‘0’ to ‘9’, but this would not provide
any interesting further insight.

C.6.2 Auxiliary Lemmas

A convenient rendition of axiomaltD-iff as a rule.

lemma altD-iff-lifted1: [[` A−→D 〈x←q〉(P x); ` A−→D [# x←p](Ret False)]] =⇒ ` A−→D 〈x←
p‖q〉(P x)
proof −
have` (〈x←p‖q〉(P x)←→D 〈x←p〉(P x) ∨D 〈x←q〉(P x) ∧D [# x←p](Ret False)) −→D

(A−→D 〈x←q〉(P x)) −→D (A−→D [# x←p](Ret False)) −→D

A−→D 〈x← p‖q〉(P x)
by (simp add: pdl-taut)

moreover
notealtD-iff
moreover
assumè A−→D 〈x←q〉(P x)
moreover
assumè A−→D [# x←p](Ret False)
ultimately
show?thesisby (rule pdl-mp-3x)

qed

The correctness ofnatpobviously relies on the correctness ofdigitp, which is proved first.

theorem digitp-nat: ` GetInput=D Ret(1#ys) −→D 〈x←digitp〉(Ret(x = 1) ∧D GetInput=D Ret
ys)
(is ` ?A−→D 〈digitp〉(λx. ?C x∧D ?D))
apply(unfold digitp-def sat-def)
apply(rule pdl-plugD-lifted1)
apply(rule get-item)

C.6 A Deterministic Parser Monad with Fall Back Alternatives 133

apply(rule allI)
apply(simp add: split-if)
apply(safe)
apply(rule pdl-iffD2[OF pdl-retD])
by (simp add: pdl-taut) — For the else-branch we obtain a contradiction, since the input was 1

On empty input,digitp will fail.

theoremdigitp-fail: ` GetInput=D Ret[] −→D [# digitp](λx. Ret False)
apply(simp add: digitp-def sat-def)
apply(rule pdl-plugB-lifted1)
apply(rule GetInput-item-fail)
apply(rule allI)
apply(rule pdl-False-imp)

done

lemma ret-nil-aux: ` A∧D B−→D

〈ret []〉(λxs. A∧D B∧D Ret(xs= []))

lemma ret-one-aux: ` A−→D

〈ret (Suc 0)〉(λn. Ret(n = Suc 0) ∧D A)

lemmapdl-eqD-aux1: ` (B∧D C−→D 〈p b〉P) −→D Ret(a = b) ∧D B∧D C−→D 〈p a〉P
lemmapdl-eqD-aux2: ` (A−→D 〈 p b〉P) −→D A∧D Ret(a = b) −→D 〈 p a〉P

lemmapdl-imp-strg1: ` A−→D C =⇒ ` A∧D B−→D C
lemmapdl-imp-strg2: ` B−→D C =⇒ ` A∧D B−→D C

C.6.3 Correctness of the Monadic Parser

The following is a major theorem, more because of its complexity and since it involves most
of the axioms given for the monad, than because of its theoretical insight. Essentially, it states
thatnatpbehaves totally correct for a given input.

theoremnatp-corr: ` 〈do{uu←setInput[1]; natp}〉(λn. Ret(n = 1) ∧D Eot)
proof −
have` 〈uu←setInput[1]〉(GetInput=D Ret[1])
by (rule set-get)

moreover
have∀uu::unit. ` GetInput=D Ret[1] −→D 〈n←natp〉(Ret(n = 1) ∧D Eot)
proof
fix uu
— The actual proof starts here: from a given input, show thatnatp is correct
show` GetInput=D Ret[1] −→D 〈natp〉(λn. Ret(n = 1) ∧D Eot)
proof −
— Prove the formula with defn. ofnatpunfolded
have` GetInput=D Ret[1] −→D 〈do{x←digitp; xs←many digitp; ret (foldl (λ r. op+ (10∗ r))

x xs)}〉(λn. Ret(n = 1) ∧D Eot) (is ` ?a−→D ?b)
proof −— Work out each atomic program separately
have` GetInput=D Ret[1] −→D 〈x←digitp〉(Ret(x=1) ∧D GetInput=D Ret[])
by (rule digitp-nat)

moreover

C.7 A Simple Reference Monad with while and if 134

have∀x. ` (Ret(x=(1::nat)) ∧D GetInput=D Ret[]) −→D

(〈do{xs←many digitp; ret (foldl (λ r. op+ (10∗ r)) x xs)}〉(λn. Ret(n=1) ∧D Eot))
proof — Here,digitp will fail, ie. manywill return []
fix x
show` Ret(x = 1) ∧D GetInput=D Ret[] −→D

