Fachbereich 3
2% Mathematik - Informatik
"® -} Universitit Bremen

Diploma thesis

Monadic Dynamic Logic:
Application and Implementation

Dennis Walter

July 20, 2005

Supervised by
Lutz Schoder and Till Mossakowski

I hereby confirm that | independently worked on and wrote this thesis and that | only used
the references and auxiliary means indicated herein.

Bremen, July 20, 2005

Dennis Walter

‘There must be some way out of here’
said the joker to the thief.
‘There’s too much confusion,
| can't get no relief’

Bob Dylan

Contents

1 Introduction 8
1.1 Motivation and Classification 8
1.2 ProblemSetting 9
1.3 Structureofthe Thesis 10

2 Theoretical Basis 12
21 ThelambdaCalculus. 12

2.1.1 Syntaxand Terminology 13
2.1.2 Function Evaluation by Reduction. 14
2.1.3 Adding Typesand Constants. 15
2.2 Monadsin Computer Science e 18
221 MonadsinHaskell., 18
2.2.2 Monads—the AbstractWay 21
2.2.3 The Meta-language for Strong Monads. 22

3 Monadic Dynamic Logic 25

3.1 Preliminaries. 25
3.1.1 Properties of Monadic Programs 25
3.1.2 Global Dynamic Judgements 27

3.2 LogicalOperators e 30
3.2.1 Primitive Connectives. 30
3.22 BoxesandDiamonds. 30

3.3 The Monad-independent Proof Calculus 33
331 HoareCalculi 34

3.4 Specific Extensions for the ExceptionMonad. 35
3.4.1 Parameterised Exceptions. 36

4 Verification with Dynamic Logic 45
4.1 BasicLemmasof Dynamiclogic. 45
4.2 Axiomatising the Queue-Monad 46
4.3 Specification of a Reference Monad. 49
4.4 Correctness of a Breadth-First Search Algorithm. 50

441 BasicFacts. 53
442 AuxiliaryRules. 55
4.4.3 ProofofTotalCorrectness 56

Contents 6
5 The Theorem Prover Isabelle 62
51 TheMeta-logic. 62
5.1.1 Basic Syntax and Terminology. 63

5.1.2 DefininglLogics 63

5.1.3 Meta-logicRules 64

5.2 Higher-order Logic (HOL)., 65
521 Constants e 65

5.2.2 Definitions 66

5.3 ProofMethods 68
5.3.1 Higher-order Resolution 68

5.3.2 ADifferentPerspective.o 70

5.3.3 Advanced Proof Methods. 71

534 AnExampleProof. 71

5.4 ThelsarProofLanguage i 72
5.4.1 Introducinglsarby Example. 73

6 Implementation in Isabelle 75
6.1 TheoryFiles 75
6.2 Monadsinlsabelle. 77
6.2.1 Thedo-Notation., 78

6.2.2 Properties of Monadic Programs 78

6.2.3 Equational Reasoninginlisar. 80

6.2.4 LifingHOL Constants 81

6.3 Settingupthelogic. 82
6.3.1 BasicProofRules. oL 83

6.3.2 Proving Tautologies Automatically. 83

6.3.3 Modal Operators and the Proof Calculus. 84

6.3.4 Theorems and Proof Rules Involving Modal Operators. 86

6.4 A Specification of Parser Combinators 88
6.4.1 Specification ofthe BasicParsers. 88

6.4.2 DefiningComplexParsers. 89

6.5 A Specification of Russian Multiplication 90
6.5.1 ProofSketch. 92

6.5.2 Similarity to Hoare LogicProofs. 94

7 Conclusion and Outlook 95
A Haskell Implementation of mbody 97
B Table of Rules of Isabelle/HOL 100
C Isabelle Theories 101
C.1 Basic Monad DefinitionsandLaws. 101
C.2 Basic Notions of Monadic Programs. 102
C.2.1 Discardability and Copyability 102

C.2.2 Introducing the Subtype déefPrograms. 106

C.3 Introducing Propositional Connectives. 110

C.3.1 Propositional Connectives 110

Contents 7
C.3.2 Setting up the Simplifier for Propositional Reasoning. 114
C.3.3 ProofRules 115

C.4 MonadicEquality. e 119
C.5 The Proof Calculus of Monadic Dynamic Logic. 120
C.5.1 Types,Rulesand Axioms 120
C.5.2 Derived Rulesofinference. 122
C53 Examples. 128
C.6 A Deterministic Parser Monad with Fall Back Alternatives. 129
C.6.1 Specifying Simple Parsers in Terms of the Basic Ones. 131
C.6.2 AuxiliaryLemmas. e 132
C.6.3 Correctness of the MonadicParser. 133
C.7 A Simple Reference Monad witthileandif 134
C.7.1 General AuxiliaryLemmas. 136
C.7.2 Problem-Specific AuxiliaryLemmas. 137

C.7.3 Correctness of Russian Multiplication. 139

1 Introduction

1.1 Motivation and Classification

The study of formal methods, i. e. the mathematically rigorous specification, design and anal-
ysis of software systems, has a long tradition in the — by itself relatively short — history of
computer science. It has, however, not gained as much attention for being an effective and
efficient means of software design as for example object oriented software design or UML
[7] modelling have. Quite the contrary, it is often considered a very complex and demand-
ing way of creating software, requiring specialised skills in mathematics of all developers
involved and taking a long time to finish. Its application is therefore often rejected and re-
garded as too expensive. A similar situation can be found in the field of software verification
and validation, where the predominant method of operation is to perform clever and extensive
testing.

Despite these facts, we consider formal methods to be a very valuable arrow in a com-
puter scientist’s quiver; the use of formal methods is the only known way to actually prove
the absence of errors in a system, whereas other methods, e. g. testing, can only show their
presence. Experience has shown (siég 36]) that there are applications in which formal
methods is a means of not only writing better software, but writing it in proper time. Exam-
ples include the verification of AMD’s floating point processing unit of the K7 CPU, which
Intel also did for their Pentium Pro CPU, the verification of several cryptographic protocols,
and the employment of various model-checkers in hardware design. We consider essential
two features when using formal methods: firstly, it must be reasonably easy to understand
and use and, secondly, there has to be a software tool that assists the user and relieves him of
the duty of performing trivial but highly detailed proof steps.

Within the subject of formal methods, there are three major branches that are concerned
with giving meaning to programs and programming languages and in particular with proving
equivalences of programs; these are

e Operational semanti¢$n which the execution of programs is described by a transition
(or evaluation) relation between program fragments, an overall state and the value in
which an expression is supposed to result. Among the various incarnations of oper-
ational semantics, an approach popularised by Plotkin is used very commonly. This
method employs rules that are structurally similar to those found in deduction systems
to determine the evaluation of a program in a syntax directed way Z8be [

Other known examples of operational semantics, which are quite close to actual im-
plementations of the respective language include Warren’s abstract machine for inter-
preting Prolog programs or the SECD machine for evaluation of lambda terms.

¢ Denotational semanticén which so-called semantic functions are defined, which map
language elements into their intended interpretation in a mathematical model of the
programming language at hand. In simple cases this is quite similar to giving a model

1.2 Problem Setting 9

for a language of first-order logic, but in common applications (e.g. when giving a
semantics for a functional language featuring some kind of recursion) rather sophis-
ticated mathematics (in concrete terms: the fieldlomain theorywith its notions

of least upper bounds, continuous functions and fixed points) become involved, cf.
[30, 40]. A cornerstone of this kind of semantics is the compositionality of its seman-
tic functions, i. e. semantic functions for composite terms can be explained through the
meaning of their component parts alone.

e Program logicgoften called axiomatic semantics), which differ from the above meth-
ods as they do not directly assign meaning to programs, but rather embed the pro-
gramming language into a logical framework that allows for making statements about
a program’s behaviour and, hence, its correctness. Hoare's afjde the classic
introductory paper about program logics, a special kind of which therefore are termed
Hoare logics

In this thesis we describe, apply and implement a program logic ndpredositional)
monadic dynamic logif34] which allows one to prove properties of monadic programs. The
logic allows to reason about partial correctness of programs, but also to prove termination and
thus total correctness in one and the same framework.

Monads constitute an elegant technique for consistently abstracting and analysing several
kinds of language features, e. g. side effects, nondeterminism, exceptions, input and output
as well as combinations of these. The use of a logic of monadic programs is twofold: it
can be used to rather directly reason about programming languages that support the notion
of a monad (such as Haskell), but it can also be used to reason about programs written in
imperative first-order languages, if one creates a monadic model of the key features of such
a language and translates programs into this model. For Java this has been done recently
(see L1]) and the calculus described in this thesis has been extended to deal with Java-
like abnormal termination. This extension does not solely cover actual exceptions but also
termination of a method throughmturn statement, or the interruption of execution of a
while-loop through &reak or continue statement.

An important feature of the logic is the fact that it is monad independent, which means that
the general logical framework is applicable to every monad that allows the interpretation of
dynamic logic, which is the case for nearly all computationally relevant monads. A notable
exception to this is the continuation monad. Instantiations of the logic for concrete monads
are realised through additional axioms determining the monad-specific operations, like ref-
erence writing in the state monad, or nondeterministic choice in the nondeterminism monad.
While bearing some resemblance to Pitt's evaluation Idgjif; the calculus described here is
equipped with a purely monadic semantics, whereas Pitts provides a semantics only through
certain hyperdoctrines acting on top of the monad. An alternative, but merely global seman-
tics for the modal operators was given by Mog#®]. However, a critical property of the
modal operators is thelocal character, which is retained in the calculus described here. On
top of it, a Hoare calculus for total correctness can easily be formulated.

1.2 Problem Setting

The aim of this work is twofold: on the one hand, it constitutes the first extended application
of the recently developed calculus of monadic dynamic logic and thus demonstrates how

1.3 Structure of the Thesis 10

this calculus can be applied to serious verification tasks. To name two examples, the total
correctness of a breadth-first search algorithm and of a pattern matching algorithm involving
Java-like exception handling have been established.

On the other hand, driven by the insight that due to the complexity even of relatively
small software systems it is not feasible to carry out formal proofs about these manually, the
calculus had to be implemented in some proof assistant tool. Furthermore, the formalisation
within such a tool provides further evidence of the correctness of one’s inferences — provided
one trusts in the correctness of the tool, of course. We chose the generic proof assistant
(often termed ‘theorem prover’) Isabelle/HOL in which we could base our implementation
on a stable and well developed formalisation of higher-order logic. Isabelle/HOL comes
with tools for proving theorems outright (by means of a classical tableau reasoner) as well
as a term rewriting system that allows for equational reasoning and functional programming.
Tasks during this implementation included the definition of a syntax for monadic dynamic
logic, proving the theorems needed as foundations for the logic, and working out theorems
and setting up Isabelle’s automatic proof facilities to make life easier when applying the logic.
The embedding into higher-order logic is a deep one in the sense that we define monadic
logical connectiveg\p, —p, etc. as well as a predicateasserting the validity of monadic
formulae. HOL formulae may, however, appear in monadic formulae thanks to existence of
an insertion functiorRetmapping HOL formulae into those of dynamic logic.

1.3 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 introduces the theoretical background needed for the further development, which
is the lambda calculus in its typed and untyped form, and the categorical concept of a
monad as it is used in computer science.

Chapter 3 contains some preliminary work which eventually leads to the formulation of
the calculus of monadic dynamic logic. This calculus is then extended to deal with
the peculiarities of the exception monad such that a pattern match algorithm can be
specified and proved correct.

Chapter 4 provides basic theorems characteristic of dynamic logics and it contains an ex-
tended application of the calculus to several monads. For example, the correctness of
a tree search algorithm is established.

Chapter 5 gives an overview of the proof assistant Isabelle, its basic concepts, the higher-
order logic HOL and the Isar proof language.

Chapter 6 describes the implementation of the calculus in Isabelle/HOL. This includes
background work on properties of monadic programs as well as the setup of the calcu-
lus itself and the presentation of example specifications and proofs. Also, some differ-
ences between the calculus as laid ou34] pind its implementation are depicted.

Chapter 7 concludes by summarising the achievements and pointing out future work.

The appendix contains a Haskell implementation of the exception monad programs de-
scribed in SectiorB.4, a list of rules frequently used in Isabelle/HOL, and finally a typeset

1.3 Structure of the Thesis 11

edition of the theory files which make up the calculus of monadic dynamic logic as imple-
mented in Isabelle.

2 Theoretical Basis

We now provide the foundations needed to understand the further development of monadic
dynamic logic and its implementation in Isabelle/HOL. A complete survey of all concepts in-
volved would certainly go beyond the scope of this thesis, so that we assume basic familiarity
with functional programming languages, especially Haskell, which is taught at the university
of Bremen during the undergraduate studies, as well as basic knowledge of first-order logic.
Instead we initially concentrate on two topics that are of fundamental importance in the fol-
lowing. First, we introduce the lambda calculus, in its pure and untyped as well as its typed
form with added constants. A higher-order logic based on the lambda calculus will be de-
scribed in Chaptées along with other foundations of Isabelle. Second, we devote a section to
the description of monads and their applications in computer science. Although monads are
a concept of category theory, we do not provide an introduction into the latter since we will
merely use its basic terminology.

A good introduction to functional programming in Haskell with a focus on monadic pro-
gramming is given in I0], whereas]] introduces first-order and higher-order logic in a
mathematically rigorous manner with an eye on historical developments. A book on cate-
gory theory aimed at students of computer scienc@6§ [18] delves even deeper into the
topic, but with its focus geared towards readily educated mathematicians.

2.1 The Lambda Calculus

The lambda calculus is a formalism for describing and analysing functions. It has been
developed by Alonzo Church in the 1930’s and has influenced many programming languages
since then. In particular, functional languages such as Haskell or ML have been directly
influenced by the ideas underlying the lambda calculus, in particular its syntax. One of the
key ideas of the lambda calculus is to make a function that takes its argument)(sag
certain expression containing that argument (&-gy) an expression itself (in the example,
this function would be denoted byx.x+Yy). Thus, lambda expressions (or: lambda terms)
denote anonymous functions, which can be used as values themselves, for example as input
into another function, like ifAx.x)(Ax.X+Y), which furthermore indicates that the notation
for function application is simply juxtaposition.

We will now explain some basic concepts on the basis ofutitgped lambda calculus
in which all expressions are considered to have one universal type, since in this calculus the
concepts are easier to explain. Later on typed calculi will be more important, as they are
the basis of higher-order logic and modern functional programming languages. Nonetheless,
the concepts introduced below provide a good starting point and apply to advanced calculi in
similar form.

2.1 The Lambda Calculus 13

2.1.1 Syntax and Terminology

The untyped lambda calculus is conceptually very simple, but encompasses the whole ex-
pressive power of what is known as the computable functions or the Turing machine, i. e. to
say every computable function can be formalised in the lambda calculus. Given a countably
infinite set of variablesar (e. g. the variable s€itx; | i € N}), the abstract syntax of lambda
expressions can be given as

exp::=var | Avar.exp| exp exp (2.1)

where an expression of the forax.e is called anabstraction which is intuitively to be
understood as a function mapping its argumetd the value denoted by the expressan
Expressions that have the form of the third alternative are cafypticationssince they stand
for applications of functions to arguments.

In a lambda expressiohx. e the occurrence of the varialb¥edirectly succeeding th2 is
called abinding occurrenceA itself is called avariable) binderandx is considered to be
boundin the subexpressiog which is thescopeof the binder. All variables in a lambda
expression that are not bound dree. An expression that has no free variables is called a
closedexpression. To avoid unnecessary use of brackets when writing down concrete lambda
expressions, we will stick to the common convention that the scopeioggtends to the
right as far as possible without breaking the existing bracketing hierarchy and that function
application associates to the left.

Example 2.1. The expressiold x.xx is to be read ad x. (xx), whereag A x.x)(Ay.y)AX.Xx
denoteg (AX. X)(AY.Y))(AX. (XX)).

It is often useful to work with the set of all free variables of an expression, which leads to
the following definition.

Definition 2.2. The setFV of free variablesof a lambda expression is defined by induction
on the structure of the expression. Thus, one has
FV(x) = {x}
FV(e€) =FV(e)UFV(€) (2.2)
FV(Ax.e) =FV(e) —{x}
One further elementary concept is needed to formalise the idea of function evaluation in
the untyped lambda calculus: teabstitutionof a lambda expression for a free variable.

Definition 2.3. The substitution of an expressietfor the variablexin e, writtene[e/ /x| can
be defined as follows

X€/x] =€ (2.3)
yl€/xX =y providedx # y (2.4)
(AX.e)[€//X] = Ax. & (2.5)
(Ay.eo)l€/x = AY.ely/yll€/x providedx#yandy ¢ FV(€)U{x} (26)
(e0es1)[€//X] = eol€'/X|er[€//X] 2.7)

where @.5) and @.6) make sure that the phenomenon of bound variable capture is avoided,
i. e. after substitution all variables freeéhwill be free inel€//x]. As a shortcut, one should
lety =yin (2.6) whenever possible, i. e. wher¢ FV (€).

2.1 The Lambda Calculus 14

The concepts of binding and bound variables are quite similar to those in first-order logic,
whereV and3 are commonly used as binders. Since in both cases bound variables merely
provide a local name with a local meaning that might differ from the meaning outside the
scope of the binder, the lambda calculus also features the concept of bound variable renaming.
Changing an expressianinto an expressiog’ by renaming some of its bound variables in
subexpressions is calledconversion It is intuitively clear that this process does not change
the meaning of an expression, and in fact this can be shown. Hence, it makes sense to say
that two expressions are equivalent up to renaming of bound variables (natatipe) if
they can be converted into each other purely by applgirgpnversion. It is often convenient
to mentally identify expressions that are equivalent upctconversion, rather than making
this identification a part of the formal system; in fact, it is possible to formalise the lambda
calculus in such a way that all-equivalent expressions are syntactically equal.

Example 2.4. The simplest case @f-conversion is to change the name of the bound variable
in the identity function: we havéx.x =4 Ay.y. There are, however, cases where more atten-
tion has to be paid: in renamirig. Ay. xyinto the obviously equivalent expressidg. AX. yX,

the first step involves renaming the inner abstraction with the help of an intermediate vari-
able: AX.Ay.xy=q Ay.AX.yX =, Ay.Ax.yx. Otherwise, a bound variable capture would
occur, resulting in the entirely different expression on the right hamdly. xyZ, Ay. Ay.yy

2.1.2 Function Evaluation by Reduction

The concept of function evaluation is formalised in the lambda calculus through the concept
of reduction. An application expression of the fofAx.e)€ is called aredex which is short
for reducible expression. A reduction then is the transformatiqiigfe)€ into e[¢//x]. The
latter expression appears to be somewhat simpler, but this idea can be misleading, since it is
possible for it to be larger than the former or in fact even equal to it. In any case, it coincides
with the intuition behind function application: the function’s argument (or formal parameter,
in computer science parlance) is substituted by the value (or actual parameter) applied to it.
Reducing an expression or one of its subexpressions in this way is galieduction. If an
expression contains no redices it is said to bedrmal form

Another way of converting an expression is by the so caljezbntraction, which allows
to convert an expressiotx. ex, wheree does not contaix as a free variable, into the simpler
expressiore. The idea is that one may sée&.ex as a function that takes its argument
simply to apply it to the functioe and thus one may identify it with

Remark2.5. The syntax of the lambda calculus suggests that there can only be functions that
take exactly one argument; but this does not impose any restrictions concerning the express-
ibility of multi-argument functions, since a function takingrguments may be expressed as
AX1.AXz. ... AXn. €(frequently abbreviated tox; ... xn. €). The following reduction sequence

may suggest how this workgA f.Ax. f x)gy~ (Ax.gx)y ~» gy. The transformation of a
function taking a single argument in form of a tuple into an equivalent one taking ‘each ar-
gument at a time’ as shown above has been proposed liynfickel and Curry. Therefore,

it is often calledcurrying.

One might ask how the simple untyped lambda calculus can be used to express common
functions like addition and multiplication on the natural numbers and, to that effect, how
natural numbers themselves can be represented. Obviously, as there is nothing else available,
they will have to be functions. To provide a short insight into this problem, we will now show

2.1 The Lambda Calculus 15

how to represent even simpler values and functions, namely the booleans and the conjunction
function.

Lemma 2.6. Let True, False and(_A _) denote the lambda expressions defined below.

True :== AX. Ay.X False := AX.Ay.y en€ ;= (e €) False
Then the following holds:
True ATrue — ... — True True AFalse — ... — False
False A True — ... — False False AFalse — ... — False

Proof. By a direct calculation:

True A True — ((AX.AY.X)(AX. Ay.X)) False
— (AY. (AX.Ay.X)) False
— AX.AY.X — True

True A False — ((AX.AY.X)(AX. AY.y)) False
— (AY. (AX.AY.Y)) False
— AX.AY.Y — False

The remaining cases are analogous. O

Upon leaving the untyped calculus and turning our eyes to typed calculi possibly with
additional constants, we state one central theorem that ensures that in what way an expression
might ever be converted, it is always possible to ‘cross the ways’ of other strategies.

Proposition 2.7 (Church-Rosser Theorem).If an expression e can be evaluated toir
arbitrary steps according to the rules given above, and it can also be evaluated tttea
there is an expressiom such that gand g can be converted te.

2.1.3 Adding Types and Constants

Even if one accepts that the untyped lambda calculus is powerful enough to express ev-
ery computable function, and that reduction to normal form is a kind of evaluation of these
functions, it is obviously not very natural to directly work in this calculus. In fact, it took
several decades until a denotational semantics for it was found by Dana Scott, which does
not raise problems similar to those encountered in naive (untyped) set theory like Russell's
paradox. Modern functional programming languages nowadays rely on type systems, where
every expression is assigned a unique type. This idea goes back to Russell and Whitehead,
who demonstrated the usefulness of types in higher-order logic within their influential work
Principia Mathematicg1913). Church and Curry are the names commonly associated with
typed lambda calculi (se@][for a detailed comparison).

We will equip a variant of the lambda calculus with types and constants, thereby introduc-
ing some recurrent concepts of formal systems. First of all, the abstract syntax of lambda
terms has to be extended slightly:

exp::=var | exp+ exp
| exp exp Avar.exp (2.8)
| (expexp | expfst | expsnd

2.1 The Lambda Calculus 16

where(e;, e2) andn; + ny should respectively be interpreted as a pair of expressms
and a sum of natural numbanmg, n,. Selection of the first and second components of a tuple
are expressed by attachinfgt or .snd to it. Of course, this syntax alone does not prevent
ill-typed expressions like; + e, where, for exampleg; is a function.

Types can be introduced in the following way. Usually one starts with a givelntygeof
base typegwhich in common programming languages will include the tiypeof integers,
the typefloat of floating point numbers and the typhar of characters). Complex types
can then be formed by applyirtgpe constructorso the base types and the already created
compound types. We will take two type constructors— _) (called the function type
constructor) and_ x _) (called the product type constructor) into the lambda calculus. They
are introduced in a purely syntactic manner, but their intuitive interpretation ought to be that
of a function and product type, respectively. In summary, the abstract syntax of types is the
following:

typ::= btyp| typ— typ| typx typ (2.9)

Next comes the concept ofantext which is a finite sequende = [x; : 01,...,X : Op]
of variable/type pairs, subject to the condition tika* x; for i # j. A context is used in
typing judgementt F e: o which should be read as “if the variables occurring in the context
I have the assigned types, then expressitias types”. Only typing judgements where
eachx € FV(e) occurs in the contextt are allowed. Contexts may be compound, like in
I,x: ot e: 1, where it is implicitly assumed thatdoes not occur i, or[,I’ - e: 7, in
which the sets of variables 6fandl"” have to be disjoint.

We would like to equip the calculus with a typmt representing the natural numbers
and constant§ : nat and Suc: nat — nat for zero and the successor function. This can be
done in the following way: addat to the set of base types (or pick an existing base type
when appropriate), and 1€ = [0 : nat,Suc: nat — naf be thebase contextwhere0 and
Sucare arbitrary variables which are given mnemonic names here. This context will be
used implicitly in all typing judgements, such thHat- e: o actually means$ o, - e: o,
thus excluding their use as variables of different types due to the conventioigthatl I
must have disjoint variables. This will of course not introduce the properties of the natural
numbers, e. g. with respect to addition (commutativity, associativity, zero as a unit element),
but will merely make them available on the type-theoretical level.

Figure2.1lists the rules of a (decidable) deduction system, which will serve the purpose
of determining whether given typing judgements are valid. These rules are to be read in the
standard way: if the premisses above the horizontal bar are derivable in the calculus, one may
also derive the conclusion below the bar. Now one defines a typing judgement to be valid
if and only if there is a proof (see Definitida8 below) of the judgement from the given
rules. The presentation of a proof will slightly deviate from the standard structure of a proof
in natural deduction as it will be linearised to make presentation easier.

Definition 2.8. A proof from rulesof a statemen§is a sequence of statemel8s..., S,
whereS, = Sand for each of th& one of the following holds:

e S is an axiom, i.e. arule without premisses.

e S is the conclusion of a rule whose premis&es .., B have been proved, i. e. for all
P (1< j<k)thereisarf (1< j' <i)suchthaP =Sj.

2.1 The Lambda Calculus 17

Ne:o

var wk) ————

(van) rx:olNk-x:o (wk) rrre:o

(abs Mx:oke:t (app lFre:o—7t MN-€:o
r-Axe:oc—=7t PP fr-eé:z
MN-er: N-e: NFe:nat THe:nat

(prodi) € .01 €202 (add) €1 €2
M- (e,e):01x02 e +6e:nat
M-e: MN-e:

(fSt) 01 X O2 (SI’]CD 01 X 02

M-efst: o Mesnd: o>

Figure 2.1: Type inference rules for the simply typed lambda calculus

Example 2.9. Here is a proof of the typing judgement of a function that sums its arguments
and adds one to it; recall that the base context is not shown. The right column indicates which
rule has been used with which previous lines as premisses to obtain the respective statement.

(.1) F0:nat (var)
(.2) F Suc: nat— nat (var)
(.3) X:naty:natk SucO : nat (app: .2,.1; wk)
(.4) X:naty:nath x: nat (var)
(.5) X:naty:natky:nat (var)
(.6) X:naty:natk x+y:nat (add: .4, .5)
(.7) X:naty:natt- (x+y)+ SucO : nat (add: .6, .3)
(.8) X:natt Ay. (x+Yy) 4+ Suc0 : nat— nat (abs: .7)
(.9) F AX.AY. (X+Y)+ Suc0 : nat— nat— nat (abs: .8)

The following example shows that certain functions like the identity function are polymor-
phic in the sense that there are proofs of different types of the syntactically identical function
(AX.X):

(.1) X:okx:o (var)
(.2) X:ThEX:T (var)
(.3) FAxX:0—o0 (abs: .1)
(.4) FAXX:T—1T (abs: .2)

An important point concerning the introduced ‘simple’ types, however, which partly ex-
plains why they are called that, is the fact that the simply typed lambda calculus lacks a
genuine notion of polymorphism. This means that every function whose type is provable
is assigned a fixed type, such that there is an identity function on the typ of natural
numbersix. x : nat— nat, and an identity functiold x. X : nat x nat — nat x nat on pairs of
nats, but these functions are not identical. This leads to the typical problems (or at least in-
conveniences) found in programming languages that also lack the concept of polymorphism,

2.2 Monads in Computer Science 18

like the necessity to give different names to functions that essentially perform the same ac-
tion (although in the small calculus described here there is no way to give functions a name,
it could be easily extended to allow this, e.g. by the definitioebterms). The lack of
polymorphism also motivated the introduction of the projection operafrandsnd on the
syntactical level rather than making them constantsdike we could only have expressed

the type offst : 61 x 02 — o7 for fixed typeso; ando», but they are intended to be used on
any kind of tuple.

One might wonder if contexts in typing judgements are really necessary, since the initial
goal was to assign types to expressions, but then one must recall that expressions may contain
free variables, as opposed to (functional) programs, which may be identified with the closed
lambda expressions. Typing judgements, then, essentially tell what the types of the free
variables of an expression are. Furthermore, it is often convenient (and sometimes necessary
to make typing decidable) to extend the syntax of typed calculi in such a way that types
become a part of it. A common place where types are often explicitly annotated is at the
binding occurrences of variables, likedix : .e. We will leave the types of bound variables
implicit whenever possible, i. e. when they are determined by the context.

2.2 Monads in Computer Science

Originally arisen in category theory, monads have been introduced into computer science by
Moggi [20] as an elegant device for dealing with manifold kinds of side effects. Initially, their
value for enabling an abstract treatment of the semantics of several programming language
constructs was appreciated, but it was soon realised that these benefits could also directly
be exploited in purely functional programming languages. Wadler and Peyton Bes [

15] advocated the monadic style of functional programming for Haskell and it was finally
included in the Haskell 98 language standard as the definitive way of communicating with
the real world, i. e. for dealing with input and output.

In the field of denotational semantics, monads come into play when equipping a program-
ming language with a categorical semantics — as opposed to a set-theoretic one — such that
one reasons abowobjectsinstead of sets anohorphismsnstead of functions (sed §] for
a categorical semantics of Java). Monads arise in this setting as a very natural and conve-
nient concept for interpreting many kinds of side effects like exceptions or state changes in a
uniform way.

We will first give some examples of concrete monads from the realm of functional pro-
gramming, then we will introduce the abstract categorical concept of monads, and finally
we will discuss Moggi's meta-language, which essentially is an equational logic that can be
identified, in a sense yet to be specified, with categories equipped with strong monads.

2.2.1 Monads in Haskell

One of the most well-known applications of a monad is to simulate a global store of assign-
able variables in a way that does not conflict with referential transparency. The simplest idea
to simulate a global store in the absence of assignable variables is to make the store explicit
in every function by letting each function have one further argument that acts as the global
store, e. g. a tuple containing all values involved, and furthermore extending its return value
to be a pair of the actual return value and the possibly modified store. This way of proceeding

2.2 Monads in Computer Science 19

is, however, extremely impractical and by no means modular: if the structure of the store has
to be modified, this adaptation will have to be done in every single function.

The monadic approach to side effects does not suffer from such deficiencies and is thus
much more elegant. The first step in turning the language feature of a global store into a
monad (which is commonly called tistate monajlis to define a datatypBAthat represents
the computationver values of typé\. In this case, computations will simply be functions
that take the global stotes input and return a value of typetogether with the modified
store. The expressions of tyeA as given below are often calletiate transformergnote
thatais a type variable, so one has typeAfor each concrete typ#).

type T a = (S -> (S, a))

The next step is to define the two basic polymorphic operations on computations, that on
the one hand enable sequencing of computations, and on the other hand let us turn values into
computations that do nothing except return the inserted value. The Haskell-style signatures
of these functions are

>>=) :: Ta->@->TDbh —>Tho
ret :ra—>T a

where the infix operatio(t>=) is calledbinding in which the second parameter is a function
that will be fed the resulting value of the computation which is the first parameter. The overall
result of a computatiop >= f will be the result off. To make these ideas clearer, we will
provide the definitions of these operations for the state monad.

p>=f =\s->1let (s’, a) =psinf as’
\ s—> (s, a)

ret x

where the backslash is Haskell syntax for a lambda abstraction. Recalling #uatally
is a function from the state to a pair of state and return value, one sees that binding really
implements a kind of sequencing: first, p is given the current state to evaluate to a new state
and a value, which are then given as inputs to f, whose return value is also the return value of
the overall computation.

What is called a monad in this context is the triple >=,ret), i. e. the type constructor
T together with the two basic polymorphic operations. For the state monad to be useful, one
naturally has to introduce further operations for reading the state and for updating it. Other
operations can then be defined in terms of these. A possible signature for the former two
operations is

get :: TS
update :: S -> T ()

\ s—> (s, s)
\ s0-> (s1,)

get
update si

Finally, we present some computationally relevant monads, together with the possible def-
initions of T, >>= andret, respectively. These definitions will be given in a set-theoretic

1The store is treated abstractly as a tfpleere, but may be imagined as a finite map of variable-name/value
pairs

2.2 Monads in Computer Science 20

manner, but the translations to Haskell datatypes and functions should not constitute a prob-
lem. This is done so to motivate the more abstract definition of monads in the next section and
because monads can not merely be used as a feature of a concrete programming language,
but also to study programming languages themselves in an abstract way.

e Thestate monadhas been described above. The appropriate definitions are
TA= (S— SxA) for some fixed se§ representing the state, whexedenotes the
Cartesian product of sets aXd— Y = {f | f : X — Y} denotes the function space of
all functions fromxX to',
(p>=f)=2Aslet (s,a)=psin fas and
ret x= As.(s,x), where() denotes pairing.

e Theexception monats used to model abnormal termination. One has
TA= (A+E), i.e. the disjoint union (corresponding to a sum datatype) of the result
setA with some global seE of exceptions. In the simplest cage= {_L}, such that
an exception indicates nontermination or failure,
(p>=f)=case pof (inla) — f a| (inr e) — inr e; this definition models the usual
effect of an exception, in that the right-hand computation is evaluated only if the left-
hand one did not raise an exception. The definition ofctise-construct is standard.
inl andinr stand for the left and right injections (corresponding to constructors of the
same datatype), and
ret x=inl X, which once more makes clear thrat actually is just an embedding of
values into computations.

e Thenondeterminism monazhptures the effects of multiple possible outputs of a func-
tion by letting
TA= Z5n(A), i.e. T maps a sef to all its finite subsets,
(p>=f)=U{f x| xe p}; pis asubset oA, andf is applied to all elements g,
the result of which will be a set of sets, which is therefore flattened by taking the union
of all these sets, and
ret x= {x}, i. e. the singleton set containing ondy

e A combination of thdist monadand a particular state monad is used 1g][to ele-
gantly implement a library of monadic parser combinators. In it, one has
TA= (List | — List (List | x A)), wherel is a fixed, finite set of input tokens, ahst
maps a seh to the set of all finite lists of elements ov&rand
p>= f = As.concat(map(A(x,s).f xs) (p). Here,concatandmapbehave ex-
actly like the well-known total functions of the same name as defined in the Haskell
prelude. What happens is thats applied to the the current state (a list of input to-
kens), returning a list of result pairs. To each result pair, the fundtisapplied,
resulting in a list of lists of result pairs. These have to be flatteneddmgat very
much like in the nondeterminism monad. Finatlt is once more just an embedding:
ret x=As. [(s,X)], where[e] denotes a list containing exactly one element

e The continuation monadin which TA= (A — R) — R for some fixed result typ&,
will not be described further in this thesis, since the continuation monad does not admit
dynamic logic (seed4)).

2.2 Monads in Computer Science 21

2.2.2 Monads — the Abstract Way

We will now give a formal definition of what a monad is originally defined to be. Further-
more, we will give an alternative definition which is more suitable for our purposes and
which comes closer to the intuitive introduction given in Secttod.1 Although we are

not so much interested in applications of monads in category theory itself, we feel that it is
reasonable to provide the original definition of a monad, as the term even appears in the title
of this thesis. The following Definitio@.10is taken from 18, Chapter VI, p. 137].

Definition 2.10. A monadT = (T,n,u) in a categoryC consists of an endofunctdr :
C — C and two natural transformations (called the unit) angt (called multiplication),
i.e. morphismga : A— TAandpua : T2A — TAfor each objec in C, which make the
following diagrams commute for every morphism A— Bin C

A—m L TA 20 A TA
f Tf T2f Tf
B TB T°B TB
Uz HB
T
TA— A 12p A 7p 3a HTA, T2
2 Ha v Tua Ha
% &
TA T?A TA
Ua

where the upper two diagrams simply express the naturalnegsiod ., whereas the lower
two diagrams express the required interplay of these.

How this definition can be related to the one of Secfidhlcan be seen after the following
definition and lemma:

Definition 2.11. A Kleisli triple on a categorg is a triple(T,n, _*) whereT : ObC — ObC

is a function,n is a family of morphismsa for each objeci in C and (_*) maps each
morphismf : A— TBto a morphismf* : TA— TB. The following equations are required
to hold — leaving the composition operatiohifnplicit:

mi=idra faa=f gf=(gf) (2.10)

The meaning of Equation®(0 can be understood best with the help of a derived op-
eration callecKleisli composition(o) that takes morphismé: A— TBandg: B— TCto
go f :=g*f. Formulated with this operation, EquatiorZsi0 state that eacha is a left and
right unit, and that composition is associative:

naof=f="fona (fog)oh=1fo(goh) (2.11)

Another noteworthy point is that the binding operatign>>= f) used above can be ex-
pressed as*(p). The polymorphic operatioret can obviously be identified withy of the
Kleisli triple.

2.2 Monads in Computer Science 22

The following Lemma shows that one may equally well use a Kleisli triple as the defining
entity for a monad. Actually, one may even prove a stronger lemma establishing a one-one
correspondence between Kleisli triples and monads.

Lemma 2.12. Every Kleisli triple(T’,n, _*) determines a mondt = (T,n, 1) by taking T
to be the function Textended to an endofunctor, defining Edes (ns f)* for each morphism
f: A— B, and by settingta := (idta)*.

Proof. First of all, we must validate that the proposed extendioactually constitutes a
functor, i. e. we must check compatibility with identities and compositionf foA — B and
g: B— Cone has

TidA = (T]AidA)* = T]; = idTA (2.12)
T(gf)=(cgf) =((Mco) nef) =(Mcg) (nsf) =TfTg (2.13)

where in .13 we used the definition of T applied to morphisms, the property bking
right-cancellable, and the special kind of associativity given‘to
The fact thatn andu actually are natural transformations can be easily calculated, so we
only show that they satisfy the equalities induced by the lower two diagrams. First comes the
left-hand diagram:
panTa= (idra)" nra=idra (2.14)

AT A = (id71A)" (MTATIA)"

) . 2.15
_ ((idva) TIrATA)" = mj = idra (2-15)

which proves the required equalipsy nta = idta = uaTna. Finally we have to show that
uaT ua = ualta, Which is expressed through the right-hand diagram.

UAT up = pa (Nrapa)”
= (idva)" (nra(idra)*)" = ((id7A)" nrA(idTA)")"
= ((id7a)")" = ((id7a)"id724)" = (idTA)" (id724)"
= HAUTA

(2.16)

2.2.3 The Meta-language for Strong Monads

The so called ‘do-notation’ is known from its use in Haskell, where it is deployed to make
the idea of sequential evaluation of monadic programs syntactically evident. This idea is not
so apparent when monadic programs are expressed thrpaglandret. Nonetheless, the
do-notation is only syntactical sugar for conventional monadic expressions, and the former is
actually reducible to the latter (se®] for details on how this is done).

Example 2.13. The expressionlo {Xx+« p;q} (whereq is to be regarded as a syntactical
variable for a monadic program and thus may conkais a free variable) is translated into
p >= AX.q. Another example is the expressida{p;q}, where the return value df is
ignored; a possible translation s>>= Au.q, whereu is a fresh variable, i. eu does not
occur ing.

2.2 Monads in Computer Science 23

In the domain of categorical semantics one may look at the do-notation as being a concise
language to express morphisms —i. e. the denotations of copcogi@ms- in the categories
used to interpret the programming language at hand. Taken this way, the do-notation provides
a formal system to reason about monads, i. e. a basikglgal view on the semantics, as
opposed to the equational or diagrammatic view of category theory. This approach has been
proposed by Moggi ing0], where a formal system calledeta-languagés developed which
allows the formation of terms quite similar to do-terms (Moggi used a variant of let-terms
instead, but one easily translates between the two formulations).

This meta-language is defined through term formation rules in much the same way as the
typed lambda calculus has been defined in Se&@itrg so that terms are formed in a context
and rules guide the way in which terms may be built. Additionally, inference rules for es-
tablishing equalities between terms are given, such that the equivalence of programs that are
described by these do-terms can be established within the formal system. The key to make
this formal system an internal language for (strong) monads is to interpret it in categories
equipped with a strong monad in such a way that there is a one-one correspondence be-
tween the formal system and the catedgoifhe meta-language can furthermore be extended
to describe categories with additional structure, e.g. one might include product terms and
appropriate rules in the language to describe categories that additionally have finite products.

Remark2.14 The terminternal languagehas its origins in the domain of categorical logic.

An internal language is a means to reason about a category in a way that often makes proofs
easier to follow than is possible through the typical ‘diagram chasing’. In essence, an inter-
nal language is to be construed as a formal system giving names to relevant entities of the
category at hand. This system is then given an interpretation in the category in such a way
that theorems of the internal language translate into interesting statements about the category.
For a detailed overview, se2§.

The formal system for the meta-language can on the one hand be used to define mor-
phisms in the underlying category, and on the other hand to prove equivalences between
these morphisms. Thanks to a soundness and completeness theorem provafiidoine]
may abandon reasoning in categories with Kleisli triples and work in an adequate extension
of the meta-language instead, which adds up to reasoning about do-terms in the following
way:

1. Terms are formed in a context (which we shall often omit, as long as the types of all
variables are obvious or do not matter), i. e. they have the structure: . It should
be noted that interpretations of terms depend on the contekt=ifix; : 01,...,Xq :
on|, the interpretations of types; are object; in the underlying category, andis
interpreted as object thenl” - e: 7 will denote a morphisng; x --- x ¢, — C.

2. We are given a type constructdrthat takes values of typ&into computations of type
TA (the interpretation o is exactly the functiom of the Kleisli triple described in
Definition 2.17).

3. The polymorphic operatioret embeds values into computations; it is polymorphic in
the sense that it exists for each producible type.

2a strong monads one that is additionally equipped with a natural transformatiign: Ax TB— T(Ax B),
calledtensorial strengththat must obey certain conditions given 0]

2.2 Monads in Computer Science 24

4. do-terms of the formdo {x« p;q} allow to simultaneously express binding and se-
guencing, whergis a variable that gets bound to the resulting value of the computation
p, andq is a computation which may contaxn

5. The notion of associativity of binding is reflected by the following equality between
do-terms: for every programnot containingk, one has

(do{y«do{x«p;q};r}) = (do{x« p;do{yaq};r})

For notational clarity, repeated do-terms are abbreviated: Weite «— p1;Xo <
P2; ...} fordo{xi < p1;do{Xo«—p2;...}}

6. Corresponding to the propertieswpf one has unit laws faet (which actually is inter-
preted as7) in the following way

do{x—p;retx} =p
do {x«ret & p} = p[a/X]

7. There are rules about equality, namely reflexivity, symmetry and transitivity, as well
as a rule for substitution, stating that if an equation between termse, containing
a variablex can be derived, then so can the equaditje/x] = e;[e/x] for each well-
formed terme not containing free variables that do not occueijror e,.

As a final word on the meta-language, it should be pointed out that it is an equational
theory. It therefore presents an instrument to prove equivalences between programs, i. e. an
equality of the morphisms they denote in the interpretation. The logic that will be developed
in the sequel goes far beyond the ability of proving equivalences. In monadic dynamic logic,
it is possible to make much more specific statements about programs, e. g. one can specify
under what conditions a program will terminate or one can prove that a given program in the
state monad will modify the state in a certain way.

3 Monadic Dynamic Logic

In this chapter, the proof calculus of monadic dynamic logic is presented. First, properties of
monadic programs are introduced that will be needed later on in order to develop the calculus;
these include notions such as discardability and side effect freeness of programs. After that,
the modal operators of dynamic logic are introduced in an axiomatic way and their meaning
in the example monads of Secti@rR is explained. All prerequisites gathered together, the
monad-independent proof calculus for dynamic logic is described in S&&BoRinally, an
extension of the calculus that is tailored towards the exception monad is developed.

In what follows the type of truth values will be denoted @y and the entire formalisa-
tion is suited for an intuitionistic as well as a classical framewaorkwill denote the type
constructor mapping a type ghluesinto the type ofcomputationr programsover these
values. Formulae of dynamic logic will be taken to be terms of e where, for eacl,
DA is the subtype of A of all deterministically side effect free programs, a notion depicted
below. As a primary feature of the calculus, there will be modal operatersp] — and
(x« p) _ for each progranp that take a formula of dynamic logi¢ (possibly containing
x as a free variable) to another formula which may state properti®shefng the result of
executingp. The modal operators thus act as new variable binders; because we also allow
program sequences to occur inside the operators -{&s-p; y«q] —they may bind several
variables at once. An initial intuitive understanding of the box and diamond operators can be
most easily given in the nondeterminism monad, where the forfratgp] (x = 1) should be
interpreted as “after executirgand binding the result to, (x = 1) will hold for all possible
outcomes ofp”. On the other handix«— p) (x = 1) states that there will beomeresultx of
p such thaix = 1) is true.

3.1 Preliminaries

The possibility for program sequences to occur inside the box and diamond operators instead
of single bindings should be regarded as a mere notational convenience. That this does not
add to the expressiveness of the operators can be seen by translating multiple bindings into
bindings of tuples, e. g. the bound variabkeandy in [x«< p;y<q] can be packaged into the
single variable = (x,y) in [z—do {x— p;y<q;ret (x,y)}] . Horizontal bars above variables

will indicate that actually a non-empty program sequence is under consideration rather than
a single binding. Lex = [Xq,...,X,] andp=[p1,.. ., pn); thenx— p will denote the program

do {X1 < P1; - ;Xn< Pn;ret (X1,...,Xy)} or, if it appears inside a do-statement or a box or
diamond operator, just the binding sequerce- p1;- - - ;Xn < Pn.

3.1.1 Properties of Monadic Programs

The property of a monadic program being deterministically side effect free (abbreviated to
dsefin the following) relies on some simpler properties that will now be defined. The main
idea behind the introduction of a subtyPé of dsef programs is that these programs have

3.1 Preliminaries 26

properties allowing them to be rearranged quite freely within a monadic program sequence.
For example, ifp andq are both dsef programs, the progratog x«— p;y«—q;r } anddo {y«—

g;x< p;r} will be equal for every program (possibly containing andy, in contrast top

andq, which may not mention them). This is an important fact when introducing connectives
for formulae of dynamic logic: intuitivelyp : DQ and ¢ A ¢ : DQ should be regarded as
equivalent formulae, but i has side effects or is nondeterministic, this equivalence might
break down. Taking only terms of tyd2Q as formulae makes sure such equivalences are
retained in the calculus.

A more elaborate account of the information provided in this section can be foudjjn [
where virtually all lemmas and propositions stated here were proved. To avoid overly repeat-
ing facts already stated elsewhere, only the most important lemmas and some of their proofs
are given here. Independently established proofs can be found in Seetimovering exten-
sions specific to the exception monad as well as in the chapters on application (Ghapter
and implementation (Chaptéy of the calculus.

Definition 3.1. Let 1 be the unit type andthe single element of this type. A progrgmTA
is calleddiscardableif
do{x—p;ret«} =ret x

¢ Inthe state monadis discardable if it terminates and does not alter the state; since its
result is not used in the remainder of the program on the left-hand side (ired.:ij
it might just as well be omitted altogether.

¢ In the nondeterminism monag,is discardable if it yields at least one result; in that
case, both sides of the equation yi¢ld .

e The concept of discardability reveals differences between the list monad and the non-
determinism monad: in the list monagjs discardable if it yields exactly one result,
in which case both sides of the equation equal the singletofx]istwhich may well
be distinguished from the lig¢, +| containing the same element twice.

Definition 3.2. Let p: TAbe a program.p is calledstatelessf it is of the form p =ret a
for somea: A. Obviously, all stateless programs are discardable which follows immediately
from the basic monad laws.

The following lemma confirms the appropriateness of Definifidifor indicating when a
program may be discarded at the head of an arbitrary program sequence:

Lemma 3.3. Let p: TA be discardable and gT B be an arbitrary program. Then
do{pia}t=q

Most proofs of the propositions in this section are by equational reasoning; here is an
example proof of the above lemma.

Proof.
do{p;q} =do{p;ret*;q} (sincedo {ret x;q} = Q)
=do{ret x;q} (p discardable)
=q

3.1 Preliminaries 27

While discardability allows one to omit certain programs altogether whose return value is
not used in the remainder, the following concept admits statements about the behaviour of
certain programs when they are executed repeatedly:

Definition 3.4. Let p: TAbe a programp is calledcopyabléaf the following equation holds:
do {x« p;y< p;ret (x,y)} = do {x« p;ret (x,x) }

As with discardability, copyability entails a stronger form of program equality which ex-
presses the fact that copyable programs may be doubled (or cancelled, taken the opposite
way) without effect more directly:

Proposition 3.5. Let p: TA be a copyable and:rTB be an arbitrary program possibly
containing y as a free variable. Then one has

do {x«<—p;y< p;r} =do{x—p;r{x/y]}

For various monads, the deterministically side effect free programs comprise the copyable
and discardable programs. That this type is not empty can easily be seen by considering
stateless programs of the fomet a, which are discardable and copyable at any rate. These
programs are also deterministically side effect free in the general sense, which depends on
one further concept.

Definition 3.6. Let p andq be copyable and discardable programs withFV (q) andy ¢
FV(p). Thenp commutes with g the following three equivalent conditions hold:

do {x<— p;y<q;ret (x,y)} is a copyable program (3.2)
do {x—p;y—qret(x,y)} = do{y—ax—piret(xy)} (3-2)
do{Xx—p;y<—q;r} =do{y—q;x<—p;r} (3.3)

Definition 3.7. A copyable and discardable progrgnthat commutes witlall copyable and
discardable programs is callddterministically side effect frdesef).

Proposition 3.8. Dsef programs are stable under sequential composition, i. e. for every se-
quencex< p of dsef programs and every dsef program q, the progtadx <« p;q} is also
dsef.

Remark3.9. As a rather technical aside, Isabelle imposes the restriction of quantifying not
over all programs of all possible types, but merely over all programs of a fixed type. Fortu-
nately, a program already commutes with all discardable and copyable programs if it com-
mutes with all such programs of tygeQ. Therefore, the property of a progrgmbeing dsef

can also be expressed with more stringent type constraints in Isabelle.

3.1.2 Global Dynamic Judgements

Before introducing logical operators for dsef terms (viewed as formulae), we clarify when
such a formula is to be regarded as valid. Contending the global validity of a term of type
TQ (notationEl¢)! amounts to saying that

¢ =do{a—¢;retT}

Inote that the typ& Q indicates that global validity is also defined for ‘formulae’ with side effects

3.1 Preliminaries 28

i. e. basicallyp evaluates to truthT) if it yields any results at all. In the state monad (resp.
the exception monad), this equation also holds i undefined (resp. throws an exception),
while in the nondeterminism monad it also holdg ifloes not produce any results at all. For
the important special case whens discardablel¢ reduces t@ =ret T.

Although global validity is a sufficiently strong concept to express when a term offit¢de
is to be considered valid, there are monads (albeit rather exotic ones such as the free Abelian
group monad, se8f, Section 3]) for which it is too weak to give a semantics to the box and
diamond operators. For this to be possible in a most general manner, the similar but more
powerful notion of eglobal dynamic judgemerid necessary: ldk— p|g ¢ abbreviate

do {X— Piret (X 9)} = do {X— piret (X, T)}
(note thatp : Q in [x— p|g ¢, i. e. ¢ is an actual formula, whereags: TQ is a monadic term
in GBly).
Remark3.10 The monads that serve as examples in this thesis have been siafipid

in [34]; in simple monads the equivalence of the two statem@rdo {x« p;ret ¢}) and
[X«< p|c ¢ holds, such that one of these concepts would actually be sufficient.

The following lemma once more shows that a more general statement (in this case about
global dynamic judgements) drops out of an apparently primitive definition.

Lemma 3.11. If [x— p|g ¢ holds,

do {X—p;q[¢/y]} = do{x—p;q[T/y]}
for each program g containingyQ as a free variable.
Proof. Again, by a direct calculation: let; denote thd-th projection function and lef

be the substitutiod (m1 - 711)z/Xq, . .., (T - m1)Z/%n, m22/y} Which replaces; andy by their
respective selection from the tupte= ((x1,...,%n),y). Then

do{Xx—p;q[¢/y]} = do{X—py—ret¢;q}
— do (X Fry—ret ;2 ret (Ty); ()0}
= do {zdo {X« p;y<ret ¢;ret (xy)};(q)6}
=do{z—do {x—p;ret (X,¢)};(q)0}
= do{z—do{x—pjret (X, T)}; ()6}
=do{z«do {Xx«p;y«ret T;ret (x,y)};(q)0}
=...=do{X—piq[T/y]}

where to arrive atx) the assumptiofx«< p|g ¢ has been used. O

Corollary 3.12. One hasla«< ¢]ga if and only if@¢. The implication from left to right

is a direct consequence of Lemr@d.1, recalling that¢ = do {a< ¢;ret a}, whereas the
implication from right to left is, again, a manipulation with the help of unit and associativity
laws of monads.

We will not devote ourselves to developing an entire calculus of global dynamic judge-
ments — which indeed already is expressive enough to formulate a Hoare calculus for partial
correctness with it, as has been done3f| |- but rather make use of it to define the modal
operators of monadic dynamic logic. Global dynamic judgements are also useful to formalise
what it means for a program to terminate:

3.1 Preliminaries 29

Definition 3.13. A programp terminatesf

[X—qg;plc9 implies [x—0c¢
for each program sequenke-q and each formula : Q.

Example 3.14. Obviously, ¢ : Q in [X< q; p|c ¢ cannot mention the result gf since this
result is not bound. To see how the above definition accords with the intuitive understanding
of termination, consider the simplest possible exception monad WheteA+ { L }. In this
setting, it is reasonable to talk of nontermination of a progihit throws an exception
(i.e.p=1). In this casgx«<q; p]c L will be true for every program sequenke-q since
do{X—q;p;ret(x,L)} = L =do{x«q; p;ret (x, T)} (recall the definition of binding in the
exception monad)[x«< g]c L will however be false for every program sequemnce g not
throwing any exceptions.

Remark3.15 Reasoning about termination in the state monad (recall that harakes

the formS — Sx A, i.e. a function space dbtal functions) only makes sense if either
partial functions are considered or the theorycomplete partial ordergcpos) withcontin-

uous functiondetween them is employed. In a setting where programs are partial functions
f : S— Sx A, one finds that the above definition of termination precisely identifies the termi-
nating programs with the total functions — given an adapted definition of binding that takes
the possibility of undefinedness of programs into account. Since in Isabelle/HOL every func-
tion is implicitly total, we also stick to this principle in the overall development, explicitly
indicating when more structure is necessary, e.g. in the definition of arbitrarily recursive
definitions like that of a while-loop.

The greater freedom in treatment that dsef programs are characterised by also shows up
when they appear in global dynamic judgements. Several properties such as the equivalence
of [W«q; X« p; y« p; Z—r]c ¢ and[w«—q; x— p; z—Tr[x/y||c ¢[x/y] can be proved for a dsef
programp. This leads to three notational conventions that allow one to use dsef programs in
places where actual values are expected, and vice versa. Put concretely, we allow

1. adsef progranp: DA to occur in places where a varialdeA is expected; the program
q[p/x] decodes intalo {x< p;q}.

2. aformulay : DQ to occur in places where a genuine formata can appear in global
dynamic judgements; the judgemért— p|g ¢[y/a] decodes intdX«— p;a«— Y| ¢.
Note that here the evaluation pftakes placefter having evaluated«— p, whereas in
(1.) pis evaluatedefore q

3. formulae of typeQ to be inserted in places where actually a formula of ti is
expected, since the former type can easily be cast to the latter threwdthis is con-
venient if several stateless formulae are involved which, for instance, make statements
about the data on which a program is supposed to work.

The specification of the tree-search algorithm in Secfighis an example where this con-
vention is employed. Compare also with Remé&rR on how this convention is handled in
Isabelle.