〈do{xs←many digitp; ret (foldl (λ r. op+ (10∗ r)) x xs)}〉(λn. Ret(n = 1) ∧D Eot)
proof (rule pdl-plugD-lifted1[whereB = λxs. Ret(x = 1) ∧D GetInput=D Ret[] ∧D

Ret(xs= [])])
show` Ret(x = 1) ∧D GetInput=D Ret[] −→D

〈many digitp〉(λxs. Ret(x = 1) ∧D GetInput=D Ret[] ∧D Ret(xs= []))
apply(subst many-unfold)
apply(rule altD-iff-lifted1)
apply(rule ret-nil-aux)
apply(rule pdl-plugB-lifted1)
apply(rule pdl-imp-strg2)
apply(rule digitp-fail)
apply(rule allI)
by (simp add: pdl-taut)

next
show∀xs. ` Ret(x = 1) ∧D GetInput=D Ret[] ∧D Ret(xs= []) −→D

〈ret (foldl (λ r. op+ (10∗ r)) x xs)〉(λn. Ret(n = 1) ∧D Eot)
apply(rule allI)
apply(rule pdl-eqD-aux1[THEN pdl-mp])
apply(rule pdl-eqD-aux2[THEN pdl-mp])
apply(simp)
apply(subst Eot-GetInput)
by (rule ret-one-aux)

qed
qed
ultimately
show?thesisby (rule pdl-plugD-lifted1)

qed
thus ?thesisby (simp add: natp-def many1-def mon-ctr del: bind-assoc)

qed
qed
ultimately show ?thesisby (rule pdl-plugD)

qed
end

C.7 A Simple Reference Monad with while and if

theory State= PDL + MonEq:

Read/write operations on references of arbitrary type, and a while loop.

typedecl ′a ref

consts
newRef :: ′a⇒ ′a ref T
readRef :: ′a ref⇒ ′a T
writeRef :: ′a ref⇒ ′a⇒ unit T ((- := -) [100, 10] 10)
monWhile :: bool D⇒ unit T⇒ unit T (WHILE (4-) /DO (4-) /END)

C.7 A Simple Reference Monad with while and if 135

To make the dsef operation of reading a reference more readable (pun unintended), we
introduce syntactical sugar:∗r stands for⇑ readRef r.

syntax
-readRefD :: ′a ref⇒ ′a D (∗- [100] 100)

translations
-readRefD r
 ⇑ (readRef r)

This definition is rather useless as it stands, since one actually wantsoldref r to be a
formula inbool D. The quantifier is necessary to avoid introducing a fresh variablea on the
right hand side of the definition.

The idea is appealing however, since it would provide a statement about the existence ofr
as a reference.

constdefs
oldref :: ′a ref⇒ bool
oldref r ≡ ∀a. ` [# s←newRef a](Ret(¬(r=s)))

The basic axioms of a simple while language with references. In the following we will not
make use of operationnewRefand hence neither of its axioms.

axioms
dsef-read: dsef(readRef r)
read-write: ` [# r := x](λuu. ∗r =D Ret x)
read-write-other-gen: ` ⇑ (do{u←readRef r; ret (f u)}) −→D

[# s := y](λuu. Ret(r 6=s) −→D ⇑ (do{u←readRef r; ret (f u)}))
while-par: ` P∧D b−→D [# p](λu. P) =⇒ ` P−→D [# WHILE b DO p END](λx. P∧D ¬D b)
read-new: ` [# r←newRef a](Ret a=D ∗r)
read-new-other: ` (Ret x=D ∗r) −→D [# s← newRef y]((Ret x=D ∗r) ∨D Ret(r=s))

lemma read-write-other: ` (∗r =D Ret x) −→D [# s := y](λuu. Ret(r 6=s) −→D (∗r =D Ret x))
proof −
have` ⇑ (do{u←readRef r; ret (u = x)}) −→D

[# s := y](λuu. Ret(r 6=s) −→D ⇑ (do{u←readRef r; ret (u = x)}))
by (rule read-write-other-gen)

thus ?thesis
by (simp add: MonEq-def liftM2-def Dsef-def Ret-def Abs-Dsef-inverse dsef-read)

qed

It is not really necessary to step back to the do-notation forread-write-other-gen.

lemma` ∗r =D Ret b∧D Ret(f b) −→D ⇑ (do{a←readRef r; ret (f a∧ a = b)})

Definitions of oddity and evenness of natural numbers, as well as an algorithm for com-
puting Russian multiplicationrumult.

constdefs
nat-even:: nat⇒ bool
nat-even n≡ 2 dvd n
nat-odd :: nat⇒ bool
nat-odd n≡ ¬ nat-even n
rumult :: nat⇒ nat⇒ nat ref⇒ nat ref⇒ nat ref⇒ nat T
rumult a b x y r≡ do{x:=a; y:=b; r:=0;

C.7 A Simple Reference Monad with while and if 136

WHILE (⇑ (do{u←readRef x; ret (0 < u)}))
DO do{u←readRef x; v←readRef y; w←readRef r;

if (nat-odd u) then(r := w + v) else ret();
x := u div 2; y := v ∗ 2} END; readRef r}

C.7.1 General Auxiliary Lemmas

Following are several auxiliary lemmas which are not general enough to be placed inside the
general theory files, but which are used more than once below – and thus justify their mere
existence.

Some weakening rules.

lemmapdl-conj-imp-wk1: ` A−→D C =⇒ ` A∧D B−→D C
proof −
assumè A−→D C
have` (A−→D C) −→D A∧D B−→D C
by (simp add: pdl-taut)

thus ?thesisby (rule pdl-mp)
qed

lemmapdl-conj-imp-wk2: ` B−→D C =⇒ ` A∧D B−→D C
proof −
assumè B−→D C
have` (B−→D C) −→D A∧D B−→D C
by (simp add: pdl-taut)

thus ?thesisby (rule pdl-mp)
qed

The following can be used to prove a specific goal by proving two parts separately. It is
similar topdl-iffD2 [OF box-conj-distrib-lifted1, THEN pdl-mp], which is

` (A-2−→D [# p-2]P-2) ∧D (A-2−→D [# p-2]Q-2) =⇒
` A-2−→D [# p-2](λx. P-2 x∧D Q-2 x)

.

lemma pdl-conj-imp-box-split: [[` A−→D [# p]C; ` B−→D [# p]D]] =⇒ ` A ∧D B−→D [# x←p](C
x∧D D x)
proof (rule pdl-iffD2[OF box-conj-distrib-lifted1, THEN pdl-mp])
assumea1: ` A−→D [# p]C and a2: ` B−→D [# p]D
show` (A∧D B−→D [# p]C) ∧D (A∧D B−→D [# p]D)
proof (rule pdl-conjI)
show` A∧D B−→D [# p]C
proof (rule pdl-conj-imp-wk1)
show` A−→D [# p]C .

qed
next
show` A∧D B−→D [# p]D
proof (rule pdl-conj-imp-wk2)
show` B−→D [# p]D .

qed
qed

qed

C.7 A Simple Reference Monad with while and if 137

Since dsef programs may be discarded, a formula is equal to itself prefixed by such a
program.

lemmadsef-form-eq: dsef p=⇒ P = ⇑ (do{a←p; ⇓ P})
proof −
assumea1: dsef p
havef1: do{a←p; ⇓ P} = ⇓ P
proof (rule dis-left2)
showdis p
by (rule dsef-dis[OF a1])

qed
thus ?thesis
proof −
haveP = ⇑ (⇓ P)
by (rule Rep-Dsef-inverse[symmetric])

with f1 show?thesisby simp
qed

qed

A rendition ofpdl-dsefB.

lemmadsefB-D: dsef p=⇒ ` P−→D [# x←p]P
by(subst dsef-form-eq[of p P], assumption, rule pdl-iffD1[OF pdl-dsefB])

An even number is equal to the sum of its div-halves.

lemmaeven-div-eq: nat-even n= (n div 2+ n div 2= n)
apply(unfold nat-even-def)
by arith

Dividing n by two and adding the result to itself yields a number one less thann.