3.2 Logical Operators 30

3.2 Logical Operators

3.2.1 Primitive Connectives

The logical operators are defined in terms of already existing logical operators for the type of
truth valueQ. So we assume that the background formalism at least allows the formulation
of the standard propositional connectives; this is certainly the case for Isabelle/HOL which
even allows the formulation of higher-order functions and predicates. We will use the same
symbols for both actual formulae of tyde as well asformulae of dynamic logiof type

DQ; it will be clear from the context which of them is meant. logtstand for conjunction

A, disjunctionv, implication = or equivalence<= of two formulae of dynamic logic

¢,y : DQ respectively. Then these connectives are defined as

popy =gef do{a—o;b—y;ret(aopb} (3.4)
Negation is of course similarly defined as
-9 =qef do{a—¢;ret(—-a)}

First-order operators like a universal quantifier are not available for formulae of dynamic
logic; they may however appear étateless formulaee. g. of the fornret (vx. P(x)), if the
underlying formalism allows their formulation for formulae of ty@e An example thereof
can be found in Chapterwithin the specification of a breadth-first search algorithm.

Asserting the validity of a formula of dynamic logic can be done in two equivalent ways,
due to the existence of two different notations and their relation to each other. The ‘global
box’ [6 basically serves the purpose of asserting validity of a fornigll@ A v) decodes into
Cl(do{a—¢;b—y;ret (anb)}) according to the definition of conjunction and is to be read
as “it is globally true that) A w holds”. By Corollary3.12 an equivalent formulation is to
say thaja<— ¢; b y]g (aAb) holds. Itis important to note that all propositional tautologies
carry over into the calculus of monadic dynamic logic= (v = ¢) is globally valid, since
global validity amounts tda«<— ¢;b <« y;c«— ¢]c (a = (b = c)) being valid. The latter
judgement is valid because by Lemi@& it is equivalent tda«— ¢;b— y|g (a= (b= a))
in whicha=- (b=-a) is a tautology (i), thus equal tor .

3.2.2 Boxes and Diamonds

The key feature of monadic dynamic logic is the existence of modal operators that allow
building formulae(i. e. terms of typeDQ) stating that after execution of a program some
condition will necessarily or possibly hold. This is in contrast to the globall@and the

global dynamic judgements which, as the name suggests, merely allow the formulation of
global statements about program sequences and properties of their bound variables. The
semantics of the diamond and box operatfars- p] ¢ and (x<— p) ¢ is local in the sense

that the state in whiclp is evaluated may be modified kpy but the entire formula does not
modify the state in which itself is evaluated. Hence, it may appear as a sub-formula without
affecting the semantics of surrounding sub-formulae.

Example 3.16. The axiomatic introduction of the box and diamond operators given below
does not quite point to an idea of what they intuitively express. We therefore give their
intended interpretation for the monads described in Se@i@ras a motivation for their
usefulness.

3.2 Logical Operators 31

e In the state monad of total functiofps— p| ¢ and(x«<— p) ¢ depend on the state. They
denote the same formula which is true in a statafter execution o the resulix will
satisfy¢. If partial functions are involvedk«— p| ¢ is actually weaker thatx— p) ¢
in that the former is also true ff is undefined.

¢ In the exception monagk < p|¢ holds if p throws an exception or yields a value
satisfying¢, whereas forx < p) ¢ to hold it is additionally required thagt does not
throw an exception.

¢ In the nondeterminism monad, whepe TAis a set of elements &, [x«— p| ¢ holds
if all elements inp satisfy¢ (which also includes the case wheye- 0) and(x«< p) ¢
is true if and only ifp contains some value satisfyigg

¢ Finally, in the combination of the list monad and the state monad the modal operators
depend on the state as well. Validity [gf— p] ¢ (or (x< p) ¢) in a states means that
all outcomes op satisfy¢ (or at least one outcome satisfigs

The following definition formalises the essential requirement that a monad must satisfy
in order to allow the interpretation of monadic dynamic logic. The somehow dual operators
[x«< p| — and (x<— p) _ are introduced independently of each other in order to make their
particular interpretation possible in intuitionistic logics as well. In a classical setting, one
might define(x«— p) ¢ as—[x« p]—¢, and in fact this equivalence is shown to hold in
Isabelle later on.

Definition 3.17. A monadadmits dynamic logiéf there exist formulady < q] ¢ and (y
q) ¢ for each program sequenge-q and each formula@ : DQ such that for each program
sequence«— p =Xy« P1;...;Xn< Pn coNtainingx : Q (1 <i < n) the following equivalences
hold:

X—ple (% = [y—a¢) < [X—py—dle(x =¢)

X—=ple ({(y=q) ¢ =x) < X—py—0dc(9=X)
The purpose of using the variablgs generality: one can express every formylan context
of the otherx; through it: simply putx = x, and p, = ret y. Note also that the above

equivalences make use of the notational convention of letting formulae of monadic logic
appear where a formula of tygeis expected: in decoded form the first equivalence reads as

X—pa—[y—ddlc (X =a) < [X—py—gb—9lc (X = b)
and similar for the second one.
We state some basic properties that accompany the box and diamond operators.

Proposition 3.18 (Unique determination). One can turn the type of dsef program€D
into a partial order by settingy < yx if and only if¢ = x. Then[y<—q]¢ is the greatest
formula y such thata<— y;y«— g (a=- ¢) and (y<Qq) ¢ is the smallest formula such
that[a— y;y«—qc (¢ = a).

A proof of this proposition involves two steps: first, it has to be shown that for each formula
y satisfyingla— y;y«—0jc (@ = ¢) (or [a—y;y g (¢ = @) one hasy = [y —q¢
(or (y<—Q) ¢ = v). Second, it must be shown thigt—q]¢ ((y< Q) ¢) in fact satisfy the
judgements. Both parts of the proof follow more or less immediately from the definition of
the box and diamond operators.

3.2 Logical Operators 32

Proposition 3.19 (Global validity of box formulas). Let y« q be an arbitrary program
sequence and : DQ a formula. Ther€l([y<q] ¢) is equivalent tdy«— Q] ¢.

The following equivalence allows us to reason about termination within the calculus of
monadic dynamic logic without having to fall back to reasoning about global dynamic judge-
ments.

Proposition 3.20 (Termination). A program p terminates in the sense of DefinitRa3if
and only if(p) T holds.

Defining the Modal Operators

In monads with additional structure that besides imposing some minor logical well-behaved-

ness basically allows one to ‘read the current state’ — a property which virtually all of the

running example monads possess — it is possible to directly define the box oheTatisr

definition is shown now as it enlightens the particular locality of the box operator’'s semantics.
The general idea is that dsef programs can essentially be regarded as programs that may

read the ‘state’, but not alter it, i. e. there is an isomorphism between theDé e dsef

programs oveA and the function spade — A, whereF is the type of states (see below).

With the help of this isomorphism, one may describe the box opepaterp| ¢ as a function

that maps the current state to a global dynamic judgement (hence, a formula d®)ype

asserting that after setting this state and execuingpe formula¢ will be true. We need

some definitions to make these ideas precise. The notion of state has to be abstracted from

the set of concrete state valugsn the state monad to a concept that also makes sense in

other monads.

Definition 3.21. A stateis a terminating progrars: T1 such that for each dsef program
p : DA there exists an elemeat A such that

do{s,p} =do{sret a}
If for each terminating program one furthermore has
s=do{Qq;s}
thensis called aorcible state The subtype oT 1 of all forcible states is denoted by

In the state monad, a state as just defined would rather be thought of as an update operation:
the functionupdate §= As: S (5, *) of Section2.2.1yields a state when it is applied to an
element of the set of concrete staBdn the exception and nondeterminism monads there is
only the trivial stateet x, which in both cases is forcible; the special kind of list monad we
have described does not have forcible states: its states take thegferthi : List . [(c,*)]
for c: List I, but for the prograng = Ai : List I. [(a,*), (b,*)] one has

do (g} = Ai s List L [(j,#), (,%)] #

The basic problem is that an element can occur multiple times in lists, in contrast to sets so
that forcibility is only available when the latter are used, e. g. in the nondeterminism monad.

2even in the intuitionistic case the diamond operator can then be defined in terms of the box operator, albeit in
a rather contrived way that we will not present here

3.3 The Monad-independent Proof Calculus 33

For the definition of the box operator we need a further operation that allows one to extract
the state. It is determined by the property that accessing the state with the help of it and then
immediately executing this state has no effect (since the state will be the same afterwards as
beforehand):

Definition 3.22. A programd : DF is called astate discloseif the termdo {X« d;x} is
discardable.

Itis now possible to establish thAA = (F — A) by defining two isomorphisms, : DA —
(F — A) and its inversec, ' : (F — A) — DA for each typeA (the indexA will be omitted
in the following). While to be able to define one needs a Hilbert description operator, its
inverseic,g1 can be defined purely by means already availabledL.&F be a state discloser,
then for each functiori : F — Athe programk—1(f) accesses the current state and applies
ftoit, i.e. one has
K 1f) =gt do{s—d;ret(fs)}

which is a dsef program of typPA, recalling that bothld andret are dsef programs. This
mapping allows us to describe the box operator as a functién-in Q, i. e. as a state de-
pendent truth value, and then subsequently inject it D#o [y« q] ¢ can be interpreted in
F — Q as a function that returns the global validityd@ffter executing the statefollowed
by y<@. This is formalised by the following definition of the box operator:

Y9 =der Kk '(As:F.[sy—qc¢)

3.3 The Monad-independent Proof Calculus

The entire proof calculus for monadic dynamic logic can be formalised by adding the rules
and axioms of Figur8.1to the set of propositional tautologiesii2. Certainly the inclusion

of all tautologies is overkill which might be prevented by only including an independent and
complete set of axioms for propositional logjibut here we are mainly concerned with rules

and axioms for the modal operators. The soundness of the calculus has been established in
[34], whereas its completeness is still an open issue.

The side conditionx not free in assumptions’ in the necessitation rule is a typical side
condition analogous to the one for the universal quantifier in first-order logic; theagrm
sumptionds to be understood as it is used in natural deduction and does not refer to the
premissof the rule,¢. The axioms K8 and K3 refer to stateless formulae that are mere
injections of formulae) : Q. The first one expresses the fact that stateless formulae continue
to hold after execution of programs (whereas the inverse is not true due to possible nonter-
mination of the progranp), and the second one expresses the fact that stateless formulae
that hold after terminating executionsélso hold unconditionally. The sequencing axioms
sed? and se¢p allow one to freely split and join boxes and diamonds.

Essentially thek axioms are the intuitionistic counterpart to the uskiaxiom of classi-
cal modal logic, which is called 1 here (seedq]). FurtherK axioms are however necessary
to be able to prove intuitionistically valid formulae. This is mainly due to the fact that the
box and diamond operators are defined independently of each other. It will be seen in Chap-
ter 6 that the implementation of the calculus in Isabelle behaves classically, so that in it the
classical equivalence @k« p) P and—[x« p| =P can be shown.

Scomplete in the sense that every tautology can be proved from these axioms together with modus ponens

3.3 The Monad-independent Proof Calculus 34

Rules:

=V, 0

(0] X not free 0]

(neg [X«—p]¢ inassumptions (mp)

<|s

Axioms:

(K) [x—p|(0=y) = [X—pl¢ = [X—ply
(K2) [x—pl(¢=y)= (Xx—p)¢ = (X—p) ¥
(K30) ret¢ = [plret¢

(K30) (pyret¢p =ret¢

(K4) (X P} (0 V) = (K P} 9V (K—P)y)
(KS) (K=o = [X—ply) = [X— P (0 = ¥)
(sed) [Xe—py<—d¢ < [X—plly—d¢

(seq®) Xe—py—d)¢ < (X—p) (y—a)¢
(ctr0) [xe—py«0a ¢ = [y—do{x—p;a}] ¢ (x¢ FV(9))
(ctro) (Xe=piy0q) ¢ < (y—do{x—p;q})¢ (x¢
(retd) [x—retd¢ < ¢[a/X

(ret®) (x—reta) ¢ < ¢la/X

(dsefd) [x<—p]P < P[p/X] (pis dsef)
(dsef>) (x—p)P < P[p/X (pis dsef)

Figure 3.1: The generic proof calculus of monadic dynamic logic

Two further axioms that are needed in Chaitean only be proved in so callddgically
regular monadqcf. [34, Def. 5.14]). Essentially, logical regularity means that arbitrary
formulaec: Q implying some global dynamic judgement can be moved into the scope of that
judgement, as follows

C= [Xx—plcp implies [x—plc(c=9¢)

This restriction is only necessary in the intuitionistic case; if the underlying logic is classical
one can show that all monads are logically regular. Even in the intuitionistic case all monads
that are under consideration here are logically regular. The axioms allow one to substitute
equals for equals inside boxes and diamonds:

AXxioms:
(edd) p=q= [X<p|dp = [x—0q]¢
ex®) p=qg= (X<—p ¢ = (Xx—0q)¢

3.3.1 Hoare Calculi

The calculus of monadic dynamic logic can be applied in order to define a Hoare logic for
partial as well as one for total correctness of monadic programs. In Hoare logics for partial
correctness of imperative programs one has assertions of the{foym{y}, which are to

be understood as “if the preconditignholds before execution gf, then the postcondition

v will hold afterwards ifp terminates”. This idea also makes sense for monadic programs,
but in fact it is already incorporated in dynamic logic by formulae of the fares- [p] v.
Likewise, one can give meaning to Hoare assertions for total correctness by adding the re-
guirement that a program terminates. This leads to the following definition.

3.4 Specific Extensions for the Exception Monad 35

Definition 3.23. A Hoare assertion for partial correctness monadic programs is a formula

¢ = [X—ply (writtenas {¢}p{y})

A Hoare assertion for total correctnessso requires the termination of the program under
consideration and hence takes the following form:

¢ = (X=plyA(x=p)T) (writtenas [¢]p[y])

Classical Hoare rules like a sequencing rule or a context weakening rule

(0] X p[y]

(9] % Ply] =9
[v]y—qlx] Xy =y
(0] X—p;y—Qq[x] (0] X—p[y]

(which of course also exist for partial correctness assertions) are easily derived in the proof
calculus of dynamic logic. In the next section we will make use of a Hoare logic definable

in this way for specifying and proving correct a pattern match algorithm. While Hoare logic
represents a convenient way of reasoning about programs in the state monad (which naturally
comes quite close to reasoning about simple imperative programming languages), e.g. the
gueue monad used in the next chapter does not lend itself to an axiomatisation simply by
means of Hoare assertions about the basic queue operations. Hence, proofs about the queue
monad will be conducted in the calculus of dynamic logic.

3.4 Specific Extensions for the Exception Monad

We have mentioned in Examp814that non-termination in the (simple) exception monad
means that an exception has been thrown. So, given an operatéen E — TA which

raises an exception from the detof exceptions, one hgsaise € L so that “anything can

be proved in the presence of an exception”. This might be acceptable as long as exceptions
simply indicate some kind of failure and it does not matter much which error eventually
occurred. In this case, partial correctness explicitly dogssay anything about whether

the program actually terminated and total correctness excludes all situations in which an
exception occurred. But as soon as exceptions are employed to deliberately manipulate the
control flow and if they may carry values (e. g. in the monad for Java3fl[1]) this turns out

to be a serious lack of expressiveness. An extension of the basic Hoare calculus described
above has been given i3] which makes it possible to reason about so cadbdormal
postconditiongequired to hold if an exception has been thrown (as opposed tootmeal
postconditiorwhich must be satisfied in case of regular termination). This extension relies
on the presence of an operation to turn an exceptional state back into a normal one, which is,
of course, the well-knownatch: TA— T (A+ E) operation. As indicated by this signature,
catchsimply makes an exception visible rather than additionally requiring a handler to cope
with the exceptional situation, as in Haskelfatch: TA— (E — TA) — TA The latter is

easily definable in terms of the former. 183 a categorical definition of exception monads

is giverf, from which however one can derive all equations that may intuitively be expected

4in which catchis taken to be a natural transformation betw&eamdT (_+ E) such that it equalises the strong
monad morphismeatch . g andTinl

3.4 Specific Extensions for the Exception Monad 36

to hold, e. g.

catchdo {x<—p;q x} =

do{y«catch pcase y of inla — catch(q a) | inr e — ret (inr e)}
catch(ret x) = ret (inl x)
catch(raise @ =ret (inr e)

(3.5)

where the first equation states hoatchbehaves under sequential composition of programs
(in particular the second progragris only executed ifp did not throw any exceptions), the
second one states thrat does not throw any exceptions and the third one expressesdtotv
interacts withraise, namely that it precisely returns the exception thrown by this operation.

With these defining equations foatch available, one may reason in the regular Hoare
calculus by wrapping up all programs withcatchand doing a case distinction about the
return value otatchin the postcondition:

{9}y (catch x—p) {caseyof inlx — y|inre—S ¢

The abnormal postconditidd: E — DQ is a stateful predicate on exception values and may
not mention the normal return valuxewhereasy of the normal postcondition may contain

x freely. This scheme can be given a more convenient notation by explicitly distinguishing
between normal and abnormal postcondition and leaving the ubiquigddsunmentioned:

{9} x—p{vlS

It is now possible to derive a Hoare calculus to reason about exception monads, including
rules for sequential composition of programs, a rulerfdse as well as one focatch etc.
Figure 3.3 lists all rules that apply to arbitrary exception monads; in particular note rule
(raise) which shows how the problem of giving a reasonable postconditioai$ethas been
resolved.

3.4.1 Parameterised Exceptions

As a concrete example, we will now describe how to translate the exception handling mech-
anism of the Java programming language into the calculus described here. It will then appear
that one further extension has to be made, since in Javaratenrn statements terminate
abnormally, resulting in exceptions carrying values of an arbitrary type. The stipulation that
return (andbreak andcontinue) statements terminate abnormally is not specific to the
model of Java given here, but rather settled in the Java language specifié&liomd deal

with this situation a conversion functianbodyis required that mediates between slightly
different monads. This is due to the fact that every concrete monad may only carry exception
values of a fixed type, as will be seen, whereztsrn exception®sf different methods may

have entirely unrelated types — which is naturally so, since methods may have different return
types.

The fact that certain statements terminate abnormally suggests the following data type be
used as the type of exceptions — ignoring for the time being the class-hierarchy of exceptions
rooting in clas€xception, i. e. all run-time errors likArrayOut0fBoundsException oOr
I0Exception. The main point to be made here is how to model the hidden exceptions that
do not show up as such within a real Java program. So let

E a= MRet a| FallenOff | Break| Cont| Error

3.4 Specific Extensions for the Exception Monad 37

whereMRet arepresents a return exception carrying the value which was the argument of
the return statement that raised the exceptidrallenOff will be raised by the yet to be
definedmbodyoperation to indicate that its argument illegally terminated normaligak
andContare exceptions raised lyeak andcontinue statements respectively, agdror

is an exception that slightly over-simplifyingly models all other cases.

The monad in which the semantics of sequential Java is modelled best is the state monad
extended by exceptions and nontermination (where the latter is treated similar to an exception
by the binding operation)

Tab=S—Sx(b+Ea+1

such thafl ais an exception state monad for each each gyjpewhich binding respects ex-
ceptions, i. e. inlo {x < p; q} the prograny is only evaluated ip did not raise an exception.

In this monad one hasatch: T ab— T a (b+E a) andraise: E — T a bfor all typesa
andb. The type ofcatchalready points out that it is not possible to switch between mon-
ads of different exception types; this precludes the applicability of this model in situations
where e. g. one method of Java-return type is called within another method of return type
boolean. The following example demonstrates the problem.

Example 3.24.Let mret xabbreviataaise (MRet ¥, then the Java methods

public static int f(int x) {
if (g(x) < 0)
return x + 1;
else
return x - 1;

public static boolean g(int x) {
return x*x < 100;

}

might néavely be translated into the monadic model to obtain

f:Int—T Inta
f x=do { r«catch(g x);
caser of
inl (MRet b — if b then mret(x+ 1) else mret(x— 1)
_ —raise Error }

g:Int—-TQa
g x=mret(x-x < 100

But this results in a type error, since the progreatch (g x) has typeT Q (a+ Int) in
f, which itself is a monadic computation ih Int. Thus, the two monadic computations
are incompatible. Intuitively, it should be possible to resolve this incompatibility, as the
type of exceptiong may throw is not of importance to the exception typefofall calls
to methods are enclosed lpatch and hence cannot propagate inth In fact, this can
be achieved in a way that simultaneously avoids having to enclose every method call by
acatch The key to this solution is the observation that every exception mdnean be

3.4 Specific Extensions for the Exception Monad 38

obtained by applying thexception monad transforméwell known asErrorT from the

Haskell libraries) to some existing monBduch thafl is isomorphic tdR(_+ E). Basically,

this says that for every exception monad there is some underlying monad such that they share
the same structure, but the exception monad only lives on result types enriched by some set
E of exceptions. In the case at hamisimply is the state monad with non-termination, and
binding inR(_+E) =S— Sx (_+E)+ 1 means binding as defined for the state monad and
not for the exception monad. The practical consequence of this relationship is that one can
also write programs iR(_ + E) and convert them t@ via ErrorT, which is precisely what

is done formbody We refer to Appendid, p. 98, for a Haskell implementation aghbody

and the exception monad transformer. The pivotal propertlaédyfrom the viewpoint of

the exception monad is that it converts the exceptional state of a computation back into

a normal one if a return exception has been raised, but lets all other exceptions pass — thus
making itpolymorphic in its own exception typAdditionally, in case of normal termination

of its argumentmbodywill raise aFallenOff exception. Its type therefore is

mbody. T ab—T ca

When translating Java methods into the monadic setting, one will thus enclose the trans-
lation m of every method body of functionf by mbodyto obtain the translated functidn
Conducted in this manner, the translation of the above Java methods then is

f:int—T alnt

f x = mbody(
do{b—gx
if b then mret(x+ 1) else mret(x—1)
H)
g:Int—=TbQ

g x=mbody(mret(x-x < 100))

Since every progranp obtained from a translation of a Java method into the monadic
setting will now contain an occurrence ofbody it is necessary at this point to specify
and prove a Hoare rule for this construct which captures its decisive properties (see also
[38]). Fortunately, a single rule suffices for this purpose in the case of partial as well as total
correctness assertions (and both rules look alike so that only one of them is shown), noting
that one will only want to prove properties of programs that terminate abruptly with a return
exception.

{¢}x—p{L|Aecaseeof MRety— y|e— S ¢

(mbody) {¢}y<—mbody || S}

Correctness of a pattern match algorithm

As an example of how to apply the extended calculus to realistic programs, we will specify
and prove the correctness of a pattern match algorithm which searches for a given sub-pattern
in a given base pattern. The algorithm is implemented in an exception monad with dynamic
references and a while loop; the existence of the latter implicitly presupposes additional
structure on the monad, se Section 7] for details and Appendifor an implementation.

One therefore has to axiomatise additional operations on the monad (apartfeomd>>=);

3.4 Specific Extensions for the Exception Monad 39

the corresponding specification is shown in FigBr2 A condensed version of this proof
already appeared ir3g], while here we provide the full picture.

pmatch: List a— Lista— T e Nat
pmatch base pat mbody(do {

r —newo;
S«+—newo;
while (ret T)
(do { u«—xr;
V< %S,
if u=len pat
then mret v
else if v+ u=len base
then raise Error
else if base! (v+u) = patllu
thenr:=u+1
elsedo { s:=v+1;r:=0}
)
)

This definition ofpmatchis almost identical to the Haskell implementation to be found
in Appendix A, with slight modifications to retain the notation used so far. It introduces
a type constructokist mapping each typa to the type of lists oven, a length function
len: List a— Nat and an indexing function !! List a — Nat — a operating on these lists
in the usual way — where the latter is undefined if the index exceeds the bounds of the list.
Further it requires a natural numbers tydat and makes use d@xistential equalitywhen
comparing elements of lists. This means that a compasigor- w!! j yields true if and only
if both vI!i andw!! j are defined and equal. An informal specification of this algorithm is as
follows.

e pmatchreturns the first — i. e. least — indedsuch that the pattempat occurs inbase
starting at index.

¢ If no such index existgpmatchwill fail with an exceptionError.

The specification in Figurg.2extends the axiomatisation of the dynamic reference monad
given in [32] by abnormal postconditions, which in most cases areasserting that the
corresponding operations do not raise exceptions. An exception is the rule (new-distinct),
which states that the subsequent creation of references, with an arbitrary pro@ndrich
may raise exceptions) executed in between, produces distinct references. We prove total
correctness of the algorithm generically, i. e. without further assumptions on the underlying
monad other than the axioms of Figi@ and the interpretability of hile construct. Figure
3.3 displays the generic Hoare calculus for total exception correctness. The calculus for
partial correctness is essentially identical (where the square brackets are of course replaced
by curly brackets) except for rule (stateless) in which there is no need for a premiss.

For the actual method body, i. e. the argument ainbodyin function pmatch we claim
that it terminates abnormally, raising either a return exception carrying as its value an index
x that is the starting position of the first occurrence of the pattern in the base string, or a

3.4 Specific Extensions for the Exception Monad 40

Operations
read: Ref a— T ba (read r =gef *r)
write:Ref a—a— T bl (write r X =gefr :=X)

new:a— T b(Ref g

Axioms

dsefread) (dsef-read)
[Jri=x[x=xr| 1] (read-write)
[X=*rA-r=g/s:=y[Xx=xr| L] (read-write-other)
[r<—new xx=sxr| L] (read-new)
[X=3*r A—r = §|Se—new yx = «r || L] (read-new-other)
[

dlr—newxp[T||T]=
[@]r<—new X p;S<—new y—r =s| T] (new-distinct)

Figure 3.2: Specification of the exception reference monad

failure exceptiorkrror indicating that there is no occurrence of the pattern in the base string.
Compare this to the specificatioB.20 for pmatchitself, which actuallyreturnsthe indexx
if found:

[p[L]| Ae case eof
MRet i— MPOS iAYj. MPOS j= i < |
| Error — —Ji. MPOS i
| ——]

(3.6)

The abnormal postcondition above will be denotedPl®SThelow. HereMPOS istates that
the pattern is matched at positioim the base string:

MPOS i=V]j.0< j < len pat=- basé! (i + j) = pat!! j.

In order to apply the total exception while rule (while) of Fig&&, we need to provide a
loop invarianiNV and a termination measurePutting

INV= (Vi.0<i<=x*r= basal(xs+i)=pat!i) A
Vi. MPOS i= xs<i

(which implies 0< xr < len patand 0< xs+ xr < len basg guarantees that the dsef term
t = (len base- xs,len pat— «r) always yields results of typHat x Nat, on which we have
the lexicographic ordering as a well-founded relation.
Establishing the invariant upon entrance into the loop is easy, since from the axioms given
above,
[[r<—new0;s«newl[xs=xr =0A—(r=9)| L] (3.7)

can be derived by the rules (seq), (conj), (read-new-other) and (new-distinct). Inside the
loop, there are essentially four branches, arising from three applications of the rule (if), so

3.4 Specific Extensions for the Exception Monad

41

[¢]X—ply| S (9] ...ix=py—Qzr[y| §
9 Gl ls) By o b nal) e TS
6% Py Sy (¢1] % Pw[|S
) raAniaas O e
91%—plv S
o'=¢ y=y
W e TS U e et
[Ab[x—p[y| S
(dsef) p dsef (if [¢ A—b]x—q[y|

[9]x—plo Ax=pl L] [¢]x—if bthen pelse q[y||§

[9]X— plw(inl X/y] || Ae. ylinr e/y]]

(cateh) 5Ty« (catchx—p) [y || 1

(raise) [¢]raise & [L[|Ae. (¢ Ne=ep)]
[9ABp[T]T]
{oAbAt=2z} p{o ADAt < Z|| T}
{¢Ab}p{TIS}

(while) [¢] while b p[g A —b]|S

Figure 3.3: The generic Hoare calculus for total exception correctness

3.4 Specific Extensions for the Exception Monad 42

that the three premisses of the total exception while rule are split into twelve proof goals
(the two read operations«— *r andv+« xs are dealt with by rules (dsef) and (seq)). The
total exception while rule proof obligations, stated informally, are first to prove termination
of the program at hand, then to prove that the invariant is maintained as well as that the
termination measure decreases strictly, and finally to prove that the abnormal postcondition
can be established given the loop invariant as a precondition. We now prove the goals for
each branch, with some of those having obvious proofs omitted. Furthermore, we will leave
the pre- and postcondition(r = s) implicit, since it obviously prevails in the whole proof
thanks to rule (stateless).