lemmaodd-div-eq: nat-odd(x::nat) = (x div 2+ x div 2+ 1 = x)
apply(simp add: nat-odd-def nat-even-def)
by (arith)

A slight variant ofpdl-dsefBfor stateless formulas.

lemmapdl-dsefB-ret: dsef p=⇒ ` ⇑ (do{a←p; ret (P a)})←→D [# a←p](Ret(P a))
apply(subgoal-tac∀a. ret (P a) = ⇓ Ret(P a))
apply(simp)
apply(rule pdl-dsefB)
apply(assumption)
apply(simp add: Ret-ret)

done

C.7.2 Problem-Specific Auxiliary Lemmas

The following lemmas are required for the final correctness proof to go through, but are of
rather limited interest in general.

lemma var-aux1: ` (∗y =D Ret b∧D Ret(x 6= y ∧ y 6= r ∧ x 6= r) ∧D (Ret(x 6= y) −→D ∗x =D Ret
a)) −→D

(∗x =D Ret a∧D ∗y =D Ret b∧D Ret(x 6= y∧ y 6= r ∧ x 6= r))
by (simp add: conjD-Ret-hom pdl-taut)

C.7 A Simple Reference Monad with while and if 138

lemmavar-aux2: ` ((∗r =D Ret 0∧D Ret(x 6= y∧ y 6= r ∧ x 6= r)) ∧D (Ret(x 6= r) −→D ∗x =D Ret
a)) ∧D

(Ret(y 6= r) −→D ∗y =D Ret b) −→D

(∗x =D Ret a∧D ∗y =D Ret b∧D ∗r =D Ret(0::nat) ∧D Ret(x 6= y∧ y 6= r ∧ x 6= r))
by (simp add: conjD-Ret-hom pdl-taut)

The following proof it typical: since some formulas are built from do-terms and then lifted
into bool D, the usual proof rules will not get us far. The standard scheme in this case is to
proceed as documented in the following side remarks.

lemmaderive-inv-aux: ` ∗x =D Ret a∧D ∗y =D Ret b∧D ∗r =D Ret(0::nat) ∧D Ret(x 6= y∧ y 6= r
∧ x 6= r)

−→D Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{u←readRef x; v←readRef y; w←readRef r; ret (u∗v+w = a∗b)})
(is ` ?x∧D ?y∧D ?r ∧D ?diff −→D ?diff ∧D ?seq)

proof −
— Simplify the goal by proving something tautologously equivalent.
have` (?x∧D ?y∧D ?r −→D ?seq) −→D

(?x∧D ?y∧D ?r ∧D ?diff −→D ?diff ∧D ?seq) by (simp add: pdl-taut)
moreover
have` ?x∧D ?y∧D ?r −→D ?seq
— Turn the formula into a straight program sequence
apply(simp add: liftM2-def impD-def conjD-def MonEq-def dsef-read Abs-Dsef-inverse Dsef-def

Ret-ret)
apply(simp add: dsef-read Abs-Dsef-inverse Dsef-def dsef-seq)
apply(simp add: mon-ctr del: bind-assoc)
— Sort programs so that equal ones are next to each other
apply(simp del: dsef-ret add: commute-dsef[of readRef r readRef x] dsef-read)
apply(simp del: dsef-ret add: commute-dsef[of readRef y readRef x] dsef-read)
apply(simp del: dsef-ret add: commute-dsef[of readRef r readRef y] dsef-read)
— Remove duplicate occurrences of all programs
apply(simp add: dsef-cp[OF dsef-read[of x]] cp-arb)
apply(simp add: dsef-cp[OF dsef-read[of y]] cp-arb)
apply(simp add: dsef-cp[OF dsef-read[of r]] cp-arb)
— Finally prove the returned stateless formula and conclude by reducing the program toret True
apply(simp add: dsef-dis[OF dsef-read] dis-left2)
apply(simp add: Valid-simp Abs-Dsef-inverse Dsef-def)
done

ultimately show ?thesisby (rule pdl-mp)
qed

lemmadoterm-eq1-aux: do{u←readRef x; v←readRef y; w←readRef r; ret (u ∗ v + w = a ∗ b)} =
do{u←readRef x; ⇓ (⇑ (do{v←readRef y; w←readRef r; ret (u ∗ v + w = a ∗ b)}))}