(i) Returning an Index.
[INVA*r=uAxs=VAU=Ilenpatmretv[T || T] (3.8)

{INV Axr =uAxs=VvAuU=len patA (len base-v,len pat—u) = z}
mret v (3.9)
{INV A (len base- xs,/len pat—=«r) <z | T}

{INVAs*r =uAs*s=vAu=len patf mret v{T || POST} (3.10)

By the total and partial variants of rules (raise) and (wk), recalling thiat vis just an
abbreviation foraise (MRet \) one easily obtains3(8) and @.9). It remains to show3.10);
now from its precondition we infalPOS wVi. MPOS i=- v < i, a stateless formula. Further
we may derive{ } mret v{ L || Ae. e= (MRet)} by (raise). Hence, by (stateless), (conj), and
(wk), we obtain

{INVA*r =uA*S=VAx*r =len pat mretv
{L]| Ae.e= MRet vAMPOS WVi.MPOS i= v < i}

The formula in the abnormal postcondition implie®©ST, since the kind of exception is
identified agvViRetand thus the formula can be extended to the case constrBQST. This
means we are finished by another application of (wk).

(i) Failing to Find an Index.
[INVAxr =uA*s=VA-(u=len pah Au+v=len baséraise Error[T || T] (3.11)
{INV A (len base- xs,len pat— «r) = zA ...} raise Error{INVA... || T} (3.12)

{INVAxr =uA*s=VA-(u=lenpaj Au+v=len base
raise Error (3.13)
{T | POST;

Again, 3.11) and @.12 — which has not even been written out in full; the pattern is as in (i)
— are immediate by rules (raise) and (wk). To sh@wW.® we note that by (raise) one has

{}raise Error{ L || Ae.e=Error} (3.14)

3.4 Specific Extensions for the Exception Monad 43

and lettingP =qet INV[u/%r,v/xs Au+ Vv = len baser ~(u = len paf) by (stateless) one
obtains
{P}raise Error{P|| Ae.P} (3.15)

After strengthening the precondition @.(4) by (wk) one may combine it with3(15 by

rule (conj). But the formula thus obtained in the abnormal postcondition impi@ST.
informally this can be seen because the exception tyferrisr; the substituted invariant
guarantees that no pattern has been found watad none can appear later on as the end of
the pattern has been reached arid less tharen pat this means that no occurrencept

in baseexists.

(iii) Proceeding With a Partial Match. In this branch the first and third goals are triv-
ially proved, since assignment terminates and does not raise exceptions. The second goal
is

{INVAsr =uA*s=VvA-(u=lenpaj A —(u+v=lenbase
A (len base-v,z= len pat— u) A basé! (u+v) = pat!!u}
r=u+1 (3.16)
{INV A (len base- xs,len pat—x*r) <z || T}

There are two parts to be shown here: on the one hand it has to be established that the invariant
holds in the postcondition, and on the other hand one must show that the termination measure
t decreases. Both proofs hinge on rules (read-write) and (read-write-other) from which one
infers

{=(r=s)Axs=vV}r:=u+1{xs=VAxr=u+1| L} (3.17)

so that in 8.16) the value ofks carries over from the pre- to the postcondition, while the value

of «r isincreased exactly by one. Taken together, this forces the mddeuwtecrease strictly.
Regarding the invariant a similar point can be made: analogous to (ii) the invarianti with
andv replacing«r andxsrespectively carries over from the precondition to the postcondition
since it is stateless. Moreover, the facts that the partial match may be extended, i. e. one has
baseé! (u+v) = patl!u, and 8.17) establish the invariant proper.

(iv) Starting a New Match. Again, the first and third goals are not shown, because the
situation is essentially the same as for (iii), the only difference being that two assignments
are executed instead of one.

{INVAsr =uA*s=vVA-(u=lenpaj A —(v+u=len base
Az= (len base-v,len pat— u) A —(baseé! (u+v) = patl'u)}
do{s:=v+1;r:=0} (3.18)
{INV A (len base- xs,len pat— «r) < z}

Once more the crucial fact can be obtained from (read-write) and (read-write-other):
{=(r=9)}s:=v+1r:=0{xr=0Axs=v+1| L} (3.19)

This forces the termination measure to decrease strictly, and enables one to retain the invariant
in the postcondition. Informally this is valid due to the fact thébaseé! (u+ v) = pat!u),

3.4 Specific Extensions for the Exception Monad 44

i. e. the current partial match cannot be completed. It is then legal to incsdasene to
search for another match further on, validating the second conjunct of the invariant. By
settingr to zero the first conjunct of the invariant becomes vacuously true.

Altogether, having arrived at proving Formula.§) by composing §.7) with the conclu-
sion of the total exception while rule, we can then apply rule (mbody) to obtain the total
correctness of the whole algorithm:

[] i <—mbody p[MPOS iAVj.MPOS j=i < j ||
Ae.caseeof Error — —3i.MPOSi (3.20)
| - — 1].

4 Verification with Dynamic Logic

We will now apply the general calculus as well as monad-specific extensions of it to prove
properties of monadic programs. These proofs will be fairly detailed, which is so because of
their being formal proofs. On the one hand this provides rigorous evidence of their correct-
ness, but on the other hand it definitely prompts for the employment of a (semi-) automatic
proof assistant to dispose of the necessity of doing the most trivial proof steps by hand. We
begin with some standard lemmas which are typical of dynamic logic.

4.1 Basic Lemmas of Dynamic Logic

An important and quite natural fact is that one may prove formulae of the fforap] (A ¢i)
by proving eachx« p| ¢; separately:

Lemma 4.1. [x—p| (¢ Ay) if and only if [x—p| ¢ A [X—p|y

Proof. “=" We havep A v = ¢, which is a tautology, so by (nec) and one-time application
of modus ponens to (K1) we obtajr« p] (¢ A y) = [x«— p]¢. Dually, we arrive
at [x<— p] (¢ A y) = [x<— p|y when starting fromp A v = y. Taken together, the
proposition is proved.

“«<" Beginning with the tautology = (v = ¢ A y), by (nec) and two-time application of
modus ponens to (K1) we arrive @— p| ¢ = ([X— p] ¥ = [x—p| (¢ A y)) which is
tautologically equivalent tg<«— p] ¢ A [x« p] w = [x«< p] (¢ A y).

O

Lemma 4.2 (Regularity). The following are valid rules of inference.

VX 0 =y
[X—pl¢ = [x—ply

VX. 0 =y
X=p ¢ = x—p v
Proof. For (regd), assumerx. ¢ = v, apply necessitation to obtajr— p|¢ = v, from

which the conclusion can be derived by modus ponens with (K1). The proof fofrage)
is identical, except that (K2) has to be used in the final step. O

(regd) (reg®)

Lemma 4.3. The following two rules that resemble modus ponens, only ‘inside’ boxes and
diamonds, are valid derived rules of inference.

(X—=p)¢p VX ¢=y
(X—p)y

Proof. Concerning rule (wkl) we have to deduce the conclusier— p]y under the assump-
tions [x«< p|¢ andvx. ¢ = y. By regularity, we immediately obtaix«— p] ¢ = [X— p] v,

which provides the conclusion through an application of modus ponens with the assumption
[x< p] 9. Once again, the proof of (wK) is dual. O

X—pl¢ VX ¢=y

(Wk©) (X ply

(Wk<)

4.2 Axiomatising the Queue-Monad 46

The following lemmas, which can also be found &, [show some distributivity properties
of the modal operators. It should be pointed out that the implications in the other directions
are not valid (except for the first lemma, where the reverse implication is axiom (K4)).

Lemma4.4. X—p) oV {X—py=(X—p)oVy

Proof. This proof is rather typical and the same scheme will be applied to the following ones.
First, we start with the tautologyx. ¢ = ¢ V y; strictly speaking this is not a tautology
due to the universal quantifier, but this formula can easily be obtained from the tautologous
¢ = ¢ V y by universal generalisation, so we will talk of a formula as being a tautology even
if it is the universal closure of one.

By regularity we derivex«— p) ¢ = (x<— p) ¢ V v, and we can also gaitx— p) y =
(x<—p) ¢ V v in a similar fashion. From these, twofold application of (mp) to the tautology
schemg® = 0) = (W = 0) = (PVW¥ = 0), where® = (x—p) ¢,¥ = (x—p) y and
O = (x—p) ¢V y, gives the desired result. O

Lemma4.5. (X—p)p Ay = (X—Pp)p A (X—p) ¥

Proof. Here the tautology scheme (® = ®) = (0 = ¥) = © = ® AW allowing us to
separately provéx«— p)¢ Ay = (X« p)¢ and (X« p) ¢ Ay = (x«<— p)y and then ap-
plying modus ponens twice. But these two formulae are directly provable from the obvious
tautologies and application of rule (réd O

Lemma 4.6. The following implications are valid in the calculus. Proofs thereof are very
similar to the previous ones and are omitted here. Instead we refer to S&cton the
Appendix where the formulae have been verified with Isabelle.

(X=pP)PAX—pPlYy = (X—pP oAy
Xe—pl¢V[Xe—ply = [X—p|loVy

4.2 Axiomatising the Queue-Monad

Following the axiomatic approach to reasoning about a particular monad, the first step is
to characterise the monad by the signature of its basic operations and a set of additional
axioms. This is in contrast to the definitional approach2@,[where one preferably defines

the operations of the monad and derives its properties as lemmas in the calculus on hand.
The following is a possible specification ofjaeue monadwvhich comes with operations to
insert an element into the queue, to remove an element from the queue and simultaneously
return it as well as an operation for testing whether the queue is empty. The signature of the
operations is

Operations
eng:A—Q1
deq: QA
empty: Q Q

4.2 Axiomatising the Queue-Monad 47

whereA is a fixed type of queue elements, iemganddeqare not polymorphic. A possible
implementation of this monad is as a specific state monad that maintains a list of elements of
typeA as its state value.

Axioms

dsefempty (dsef-empty)
(eng T (eng-term)
—empty=- (deq T (deqg-term)
empty= [deq L (empty-deq)
[enq 2—-empty (non-empty)
empty=- [enq zx«—deq (X = zA empty (eng-deq)
—emptyA [eng zx«—ded ¢ <= —empty\ [x<—deqend 2¢ (swap)

With these axioms we are able to establish some simple proofs about the queue monad. For
example, given an empty queue we can insert two items, fetch and bind two items thereafter,
and make a statement about the equality of items inserted and fetched:

Proposition 4.7. empty=- [eng geng hx«deqy+«ded(x=aAy=Db)

Proof. We proceed in two steps, first asserting émpty= [eng aenq hx« deqy «—
ded(x = a), then (b)empty=- [eng aenq hx«— deqy«ded(y = b) and conclude by com-
bining these two results by Lemmdal

(a)
empty=- [enq gx<—ded(x=a) Aempty by (eng-deq)

Noting thatx = a is stateless and thus applying (K3) and (Sgwe obtain
empty= [enq ax«<—degeng B(x=a) (4.2)
By (swap) we have
—empty= [x<deqenqg B¢ = [eng hx«—ded¢

to which we apply (nec) and subsequently (K1) twice:

[eng d~empty=- [enq g[x«deqgenq B¢
= [eng d[enq hx«—ded¢

This can be simplified by (non-empty) and (889
[eng ax«—degenq B¢ = [eng geng hx«—dedq¢ (4.2)
‘Connecting’ @.1) and @.2) by rule (wk) provides
empty=- [enq geng hx«<—ded(x=a)

from which, finally, the proposition (a) can be derived by application of (K3) and
(sedd).

4.2 Axiomatising the Queue-Monad 48

(b) We have to showempty= [enq aenqg hx«deqy+«ded(y = b) proceeding as follows
and leaving applications of (se implicit. By (eng-deq) we respectively have

empty=- [enq ax« dedempty
empty=- [enq by« ded(y=b)

These can be connected (with the help of rulélyko form

empty=- [enq ax«deqgenqg hy—ded(y=Db) (4.3)
Also, by (swap) we have

—~emptyA [Xx«—degenq B¢ = [eng hx«—ded¢
We once more apply (nec) and (K1) which brings us close to our goal:

[enq d—-empty=- [eng ax«—degenq B¢ =
[eng aenqg hx«—ded¢

The premiss can be disposed of by axiom (non-empty) so that we now instantiate
with [y« ded(y = b) arriving at

[eng ax<—degenq hy—deq(y=hb) =

4.4
[eng geng hx—deqy«ded(y=Db) 44

Now connect4.3) and @.4) and we are done.

O

We would now like to maintain an assertion concerning the termination of the program
sequence given above. This amounts to stating

Proposition 4.8. (enq aenqg hdeqdeq T

Intuitively, one would say that any program sequence containing @mdig anddeds in
which every execution aleqis preceded by morends thandeds should terminate uncon-
ditionally. Moreover, any program sequence with the stated property and in which the total
number of eng’s exceeds the number of deg’s should enforce the queue not to be empty. This
idea leads to the following definition and theorem, from which the above proposition can be
proved with ease.

Definition 4.9. In chance analogy tdb], we say that a program sequengen the queue
monad iswell-formediff it is a non-empty sequence of programsq z or x; < deqin which

every initial subsequence has the property of containing at least as many programs of the
former type as of the latter type and in whigh# x; fori # j.

Example 4.10. (eng genq hx«<deqy+«deg is a well-formed program sequence, whereas
(enq gx«<—deqy<deg is not.

Theorem 4.11.For every well-formed program sequence p containing more eng’s than deq’s
one hagp] -empty.

4.3 Specification of a Reference Monad 49

Proof. By induction on the humber of occurrenceseoig

In the base case= 1 there is only one possible program sequence, naamgjyzfor some
z. Then, axiom (non-empty) gives (enq z-empty

In the inductive step, w.l.o.g. lgt consist of programeng z, 1 <i < n+ 1 andx; «
deg 1 < j < mwhere necessarilgn < n. We take a look at the final occurrence of e
and distinguish two possible cases:

() p=(...;engzs1), i. e. the finakengappears at the end of the program sequence. In this
easier case, by repeated application of rule (ne¢@nq z.1]-empty which is an instance
of axiom (non-empty), one obtairfip]-empty

(i) p=(...;enq &41;%m—j <—deq...;xm«deg. This can be proved by induction gn
In the base case, wheje= 0, we havep = (...;enq z.1; xn < deg which means we can
apply the ‘outer’ induction hypothesis to tlie .) part providing[...]-empty By (swap) we
have

—empty= [Xm < degenq z1]-empty=- [enq 1; Xm < ded—empty

and it thus suffices to sholy, < degenq z1]-emptywhich can be done by applying rule
(nec) tolenq z+1]—empty an instance of axiom (non-empty).

In the inductive stegpj —1— j, j >0), [...;enq &+1; Xm—j <—deq...; Xm«—ded—-emptyhas
to be asserted. By the outer inductive hypothesis we again[hajseempty so by (swap) it
suffices to show

[...;Xm—j < degenq &,1; Xm—j+1<deq...;Xm«— deqd—empty
This is true due to the ‘inner’ inductive hypothesis. O

Now we return to the deferred task of proving the termination of the above program se-
quence, i. e. we will provéenqg geng hdegdeg T.

Proof. By Lemma4.11we have
[eng geng B—empty and [enq aenq hx« ded—empty (4.5)

Now, (eng aT and(eng B T which is equivalent tar = (enq b T. Thus, by rule (wk) and
(se®):
(enggenqbT (4.6)

We prove(eng geng B —emptyby application of (K2) to 4.5 and @.6) once again noting
thaty <— (T = ¢).

In order to proceed to{enq aeng hx« deq T we apply rule (wk) with the help of
(deg-term). With the right-hand statement 4f5) we can, in a very similar manner to the
one just pointed out, ass€enq genq hx« deg—-emptyin which we only need one further
application of rule (wk) and axiom (deg-term) to finish the proof. O

4.3 Specification of a Reference Monad

The algorithm of Sectiod.4 will make use of a single reference to store a result value in.
Therefore we briefly review the axioms of a monad in which such references are available.

4.4 Correctness of a Breadth-First Search Algorithm 50

Further details can be found iB7%]. The reference monad is equipped with operations for
reading a reference: Ref A i. e. a reference containing a value of tyfseand writing to it:

Operations
x_:Ref A—» RA
(_:=_):RefA-A—R1

These operations should behave as expected, so that reading a value shisdfldfter
writing to a reference, it should hold this value, and writing to a reference should not interfere
with existing values of distinct references.

Axioms

dsefxr) (dsef-read)
[ri=XX=x*r (read-write)
(r=x)T (write-term)
(X=xr)=[s:=y](X=x%rVr=5) (read-write-other)

4.4 Correctness of a Breadth-First Search Algorithm

Breadth-first search is a commonly used, if memory intensive, technique for finding an ele-
ment in a tree satisfying a certain conditioB1]). Basically, this algorithm will be defined

in the previously axiomatisequeue monad Qwhich is extended so as to include a single
reference of type Avhich will be used to store elements of a tree oerAlthough in fi-

nite trees a proper search algorithm will always terminate, its canonical definition requires
the existence of an iteration construct that resembles the while-loop of imperative languages.
This iteration construct is practically by definition not interpretable by a total function — as is
known it is the basic source of nontermination in simple imperative languages. Therefore we
will assume for this section that the underlying monad allows the interpretation of arbitrary
recursive definitions, e. g. via fixed point recursion on cpos. Although quite a far-reaching
condition, there exist monads that allow the interpretation of all operations used in this sec-
tion. Moreover we assume existence of a classical type of truth v8laekthat is needed

to interpret thaf-then-elseconstruct in the usual manner — this requirement is of course not
necessary if the underlying logic is classical, so Baolis the type of truth values anyway.

In this vein we can recursively define a while-loop in the following way:

while: Q Bool— Q1 — Q1
while b p= do {x«b;if x then do { p;while b p} else ret «}

4.4 Correctness of a Breadth-First Search Algorithm 51

Figure 4.1: Graphical representation of a finitely branching tree; identically coloured nodes
represent direct neighbours in the sense pf

The algorithm whose correctness will be verified is then defined as

bfs: (A— Bool) — Tree A~ Q1
bfs pr=do{
X:=inl x;
enqgr
while (xx =inl * A—empty
do { t«<deq
if (pt) then x:=inrt
else engAll (chld t)

}

whereengAllis a primitive recursive function that simply inserts all given elements into the
queue:

engAll[] =retx
engAll(x:xs) =do { enqgxengAll xs}

To keep the discussion independent of a concrete implementation of a tree of elements
of type A, we simply assume its existence as well as some kindcogss function chld
returning a list of a tree’s child node#l andinr are the usual left and right injections for
sum datatypes, while is the single inhabitant of the unit datatype 1, so thista reference
over values of 1 Tree A In what follows we will talk about a fixed, yet arbitrafipite tree
r.

The typical property of breadth-first search is that it ‘finds’ the shallowest node in the tree
satisfying the propertp, i. e. in our case it assigns this node to the referendderefore, we
impose an ordex; on the elements of the tree by defining a subtyde directly precedea
subtred; (writtenty <1 to) iff t; lies on the same level &sdoes, i. e. has the same depth, and
the former is its direct left-hand neighbour,tgis the rightmost element in some leveand
t is the leftmost element in level- 1 (with respect to a graphical representation depicted in
Figure4.1). By taking the transitive closure of <3

t<t =gef 3tp...tht <{t At <A Aty <1t

we obtain a means to say that a subtreeescedesome other subtre& From these defini-
tions, it is clear that
ti<thoA-dterti<t<t iff tp<1t

4.4 Correctness of a Breadth-First Search Algorithm 52

To put it formally, our goal will then be to prove
(Fter.pt)=[bfsphi(xx=inrtoA(plo) AVt er.pt=t=tyVig<t)

where, in the following we will be a bit sloppy about the valuesgfand usex:x in place of
the tred if xx=inrt, and sayx = x if actually xx = inl x. This will not lead to ambiguities,
since no tree is of the form

Remarkd4.12 One hag; <t = V¢ € chld ty, ¢; € chld . ¢; < ¢, which is immediate from
the definition of relation<. Also, for each tre¢ wherechld t = [c1,...,Cy] it is clear that
G <1Cy1forl<i<n,

In order to reason about the contents of the current queue, we need two additional monadic
predicateselq: (A— A— Q) — QQ anding: A— Q Q which intuitively state that a given
relation holds for adjacent elements in the queue, respectively that an element is contained
in the queue. One could define these predicates by means of the iteration catestfact
which an inference rule exists (se&]). In this case, however, the definitions as well as
the proofs involving them become quite unwieldy. We therefore take another approach and
axiomatise one further deterministically side-effect free operagieinwhich lets uslook
insidethe queue by returning a list of all elements in the queue. We will use notatiors)
for a list with headx and tail listxsas well as(xsT x) for a list with endmost elementand
initial partxs.

Axioms

dsefget) (dsef-get)
(get= xs) = [enq % (get= (xs[X)) (eng-app)
(get= (x:x9)) = [y<ded (x=yAget=xs) (deqg-tl)
empty < (get=[]) (empty-nil)

An essential operation on queues we will need in our correctness priasitidVith get
available, this is just an abbreviation, assuming there is a funisi@m lists that returns the
last element in the list:

(x=last) =qef x=(Istgel
Obviously, one hasget= xs1z) = (last=z).
Definition 4.13 (relq and ing).

relgR =get get=q= (Vi.0<i<leng—1=qRd™) (4.7)
ingx =ger get=q= (3i.0<i<lengrg =x) (4.8)

Whereq denotes théth element of the list}, with the count starting at zero.

The main problem, as often encountered in proofs involving a while-loop, is to establish a
loop invariant, i. e. a condition that holds before the loop and is re-established at each iteration
of the loop. Figuret.2 shows the invariant for the while loop of thdés algorithm. The first
thing to remain invariant is the in-queue relati@hg <1, as we will see. This makes sure
that all items in the tree are searched ‘in order’. Furthermonehifis not been assigned a

4.4 Correctness of a Breadth-First Search Algorithm 53

relg <1
N *X =% = -—empty\ [t—ded(NF(t) ACIN(t))
V(emptyA—3ter. pt)
A A(xX=x%) = PRXAVEEr pt=sxX=tV*sx<t

Figure 4.2: Loop invariantiNV for the proposed breadth-first search

value, there are two cases: either the queue is empty, in which case there is no element in the
tree satisfyingp (which would contradict the assumptions), or the queue is not empty and
two conditions hold, abbreviated as follows:

NF(t) =get Vt' er.t’ <t= -pt (4.9)
CIN(t) =gef Vcer.ingc <= 3t er.cechldt At' <t=<c (4.10)

[t —dedNF(t) states that for all elements precedingroperty p does not hold, angt —
dedCIN(t) states that the elements in the queue are exactly the children of elements
cedingt, whose children are preceded tbyFinally the case-(xx = x) must be considered,
where it is said thap*x holds and all elements befos& do not have propertyp.

4.4.1 Basic Facts

Before providing the proof, we note some basic facts we will use later on.

Lemma 4.14. In a non-empty queue, engAll and deg may be swapped:

—~emptyA [engAll x3[t < deq ¢
S —emptyA [t < ded [engAll x$¢

Proof. By induction on the structure ofs. In the base cases= [], by (dsefl) we have
[retx]@ <= ¢ and thugengAll x$¢ <= ¢ by the definition ofengAll So the base case
is trivially true.

In the inductive step, lets= (y: ys), so we need to show

—emptyA [eng yengAll ys$[t — ded ¢
= —emptyA [t «—ded[enq yengAll ys¢

By the inductive hypothesis, the left-hand part of the formula can be equivalently reformu-
lated as~emptyA [enq Y[t < ded[engAll y$¢ and then, by axiom (swap) this is equivalent
to the right-hand side of the formula O

Lemma 4.15. Under the stated conditions, we can add an element into the queue without
losing property relg R:

() —emptyA last R xArelg R= [eng jrelg R
(i) empty=- [eng Xrelq R

4.4 Correctness of a Breadth-First Search Algorithm 54

Proof. For (i), we reformulate-emptyasget= xsTy (which indeed is an existential state-
ment: there are somes andy with this property), from which it follows thdast R xis yRx
andrelq Rsimplifies tovi. 0 < i < len xs= (xsy)'R(xsTy)'™1. The latter two formulae are
stateless, such that together with axiom (get-app) one has

get= (xsTy) AYRXAVi. 0 < i < len xs= (xs]y)'R(xsTy) "t =
[eng }get= (xsTyTx) AYRXAVi. 0 <i < len xs= (xsTy)'R(xs!y)' ™1

where the formula in the scope of the box operator impidg R, which finishes the proof
by an application of rule (Wk).

Concerning (ii), the conclusion is obvious from the premiss and the definitigeta@ind
relq. O

Remark4.16 One can generalise Lemmal5in the sense that it is also possible to insert
lists of itemsxy, ..., %] forallne Nif xiRx%,1 fori € {1,...,n—1} andx; may be enqueued
without breaking the relatiorelq R The proof thereof proceeds by structural induction on
the to-be-inserted list.

Lemma 4.17. If the relation R holds in the queue, i. e. relq R, then after removing one ele-
ment, R still holds: relq R> [x<—dedrelq R.

Proof. Forget= [], the formula holds trivially, so assunget= (y:ys). From the definition
of relg, we can deducki. 0 <i < len(y:ys) —1= (y:y9)'R(y:ys)(*Y, so in particulaR
holds for all adjacent elementsys. By (deg-tl) we obtain the desired result. O

Lemma 4.18. After inserting some elements xs into the queue, for eackswe have inq x.
Put formally:
[engAll x$(Vx € xs inq x) for all lists xs

Proof. Sincegetis dsef and thus always defined, we always hget= ysfor some listys
Now as usual we proceed by induction on the structurgs@nd leave out the base case,
whereengAll does nothing and there are no elements to make a statement about. So let
xs= (X : xs). It then follows by (get-app) thaenqg x| (get= (ys] X)) and sgenq X](inq X).
By the induction hypothesis we have
[engAll xg](Vx € xs. inq x)

and by application of (nec) we obtain

[eng X][engAll xg](V¥x € xs. inq X)
The missing ingredient for finishing the proof is

ing x=-[engAll xging x for all x andxs

But this fact is again provable by induction on the mentiorednd follows quite directly.
Altogether we arrive at

[eng x][engAll x§](Vx € xs. ing xAing X)

which actually is what we claimed, recalling that : xs) = xs O

4.4 Correctness of a Breadth-First Search Algorithm 55

Lemma 4.19. If the relation< (or in fact any other strict partial order) holds in the queue,
then after removing an element x from it, there is no element y in the queue wigh x

relg < = [x«<ded(-ingx)

Proof. We only need to consider the case whgee= (y : ys). Assumingrelq < amounts to
saying that _ _
Vi.o<i<len(y:ys)—1= (y:ys)' < (y:ys'*! (4.11)

holds. By (deg-tl), after dequeuing only tiigremain in the queue:
get= (y:ys) = [x<ded(get=ys) (4.12)

Noting that< is a transitive and irreflexive relation (i.¥xyz x <yAy <z=x<zand
VX. X A X) we may by @.11) infer that there is n¢’ in yssuch that/ =y. But then, by 4.12),
we are already done: after dequeuygheysremain, in which there is no element equal to
X. O

Lemma 4.20. Dequeuing an element does not affect existence of other elements inside the
queue:
ing x=[y«ded(x=yVingXx)

Proof. For get= [], inq x is obviously false for everx. For get= [x1,...,X,], assuming
ing X amounts to saying that there is &= x for somei, 1 <i < n. By (deg-tl) have
ly<—ded(y = x1 Aget= [Xo,..., %] and thus forx = x; have[y«— ded(x =y) whereas for
X# X1 —i.e.x=x for 1 <i < n-havely—ded(ing x), so altogethejly—ded(x=yVing X)
(cf. also Lemmat.6). O

4.4.2 Auxiliary Rules

In merging the specifications of the queue monad and the reference monad, a typical frame-
problem arises: The questiomhat remains the same in a changing world®n be instanti-

ated here asvhat happens to references if we modify the queddf® answer will certainly
be‘nothing’, which we formalise as follows.

(x==xr) = [qop/(x==xr) for qope {degengempty (4.13)

The simplest way to answer the converse questidrat happens to the queue if we modify
a reference?is by relatinggetto reference writing:

(get=xs) = [r :=x](get=xs) (4.14)

Reference to one of these axioms will be indicated by (frame).
In [34] a Hoare calculus for total correctness has been developed, in which Hoare rules
such as
[p]X—Plw]
(seq) _ [v]y—dx]
[p]x—P;y—ax]

appear. It has been said in Secti®B.1that a Hoare rulgép|x— p[y] is meant to be inter-
preted asp = ((X<—P) T A [X<—Ply). In this way, partial correctness as well as termination
of a program sequeng@egand thus total correctness are concisely captured.

4.4 Correctness of a Breadth-First Search Algorithm 56

Because we are working with formulae of dynamic logic and do not want to switch into
the Hoare calculus, yet we would like to use the results of the latter, we simply translate some
Hoare rules of 34] back into rules for dynamic logic.

b dsef
@ Nb= [x—ply
¢A-b= [x—qy
@ = [X«<if bthen pelse gy
t:DB
_< _:BxB— Qiswell-founded
oNb=(p)T
(@ AbAt=p2) = [pl(p At < 2)
¢ = [whileb g (@ A—b)A(whilebp T

p dsef

(dsefl) PR

(if)

(while)

In rule (while) termination is ensured by letting the terialecrease strictly in every itera-
tion. Since< is well-founded, it is impossible for the final premiss to be true infinitely often.
The so calledjhost variable z B does not appear within the program and simply serves the
purpose of relating the value tbhefore and after execution @f In particulart is not equal
to zas a computation, but rather its value equals

Now we are equipped with all we need to prove total correctness of the prdifsaim
particular — as can be seen from the rule for while — termination of the while-loop.

4.4.3 Proof of Total Correctness

In what follows, we try not to be too formalistic and therefore make reference to common
laws such as transitivity of equivalence or other obvious validities without proving them for
each separate instance. We further assume that the underlying formalism is classical, i. e. we
allow reasoning by case distinction over some formpulka—¢. In a Hilbert-style calculus
with essentially only modus ponens available as an inference rule, methods such as proof
by contradiction are to be conceived as first provitiy)= False and then applying (mp) to
the tautologous$—P =- False) = P. Likewise, substitutivity of equivalence makes use of the
tautology scheméP <= Q) = R[P/x] = R[Q/X].

It will now first be established thaiNV, the loop invariant, holds before the while loop,
i.e. WithPRE=ge; dt €1. pt (a stateless formula) we show

PREA empty= [x:=*;enq ff(INV) (4.15)
By (read-write) and (frame)
[X:=x;enq f(xX= %) (4.16a)
From the definition ofelq we can infer
empty=- [enq ri(relq <) (4.16b)
which by (frame) can be extended to

empty=- [x:= x;enq fi(relqg <) (4.16¢)

4.4 Correctness of a Breadth-First Search Algorithm 57

Again with (frame), (eng-deq) gives us
empty= [x:= x;enq fj[t«—ded(r =t Aempty (4.16d)

Now fromr =t we can deduc®&F(t), because there simply is no eleménk r inr.
Similarly, we inferCIN(t) becausenq cis false for every element inand again there is no
element’ < r, so the equivalence @IN holds. Combining4.163, (4.169 and @.169 we
obtain the desired result.

The while Rule The next step is to gather the premisses of the (while) rule as stated
above to draw the conclusion of selfsame. The prefNS&A «x = x A m=empty=- (body) T
asserting termination of the loop bobpdyis quite obvious, since the only source of non-
termination is thedegoperation, which will however only be executed if the queue is not
empty. The formalisation of this argument can be conducted along the lines of the following
proof of the most integral part:

INV A X =% A—-empty\vol =z=

[t<—deqif ptthenx:=inlt else engAll chld {(INV Avol < 2) (4.17)

where we introduce the termination measucd which computes the total number of el-
ements reachable from any subtree contained in the queue. Employing the list functions
sum: [Nat] — Nat andmap: (A — B) — [A] — [B] — whose definitions are straightforward

and can be found, e. g., in the Haskell Prelude — it might be defined like this:

vol: Q Nat
vol =do { g«get
ret sum(map volume §j
wherevolume: Tree A— Nat
volume t= 1+ sum(map volumechld t))

The intuition behind this approach is that the overall volume of the queue must strictly
decrease after dequeuing some sulitee enqueuing its children, because the volunmesof
defined to be by 1 larger than the sum of volumes of its childvehis a dsef operation since
it is composed solely of dsef operations (it has been shown in Isabelle that dsef programs are
stable under composition).

We note the following equivalence which we shall use for simplification purposes and
whose right-hand part we will denote 9.

INV A %X = x A =empty (4.18)
< relq <3 A—emptyA [t«—ded(NF(t) ACIN(t)) A*x = *

By Lemma4.17we have
Sl = [t«—deq(relq <1)

so by (frameYelq still holds after assignment to

Sl= [t—ded[x:=t](relq <1) (4.19)

4.4 Correctness of a Breadth-First Search Algorithm 58

Then-branch ~ Working our way through the then-branch of the loop body, we also need
the next statement. This is obtained from (read-write) and the factNRaand p t are
stateless.

NF(t)Apt= [x:=t](xx=t A p*xxANF(t)) (4.20)

Now, NF(t) A p XA xx =1, i.e. that all elements in the tree smaller thado not have
property p, butt and thereforexx does, can be reformulated pssx AVt € r. pt = *xx =
VX <t.

In combining @.19 and @.20 we obtain the following, where the formula in the scope of
the[x :=t] box is in fact stronger thaliNV

relg <1 ANF(t) Apt
= [X:=t](xx=tA p=*xArelq <1 (4.21)
ANV er. pt=sx=t'Vsx<t')

Else-branch Because all ingredients needed for the then-part are now assembled, we turn
our eyes to the else-part, which actually is the harder one. ‘Insidelttheded box of

(4.17) we haveCIN(t) ANF(t) Arelg <1 A xx = x. We will, in accordance with the if-rule,
furthermore assumep t and prove the following, in which again the formula inside the
[engAll (chld t)] box impliesINV

CIN(t) ANF(t) Arelg <1 A—ptA*X = *
= [engAll(chld t)](relg <1 A *x = x
A (—emptyA [t' < ded(NF(t") ACIN(t'))
V (emptyr -3t" er. pt”)))

(4.22)

This can by Lemmd.1be done in three steps, each asserting the truth of the above formula
reduced to one of the three conjunct clauses in the scope of the enqgAll box.

Part i
«X=sx% = [engAll(chld t)] (xx = x)

Now this is an obvious generalisation of one of the (frame) axioms.

Part ii

CIN(t) ANF(t) Arelg <1 AP tA X =
= [engAll(chld t)] (relq <1)

This formula asserts that we may enquesehildren without destroying the relatioalq <1
inside the queue. Fahld t = [] we must then prove

. Arelg <1 A... = [ret«|relq <1

which essentially is given by (r8). So letchld t= (x: xs). Then by Remark.16all children
may be inserted througéngAllwithout invalidatingrelq <1 if x may be enqueued through
eng For emptythis is clearly true, so consequently we’ll add the premisspty Then
CIN(t) tells using c holds for exactly all the child elementsof predecessors df Thus
last < x certainly holds (cf. Remark.12). Because-Ja c r. last < a < X, evenlast <1 X is

4.4 Correctness of a Breadth-First Search Algorithm 59

true, providing all the premisses of Lemmd5and letting us draw the desired conclusion.
—Jaer. last < a < x can be shown by contradiction: assufec r. last < a < x; Then it
directly follows that there i$” such thata € chid t” andt” <t (t” =t cannot be the case
sincea < x, and for the same reasbr t” neither). But then, because®fN(t), inq aholds,
which together witHast < a violates the given premigselq <;. We conclude that part ii is
true.

Part iii
CIN(t) ANF(t) Arelg <1 A—ptA X = x

= [engAll(chld t)] (—emptyA [t' < ded(NF(t") ACIN(t'))
V (emptyn —3t" er. pt”))

This part makes sure that after insertifegchild elements we either have seen each elementin
the tree and none satisfipsor there are elements left and after dequeuing another elefment
all its predecessors don't have propeptgind the elements remaining in the queue are exactly
the children of predecessorstafwhich themselves are succeedihg

We proceed by case distinction ovamnptyy —empty We have

empty=- [engAll(chld t)] empty iff chldt=]]

But in this case, i. e. wheaemptyholds in the boxt must be the final element in the tree
since all children of predecessors would otherwise be in the queu@!)y ExtendNF(t)
and-ptto—-3t” er. pt” and obtainengAll (chld t)](emptyr -3t” € r. pt”) making the
conclusion of part (jii) true. Fochld t= (x: xs) one hasmpty=- [engAll(chld t)|(—empty.

Here,t <1 x must hold, i. e. t's first child element is its direct successor, because no element
beforet has child elements that are in the queueCibi(t) A empty Now

[eng xengAll x3[t’ < ded(NF(t") ACIN(t')))
is by Lemmad.14equivalent to
[eng xt" —ded[engAll x$(NF(t") ACIN(t'))
and because of (eng-deq) one has:
empty=- [enq xt’ — deqgengAll x$(x =t)
So it suffices to prove the implication
...= [enq xt’ —ded[engAll x$(CIN(t') ANF(t'))

where. .. denotes the premissegt, t<1x, CIN(t), NF(t) andempty

The NF part is fairly easy to see: one certainly HdE(t) At<3t’ A —pt inside the box,
which impliesNF(t’), wheret’ replacedk due to their being equaCIN(t’), which decodes
into CIN(t') =gef Ve €1.inq ¢ <= Ft” er.cechld ' At” <t' < c, is true due to the fact
that exactly thexssare in the queue, and for eakhe xswe havex' <x. That finishes the case
whereemptyis true.

4.4 Correctness of a Breadth-First Search Algorithm 60

Now for the case whereemptyis taken as a premiss and — to restate the other ones —
CIN(t), NF(t), relg <1 and—pt. Obviously one then has. = [engAll (chld t)](—empty,
so it remains to be proved that

... = [engAll(chld t)][t' —ded (NF(t") ACIN(t))
or, equivalently and quite similar to the case above we can show
...= [t'«ded[engAll (chld t)](NF(t') ACIN(t"))

For NF(t") alone, this can be done.if. = [t < ded(t<it’) can be shown, because unlike
CIN(t"), NF(t') is indeed a stateless formula about a property of thertesel not about the
monadic queue. HendeéF(t") = [enqgAll (chld t)](NF(t")) by (K30). For the same reason,
howeverNF(t) holds after execution aleq NF(t) = [t' < ded(NF(t)) so that at least for
NF(t") the proof goes through: we have

.= [t' —ded(NF(t) At=<at) (4.23)

because the direct successortohust be in the queue, asserted ®\N(t) together with
—empty and it must be ‘the next one to drop out of it’, giveniigyq <1. From this and-pt
we infer

[t —ded(NF(t"))

And then by the argument given above
... = [t'«—ded[engAll (chid t)](NF(t"))

Continuing with the premissesemptyandCIN(t) ANF(t), relg <1 and—pt we will now
show the final piece of the puzzle, viz. that these imply

[t' < ded[engAll (chid t)] (CIN(t")) (4.24)

We proceed as follows; lget= [xi,...,Xn], N > 1. By Lemma4.19and fact .23 we
have
.= [t —ded(-ingt' Aget= [Xp,...,Xn] At=<1t' At =Xq)

CIN(t) tells us that theg (1 <i < n) are exactly those elements for whighe chid t A

ti <t <X is true for appropriatéy. With t <3 t’ it is clear that all elements satisfying

c e chld t At < t' < cfor appropriate; arexy, ..., %, (& possibly empty sequence) plus the
child elements of (pointing out that’ cannot be a child df becaus¢’ = x; and therefore is

a child of some predecessortdfy CIN(t)). With chld t=[cy,...,cx] one has by structural
induction

get= [xy,...,X)] = [t' < ded[engAll(chld t)](get= ((...([X2,.--,Xn] TC1) T-..) TCk))
or slightly more readable
t’ < ded[engAll(chld t)](get= [Xp,...,%n,C1, ..., Ck])
from which we conclude by the foregoing argument that for the given premisses we can show

...= [t'«—ded[engAll(chld t)](CIN(t'))

4.4 Correctness of a Breadth-First Search Algorithm 61

Assembling the Results

We may finally apply rule (if) to formulae#(21) and @.22 repeating that in both ones, the
sub-formulae inside the boxes imgiMV

CIN(t) ANF(t) Arelg <1 Asx = *

— [if pt then x:—t else engAll (chld 1] (INV) (4.25)
Referring to 4.18, we can say
Sl= [t—ded(CIN(t) ANF(t) Arelg <1 A #X = %) (4.26)

Regarding the decrease in volume, which has silently been passed over until now, one has
—~empty <= get= [x1,...,X,] for some elementg and some and thus by (deg-tl) and the
definition ofvol resp.volume

volume x> 0
SIAget= [X1,...,Xn] AvOl =z
= [t«—ded(get=[X2,...,X] Avol = (z—volume X))
so by (frame)
SInget= [Xi,...,X)] AvOl =2 (4.27)
= [t—degx:=t](vol < z)
Now in addition letchld t= [c, ..., c] such that after enqueuing these one still has a smaller

volume than before dequeuibhgsincet’s volume is defined to be by one larger than the sum
of volumes of its child elements:

volume t=1+5X ; (volume ¢)
SIAnget=[Xg,...,X] Avol =2z (4.28)
= [t«deqgenqAll(chld t)](get= [x,...,Xn,C1,...,Ck] AVOIl < 2)

Having ascertained the termination of the loop By2(), (4.28, we apply rule (wkJ) to
(4.25), (4.26 to finally verify the premisses of rule (while) (cf#4.L7) and thus conclude

INV = [while cond pro{INV A (X # * Vempty)
where cond = X=xA-empty
prog = t«deqif ptthenXx:=t else engAll(chld t)

The definitely last step is now to derive the postcondition
(P*XAVtErpt=s«X=tV*x<t)
from what the while loop left us with:
(INV A (x# =V empty)

but this can be done easily, recalling that the stateless formula warranting existence of an
element satisfying still holds after execution difs

(Fter.pt)=[bfspi(3ter.pt)

5 The Theorem Prover Isabelle

Isabelle is an interactive theorem proving environment, i. €. an assistant for performing formal
proofs. The fact that Isabelle is generic in the sense that it allows one to define and reason
within several kinds of logics distinguishes it from most other proof assistants. Examples
of logics that have been defined within Isabelle’s framework are classical first-order logic
(FOL), constructive type theory (CTT), or higher-order logic (HOL) which constitutes the
base logic in our development of monadic dynamic logic.

We will now introduce the foundations of Isabelle which are the so called meta-logic, its
syntax and inference rules. We then introduce higher-order logic as formalised in Isabelle.
Finally, we provide insight into basic proof methods whose knowledge is necessary to com-
prehend or at least read printed Isabelle proofs. A full account of all facilities that were ap-
plied cannot be given in this thesis; very readable introductions to Isabelle and Isabelle/Isar
can be found ing2, 23

But first, a note about terminology and the development of Isabelle is in order: Initially,
communicating with Isabelle meant sequentially applying ML functions, since Isabelle is
written in this functional language. This user interface has recently been discharged in favour
of an independent proof and theory language cdlbed making proofs substantially more
readable (and maintainable). The combination of Isabelle with Isar is named Isabelle/lsar,
which becomes Isabelle/Isar/HOL when referring to the specific logic HOL, expressed in
Isar. In the following, we will often use the term Isabelle for all these phrases, stating once
and for all that the formal proofs in this thesis are presented in Isabelle/Isar with HOL as the
underlying logic.

5.1 The Meta-logic

Isabelle lets the user define his own logics, so that he does not have to work within a fixed
logic that might not suit his needs. In doing so, one needs some means to express the syntax
of one’s newly defined logic, to express inference rules, and to impose side conditions on
these rules. Take the following natural deduction rule governing the introduction of the
quantifier as an example:

PX)
Vx. P(X)

(x not free in assumptions) (5.1)

The annotationx not free in...’ is a very typical side condition, while the horizontal bar
expresses a possible logical inference from the premisses (displayed above the bar) to the
conclusion (below the bar).

Besides determining the basic syntax of all definable logics, it is the task ofdéteelogic
to enable the formulation of such ‘meta-logical’ constructs, i. e. to formalise properties of
concrete object-logics. Put shortly, the meta-logic is an intuitionistic higher-order logic with
polymorphic functions in the style of ML or Haskell that possesses a universal quantifier,
implication and equality as its constants.

5.1 The Meta-logic 63

5.1.1 Basic Syntax and Terminology

The meta-logic is syntactically based on the simply typed lambda calculus as described in
Section2.1.3 (although without product types). The additional possibility to define poly-
morphic functions means that function types may contge variablese. g. the identity
functionid : a — « exists foreverytype o. Type declarationsllow the introduction of new
base types, where&ge classesnay be seen as collections of types that share some struc-
ture (a well-known example is the classl, which the types with a notion of order among
their elements belong to). The latter concept comes close to Haskell's type classes, but is not
powerful enough to embrace Haskell's constructor classes as well. In particular, the notion
of a type constructor being an instance of a monad cannot be specified in Isabelle. A remark
about how this problem has been resolved in the implementation can be found in $eztion
Some peculiarities of Isabelle’s syntax should be noted before proceeding:

e The base type of truth values is nanpgdp.
e Type annotations are denoted by two successive colons instead of one.

e Function types may be built from existing types by means of the function type con-
structor=-, such thatf :: o = 7 is Isabelle’s notation fof : ¢ — 7. The type con-
structor=- associates to the right.

e The types of curried functions takingargumentsf :: 61 = --- = o, = ¢ may be
written in a list-like notationf :: [01,...,0n] = ©.

e Type variables are written as Latin letters prefixed with an apostrdplee §.'a, 'b, by
are type variables. Inside normal text we will however not use this style.

The constants of the meta-logic are a universal quantifier, (denoted by the symbol
implication (1) and equality €). An interesting property of higher-order logics that
spring from the lambda calculus is the fact that no variable binders otheAthag needed:
predicates are simply interpreted as functions into truth values (e. g. a predicate on the type
nat of natural numbers might be expressed as a fundionat — prop), and quantifiers are
interpreted as higher-order functions from predicates to truth values. Thus, the type of the
universal quantifier is

/\a . (o0 = prop) = prop (5.2)

for each typec; the polymorphism of Isabelle is restricted in the same way as in ML or
Haskell in that it does not allow higher-order functions to take polymorphic functions as
arguments. This is made explicit here by indexing the quantifier with the appropriate type
under consideration.

5.1.2 Defining Logics

Users are not expected to work within the meta-logic itself, but rather to formalise their own
logics by extending the meta-logic through the introduction of new types and constants and
through axioms capturing the properties of these constants. An example is given in Section

Inote the difference between this symbol and the shorter one for the function type construbtath however
associate to the right and there also is a list-like notation for repeated implication of thigfgrm ; ¢n] —-

y

5.1 The Meta-logic 64

5.2, where the formalisation of HOL within the meta-logic is described. The outline of such
a formalisation is as follows:

1. Introduce a new type for truth values, thereby distinguishing it from the type of truth

values of the meta-logic. Furthermore introduce a predi€atepropconverting from
object-level truth to meta-level truth; it has proved sensible to keep these two kinds of
truth values apart. Other useful types may be added as well, of course.

. Name and assign types to the constants that will serve as basic functions of the logic

to be defined; examples include propositional connectives—, etc., or even modal
operators. It is possible to decorate constants with concrete syntax (by sommidfied
annotations cf. [25]) that makes operations more readable than is possible with the
minimalistic syntax of the lambda calculus. One way or the other, functions of the
respective object-logic conventionally have higher precedence than those of the meta-
logic.

. Extend the meta-logic by further axioms that capture the properties of these constants

and types. The basic idea is that axioms of the meta-logic are to be interpreted as rules
in the object logic. For example, the typical rules for conjunction introduction and
universal generalisation in first-order logic

P Q X (x not free in assumptions)
PAQ VX. P X P

might be formalised as

[P;Q] = PAQ and (Ax.Px)=>VxPx

Proofs from rules within the object-logic are then basically proofs from corresponding ax-
ioms within the meta-logic.

5.1.3 Meta-logic Rules

To perform such proofs inside the meta-logic, a collection of meta-rules is necessary. These

rules are hard-wired into Isabelle, which means they are implemented as ML functions op-

erating on meta-logic terms rather than being terms of the meta-logic itself. A complete

exposition of these rules can be found &4 Section 2.4], which we do not repeat here,

since the meta-rules are virtually never applied in proofs inside object-logics. Instead, we

merely summarise the rules, giving an idea of the relative compactness of the meta-logic.
The meta-rules can roughly be put into three categories:

1.
2.

Introduction and elimination rules for the constapts— and=;

Rules concerning lambda terms; put concretely, there is a ruke-tmnversion, a rule
for B-reduction admitting the conclusiajb/x] from the premisgAx.a) b, and a rule
of extensionality;

. Finally, there are basic rules for equality.

5.2 Higher-order Logic (HOL) 65

Constant Term written as
Not:: bool=- bool Not P -P

True:: bool

False:: bool

If :: [bool’aa] ='a fbpq ifbthen pelseq
The:: ("a=-bool) ='a The P THE x P x
All :: ("Ta= bool) = bool AllP VX. P X
Ex:: ("a= bool) = bool Ex P Ix. P x
Let:: 'a’a="'b]='b LettAx.e | letx=tine
=:: ['a/a] = bool a=>b

A,V,— :: [bool bool] = bool | PAQ, etc.

Table 5.1: Constants extending the meta-logic to HOL

5.2 Higher-order Logic (HOL)

In this section we introduce the formalisation of the simply typed higher-order logic HOL.
The outstanding feature of higher-order logics is their capability of expressing higher-order
functions (in a sense similar to that of functional programming languages), but also of ex-
pressing predicates and quantification on arbitrarily typed terms. For example, one may state
the property of a se® being infinite by expressing that there is an injective function fm

into a proper subs& C S

Sinfinite iff 3S.S c SA3f:S=S. f injective

Because of the quantification on the functibithis statement is inherently higher-order; it
cannot even be expressed equivalently in first-order languages. In HOL all functions are
required to be total; an extension incorporating concepts from domain theory that allows the
formulation of arbitrary computable functions is HOLCEL]. For in-depth descriptions of
higher-order logic and its implementation in Isabelle, sSe@8§].

5.2.1 Constants

HOL as implemented in Isabelle extends the meta-logic by a number of constants that are
to be interpreted as the usual logical connectives, like conjunction, universal quantification,
or boolean case distinction (the famili&then-elseconstruct). Differing from the notation
used so far, implication is denoted by a simple long arrew. Some of the operations come
in two flavours, namely their functional form (as actual constants in the lambda calculus of
the meta-logic) and with some syntactical sugaring; Tahldists the most important ones.
The functionTheis adefinite description operatpHE x P xis meant to be interpreted as
“the x, such thaP xholds” and will yield an arbitrary value of the appropriate type if no such
x exists. The interpretation of the remaining functions and values is standard, but one should
note that quantification exists for arbitrary types, just as equdlitiyen-elseandlet do.

HOL inherits the ability to express functions as lambda terms from the meta-logic by

5.2 Higher-order Logic (HOL) 66

identifying HOL types and functions with the types and functions of the metadodicis

way, HOL also exploits Isabelle’s built-in type checker, which is a great help in immediately
refuting ill-typed expressions. Nonetheless it has its own type of truth values, classically
namedbool. In fact, HOL is a classical logic (as opposed to a constructive or intuitionistic
logic) featuring the law of excluded middle (cf. ruleue-or-Falsein Table5.2).

There is an interesting difference between variables in HOL and the more syntactical vari-
ables encountered in the definition of logics ‘on paper’, where a rule of substitutivity of
equality might be defined as follows

a=b ¢
$b/a &)
In this rule, ¢ is a syntactical variable in the sense that it stands for an arbitrary formula (i. e.
a term of typeboolin HOL), probably containing as a free variable — otherwise substituting
b for a would be pointless. To the contrary, in HOL there is no need for an explicit notion of
substitution, and the rule under consideration is expressed as

a=b ¢a
ob

making¢ :: o = boola function variable provided thatb : . Here is a simple example to
visualise the difference.

(5.4)

Example 5.1. Assuming some proof has reached a state suchathah and f a = gx have
been proved. In this case,of (5.3) can be instantiated tba = gx, whereasp of (5.4) is
Ay. fy=gx Applying rule 6.4) yields (Ay. f y = gx) b which can be converted tbb = gx
by the -rule of the meta-logic.

5.2.2 Definitions

To avoid unnecessary redundancy, logics — including HOL — often only axiomatise the prop-
erties of a minimal set of constants, with everything else being defined in the form of ab-
breviations (the definition of implication through negation and disjunction is a case in point,
although in HOL implication is the basic connective). It is here, where the constants of
the meta-logic come into play: we may use meta-equality to describe definitions, meta-
implication to express rules and the use of meta-quantification is a convenient way to capture
many common side conditions. Talde2 shows the axiomatisation of HOL as an extension

of the meta-logic, where the usual connectives are still missing; their definitions are presented
in Table5.3. Within the latter, the left column shows the logical constants with their types,
while their definition is presented in the right column.

Remark5.2 To ensure that this representation of higher-order logic is actually sensible, one
would now go on and prove a kind of equivalence between a higher-order logic defined in the
usual way (by axioms and rules with side conditions) and this extension of the meta-logic,
showing that for every proof in the one system, there is always a corresponding proof in the
other system. This meta-proof cannot be expressed within Isabelle, though.

2this might seem an obvious choice, but some logics follow a different approach to make type systems possible
that do not fit into the one provided by the meta-logic, cf. e.g. the formulations of Zermelo-Fraenkel set
theory or CTT

5.2 Higher-order Logic (HOL)

67

eg-reflection

(x=y) = (X=Y)

refl

(x=x)

subst

[s=t;Pg = Pt

ext

(AX.fX=0gX) = AX. f x=Ax.gX

the-eq-trivial

(ex.x=a)=a

impl

P—=Q—P—Q

mp

[P— Q;P]=Q

iff

P—Q—@Q—P)—(P=0Q

True-or-False P=Truev P = False

Table 5.2: Axiomatisation of HOL in Isabelle

Constant Definition

True:: bool True = (Ax::boolx) = Ax.x

All :: ‘a= bool) = bool | Yx.Px = P=AxTrue

Ex:: ("a=-bool) = bool | Ix.Px = Vb (VW x.Px—b)—Db

False:: bool False = Vb b

Not:: bool=- bool -P = P— False

A:: [boolbool = bool | PAQ = VR(P—Q—R)—R

Vv :: [boolbool = bool | PVQ = VR(P—R) — (Q—R)—R

Table 5.3: Definitions of some common logical constants in HOL

5.3 Proof Methods 68

Example 5.3. To make the definitions of Tab.3 a little bit more convincing, we take a
closer look at two of them:

e The most basic notion of HOL is equality, so it is tempting to define truth in terms
of equality: True= (Ax:: bool.x) = Ax.x. This term is entirely closed, i.e. it neither
contains free term variables nor free type variables, which is why this definition is used
instead of the seemingly simpler= x.