lemmadoterm-eq2-aux: do{v←readRef y; w←readRef r; ret (u ∗ v + w = a ∗ b)} =
do{v←readRef y; ⇓ (⇑ (do{w←readRef r; ret (u ∗ v + w = a ∗ b)}))}

lemmaarith-aux: [[nat-odd u; u ∗ v + w = a ∗ b]] =⇒ (u div 2+ u div 2) ∗ v + (w + v) = a ∗ b

lemma rel1-aux: nat-odd u=⇒ ` (Ret(x 6= y ∧ y 6= r ∧ x 6= r) ∧D ∗r =D Ret(w + v) ∧D Ret(u ∗
v + w = a ∗ b)) −→D

Ret(x6=y∧ y6=r ∧ x6=r) ∧D ⇑ (do{w←readRef r; ret ((u div 2+ u div 2) ∗ v + w = a ∗
b)})

C.7 A Simple Reference Monad with while and if 139

(is ?odd=⇒ ` (?diff ∧D ?r ∧D ?ar) −→D ?diff ∧D ?seq)

lemmawrt-other-aux: ` Ret(x6=y∧ y6=r ∧ x6=r) ∧D ⇑ (do{w←readRef r; ret (f w)}) −→D

[# x := a](λuu. Ret(x6=y∧ y6=r ∧ x6=r) ∧D ⇑ (do{w←readRef r; ret (f w)}))

lemmawrt-other2-aux: ` Ret(x6=y∧ y6=r ∧ x6=r) ∧D ⇑ (do{w←readRef r; ret (f w)}) −→D

[# y := b](λuu. Ret(x6=y∧ y6=r ∧ x6=r) ∧D ⇑ (do{w←readRef r; ret (f w)}))

lemma rd-seq-aux: ` ⇑ (do{w←readRef r; ret (f a w)}) ∧D ∗x =D Ret a−→D

⇑ (do{u←readRef x; w←readRef r; ret (f u w)})

lemmaarith2-aux: (u div (2::nat) + u div 2) ∗ v + w = a ∗ b−→ u div 2∗ (v ∗ 2) + w = a ∗ b

lemmaasm-results-aux: ` (Ret(x 6= y) −→D ∗x =D Ret(u div (2::nat))) ∧D

∗y =D Ret(v ∗ 2) ∧D

Ret(x 6= y ∧ y 6= r ∧ x 6= r) ∧D ⇑ (do {w←readRef r; ret ((u div 2+ u div 2) ∗ v + w = a ∗
b)}) −→D

Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D ⇑ (do{u←readRef x; v←readRef y; w←readRef r; ret (u ∗ v +
w = a ∗ b)})

Yet another dsef formula extension.

lemmayadfe: [[dsef p; dsef q; dsef r; ∀x y z. f x y z]] =⇒ ` ⇑ (do{x←p; y←q; z←r; ret (f x y z)})
proof −
assumeds: dsef p dsef q dsef r
assumea1: ∀x y z. f x y z
hence⇓ (⇑ (do{x←p; y←q; z←r; ret (f x y z)})) =
⇓ (⇑ (do{x←p; y←q; z←r; ret True}))

by (simp)
also from dshave. . . = ret True
by (simp add: Abs-Dsef-inverse Dsef-def dsef-seq dis-left2 dsef-dis)

finally show ?thesisby (simp add: Valid-simp)
qed

lemmaconclude-aux: ` (Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{u←readRef x; v←readRef y; w←readRef r; ret (u ∗ v + w = (a::nat) ∗ b)})) ∧D

¬D ⇑ (do{u←readRef x; ret (0 < u)}) −→D

[# readRef r](λx. Ret(x = a ∗ b))

C.7.3 Correctness of Russian Multiplication

Equipped with all these prerequisites, the correctness proof of Russian multiplication is ‘at
your fingertips’TM . We will not display the actual rule applications but only the important
proof goals arising in between.

theorem russian-mult: ` (Ret(x6=y∧ y6=r ∧ x6=r)) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
apply(unfold rumult-def) — First, unfold the definition ofrumult
apply(simp only: seq-def)
apply(rule pdl-plugB-lifted1)

Establish the ‘strongest postcondition’ of the assignment tox

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1. ` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# x := a]?B

C.7 A Simple Reference Monad with while and if 140

From this postcondition proceed with assignment toy

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
xa. ` Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D ∗x =D Ret a−→D [# y := b]?B9 xa

After the final assignment tor all variables will have their initial values

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
xa xaa.
` ∗x =D Ret a∧D ∗y =D Ret b∧D Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D

[# r := 0]?B27 xa xaa

Now we have arrived at the while-loop, with the invariant readily established.