¢ Universal quantification is a predicate on predicate#lliP or equivalentlyvx. Pxis
true, this says tha& is a predicate that constantly yields true, no matter what argument
it is applied to (of course, all arguments must have the appropriate type). So, one can
define(Vx.Px) = (P = Ax. True).

5.3 Proof Methods

Performing proofs from rules in an object-logic — in examples this will always be HOL —
means proving theorems in the meta-logic. Such proofs would be incredibly tedious if only
the meta-rules described in Sectibri.3had to be used. Fortunately, there is a powerful
proof method whose correctness is assured by the axiomatic properntjesoi=-: higher-

order resolution As with first-order resolution, known from logic programming in Prolog,
this concept involves thanification of terms. As usual, i is a unifier of termd; and

ty, i.e. an assignment of terms to variables, the simultaneous substitution of all variables
mentioned in by the according terms is written &5)60 and (t2)6, respectively. Due to

the fact that Isabelle employs the lambda calculus as its formal basis, it sometimes has to
unify lambda abstractions that do not hawmast general unifiefmgu), which is in contrast

to first-order unification, where two terms either are not unifiable or have exactly one mgu
(up to equivalence). The effect of this problem mainly is that sometimes the user must assist
Isabelle in finding a unifier by supplying instantiations of variables.

Remarks.4. Isabelle distinguishes two kinds of variables that logically have the same mean-
ing. On the one hand there are the usual variables with standard lexical syntax (P are
variables of this kind). On the other hand there sgchematic variables/hich may be used

as variables for substitution during unification. These are prefixed with a question mark to
emphasise their role as placeholders (exg?P). The usual way of proceeding is that theo-
rems are stated solely with normal variables. After they have been proved, Isabelle internally
converts all free variables of the theorem into schematic variables. This is in accordance with
intuition: in proving a theorent, one would certainly not warit’s variables to be replaced

by some concrete term; but one should be able to replace the free variables of already proved
theorems, as they eventually represent arbitrary terms.

5.3.1 Higher-order Resolution

In what follows we will talk of the left-hand side of a meta-implication as the premiss (or
premisses, if thg...] notation is used) and of the right-hand side as the conclusion, to em-
phasise the role of meta-implication for object-logics. Given two theof@ms..,P,\] = P
and[Qq,...,Qm] = Qin the meta-logic, such th&P, = Q)6 holds for someé € {1,...,n}

and some unifie@, resolution allows us to prove a new theorem thatPas its conclusion

5.3 Proof Methods 69

and all theP; andQ; exceptP, as premisses, but with applied to the whole term

[[Pl,...,Pnﬂ:>P [[Ql,...,Qm]]:>Q
([[Pl,...,P|_1,Q1,...,Qm,P|+1,...,Pn]] :>P)9

Apart from the substitutio®, this rule is intuitively clear: if th&; imply Q andQ = R, then

the Q; are a suitable surrogate fBras premisses for the conclusiBn The involvement of
substitution makes this idea even more general by admitting terms that are only equal under
a given substitutio®.

A complication concerning the applicability of resolution arises when the premisses of a
meta-theorem contain a meta-implication or meta-quantification themselves, as in the derived
HOL rule (impl): (A= B) = A — B. The single premiss of this meta-theorem will only
be unifiable with the conclusion of another meta-theorem if the latter consists of a variable
or is of the formX =Y, but both forms seldom appear in theorems. To circumvent this
problem, Isabelle is able 1dt a rule into a context, which can be formalised by the rule

(5.5)

[Pi,....P] =P
HQ:>P177Q:>PH]]:>(QEP)

(5.6)

This transformation is done automatically during resolution if necessary.

Although forward proof is also possible in Isabelle— mainly to derive new theorems from
existing ones in a rather direct manner — theorems are usually proved in a backward style:
By applying rules backwards, a theorem is reduced into simpler parts until the remaining
propositions are trivially true (in particular by reducing propositions to axioms, of course).
The ideas presented so far can best be understood with the help of an example.

Example 5.5. The backward proof a theorein within the object-logic always starts with
the trivial meta-theorerm = T. This theorem is then transformed by the meta-rules and
resolution untilT has been derived. The following are HOL rules, derivable from the axioms
given in Tables.2

(PA—=—"B)—72A— B (impl)
[?A;, 7B] — ?AN 7B (conjl)
[?7AN?B] = ?A (conjunctl)
[?7AN?B] = 7B (conjunct2)

Here is a proof oAA B — B A A from these rules:

(.1) (AAB— BAA) = (AAB— BAA)

(.2) [ANB=—= BAA] = (AAB— BAA) (impl)

(.3) [AAB= B;AAB=— A] = (AAB — BAA) (conil, lifted)

(.4) [AANB=7AAB;AANB=—= A] = (AAB— BAA) (conjunct2, lifted)
(.5) (AAB=A) = (AAB— BAA) (assumption)
(.6) (AAB= AANB) = (AAB— BAA) (conjunctl, lifted)
(.7) (AAB— BAA) (assumption)

To derive (.2), the premiss of (.1) has been resolved with the conclusion of rule (impl),
where A has been unified withA A B) and B has been instantiated (8 A A). To arrive at

5.3 Proof Methods 70

(.3) lifting is necessary, because there is no rule that would otherwise match the premiss of
(.2). Lifting rule (conijl) (to becom§?C — ?A; C — 7B] = (C = ?AA ?B)) makes it
possible to resolve it with the premiss of (.2). The step from (.3) to (.4) is justified by lifting
rule (conjunct2) and then resolving with the first premiss of (.3). Note that at this point a new
schematic variable/is introduced which is entirely independent frénThis introduction

is due to the fact that (conjunct2) contairs i its premiss, but not in the conclusion. We
arrive at (.5) by dismissing an assumption which is trivially true after unificatiomhafith

A. This type of proof step is callggtoof by assumptianThe remaining steps are analogous.

5.3.2 A Different Perspective

Another way to look at a proof of theoremthat is a bit more natural is to start with—T,

but ignore the conclusiom and simply look at the premisses, regarding thergass i. e.
statements that are yet to be proved in order to finish the prodf dfhus, the initial goal

is the theorem itself. Resolution of the theorem at hand with other theorems as described
above can then be imagined as the application of rules to the current goal. For example, if the
current goal is to show. — B for some formulaé\ andB in the proof ofT (i. e. internally

the theoremA — B — T has been derived), we may ‘apply the rule (impl)’ to turn this
goal intoA = B. Making one further step of abstraction, this term can be taken as the goal
B, to be proved from thassumption A Lifting of rules into a context suddenly takes the
form of preservation of assumptions: In the above pro#oB — B A A the step from (.2)

to (.3) preserves the assumptian B for the two newsubgoals A B=— BandAAB=— A.

One speaks of applying ile in Isabelle parlance if it is applied in this standard way.
There are other ways of applying a rule that do not enlarge the set of provable theorems, but
that come in quite handy sometimes. Assume the current subgffat is.; R = P and
we try to apply the ruldgT;;...; Tyg] = T, which is an already proved theorem.

e The standard rule application unifieswith T giving a unifier. It then replaces the
subgoal byk new subgoal$[[Pi;...;P] = Ti;...;[Pi...; P] = T])0.

e Applying adrule (for destruction rule) is useful to modify a subgoal’s assumptions.
It unifies T; with some assumption — which for simplicity we assume td®pe and
yields the subgoals

([[P2;...iR] = Tos. . s [Pos .. s] = Ti; [Pos .. s Py T = P]) 6

The idea is thal; is among the current assumptions (it is unifiable vidgtthere) and
can thus be proved trivially. It then remains to prdgeo Ty, but if this can be done,
it is reasonable to takE as an assumption in provirigy since all ofT’s premisses can
be proved from the current assumptions.

e The application of arrule (for elimination rule) lets? be unified withT and simul-
taneously unifieg; (called themajor premissn this context) with one of the current
assumptions (let it bBy). It replaces the current subgoal with the new ones

(IMP2; .. iR = Tos .. [P . s B = TK]) 0

This rule application is obviously quite similar to the standard way, but it deletes the
assumptiorP; and it proves one subgoal immediately.

5.3 Proof Methods 71

5.3.3 Advanced Proof Methods

For a proof assistant to be helpful in serious verification tasks, one may expect it to come with
more powerful proof methods than just the application of axiomatically established rules in

a backward proof. We now shortly present some important principles supported by Isabelle
and which are regularly encountered in proofs.

e Derived rules. Every theorem that has been proved in Isabelle can be given a name
and subsequently be used as if it were a rule of the object-logic. The rules (conijl),
(impl), etc. shown above are examples for derived rules: they represent valid modes of
reasoning in HOL and extend the logic in a conservative way, i. e. they do not enlarge
the set of provable statements in HOL. In practice the largest part of rules applied in
a proof will be derived rules of inference. A list of customary rules can be found in
AppendixB.

e The simplifierlsabelle provides a powerful and extensible term rewriting (or simplifi-
cation) tool. Term rewriting works by subsequently transforming terms with the help
of rewrite rulesin a bottom-up fashion. The set of applicable rewrite rules is comprised
of definitions and theorems. Adding the definition of Pierce’s affopQ = -P A —Q
to the set of rewrite rules lets the simplifier replace occurrencgshyfthe defining
term; this can be useful if no theorems abgwre known yet, but fon and— there
are some. Certain theorems are also good candidates for term rewriting; given asso-
ciativity and commutativity of addition, the simplifier is able to prove equations like
(a+b)+(c+d) = (a+(b+(d+c))) outright, relieving the user of several applications
of these rules by hand.

To avoid looping on so-called permutative rewrite rules in which the left-hand side of
the equation is equal to the right-hand side up to a renaming of variables — e. g. the
rule a+ b = b+ a — the simplifier perform®rdered rewritingso that terms are only
rewritten by permutative rules if they become lexicographically smaller. Hened,

may be rewritten tdo+ a, but not the other way round.

e A classical tableau provern contrast to the simplifier — which can be employed as
an intermediate proof step leaving a goal that is simpler to prove by hand, and which
is able to manipulate arbitrary terms — there also is a tool for proving logical formulae
directly. This tool is known as thglast method and it is capable of proving theorems
like (Jy. ¥x.P xy) — (¥x. Jy. P x y) without intervention from the user (this theorem
could not even be altered by the simplifier in any way). It cannot modify theorems
however, e. g. to make the structure of the problem more apparent: if it fails to finish
the proof, it fails completely.

5.3.4 An Example Proof

Concluding the presentation of Isabelle, we provide a short example proof, thereby explain-
ing basic syntactic elements.

lemmaimp-uncurry P — (Q — R) = (PA Q) — R
apply (rule impl)

apply (erule conjg

apply (drule mp

5.4 The Isar Proof Language 72

apply assumption
by (drule mp

Read as a rule of the object-logic HOlmp-uncurry says that given the implication
P — (Q — R), one may conclud¢P A Q) — R. These formulae are well known to
be equivalent, so we might even have propoged— Q — R) = (PAQ — R) (omitting
all unnecessary parentheses) which we have not done to keep the example short. Let's walk
through this proof step by step: As has been said, the initial goal is the theorem (or lemma)
itself. Applying rule (impl) turns the goal into

[P—Q—RPAQ]=R

i.e. it assume® A Q and imposes the proof & The next step uses the elimination rule
(conjE) which is
[PAQ; [P, Q] = R = R (conjE)

This results in the subgoal
[P—Q—RP,Q =R (5.7)

What happens is thaP 2Q is matched again®? A Q and R is matched againg®. The

only remaining subgoal is then to prof®e; Q] = R from the assumptioR — Q — R

for which (5.7) is just a different notation. As a final step of detailed analysis we show what
subgoals are yielded by applying rule (mp) destructively:

[[P;Q]l = P;[P;Q;Q — R] = R]

The rest of the proof consists of proof by assumption and another application of drule (mp).
The by statement concludes a proof, possibly undertaking further steps of proof by assump-
tion if necessary.

5.4 The Isar Proof Language

The proof style displayed in Sectidh3.4above — occasionally termed theply styledue

to its excessive use of ttepply method — has two major drawbacks. The first one is that
proof scripts comprising a long sequenceapiplys are hard to read, because there is no
information about intermediate proof states shown. The second one, which becomes evident
in the presence of large numbers of theories, is maintainability: if, for example, the simplifier
by changing its configuration becomes more powerful, an application dithpmethod

which previously resulted in a certain proof state might now result in quite a different one.
This often means that subsequent rules of the original proof script are no longer applicable,
so that the script has to be adjusted.

Another issue is that pure backward-oriented proofs are sometimes quite unnatural to per-
form. This is especially true for proofs involving applications of modus ponens. If at some
point in a proof the goah remains, which one wants to prove from the globally given fBcts
andB — A, then an application of rule (mp) results in the two new subgdals-2 A and
?P, thus introducing a new unification variabl®.?In this simple case the structure of the
goals containing the unification variable is very similar to the structure of the given facts, but
in practice their relation can be hard to guess, siftmay stand for any formula. This prob-
lem is of course closely related to the reason why cut-freeness and the sub-formula property
are desired properties of logical calculi (s&8 [

5.4 The Isar Proof Language 73

5.4.1 Introducing Isar by Example

The Isar proof language has been conceived as a formalism for writing proof scripts that
are both machine- and human-readable. Strictly speaking, one already works within Isar
when employing the apply style, sine@ply is an Isar command rather than one of basic
Isabelle. However, this mode of usage closely resembles the original Isabelle style in which
ML functions were called directly. Full Isar comes with several advanced features which are
best introduced with the help of a simple example. This is how a proof of the above lemma
imp-uncurrylooks like in Isar:

lemmaimp-uncurry2P — (Q — R) = (PAQ) — R
proof
assumeal: P— Q —R
assumeaz P A Q
showR
proof —
from a2 haveP by (rule conjunctl
with alhaveqr: Q — Rby (rule mp
from a2haveQ ..
with gr show?thesis..
ged
ged

Compound Isar proofare commenced by the keywopdoof. In its pure form this state-
ment tries to find a rule that can be applied to the goal — in the example, the implication
introduction rule (impl) is selected. This kind of implicit rule application, which is much the
same aspplying a rule in a backward-oriented proof, can be avoided by appending a hyphen
‘— or the rule selection can be made explicit by providing a concrete rule. Applying (impl)
here results in the Isabelle proof state

[P—Q—RPAQ]=R

which is exactly mirrored by the following twassumecommands introducing the valid
assumptions (which may be given a name for future reference) in the proof script. Moreover,
the succeedinghowcommand precisely depicts the statement that remains to be shown. In
every compound proof there occurs exactly shew. To proveR another compound proof

has to be initiated, this time without applying a backward rule. From the given assumptions
alanda2it is very natural to proveR by forward reasoning: basically, two applications of
modus ponens to assumptiah should yield the desired result. This is exactly what we find

in the proof script: first, we derive from P A Q by rule (conjunctl) as an intermediate fact,
then we may apply modus ponensibto obtain facgr, i.e.Q — R. The same procedure

can be executed once more (this timegohto finally show the thesis.

Several concepts of Isar have been used to achieve this resulty Hoenmand represents
basic proofawhich are finished immediately through an application of the rule handed to it
(e.g. rule (conjunctl) or (mp)) and possibly further steps of proof by assumption. But how
can a rule having itself some premisses be used to prove a pending subgoal? For this purpose
the from command is needed, which feeds facts into a proof so that these are unified with
the premisses of the applied rule. In the concrete example, the fe@tis fed into the proof
by rule (conjunctl) to obtaif. A handy abbreviation isvith, which behaves likdrom,
but additionally feeds the most recent fact into the subsequent proof. For example, to obtain

5.4 The Isar Proof Language 74

Q — R by (mp), one must feed the two premisses— Q — R andP into the proof,
whereP is the most recently established result. Heneigh al yields all that is required to
finish the proof by modus ponens. Finalijgd concludes a compound proof and two dots °
are shorthand fobby standard rulesi. e. a basic proof established through the standard rule
set which includes (mp), (impl), (conjunctl) and many more. See Appéhtlix frequently
used rules in HOL and refer t@2, 39| for further details about the Isar proof language.
Some more specialised features will also be explained in Chégigrequired.

6 Implementation in Isabelle

In this chapter we describe how the calculus of propositional dynamic logic has been imple-
mented in Isabelle. The implementation can roughly be divided into three parts, which are
first prerequisites like introducing the basic operations of a monad and setting up a convenient
syntax — namely the do-notation — for compound monadic programs, second the definition
or derivation of the logical operators as well as several proof rules accompanying these, and
third two substantial example specifications from the realms of monadic parser combinators
and a classical while-program performing Russian multiplication.

To keep the notation within the main text and the inserted Isabelle example specifications
consistent, we will use the notation of Isabelle throughout this chapter. One major change
caused thereby is that we will write=-'b T for the type of a polymorphic function which
would otherwise be denoted lay— T b (cf. Section5.1.1). Because the commonly used
symbols for the propositional connectives likeor — are reserved for HOL, monadic
connectives will be indexed by, as inAp or —p. Note also that implication is denoted
by a simple arron— and not by a double arrows.

6.1 Theory Files

The following listing of the theory files that have been created provides a more detailed
explanation of the overall structure of the implementation. Besides that, FagLsBows the
dependency graph of these theories. In this diagram, a link between two theories indicates
that the theory below imports all theorems and definitions of the one above. In this way
a simple acyclic theory hierarchy can be created in Isabelle. The figure moreover visualises
the fact that the calculus directly builds on HOL, Isabelle’s formulation of higher-order logic.
TheoryPureis Isabelle’s meta-logic, hence the base theory for every other logic.

Monads first of all defines a type constructdr that takes values of typa to monadic
programs (or computations) of tyge T. Further it defines the monadic primitive
operations>=, > andret for binding, sequencing and creating monadic programs.
Finally, a do-notation quite similar to the one found in Haskell is defined through
Isabelle’s syntax facility.

MonProp formalises the notions of discardability, copyability and deterministic side-effect
freeness of monadic programs and the properties that these programs possess. The
subtyp€a D of dsef programs ifa T is introduced and operatiofifM , liftM2, etc.,
are defined allowing to lift HOL functions into the monadic setting. These will be used
to define the propositional connectives.

MonLogic constitutes the setup of the propositional part of monadic dynamic logic. It de-
fines the propositional connectives in terms of the ones of HOL, enables the simplifier
to solve propositional tautologies in the new logic automatically and proves ‘lifted’
analogues of standard HOL rules liken;jl, disjE or excluded-middle

6.1 Theory Files 76

[Hou
Monads |

’WLogic

| PDL | [MonEq |

’ Parsec ‘ ’ State ‘

Figure 6.1: Dependency graph of the Isabelle theories

PDL completes the setup of the basic calculus by declaring the box and diamond operators,
providing a convenient syntax for these, and formalising the proof calculus for dynamic
logic of Section3.3. Additionally, it is shown how the classical relationship between
the box and diamond operator is automatically established by basing the logic on HOL,
which itself is classical. The theory file ends with several proof rules that are derived
from the basic calculus.

MonEq is a rather short theory file adding equality to the set of lifted operations. Rules
representing transitivity, reflexivity and symmetry of monadic equality are also given.

Parsec contains the axiomatisation of the basic operations of a monad for parser combina-
tors in the style of12]. Subsequently, the specification and verification of a parser for
natural numbers which is defined in terms of the basic parsers is presented.

State specifies a monad with readable and writable references as well as a while loop. In
this monad, the algorithm for Russian multiplication is specified and proved correct.

6.2 Monads in Isabelle 77

6.2 Monads in Isabelle

While in Haskell the common ground of all (computable) monads can at least be captured
at the level of operation typé&slsabelle’s concept oixiomatic type classes not strong
enough to suit this purpose. Axiomatic type classes are like Haskell’s type classes, with
the supplementary possibility of specifying what properties the operations over a certain
type class must satisfy. For example, the type clzm®rd of partial orders requires its
instances to provide the operationand<, but additionally demands that the latter satisfies

the usual properties of transitivity, reflexivity and antisymmetry. For the specification of
monads however one does not require a class of types but rather a class of type constructors,
namely the class of all those type constructors mapping a given base type into the type of
specific computations over this type.

Due to the lack of this concept our implementation simply declares a polymorphic abstract
type’a T, whereT is supposed to stand for the monad in question. This way of proceeding
precludes the exact definition of concrete monads and their primitive operations, since the
structure of the monad is not visible. From the viewpoint of Isabetiefinitional approach
—where HOL is supposed to be supplemented only by further definitions and theorems rather
than axioms — this may be considered an imperfection, because additional operations acting
on the structure of the monad have to be described axiomatically. For instance, there will
be no way to define what precisely the operations of writing to or reading a reference in the
state monad do, but these can only be described via their logical effects. Nonetheless, the
way chosen here adheres to the one suggest&ffimpd, in any case, the alternative would
have been to have distinct base theories for all concrete monads, which is hard to maintain
and tedious to implement.

typedecl’a T

consts
bind::'aT=(a="bT)="bT (infixl >=20)
ret :'a="aT

constdefs
seq:aT=bT="DbT (infixl > 20)
p>q=(p>=(Ax Q)

This is the concrete Isabelle notation for the introduction of the tgp€é of monadic
programs and the basic operatidniad, ret and seq where the latter is defined in terms
of the binding. The so-calleghixfix annotation®n the right margin declare infix notation,
>= for bind and > for seq which in their simple form given here resemble the syntax
annotations for infix operators in Haskell. As stated aluinel andret can only be declared
as abstract constants througle@nstsdeclaration, whileseqcan be given a declaration as
well as a concrete definition (albeit in terms of the abstractly defined opedaitiai of
course) through theonstdefsstatement. The latter combines the effects of the statements
constsanddefs where thedefs statement serves the purpose of providing a definition for a
previously introduced constant.

The following is a specification of the monad laws of Equati@ril() in Isabelle. The

Iwhich is done by making the respective type constructors[ikéoeing syntactical sugar fdrist), Maybe,
etc., instances of the constructor cldsaad

6.2 Monads in Isabelle 78

[simp] instruction makes Isabelle hand a theorem or axiom to the simplifier as a rewrite rule
automatically. We have included a specification tteis injective. From these axioms we
can prove the associativity of immediately.

axioms

bind-assodsimg: (p>= (Ax. fx>=g)) = (p>=f >=0)
ret-lunit [simg: (ret x>>=1) =fx

ret-runit [simg: (p>>=ret) =p

ret-inject retx=retz—x=1z

lemmaseg-asso¢simg: (p>> (q>r))=(p>q>r)
by (simp add seq-dej

6.2.1 The do-Notation

Next comes the setup of the do-notation by means of Isabelle’s syntax translation facility.
This basically is a term-rewriting mechanism on abstract syntax trees which can be con-
figured by adding rewrite rules for either the transformation of concrete input into a valid
Isabelle term or vice versa. We will not go into the details of this mechanism, which is laid
out in the Isabelle reference manuab]. The implementation can be found in Appendix
p.101

The syntax translations make it possible to write monadic programs in a much more con-
venient way that mirrors the sequentiality inherent in these programs. In the implementation
we make use of this notation exclusively. As an example, one may write the following

do{X—p;gqx} do{x—p;y—qrxy} do{X«—p;y—0q;z<r;ret(x,y,2)}
instead of

p>=Ax.qx p>=AXg>=Ay.rxy) do{x— p;do{y—q;do{z—r;ret(x,y,2)}}}

where the third column indicates that multiple bindings may be input as a sequence rather
than in a nested fashion.

Remark6.1 The fact that do-terms are simply syntactical sugar also means that we do not
formalise the inference rules of the meta-language for monads described in Qe2t®hut

rather work with monadic programs and their properties directly and just display them in the
more convenient do-notation. That such a translation can be achieved purely by syntax trans-
formations indicates how closely the meta-language is related to actual monadic programs.

6.2.2 Properties of Monadic Programs

Our main goal for now is to obtain a subtyfaeD of deterministically side effect fre@lef)
programs ovefa T so that programs of typkool D can be used as formulae of our logic.

The kind of subtyping supported by Isabelle proceeds by defining a new type in terms of a
subset of elements of an existing type. Isabelle then generates a bijection between this subset
of the existing type and the new type which consists ofabatraction functiorfrom the

existing type into the new one — which is only sensibly defined for elements that really have

6.2 Monads in Isabelle 79

a corresponding element in the new type — amdpesentation functiomapping elements
of the new type back to their representatives in the existing type.

It is straightforward to formalise the concepts of discardability and copyability, the con-
cepts on which the propergsef builds. The latter is itself defined in terms of the former
ones as follows.

constdefs
dis:: 'a T = bool

dis(p) = (do {x«p; ret()}) =ret ()

cp ::‘aT = bool
cp(p) = (do {x—p; y«—p; ret(x,y)}) = (do {x—p; ret(x,x)})

dsef:: 'a T = bool
dsef(p) = cp(p) A dis(p) A (Vq::bool T. cp(q) A dis(q) —
cp(do {x«p; y«a; ret(x,y)}))

The definition ofdsef deserves explanation for two reasons. First, it should be repeated
that there are three equivalent formulations of what it means for a program to commute
with some other program (cf. De8.6), from which we have choser8.(). Second, this
formulation restricts the types of programs that the given progrdmas to commute with to
those of typéool (see also DefinitioB.7and Remarid.9). This is required because Isabélle
does not allow for a quantification over type variables in a definition. But this is exactly what
would be done, if implicitly, in the case that the right-hand side of the definition mentioned an
arbitrary prograng :: ‘a T. As’awould be arbitrary, any type might serve as an instantiation.
An explicit lemmacommute-bool-arbis needed to derive the commutativity of a certain
programp with copyable and discardable programsaofy type from the commutativity of
p among copyable and discardable programs of typal. Because the implementation of
global dynamic judgements was the subject of a different diploma thesis, this ‘lemma’ is
in fact provided as an axiom in this thesis; given a more elaborate infrastructure, it would
however be provable.

Several properties of copyable and discardable programs discussed in Settimve
been formalised, the most frequently employed of which are Len#1@end3.5

lemmacp-arbi cp p=> do {x—p; y«<—p; r X y} = do {x—p; r x x}
lemmadis-left dis(p) = do {p; g} =q

Notice how the substitution offor y in r of lemmacp-arbis achieved by makinga function
of x andy. With the above definitions and lemmas at our disposal the'@pean be defined.

typedef (Dsef) (‘a) D = {p::'a T. dsef g
apply(rule exljof - ret ¥)
apply(blast intro: dsef-re}

done

The proof obligation in the type definition arises due to the restriction that types must not
be empty. We use the programet x as a witness, since stateless programs are always dsef.

2to be precise, this statement is only true for logics like HOL which inherit their type mechanism from Isabelle’s
meta-logic

6.2 Monads in Isabelle 80

This fact has of course been proved as lentsef-retin Isabelle beforehand. Thgpedef
statement declares the new typeD to be in bijective correspondence to the Besef of

dsef programs ifa T. The definition of this set is subsequently available under the name
Dsef-def What's more, two functiondbs-Dsef.:'a T = ‘a D andRep-Dsef: aD="aT

are generated that mediate between these two types. As the functions may appear quite often
in certain formulae, two abbreviations are introducgdp stands forAbs-Dsef pand|} P

stands forRep-Dsef P This is quite suggestive, in particular in those cases where terms of
the form1}} P or |1} p appear since one is visually reminded that these operations cancel
each other out.

Remark6.2 The reason why terms of the forfnp will appear is that one may only write
monadic programs ift, while the formulae of our logic live ilD. This means that a com-
pound truth-valued program= do {X1 < P1; - ; Xn< Pn;F X1 - - Xn } that is dsef will nonethe-

less have typbool T. This program has to be shiftedtbool D to form the monadic formula

1 p. Furthermore, there are several atomic programs — itk being the predominant one
—which are dsef and hence may appear in formulae when shifted. We initiate the convention
of defining a formulaProg = 1} prog for each atomic dsef prograprog. Hence the shifted
version ofretis Ret:: ‘a=-'a D.