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
xa xaa xb.
` Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{u←readRef x;
v←readRef y; w←readRef r; ret (u ∗ v + w = a ∗ b)}) −→D

[# do{x←WHILE⇑ (do{u←readRef x; ret (0 < u)})
DO do{u←readRef x;

v←readRef y;
w←readRef r;
xa←if nat-odd u then r:= w + v else ret();
x←x := u div 2; y := v ∗ 2}

END;
readRef r}](λx. Ret(x = a ∗ b))

apply(rule pdl-plugB-lifted1)
apply(rule while-par) — applied the while rule

After splitting off the while-loop as a single box formula, we can apply the while rule, so that we
obtain the following proof goal, telling us to establish the invariant after one run of the loop body:

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
xa xaa xb.
` (Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{u←readRef x;
v←readRef y; w←readRef r; ret (u ∗ v + w = a ∗ b)})) ∧D

⇑ (do{u←readRef x; ret (0 < u)}) −→D

[# do{u←readRef x;
v←readRef y;
w←readRef r;
xa←if nat-odd u then r:= w + v else ret();
x←x := u div 2;
y := v ∗

2}](λu. Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{u←readRef x;
v←readRef y;
w←readRef r; ret (u ∗ v + w = a ∗ b)}))

C.7 A Simple Reference Monad with while and if 141

After having worked off all read operations, we again have to establish the strongest postcondition
that is required after the if-statement.

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
u v w.
` Ret(0 < u) ∧D

Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

Ret(u ∗ v + w = a ∗ b) ∧D

⇑ (do{w←readRef r; ret (u ∗ v + w = a ∗ b)}) −→D

[# if nat-odd u then r:= w + v else ret()]?B111 u v w

Here we see what the just mentioned postcondition looks like: it says that the following relation
(found in the premiss of the implication) holds:

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
u v w xa.
` Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{w←readRef r; ret ((u div 2+ u div 2) ∗ v + w = a ∗ b)}) −→D

[# x := u div 2]?B142 u v w xa

Now only the assignment toy remains.

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
u v w xa xaa.
` ∗x =D Ret(u div 2) ∧D

Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{w←readRef r; ret ((u div 2+ u div 2) ∗ v + w = a ∗ b)}) −→D

[# y := v ∗ 2]?B151 u v w xa xaa

We finally succeeded in re-establishing the loop invariant after one execution of the loop body. The
final part is just to read referencer, which is easily done.

` Ret(x 6= y∧ y 6= r ∧ x 6= r) −→D [# rumult a b x y r](λx. Ret(x = a ∗ b))
1.

∧
xa xaa xb xc.
` (Ret(x 6= y∧ y 6= r ∧ x 6= r) ∧D

⇑ (do{u←readRef x;
v←readRef y; w←readRef r; ret (u ∗ v + w = a ∗ b)})) ∧D

¬D ⇑ (do{u←readRef x; ret (0 < u)}) −→D

[# readRef r](λx. Ret(x = a ∗ b))

apply(rule conclude-aux) — . . . Just 124 straightforward proof steps later
done

end

Bibliography

[1] Peter B. Andrews.An Introduction to Mathematical Logic: To Truth Through Proof.
Number 27 in Applied Logic Series. Kluwer Academic Publishers, 2002.

[2] Henk Barendregt. Lambda calculi with types. InHandbook of Logic in Computer
Science, volume 2. Clarendon, 1992.

[3] Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited – and Isabelle/Isar
experience. InTheorem Proving in Higher Order Logics, number 2152 in LNCS.
Springer-Verlag, 2001.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Venema.Modal Logic. Number 53 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

[5] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing
of Haskell programs. ICFP, Montreal, Canada, 2000.

[6] Melvin Fitting. Basic modal logic. InHandbook of logic in artificial intelligence
and logic programming, volume 1, pages 368–448. Oxford University Press, Inc., New
York, NY, USA, 1993.