Theory MonProp also contains proofs of characteristic properties of dsef programs which
are not shared by discardable or copyable programs. The two most important facts are that
neighbouring dsef programs may be swapped (The@@mmute-dsefp. 108 and that dsef
programs are stable under sequential composition (Thedsefrseqp. 108). While the first
one is quite immediate from the definitions, the second one asks for a bit more work.

theorem dsef-seq[dsef p Vx. dsef(q x)] = dsef(do {x—p; q x})

According to the definition oflsef proving thatdo {x« p;q x} (call it r in the following)
is dsef amounts to showing three facts. The first one isrtlimdiscardable. This follows
from the fact thatp and g x are discardable for akk. The second one, namely thais
copyable, follows from the fact thagt andg x commute with each other, so that the defining
equality of copyability holds for by the copyability ofp andq x. It must be noted here that
while we used condition3(1)® as part of the defining property of dsef programs, condition
(3.3* can easily be inferred fron8(1), a point that has been shown in lemowmmute-1-3
The final fact to be shown is thatcommutes with all copyable and discardabtelvalued
programs. This follows similarly to the second fact, noting thandqg x alone commute
with all discardable and copyabb®olvalued programs.

6.2.3 Equational Reasoning in Isar

We will now shortly explain how Isar supports equational reasoning. As it is used in this the-
sis, equational reasoning means reasoning by chains of equations, where each separate step
is justified mainly by substituting equals for equals. Take the following lemma, representing
the formalisation of how to infer3;2) from (3.1), as an example.

lemmacommute-1-2[cp g cp p; dis g dis P = cp (do {x—p; y—q; ret(x,y)})
= do {x—p; y—q; ret(x,y)} = do {y—q; x—p; ret(xy)}

3stating that the composition of two discardable and copyable programs is again copyable
4which states the property of commutativity more instructively by actually swapping two programs

6.2 Monads in Isabelle 81

proof —
assumea: cp g cp p dis q dis p
assumec: cp (do {x—p; y«<—q; ret(x,y)})
let ?s= do {x—p; y—q; ret(x,y)}
have ?s= do {z—?s ret (fst z snd 2} by simp

also fromc have... = do {w«?s z—?s ret (fst z snd W } by (simp add cp-arb)
also fromahave... = do {v—q; x<p; ret(x,v) } by (simp add mon-ctr dis-left2
finally show ?thesis.

ged

After stating the valid assumptions and settirgga® an abbreviation for the left-hand side

of the equation that is to be shown, a chain of equations starts beginningsveitid ‘2nding

with the right-hand side of the main goal. This kind of successive equational reasoning
is realised in Isar through a sequencehaf/e ..also have.. statements and a concluding
finally statement. In its simplest form, tleéso statement combines two facts of the form
a=b andb = cto yield the facta = c, thus simply exploiting transitivity of equality. The
finally statement reiterates the transitive chain build up so far and feeds it into the concluding
proof — which in the example is precisely the goal thesis. As a convenience, three dots
‘...7 within a term refer to the right-hand side of the most recently established equality.
The main workhorse for performing the intermediate proof steps is the simplifier, since it is
ideally suited for handling equalities and substitutiol. dontains a detailed description of
extended features of this mechanism, showing how it can also be applied to inequalities.

6.2.4 Lifting HOL Constants

The definition of the propositional connectives in Sectol.1suggests the introduction of
lifting operatorsthat allow one to embed HOL operators into the monadic setting. These
lifting operators are well known from Haskell and their definition in Isabelle does not look
that different. The basic idea is that to apply mary operatorf :: [aj,...,a,) = bton
monadic programes ;i a1 T,...,pn i a, T, one simply evaluates these programs in turn and
applies the operator to the results. In principle all HOL operators like equality, comparisons,
addition, etc. could be lifted this way, but for simplicity we will only lift the propositional
connectives and equality in the sequel.

constdefs

iftM :: [a="b,aT]="bT

liftM f p = do {x < p; ret (fx)}

liftM2 :: [a=b="c,aT,bT]="T
iftM2fpg=do{x«— p;y«q;ret(fxy)}

Thanks to lemmalsef-seqt is very easy to prove that applying a lifted operation to dsef
programs yields a dsef program:

lemma dsef-liftM2 [dsef p dsef § = dsef (liftM2 fp q)

This fact is essential when introducing the propositional connectives in this manner, since
e. g. the conjunction of two formulae is of course required to be a formula, hence dsef.

6.3 Setting up the Logic 82

6.3 Setting up the Logic

Apart from a slight visual clutter induced by the occurrences of the shifting functiarsl

| the definition of global validity (which we denote here by a turnstilestead of the global

box [6) and of the propositional connectives is now straightforward. We take conjunction,
disjunction and implication as primitives: the constant for falsity does not have do be defined,
since it is available via the injection &alseinto the monad, i. e. viRet False

consts

Valid ::bool D= bool ((F-) 15

AD ;2 [bool D, bool D] = bool D (infixr 35)
Vb :: [bool D, bool D] = bool D (infixr 30)
—p :: [bool D, bool D] = bool D (infixr 25)
defs

Valid-def: - P = || P =do {x—({ P); ret True}
conjD-def P Ap Q = 1 (liftM2 (opA) (4 P) (I Q))
disjD-def. P vp Q = 1 (liftM2 (op V) (4 P) (I Q))
impD-def. P —p Q = 1 (liftM2 (op—) (} P) (U Q))

Other operators like equivalenee— and negation- are defined as abbreviations in the
usual way:

constdefs
iffD ;2 [bool D, bool D] = bool D (infixr «—p 20)
P«——pQ=(P—pQ)Ap (Q—DP)
NotD :: bool D= bool D (—p - [40] 40)
-p P=P —p Ret False

The notion of global validity can be simplified, since dsef programs are discardable. This
fact can be stated either as an equality ior as an equality iD:

lemma Valid-simp (- p) = ({} p=ret True)
lemma Valid-simpD (- P) = (P = Ret Trug

Remark6.3. While the formalisation of the proof calculus as given3d][is tailored towards

an intuitionistic framework, an immediate consequence of the definitions presented thus far
is thatthe implementation of the calculus in Isabelle is classiddlis follows from the fact

that the logical operators are defined in terms of the HOL operators arfabtblas classical,

i.e. contains only two value$rue andFalse A representative theorem confirming that a
logic is classical is the law of excluded middle. The formulation in the monadic setting reads
as

theorem pdl-excluded-middte- P Vp (—p P)

The outline of the proof of this theorem is as follows: first, decBdg, (—pP) into the
programf do{a<} P; b P;ret (aVv —b)}. By copyability of{} P— noting that all programs
of the form{ _ are dsef, therefore copyable — this program is equéldo {a< P;ret (aV
—a)}. At this point, reasoning in HOL reduces/ —a to True, so that by discardability of
| P the whole program is equal ®et Trug hence globally valid.

An interesting connection between tRetfunction and every operatap that has been

6.3 Setting up the Logic 83

lifted by theliftM x functions to form an operata@pp is thatRetis a homomorphism between
op-terms in HOL andpp-terms inD. This is reflected by the following equations, which all
hinge on the fact that the operators have simply been lifted.

lemma conjD-Ret-homRet(anb) = ((Ret 8 Ap (Reth)
lemmaimpD-Ret-homRet(a—b) = ((Retd —p (Ret)
lemmaNotD-Ret-homRet(— P) = (—p (Ret P)

Dual statements hold for disjunction, equivalence and the like.

6.3.1 Basic Proof Rules

Besides theorempdl-excluded-middléhere are several other analogues of proof rules of HOL
given in SectiorC.3.3 These include modus ponens, introduction and elimination rules for
conjunction and disjunction, some rules concerning negation and so forth. It would thus be
tempting to try and formulate a natural deduction calculus for the propositional part of the
logic. However, this fails at one critical point: the introduction rule for implication, which
might be formulated as

pdl-impl FP=F+FQ)=FP—pQ

is not provable, and what's worse, not even valid. This is quite obvious, since one may
not expect any relationship between tjlebal validity of P and the global validity of the
formulaP —p Q. Hence it does not make sense to assume the global validiy mrfove

F Q and then conclude th& —p Q must be globally valid. It is a common phenomenon
that natural deduction systems — and the proof calculus for HOL basically is formulated
as such — have to be modified if they are to be used for modal logics. For simple logics
involving unparameterised modal operators this can be done rather easilg]jsbatit is

as yet unclear how it might be accomplished for the logic discussed here, which includes
modal operators for every possible program sequence.

The lack of this single rule has quite profound consequences, since the simplest theorems
like - P —p Q —p P cannot be proved ‘logically’, i. e. with the natural deduction rules.
Like every classical tautology this theorem however has a semantic proof which proceeds
in analogy to the proof opdl-excluded-middleliscussed above by unfolding the definition
of global validity and then manipulating the resulting do-terms. Having to step back to the
semantic definition of the connectives when proving valid formulae is not desirable since this
does not lend itself easily to automation and it makes proofs very unstructured in comparison
to those conducted in a proof calculus. To obtain a purely Hilbert-style calculus for the
propositional part of the logic it would theoretically suffice to prove an appropriate set of
axiom schemes semantically and then conduct proofs from these axioms by modus ponens.
This way of proceeding would lead to rather cumbersome proofs and substantially blow up
the amount of work required to verify programs of realistic size, so an alternative solution
had to be found.

6.3.2 Proving Tautologies Automatically

The solution that has been adopted in the implementation is to use the simplifier, i. e. to em-
ploy the technique of term rewriting, and enhance it in such a way that it can plasagcal

6.3 Setting up the Logic 84

propositional tautologies automatically. The first step to this solution is to regard the propo-
sitional part of the logic as a Boolean algebra. It is a standard exedisehppter 5] to

verify that ool D, Ap, Vp,Ret FalseRet Trué is such an algebra which further gives rise

to a boolean ring, i. e. a commutative ring in which all elements are idempoterx,zi.ﬁx

for all X. Taking Ap as the multiplication and exclusive disjuncttomp as the addition

of the Boolean ring this equation certainly holds, sidxcep X = X is valid. All other re-
guirements of a Boolean ring like distributivity of multiplication over addition, associativity

of these operations etc. are also satisfied. The major insight then is that a complete set of
rewrite rules for ordered rewriting can be given for Boolean rings. A complete set of rewrite
rules is one that is terminating and confluent, such that every term can be rewritten into a
unigue normal form and it does not matter which path of possible reductions one follows (cf.
the Church-Rosser property of the untyped lambda calculus in Rrdpnd the description

of the simplifier in Sectiorb.3.3. But this is exactly what is needed to prove a classical
tautologyT automatically, since it can then be rewritten to its normal fé&tet True so that
provingk T amounts to proving the trivial statemenRet True This final proof step can of
course be done automatically, too.

SectionC.3.2presents all rules the simplifier has to be equipped with to prove tautologies
automatically. For shortage of time the rules were given as axioms, and only some of them
were proved as examples on how such proofs can be carried out. The rules include associa-
tivity and commutativity ofAp as well aspp, unit laws forAp with respect tdRet Trueand
absorption laws fonp. Furthermore, the behaviour op and®p with regard to falsity and
the distribution ofAp over @p are laid out. All these laws — together with translation rules
that let all connectives be expressed throughand ®p plus falsity — are collected in the
rule setpdl-taut Tautologies are now proved in one fell swoop:

lemmat (P —D Q) AD (_‘D P—p R) «—D (P Ap QVp p P Ap R)
by (simp only pdI-taut Valid-Ret

6.3.3 Modal Operators and the Proof Calculus

We will now make up for the definition of the box and diamond operators which have been
overlooked up to this point. Due to the fact that an elaborate formalisation of global dynamic
judgements has been worked out in a different diploma thesis, the box and diamond operators
are in fact notdefinedthrough their unique defining property as given in Proposi8ad

but rather treated as abstract constants.

consts
Box:: 'aT = (‘a=- bool D) = bool D ([#-]- [0, 100 100)
Dmd:: aT = (‘a= bool D) = bool D ({-)- [0, 100 100)

Each operator maps a program and a formula depending on the return value of the program
into a monadic formula. The syntax annotations make it possible to write[#dg{x«
P;q}] Q% or (do {x+p;q}) (Ay. P y) — note that botl® andP are function predicates depend-
ing on the return value of the entire do-term inside the box or diamond respectivelypaind

Srecall the definition of exclusive disjunctioA® B = (AA —B) V (-AAB)
6the sharp sign ‘# is needed to disambiguate box formulae from lists, for which the square bracket notation is
already in use

6.3 Setting up the Logic 85

on the variablexbound in these do-terms. This means that the notion of variable binding that
is performed by these operators differs from that which has been propos¥,iwlere the
multiple bindings that may occur inside a modal operator all constitute variable binders for
the formula in the scope of the operator.

With the help of some intricate syntax translation instructions it becomes possible to mimic
this kind of multiple variable binding in Isabelle. The idea is to write a sequence of bindings
inside the modal operator and use these bound variables freely in the formula in scope of the
operator, like so:

[X1 P1i-- X Pn] P X+ Xn

The binding sequence is then transformed into an actual do-term by collecting all bound
variables to form a tuple and appendingeaexpression that takes this tuple as its argument.
The free occurrences of these variables in the formula in the scope of the modal operator
become bound by turning the formula into a lambda abstraction that expects the tuple of
variables as an argument. So the result of translating the above binding sequence is

[#do{Xp<—p1; i Xn—Pmret (Xe, ..., Xn) H A (X1, ..., %0). P Xg < X

The notation thus set up is in particular nice for sequences of length one, bégause
p) (P x Ap QXx) and (p) (AX.P X Ap Q X) denote the same formula, with the former one
emphasising the connection between the return valagp and its use in the subsequent
conjunction.

With the modal operators readily defined, the proof calculus for propositional dynamic
logic can be implemented, resulting in the following specification.

axioms
pdl-nec (Vx.F P X) = I [#x—p]|(P x)
pdl-mp: [(P—p Q);FP]=1F+Q

pdl-kL [#x—p](P X —p QX) —p [#X—p|(P X) —p [#Xx—p](QX)
pdl-k2 F [# x—p](P X —p QX) —p (X—p)(P X) —p (X—p)(Q X)
pdl-k3B + Ret P—p [# x—p|(Ret P

pdl-k3D: I (x—p)(Ret P —p Ret P

pdl-k4 F (x—p)(P xVp Q X) —p ({(x—p)(P X) Vp (x—p)(Q X))
pdl-ks = ({(x—p)(P X) —p #x—p](Q X)) —p [#Xx—p|(P X —p QX
pdl-seqB - [#x—p; y«—q X (P xy) «<—p [#Xx—p|[#y—aq (P xy)
pdl-seqD F (x—p; y«—q X) (P X y) «—p (X—p){y—q X (P X y)

pdl-ctrB: = [#Xx—p; y«—q X(Py) —p [#y<do {x—p; g x}](Py)
pdl-ctrD: - (y«do {x—p; qx})(Py) —p (x—p; y—qx)(Py)

pdl-retB + [#x—retd(Px) «——p Pa

pdl-retD: I (x—reta)(P x) —p P a

pdl-dsefB dsef p= + 1 (do {a—p; || (P @)}) «——p [#a—p|(P a)
pdl-dsefD dsef p= - 1 (do {a<p; |} (P @)}) «—p (a—p)(P a)

This specification does not look all that different from the original one presented in Fig-
ure 3.1 The side-condition in the necessitation rule that variadheust not occur free in
the assumptions can be formalised by requiring Ehatholds for allx, since this precludes
any assumptions to be made xnThe K axioms really are almost identical to the original
specification. The axioms for dsef prograrps)-dsefBand pdl-dsefD cannot be stated in
the convenient notation in which dsef programs of tig€ are simply substituted for actual
values of typ€a, since this results in a type error. So in the specification one has to resort

6.3 Setting up the Logic 86

to the decoded forms, where the dsef program is evaluated first, and the resulting ialue
used in the formul® a.

For the structural rules there also do not appear to be notable differences, but this is not
quite true: the syntax translations transform, e. g., the depicted fopdisseqB

[#X—py—qX P Xxy«—p [#x—p|[#y—qXPxy
into the genuine Isabelle term
[#do{x—py—qgxret(x,y)}A(X,y).Pxy«——p #p|AX.[#qXAy.P Xy

which has a rather complicated structure. This complexity and the fact tha&t #vression
only appears on the left-hand side of the equivalence will make it hard to apply the axiom
in actual proofs about compound programs, because these will hardly ever unify with the
program structure imposed by the axiom.

It has been shown in3@] that simple monads (cf. Ren3.10 satisfy the converses of
the contraction axiompdI-ctrB and pdl-ctrD, i. e. the same formulae with the implication
arrows reversed. These converse axioms make it possible to prove simplified versions of the
sequencing axioms which have turned out to be more effective in practice. Whether there is
a proof for these theorems in monads that are not simple, too, is currently unclear. For the
box operator the corresponding theorem is

axioms
pdl-seqB-simp- ([#x—p|#y—aX(Py)) «—p ([#y—do{x—p; qx}|(Py))

with the equivalence offf x— p;y<—q X P yand[#y« do {Xx< p;q x}| P y being the key
fact required for the proof. This equivalence is precisely what is provided by the contraction
rules and their converses.

Although the simpler rendition of the sequencing axiom does not allow for reasoning about
intermediate results — @ only depends on the return value @f, but not that ofp — one
has to remember that in rufgl-seqBthe intermediate results are only made availablP to
by packing all of them into a tuple and makingret x the final expression of the do-term.
The formulation as given ipdl-seqB-simjis more flexible, sincg xmay or may not consist
of or at least end with suchrat expression. In the case where one is in fact not interested
in the value ofx (e. g. when nothing is to be said about intermediate results), it turns out to
be more convenient to dispose of the firetlexpression. And the general contraction rules
are too weak to make this possible when working vptht-segB Given some further rules
that will be described below it is easily possible to empbof-seqB-simo prove theorems
about the equivalence of multiply split boxes and their ‘joint box’:

lemmalt- [#do {xL—pl; x2—p2; x3—p3; r x1 x2 x3]|P «—p
[# x1—p1] [# x2—p2)[# x3—p3|[# r x1 x2 x3P

6.3.4 Theorems and Proof Rules Involving Modal Operators

All theorems of Sectiort.1 — which include the distribution of the box operator over fi-
nite conjunctions (namebox-conj-imp-distribhere), the regularity and weakening rules
(pdl-box-reg pdl-dmd-reg pdl-wkB pdI-wkD) as well as several other lemmas — have also

6.3 Setting up the Logic 87

been proved in Isabelle. The proofs thereof are heavily inspired by how they have been car-
ried out ‘on paper’, so we just refer to Secti@n5.2in the Appendix for a formal Isabelle
verification.

A more interesting proof which has not been presented before, because it relies on the
underlying logic being classical, is the relationship between the box and diamond operator.
It has already been stated that the propositional part of the logic behaves classical, but the
following theorem confirms that this is also true for the relation between the modal operators.

theorem dmd-box-rel - (x<—p) (P X) «—p —p [#Xx—p|(—p P X)

The formula is proved in two steps, each one validating one direction of the equivalence.
The first half, in which the definition of negatiblhlas already been unfolded, looks as fol-
lows. The Isar keywords introduces an abbreviation for the term preceding it. In the
case at hand,b?and @ are matched against and bound to the box and diamond formulae
[# x«— p] P x—p Ret Falseand (x« p) P xrespectively.

lemmadmd-box-rellt ([# x—p](P x—p Ret Fals¢ —p Ret Fals¢ —p (x—p)(P X)
(ist (?b—p Ret Fals¢ —p ?d)
proof —
havet- (?d —p Ret Fals¢ —p ?b
proof —
havefl: I ((?d —p [# x—p|(Ret Fals¢) —p ?b) —p
(?d —p Ret Fals@ —p ?b
by (simp add pdI-taut)
havef2: F (?d —p [# x—p](Ret Fals¢) —p ?b
by (rule pdI-k5
from f1 f2 show ?thesisby (rule pdl-mp
ged
thus ?thesisby (simp add pdI-taut)
ged

The proof proceeds by classical contraposition, i. e. instead of proving the main goal we
initially show the following formula

((x—p) (P X) —p Ret Fals¢ —p [#x« p| (P x—p Ret Fals¢

(call it @) to hold and let the simplifier conclude the proof by equalisingnd the main goal
with the help ofpdl-taut Noticing that® already looks quite similar to an instance of axiom
pdI-k5— with only the leftmosRetterm to be replaced by the formuléx«— p] (Ret Fals¢
— we recognise that the axiom really implies the goal, i. e. for an appropriate insdthate
axiom pdl-k5we have that? —p @ is a tautology that can once again be proved by the
simplifier. Hence, a final application of modus ponens finishes the proof.

The second half of the equivalence is easily proved, as it is tautologically implied by
pdl-k3DandpdI-k2

lemmadmd-box-rel2t (x«p)(P X) —p [# x—p|](P x —p Ret Fals¢ —p Ret False
proof —
havet ({(x—p)(Ret Fals¢ —p Ret Fals¢ —p
([# x—p](P x—p Ret Fals¢ —p (x—p)(P x) —p (x<p)(Ret Fals¢) —p

’-pP =P —p Ret False

6.4 A Specification of Parser Combinators 88

(x—p)(P X) —p [#x—p](P x —p Ret Fals¢ —p Ret False
by (simp add pdl-taut)
from this pdI-k3D pdl-kshow ?thesisby (rule pdl-mp-2)
ged

6.4 A Specification of Parser Combinators

In this section it is shown how the monad-independent specification of the calculus of dy-
namic logic can be extended by axioms to describe a monad of basic parser combinators.
This specification has been heavily influenced by the Haskell implementation presented in
[12], but in contrast to that work we specifieddaterministicparser monad with fall back
alternatives. The basic operations of this parser are

consts
item natT
fall caT
alt caT="aT="aT

getinput :: natlist T
setlnput :: nat list= unit T

whereitem parses exactly one natural number from the finite stream of input nunfagrs,

is a parser that always fails, thus representing a dead end, the comlaihgtyntactically
sugared by two parallel bar§’) takes two parserp andq and yields a parser that runs the

first argument o< — let it be p — first, and only if it fails the second parsgrs tried. Every
producible parser thus always yields at most one result. Finally there are opeggibnmut

and setlnputto read and set the remaining input stream. As a typical implementation of
this monad one might use a deterministic state monad with an added exception representing
failure.

As an abbreviation we also introduced the operagiot{for ‘end of text’) which is defined
throughgetinputin the obvious way. In accordance with the convention of Rertazkhe
operation€Eot andGetlnputdenote the operations I corresponding to the dsef operations
in T written in lower case.

6.4.1 Specification of the Basic Parsers

axioms
determ F (x<p)(P X) «—p [#x—p|(P X) Ap (X<p)(Ret Trug
dsef-getinputdsef getinput
fail-bot: - [# fail](Ax. Ret Fals¢
eot-item+ Eot —p [# x—item(Ret Fals¢
set-get + (setlnput X(Au. Getlnput=p Ret %
get-item + Getlnput=p Ret(y#ys) —p (x—item)(Ret(x =y) Ap Getinput=p Retys
altB-iff: - [# x—p||q)(P X) ——p ([#x—p|(P X) Ap (x—p)(Ret Trug¢) Vp
([#x—q)(P x) Ap [#x—p|(Ret Fals¢)
altD-iff : = (x—p||q) (P X) «—p (x—p)(P X) Vb ({(x—q)(P X) Ap [#x—p](Ret Falsg)

An interesting axiom igletermwhich captures the fact that we are working in a determin-
istic monad. The characteristic feature of such a monad is that the box and diamond operators

6.4 A Specification of Parser Combinators 89

denote nearly the same formula, with the diamond being stronger in the sense that it addi-
tionally asserts termination. So when formalising the total correctness of parsers in the parser
monad one can either keep partial correctness and termination separated, or one can jointly
specify them by using the diamond operator. The latter has been done in the remainder of the
specification

The operationgetinput setinputanditembehave as one would expect, such that reading
the remaining input is deterministically side effect fresdf-getinpyt trying to read further
input when the end has been reached results in an eobiten), after setting the input to
x this value can be read lgetinput(set-ge} and reading an item when input is available is
a terminating operation that diminishes the remaining input by one item and yields this item
as a resultdet-item).

Remark6.4. Attention has to be paid when specifying the equality of a dsef term with a
stateless value. For example, to express that the remaining input equals some list of numbers
I, one cannot writésetinput= | as this is a type error. It is moreover also wrong to write
Getlnput= Ret linstead, since this would generally maketinputa stateless program al-

ways yielding the same resuiltSo what one actually wants to express ma@nadic equality
(denoted by=p) to be defined as the lifted counterpart to standard equality — in the same way
as for the propositional connectives:

a=pb = 1 (iftM2(op=)(la)(Iib))

Axiom altB-iff characterises the more complex behaviour of this monad. It states in what

cases a formul® holds for the outcome of the combined parpgg. The fall back behaviour

of this parser with respect tq is captured by the assertion thi#x < p||q] P x holds if

and only if p makesP true andp terminates, og makesP true, butp does not terminate.

In the case where both parsers fiflx < p||g] P x will always be provable due to axiom
fail-bot. Describing the total correctness behaviourtif i. e. the formula(x <« p||q) P x,
axiomaltD-iff looks quite similar, only that one assertion in the left part of the disjunction —
namely thaip must terminate — may be omitted, since it is implied by the fornixsa p) P x.

6.4.2 Defining Complex Parsers

One can now define complex parsers in terms of the basic ones. The following are a parser
satthat accepts an item if it satisfies a given predicate and otherwise fails as well as a parser
that accepts numbers between zero and nine, which we will trelg#ésin the sequel.

constdefs
sat : (nat= bool)=natT
sat p = do {xitem if p x then ret x else fa}l
digitp =natT

digitp = sat(Ax. x < 10)

A useful compound parser is one that repeatedly applies a given garseltecting the
results ofp until p fails. Sometimes it is useful to require that at least one rup bés to
yield a result, leading to the definition of the combinator@nyandmanyl Unfortunately,
manyhas to be axiomatised rather than defined, because its definition would not result in a
total function (cf. Rem6.5in the next section for an exposition).

consts

6.5 A Specification of Russian Multiplication 90

many:: aT= ‘alistT

manyl:‘aT= ‘alistT

axioms

many-unfoldmany p= ((do {x < p; xs«< many pret (x#xs)}) || ret[])
defs

manyl-def manyl p= (do {x < p; xs< many p ret (x#xs)})

The manycombinator critically depends on tladt operation, as it tries to rup as many
times as possible, but as soorgails, it will fall back on its alternative, which is to return an
empty list. The axionmany-unfoldcan be used to formulate a rule fmanythat resembles
its operational semantics, i. e. one can prove

lemmamany-step[- ((do {x < p; xs<— many pret (x#xs)}))P Vp
(ret [])P Ap [# x—p|(Ret Fals¢ | =+ (many pP

What one actually would like to have is some kind of introduction rulenfiany i. e. one
in which manyoccurs only in the conclusion. ldeally, this would then make proofs about
manymuch like proofs involving while loops in the state monad, where an assertion about a
loop can be reduced to an assertion involving only the loop body. However, as yet we do not
see what such a rule might look like, respectively whether it can be formulated in the calculus
at all.