[7] Martin Fowler.UML Distilled. Object technology. Addison-Wesley, 3rd edition, 2004.

[8] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. InHandbook of Philosophical
Logic, 2nd ed., volume 4. Kluwer Academic Publishers, Dordrecht, 2002.

[9] C.A.R. Hoare. An axiomatic basis for computer programming.Communications of the
ACM, 12(10):576–583, 1969.

[10] Paul Hudak.The Haskell School of Expression. Cambridge University Press, 2000.

[11] Marieke Huisman and Bart Jacobs. Java program verification via a Hoare logic with
abrupt termination. In T. Maibaum, editor,Fundamental Approaches to Software Engi-
neering (FASE 2000), volume 1783 ofLNCS, pages 284–303. Springer-Verlag, 2000.

[12] Graham Hutton and Erik Meijer. Monadic Parser Combinators. Technical Report
NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham, 1996.

[13] B. Jacobs and E. Poll. A monad for basic Java semantics. In T. Rus, editor,Al-
gebraic Methodology and Software Technology (AMAST’00), volume 1816 ofLNCS,
pages 150–164. Springer-Verlag, 2000.

[14] Simon P. Jones, editor.Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Apr 2003.

Bibliography 143

[15] Simon Peyton Jones and Philip Wadler. Imperative functional programming. In20th
Symposium on Principles of Programming Languages. ACM Press, Jan 1993.

[16] B. Joy, G. Steele, J. Gosling, and G. Bracha.The Java Language Specification.
Addison-Wesley, 2000.

[17] Richard Kuhn, Ramaswamy Chandramouli, and Ricky Butler. Cost effective use of for-
mal methods in verification and validation. InFoundations 02 Workshop on Verification
& Validation. Columbia, MD, Oct 2002.

[18] Saunders MacLane.Categories for the Working Mathematician. Springer-Verlag, 1998.

[19] E. Moggi. A semantics for evaluation logic.Fund. Inform., 22:117–152, 1995.

[20] Eugenio Moggi. Notions of computation and monads.Information and Computation,
93(1), 1991.

[21] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. HOLCF = HOL
+ LCF. J. Functional Programming, 1(1), 1998.

[22] Tobias Nipkow. Structured proofs in Isar/HOL. InTypes for Proofs and Programs
(TYPES 2002), volume 2646 ofLNCS, pages 259–278. Springer-Verlag, 2003.

[23] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 ofLNCS. Springer, 2002.

[24] Lawrence C. Paulson. The foundation of a generic theorem prover.J. Automated Rea-
soning, 5:363–397, 1989.

[25] Lawrence C. Paulson.The Isabelle Reference Manual, 2004. Available athttp://
isabelle.in.tum.de/doc/ref.pdf.

[26] Benjamin C. Pierce.Basic Category Theory for Computer Scientists. Foundations of
Computing. MIT Press, 1991.

[27] A. M. Pitts. Evaluation logic. In G. Birtwistle, editor,IVth Higher Order Workshop,
Banff 1990, Workshops in Computing, pages 162–189. Springer-Verlag, Berlin, 1991.

[28] Andrew M. Pitts. Categorical logic. InHandbook of Logic in Computer Science, vol-
ume VI. Oxford University Press, May 1995.

[29] Gordon Plotkin. A structural approach to operational semantics, 1981. The Aarhus
notes. Available athttp://homepages.inf.ed.ac.uk/gdp/publications/SOS.
ps.

[30] John C. Reynolds.Theories of Programming Languages. Cambridge University Press,
1998.

[31] Stuart Russell and Peter Norvig.Artificial Intelligence – A Modern Approach. Prentice
Hall Series in Artificial Intelligence. Pearson Education, Inc., 2nd edition, 2003.

http://isabelle.in.tum.de/doc/ref.pdf
http://isabelle.in.tum.de/doc/ref.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps

Bibliography 144

[32] Lutz Schr̈oder and Till Mossakowski. Monad-independent Hoare logic in HASCASL.
In Mauro Pezze, editor,Fundamental Approaches to Software Engineering (FASE
2003), volume 2621 ofLecture Notes in Computer Science, pages 261–277. Springer,
Berlin, 2003.

[33] Lutz Schr̈oder and Till Mossakowski. Generic exception handling and the java monad.
In Algebraic Methodology and Software Technology, volume 3116 ofLNCS, pages 443–
459, 2004.

[34] Lutz Schr̈oder and Till Mossakowski. Monad-independent dynamic logic in HAS-
CASL. Journal of Logic and Computation, 14(4):571–619, 2004.

[35] Alex K. Simpson.The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis, University of Edinburgh, 1994.

[36] Ann E. Kelley Sobel and Michael R. Clarkson. Formal methods application: An empir-
ical tale of software development.IEEE Transactions on Software Engineering, 28(3),
Mar 2002.

[37] Philip Wadler. How to declare an imperative.ACM Computing Surveys, 29(3):240–263,
September 1997.

[38] Dennis Walter, Lutz Schröder, and Till Mossakowski. Parametrized exceptions. In Jose
Fiadeiro and Jan Rutten, editors,Algebra and Coalgebra in Computer Science, Lecture
Notes in Computer Science. Springer; Berlin, 2005. To appear.

[39] Markus Wenzel. Isabelle/Isar - a versatile environment for human-readable formal
proof documents. PhD thesis, TU M̈unchen, 2002.

[40] Glynn Winskel.The Formal Semantics of Programming Languages – An Introduction.
The MIT Press, Cambridge, Massachusetts, 1993.

	Introduction
	Motivation and Classification
	Problem Setting
	Structure of the Thesis

	Theoretical Basis
	The Lambda Calculus
	Syntax and Terminology
	Function Evaluation by Reduction
	Adding Types and Constants

	Monads in Computer Science
	Monads in Haskell
	Monads -- the Abstract Way
	The Meta-language for Strong Monads

	Monadic Dynamic Logic
	Preliminaries
	Properties of Monadic Programs
	Global Dynamic Judgements

	Logical Operators
	Primitive Connectives
	Boxes and Diamonds

	The Monad-independent Proof Calculus
	Hoare Calculi

	Specific Extensions for the Exception Monad
	Parameterised Exceptions

	Verification with Dynamic Logic
	Basic Lemmas of Dynamic Logic
	Axiomatising the Queue-Monad
	Specification of a Reference Monad
	Correctness of a Breadth-First Search Algorithm
	Basic Facts
	Auxiliary Rules
	Proof of Total Correctness

	The Theorem Prover Isabelle
	The Meta-logic
	Basic Syntax and Terminology
	Defining Logics
	Meta-logic Rules

	Higher-order Logic (HOL)
	Constants
	Definitions

	Proof Methods
	Higher-order Resolution
	A Different Perspective
	Advanced Proof Methods
	An Example Proof

	The Isar Proof Language
	Introducing Isar by Example

	Implementation in Isabelle
	Theory Files
	Monads in Isabelle
	The do-Notation
	Properties of Monadic Programs
	Equational Reasoning in Isar
	Lifting HOL Constants

	Setting up the Logic
	Basic Proof Rules
	Proving Tautologies Automatically
	Modal Operators and the Proof Calculus
	Theorems and Proof Rules Involving Modal Operators

	A Specification of Parser Combinators
	Specification of the Basic Parsers
	Defining Complex Parsers

	A Specification of Russian Multiplication
	Proof Sketch
	Similarity to Hoare Logic Proofs

	Conclusion and Outlook
	Haskell Implementation of mbody
	Table of Rules of Isabelle/HOL
	Isabelle Theories
	Basic Monad Definitions and Laws.
	Basic Notions of Monadic Programs
	Discardability and Copyability
	Introducing the Subtype of dsef Programs

	Introducing Propositional Connectives
	Propositional Connectives
	Setting up the Simplifier for Propositional Reasoning
	Proof Rules

	Monadic Equality
	The Proof Calculus of Monadic Dynamic Logic
	Types, Rules and Axioms
	Derived Rules of Inference
	Examples

	A Deterministic Parser Monad with Fall Back Alternatives
	Specifying Simple Parsers in Terms of the Basic Ones
	Auxiliary Lemmas
	Correctness of the Monadic Parser

	A Simple Reference Monad with while and if
	General Auxiliary Lemmas
	Problem-Specific Auxiliary Lemmas
	Correctness of Russian Multiplication