As an example specification within the monad presented here we define a parser that ex-
tendsdigitp to obtain a parser for natural numbers, i.e. a parser that reads as many digits
as possible and turns them into the corresponding number. For instance, given the input
[1,2,3,42] it is supposed to parse the digits up to and including 3 and yield 123 as a result.
The remaining input is then expected to[d€]. This parser can easily be defined with the
help ofmany1

constdefs
natp::natT
natp= do {ns— manyl digitpret (foldl (Arn. 10xr + n) 0 ng}

One can now go on prove thetal correctness of this parser for concrete inputs. This
can be done rather conveniently, due to the fact that we can cover both partial correctness
and termination by expressing the assertion in terms of the diamond operator. The following
simple example can now be proved in a straightforward manner (cf. Sect®afor the
complete proof).

theorem natp-corr. - (do {uu—setinput[1]; natp})(An. Ret(n = 1) Ap Eot)

6.5 A Specification of Russian Multiplication

This final part of the overview of how the calculus of monadic dynamic logic has been im-
plemented in Isabelle describes the specification of a reference monad with while loops. The
specification only allows for partial correctness proofs since we only provide axioms for
the box operator. The extensions required to be able to perform total correctness proofs are
mostly straightforward, with merely the rule for total correctness of while loops being an

6.5 A Specification of Russian Multiplication 91

exception. To specify the latter one has to introduce a termination measure along the lines of
the rule found in Sectiod.4.2

consts

newRef ::'a=‘arefT

readRef ::’aref= aT

writeRef :: ‘aref = ‘a= unit T ((-:=-) [100, 10] 10

monWhile :: bool D=-unit T = unit T WHILE (4-) /DO (4-) /END)

These are the basic operations of the monad, wheref is the type of references con-
taining values of typéa. The syntax annotations for the while-loop operatmnWhilelet
one writeWHILE b DO p ENDinstead ofmonWhile b p A further syntactical sugaring is
provided by the termxr which is short for (readRef ¥, i. e. the formula representing the
value of reference; here we have chosen to stick to the convention of using the asterisk
notationxr instead of introducing an operatiGteadRef r

Remark6.5. The while-loop operator is in fact not a truly basic operation of the monad. One
would certainly prefer to define it recursively in the natural way:

monWhileb p = do{a<Db;if athen do{p;monWhile b p else ret «}

but this is impossible in HOL since the above equation is not a real definition: it mentions
monWhileon both sides. What one actually wants to state isrti@i\Whileis theleastfunc-

tion satisfying this equation (cf3[)] for a discussion of least fixed points). To make such

a statement possible one would either have to add a substantial amount of infrastructure to
HOL to enable it to cope with cpos and function definitions thereupon, or base the calculus of
dynamic logic on HOLCF21], the framework of computable functions on top of HOL. For-
tunately, it is not so important to be able to defimenWhile because we are only interested

in its logical characterisation, which can be given in HOL, too.

axioms
dsef-read dsef(readRef)
read-write F [#r :=X](Auu. xr =p Ret ¥
read-write-other-gen 1} (do {u—readRefrret (fu)}) —p
[#s:=y](Auu. Ret(r#s) —p 1} (do {u—readRefrret (fu)}))
while-par F P Ap b —p [#p](Au. P) = F P —p [# WHILE b DO p END(AX. P Ap —p b)

Rulewhile-paris really just a translation of the standard while rule for partial correctness
into dynamic logic, such that the formukacan be thought of as some kind of loop invariant.
A peculiarity of this specification is axiomead-write-other-genwhich constitutes a gen-
eralisation of axionread-write-otherof Section4.3. It expresses the fact that any stateless
assertion that holds for the value of a refereneenotice that this means that the asserting
formula itself isnot stateless, as it dependsamn- continues to hold after a value is assigned
to a different reference. It is in fact not necessary to employ do-terms to specify this fact
since one can prove the following equivalence and solely work withRibterms of the
left-hand side.

lemmat- xr =p Ret bAp Ret(f b) «——p 1 (do {a—readRefrret (fana=Db)})

Remark6.6. We have opted to work with do-terms for the following reason. The invariant
P present in the rule for while loops virtually always involves some non-trivial arithmetical

6.5 A Specification of Russian Multiplication 92

rumultabxyr=
do{x:=a y:=b; r:=0;

WHILE (0 < #x)

DO do {if (odd=Xx) then r := (*r + xYy) else ret x;
X=X div2;
yi=xyx2}

END;

xr }

Figure 6.2: Simplified specification of the Russian multiplication algorithm

relation between the references occurring in the program. To state this relation in terms
of monadic formulae one would have to lift several arithmetical operations like addition,
multiplication, integer division, etc. to form monadic operators. But for these, there would
be no automatic proof procedure available — and it would indeed require a quite an amount
of work to change this fact. We found it preferable to go along with the slightly less readable
do-notation and in turn be able to employ the arithmetical reasaribr that is built into

HOL. As an example, take the following two formulae which are equivalent and both valid,
but where the second one requires a lifted multiplicatipand where to prove the second
formula one would initially have to decode it into the first formula manually.

F 1+ do {a«readRef rb«—readRef sret(b=0—a-b=0)}
F xs=p Ret0 —p *I -p *S=p Ret0

It is now possible to verify the partial correctness of several imperative programs. The
specification in Figuré.2 determines a program performing the so-cafRdssian multipli-
cationthat carries out the multiplication of two natural numbers loosely resembling the way
how (unoptimised) multiplication is performed in hardware. The specification as well as the
following proof outline is presented in a stylised form as it is done in Chaptere refer
to SectionC.7 for the concrete Isabelle definition which lacks the notational conventions ap-
plied to dsef terms here. The functiommult expects referencesy andr and two values
andb. It will set the reference to the value ofa- b, making auxiliary use ot andy.

6.5.1 Proof Sketch

The partial correctness specification for the Russian multiplication algorithm is straightfor-
ward: assuming there are three distinct variaklgsandr, execution ofumultwill yield the
valuea-b.

FRet(X#YAY#TrAX#r) —p [#rumultabxy f(Ax. Ret(x=a-b))

The major proof steps as conducted in Isabelle are documented in SEcTidhso we
only convey the basic ideas here. The first part of the proof is to make one’s way up to the
while loop, i.e. one has to unfold the definition fmult and employ the ruleeead-write

6.5 A Specification of Russian Multiplication 93

andread-write-otherandpdl-k3B These cannot be applied directly however; several appli-
cations of structuring rules have to be interspersed that manipulate the unification variable
representing the desired ‘postcondition’ so as to obtain the right form. To make this idea
clearer, take the following as an example. Imagine one has arrived at the proof goal

A—p [#x:=a™B (6.1)
with 2B being the unification variable that must be instantiated, or the ‘postconditioat
has to be found. Given the rules

A—p #x:=a]C and A—p [#x:=aD (6.2)
one has to invent, i. e. prove, a structuring rule like

A—p [#x:=a|C

A—p [#x:=4a]D

A—p [#X = a] (C/\D D)
so that an application of this rule t®.Q) unifies B with C Ap D and one can prove the
resulting two new goals by the given facts 6f%). Of course oneanprove 6.1) with each
of the two given facts, but this would make the instantiation®t& weak a formula to be
useful in the sequel in many cases.

The heart of the invariant of the while loop is the relation between the referengesd
r. We state explicitly

INV =get #X-xy+s+r =a-bApRet(XAYAYATAXET)

i. e. all references remain distinct and the value<iobhdded to the product ofx andxy is
equal to the desired reswdt b. Sincexx = 0 will hold after termination of the while loop,
one will be able to infer thatr = a- b holds, so that the final read operationrofef. Fig. 6.2)
makesrumultyield the specified result.

Having applied the while rulevhile-par in the proof, it remains to be shown that the
loop invariant can be re-established after a single execution of the loop body. The main
arithmetical facts exploited within the loop body relate to integer division by two. One has

(ndiv2+ndiv2)=n if nis even
(ndiv2+ndiv2)+1=n if nis odd

so the following assertion can be shown
INV —p [#if (0dd*X) then r := (xr + xY) else ret] ((«x div2+#x div2) - xy+ «r = a-b)

The remaining two assignmentsx@ndy inside the loop body then transform the formula
in the scope of the box back into the loop invariant. The stateless formula ensuring the
distinctness of all three references prevails in the whole body by virtpdlef3B

To obtain atotal correctness verificationf this algorithm in an extended specification of
the reference monad, one essentially needs to find a termination measure living in a type
equipped with a well-founded relation. This measure then has to decrease strictly (with
respect to the well-founded relation) in each run of the loop body. The obvious candidate for
such a measure ix, which will unconditionally be decreased in each run, since the assertion
provided by the loop exit conditiof® < *X) ensures thatx is strictly greater thaax div 2.

8we speak of a postcondition here, since the structure of the formula is precisely that which may be used to
interpret Hoare assertions in dynamic logic

6.5 A Specification of Russian Multiplication 94

6.5.2 Similarity to Hoare Logic Proofs

Proofs in the reference monad are basically just Hoare logic proofs retranslated into the syn-
tax of dynamic logic. A reference monad containing a while loop as its sole algorithmically
expressive construct is just the monadic model of a simple while-language. It is to such a
language that Hoare logics have been applied successfully first, and they can indeed be re-
garded as a natural way of doing verification in such a language. Recalling that a Hoare triple
{A} x— p{B} can be encoded by the formula—:p [# x< p| (B X), the sequencing rule of
an appropriate Hoare calculus

{A} x—p{B}

{B}y—a{C}

{A} x—p;y—0q{C}

is basically just the weakening ru(evkO) of Lemma4.3 which has been implemented as
rule pdl-wkBin Isabelle. This is to say that proofs about programs in the monad presented
here proceed stepwise —i. e. by handling each atomic expression separately — by applications
of the following rule. This rule combines the effects of the weakening and sequencing rules.

A —p [#Xx—p|](BX)
VX. FBXx—p [#y—qX (CYy)
A—p #x—py—qx(Cy)

(pdI-plugB-lifted)

In a backward proof this rule introduces two goals with an initially uninstantiated formula
variableB. To look for an optimal initialisation of this variable with respect to the first pre-
miss is the same as trying to find tegongest postconditioaf the corresponding Hoare as-
sertion{A} x— p{?}, i.e. an instantiatiof of B such that for every other formu@ making
A —p [#Xx+— p](Q X) true, one ha¥'x. P x —p Q x The notion of strongest postcondi-
tion might be well worth being formalised in our calculus, but in the example verification of
the algorithm for Russian multiplication we have only established those ‘postconditions’ that
suffice for the remaining proof to go through.

7 Conclusion and Outlook

In this thesis we have described a program logic for programs formulated in the do-notation
of monads. After having recalled that monads are an elegant and effective means to model
several kinds of computational effects like state, input and output, exceptions, or hondeter-
minism we have depicted the development of thignadic dynamic logic The prominent
features of the logic are that

1. Programs with certain well-behavedness properties making them deterministically side
effect free are taken as formulae of the logic

2. Modal operators allow one to make statements of the form “after execution of the
programp, the formulag will hold”

3. The modal operators are entirely interpreted within the underlying monad (presup-
posing the monad satisfies certain additional conditions); no additional structure is
required.

The calculus has been extended by further axioms, rules armdtibdyoperation to evolve

into a suitable logic for reasoning about abrupt termination in Java. In this extension the cor-
rectness of a pattern match algorithm has been verified. Back in the basic calculus we have
then specified and proved correct an implementation of a breadth-first search algorithm in the
gueue monad, which represents a rather complex example on how to apply the general calcu-
lus to realistic programs. Finally, the calculus has been implemented on top of higher-order
logic in the proof assistant Isabelle. In this formalisation further monads like the reference
monad and a monad for parser combinators have been specified. To help automatise simple
proof obligations, Isabelle’s simplifier has been extended to become able to prove tautologies
of dynamic logic automatically.

The implementation in Isabelle made it obvious that the formulation of the calculus in
Hilbert-style, i. e. with several axioms and only the two proof rules necessitation and modus
ponens, makes proofs of rather simple theorems quite expensive in terms of the required
proof steps. The extension of the simplifier to solve tautologies automatically is already a
great help, but of course tautologies do not constitute the most interesting part of the valid
formulae of dynamic logic. It has been pointed out that the major problem why we cannot
provide a natural deduction system for the calculus is the lack of an appropriate rule for
implication introduction. This also obviates the employment of Isabelle’s classical reasoner;
it is thus an interesting question whether a sequent or tableaux calculus can be found for the
logic that allows for more automation than has been achieved in this thesis.

It has turned out that proofs in monads where a Hoare calculus for total correctness can
be given — most notably this applies to the state monad — proofs as conducted in dynamic
logic actually resembled the proof style for Hoare logics. This is to say that proofs mostly
proceeded in a sequential fashion in which the modal operators were mainly indexed by the
program fragment to be verified; thus the only necessary modal expression was to state what
will hold after execution of the main program. It might therefore turn out to be useful to

7 Conclusion and Outlook 96

formulate a Hoare calculus on top of the formalisation of dynamic logic in Isabelle in which
modal formulae do not appear in the precondition or postcondition. The formulation of such
a calculus for total correctness would have the additional benefit of removing the duplicate
proof obligations that arose in dynamic logic due to the fact that in the latter termination and
correctness are expressed by two distinct formulae.

Finally, it would be nice to undermine the implementation provided in this thesis with
further foundations to make several axioms unnecessary. In particular, the formalisation of
global dynamic judgements would make it possible for several monads to actually define
the modal operators. Since this formalisation is currently being worked out in a different
diploma thesis this should not constitute a major problem. Given a definition of the modal
operators, it would also be much more rewarding to actually define concrete monads instead
of just axiomatising their characteristic properties, because then one could go on and actually
establish these properties as theorems.

Acknowledgements

First and foremost, | want to thank my family and Jenny for their love and support especially
in but of course not limited to the time during which | wrote this thesis. Thanks also to my
fellow students Martin Kihl and Tina Krauf3er for fruitful discussions and suggestions on
how to improve this thesis. Last but not least thanks go to my supervisors Lutadectand

Till Mossakowski who always offered their expertise and advice when problems arose.

Appendix A
Haskell Implementation of mbody

We present here a complete Haskell implementation ofnthedyconstruct described in
Section3.4.1 As an example application the pattern match algorithm that has been verified
in Section3.4.1and in [38] is used.

module MBodyTrans
where

import Control.Monad.Error

import Control.Monad.State

data Exception a = Excpt String

| Ret a

| DropOff
deriving (Show)

—-- Needed for class dependencies; actually only for fail
-- which is not used in our calculus.
instance Error (Exception a) where

noMsg = Excpt ""

strMsg = Excpt

Rather than defining the binding in an exception monad by ourselves, we make use of the
exception monad transform@rrorT from the Haskell libraries. The type of exceptions
consists of three alternatives; exceptions either signal failure thibgbht with a message
attached, or they carry a return value of some method, or they indicate that a method has
illegally terminated normallydrop0ff). For simplicity, continue andbreak have been
left out, but could easily be added.

For every monadn we can construct a mongéx m ¢ that behaves just liken in the
absence of an exception, but also allows exceptions to be thrown and caught.

type Ex m e a = ErrorT (Exception e) m a
Recall the instance definition 8trorT from the Haskell libraries:

instance (Monad m, Error e) => Monad (ErrorT e m) where
return a = ErrorT $ return (Right a)
m >>= k ErrorT $ do
a <- runErrorT m

Appendix A Haskell Implementation of mbody 98

case a of
Left 1 -> return (Left 1)
Right r -> runErrorT (k r)
fail msg = ErrorT $ return (Left (strMsg msg))

which precisely captures the intended behaviour of the binding in the presence of an excep-
tion, namely that the right-hand argument is only evaluated if the left one terminated nor-
mally. The functionrunErrorT simply unpacks the inner monad, i. e. drops the constructor
ErrorT.

The concrete state monad that will be used below needs a single reference ftypat
the general variable mapping can be defined as follows. A variable map consists of an ID for
the next reference and a function mapping references to their values:

type Ref = Int

type VMap a = (Int, Ref -> a)

Next comes thenbody construction that catchés:t exceptions and converts them into
normal return values. All other exceptions are propagated unchanged. This implementation
is polymorphic in the exception type of the result and thus allows for switching between
monads. Whether the input computation should be polymorphic in its return type or whether
x should be enforced is a matter of tasieet emulates the actual Javaturn statements —
whereagxreturn is the usual monadieet function.

mret :: Monad m=> e -> Ex m e a
mret x = throwError (Ret x)

mbody :: Monad m=> Exme () -> Exm el e
mbody p = ErrorT $ do
a <- runErrorT p -- binding in the "inner" monad
case a of
Right () -> return (Left DropOff)
Left e -> case e of
Ret x -> return (Right x)

Excpt s -> return (Left (Excpt s))
Drop0ff -> return (Left DropOff)

There are three state-related operations on exception state monads: reading, writing and
creation of variables. A generic while loop for the exception state monad is also easily
defined.

readVar :: Ref -> Ex (State (VMap a)) e a
readVar r = do (_, f) <- get
return (f r)

wrtVar :: Ref -> a -> Ex (State (VMap a)) e O
wrtVar r x = do (n, f) <- get
put (n, \ k-> if k == r then x else f k)

Appendix A Haskell Implementation of mbody 99

newVar :: a -> Ex (State (VMap a)) e Ref

newVar v = do (n, f) <- get
put (n+1, \ k-> if k == n then v else f k)
return n

while :: Monad m=> Ex m e Bool -> Exme () -> Exme ()
while b p =do v <= b
if v then do p; while b p
else return ()

The pattern match algorithm, as described3@ [L1]. For testing purposes, here’s how to
evaluate pmatch with an initial state with all references defaulting to O:

evalState (runErrorT (pmatch basel patl)) (0, const 0)
which will evaluate (correctly) tBight 9

pmatch :: String -> String -> Ex (State (VMap Int)) e Int
pmatch base pat = mbody $ do
r <- newVar O
s <- newVar O
while (return True)
(do u <- readVar r
v <- readVar s
if u == length pat
then mret v
else if v + u == length base
then throwError (Excpt "Pattern not found")
else if base!!(v+u) == pat!'lu
then wrtVar r (ut+l)
else do wrtVar s (v+1); wrtVar r 0)

—-- Some sample patterns
basel :: String
basel = "puff the magic dragon"

patl :: String
patl "magic"

pat2 :: String
pat2 = "mary"

Appendix B
Table of Rules of Isabelle/HOL

Since the main purpose of the implementation in Isabelle was to set up a new logic, only
few deep theorems of Isabelle/HOL itself, on which the logic is based, have been made use
of. Further, many rules are applied implicitly when employing the simplifier or the classical
reasoner. The following is a list of the rules that appear verbatim in the implementation.

alll (AX.PX) = Vx.Px

argcong x=y= fx=fy

cong [f=gx=y]= fx=0y
conjE [PAQ; [P, Q)= R]|=—=R
conjl [P; Q] = PAQ

conjunctl [PAQ]=P

exE [IX.PX AXPXx= Q)= Q
FalseE False= P

iffD1 [Q=P; Q=P

iffD2 [P=Q Q=P

iffl [P=Q Q=P]—=P=Q
impl P=Q=P—Q

mp [P—QPl=0Q

notE [-P; Pl =R

notl (P = False) = —P

refl t=t

spec VX.PXx= Py

subst [s=t;Pg =Pt

Table B.1: Derived rules of inference for HOL

Appendix C
Isabelle Theories

The following sections present the concrete implementation of the calculus of dynamic logic
in Isabelle. The typesetting has been automatically taken care of hgsheol mechanism

of the Isabelle distribution, which directly extracts this information from the given theory
files. The proofs of some rather technical statements which are only used as auxiliary lemmas
in other proofs have been omitted. This chapter is intended for reference usage and not so
much for being perused sequentially. Refer to Chapter a conceptual description of the
implementation.

C.1 Basic Monad Definitions and Laws.

theory Monads= Main:

For the lack of constructor classes in Isabelle, we initially use funttas a parameter
standing for the monad in question.

typedecl’a T

arities T :: (typetype
Monadic operations, decorated with Haskell-style syntax.

consts
bind::'aT=(a="DbT)="bT (infixl >=20)
ret :'a="aT

constdefs
seq::aT="bT="DbT (infixl > 20)

p>q=(p>=(Ax0Q))

The usual monad laws for bind and ret (not the Kleisli triple ones) including injectivity of
ret for convenience.

axioms

bind-assodsimg: (p>>= (Ax. fx>=g)) = (p>=f >=0)
ret-lunit [simp: (retx>>="f) =fx

ret-runit [simg: (p>>=ret) =p

ret-inject retx=retz— x=12

lemmaseqg-asso¢simg: (p=> (q>r))=(p>q>r)
by (simp add seq-dej

This sets up a Haskell-stylelo {x—p; g}’ syntax with multiple bindings inside ondo
term.

C.2 Basic Notions of Monadic Programs 102

nonterminals
monseq

syntax (xsymbol$

-monseq:: monseg= a T ((do{(-)}) [5] 100
-mongen:: [pttrn, 'a T, monse@= monseq ((-—(-);/ -) [10, 6, 5] 5)
-monexp:: ['a T, monsef= monseq ((-;/-) [6,5]5)
-monexpQ: ['a T] = monseq ((-) 5)

translations

— input macros; replace do-notation bg >=/op >
-monse¢-mongenxp§ — p>>= (%xX. (-monseq §)
-monse¢-monexpp§ — p>> (-monseq §
-monse¢monexp0§ —q

— Retranslation of into the do-notation

-monse¢-mongen xp§ ~ p>>= (%x. Q)
-monse¢monexppy —p>q

— Normalization macros ‘flattening’ do-terms
-monse¢-mongen xp §j — -monseq-mongen X g-monseq §)
-monseg¢-monexp p§| ~ -monseq-monexp [K-monseq §)

Actually, this rule does not contract, but rather expand monadic sequences, but for histori-
cal reasons. ..

lemmamon-ctr (do{x « (do{y — p; qy}); fx}) = (do{y < p; x—qV; fx})
by(rule bind-assosymmetri¢)

end

C.2 Basic Notions of Monadic Programs

theory MonProp= Monads

C.2.1 Discardability and Copyability

Properties of monadic programs which are needed for the further development, e.g. for the
definition of a subtypéa D of deterministically side-effect freel¢ef) programs.

constdefs
— Discardable programs
dis:: 'a T = bool
dis(p) = (do {x«p; ret()}) =ret ()
— Copyable programs
cp :: 'aT = bool
cp(p) = (do {x—p; y—p; ret(xy)}) = (do {x<p; ret(x,x)})
— dsefprograms arep anddis and commute with all such programs
dsef:: 'a T = bool
dsef(p) = cp(p) A dis(p) A (Vqg::bool T. cp(q) A dis(q) —
cp(do {x—p; y«—q; ret(xy)}))

C.2 Basic Notions of Monadic Programs 103

lemmadsef-cpdsef p—=cp p
apply(unfold dsef-def
by blast

lemma dsef-dis dsef p—>dis p
apply(unfold dsef-def

by blast

This is Lemma 4.5 of34] that allows us to actually discard discardable programs in front
of arbitrary programs.

lemmadis-left dis(p) = do {p; 9} =q
proof —
assumed: dis(p)
havedo {p; q} = do{p; ret (); q}
by (simp add seq-dej
also fromd have... =do{ret(); q}
by (simp add dis-def seg-def detet-lunit)
also have... = q by (simp add seq-def
finally show ?thesis.

ged
Essentially the same alés-left but expressed with binding.

lemmadis-left2 dis p—=-do {x—p; g} =q
proof —
assumea: dis p
havedo {x—p; g} = do{p; q} by (simp only seq-def
also fromahave... = q by (rule dis-leff
finally show ?thesis.

ged

This is Lemma 4.22 of34] which allows us to insert or remove copiesad programs
whose result values may be substituted for each other in the following program sequence

lemmacp-arb cp p=> do {x—p; y«p; r x y} = do {x«—p; r x x}
proof (unfold cp-dej
assumec: do {x—p; y—p; ret (x,y)} = do {x—p; ret (x, x) }
havedo {x—p; y«p; r x y} = do {x—p; y«—p; z—ret(x,y); r (fst2) (snd 3}
by (simp
also have... = do {z—do {x—p; y—p; ret(x,y) }; r (fst 2 (snd 3}
by (simp add mon-ctr)

also fromchave... = do {z—do {x—p; ret(x,x) }; r (fst2 (snd 3}
by simp

also have... = do {x—p; z—ret (x,x); r (fst2 (snd 2}
by (simp add mon-ctr)

also have... = do {x«p; r x x}
by simp

finally show ?thesis.

ged

This is Lemma 4.23 of34], asserting a weak composability of copyable programs. It is
generally not the case that sequences of copyable programs constitute a copyable program.

lemmaweak-cp-seqcp p=> cp (do {x—p; ret (f x)})
proof —

C.2 Basic Notions of Monadic Programs 104

assumec: cp p

let g = do {x<p; ret (fx)}

havedo {u—?q, v—2q; ret(u,v)} = do {x«p; u—ret (f x); y—p; vret (fy); ret(u,v)}
by (simp add mon-ctr)

also have... = do {x«p; y—p; ret (fx, fy)}

by simp

also fromc have... = do{xp;ret (fx, fx)}
by (simp add cp-arb)

also have... = do {x«p; u—ret (f x); ret(u,u)}
by simp

also have... = do {u—?q; ret(u,u) }

by (simp add mon-ct
finally show ?thesisby (simp add cp-def)
ged

One can reduce the copyability of a program of a certain form to a simpler form.

lemma cp-seq-retcp (do {x—p; y<q; ret(x,y) }) = cp (do {x—p; y«q; ret (f x y)})
proof —
assumecp (do {x—p; y«q; ret(x,y)})
hencec: cp (do {u—do {x<—p; y—q; ret(x,y)}; ret (f (fstu) (snd U)})
by (simp add weak-cp-seq
havedo {u«—do {x—p; y«q; ret(x,y)}; ret (f (fstu) (snd y)}
= do {x—p; y—q; ret (fx y)}
by (simp add mon-ct
with ¢ show?thesishy simp
ged

We also have a weak notion of stability under sequencingsef programs.

lemmaweak-dis-seqdis p==- dis (do {x«p; ret (fx)})
proof —
assumed: dis p
havedo {z—do {x—p; ret (fx)}; ret ()} = do {x—p; z—ret (f x); ret ()}
by (simp only mon-ctr)
also have... = do {x<p; ret()}
by simp
also fromd have... = ret () by (simp add dis-def)
finally show ?thesisby (simp add dis-def)
ged

The following lemmasommute-X-Yare proofs of the Propositions 4.24 &4] whereX
is the respective premiss aivds the conclusion.

lemmacommute-1-2[cp g cp p; dis g dis P = cp (do {x—p; y<—q; ret(x,y)})
= do {x<p; y—q; ret(x,y)} = do {y—q; x—p; ret(x,y)}
proof —
assumea: cp g cp p dis g dis p
assumec: cp (do {x—p; y«—q; ret(x,y)})
let ?s= do {x—p; y—q; ret(x,y)}
have?s= do {z—7?s ret (fstz snd 2} by simp
also fromchave... = do {w«?s z—?s ret (fst z snd W} by (simp add cp-arb)
also fromahave... = do {v«—q; x—p; ret(x,v)} by (simp add mon-ctr dis-left2
finally show ?thesis.
ged

C.2 Basic Notions of Monadic Programs 105

lemmacommute-2-3[cp g cp p; dis g dis o] =
do {x—p; y—q; ret(x,y) } = do {y«q; x—p; ret(x,y)} =
Vr. do {x—p; y—q; r x y} = do {y«q; x—p; r X y}
proof
fixr
assumea: cp g cp p dis q dis p
assumeb: do {x<—p; y«—q; ret(x,y) } = do {y«—q; x—p; ret(x,y)}
havedo {x—p; y«—0; r x y} = do {x—p; y«—q; z—ret(x,y); r (fst2 (snd 3}
by simp
also have... = do {z—do {x—p; y«q; ret(x,y)}; r (fst 2 (snd 2}
by (simp only mon-ctr)
also fromb have... = do {z—do {y<—q; x—p; ret(x,y)}; r (fst2 (snd 2}
by simp
also have... = do {y—q; x<p; r X y} by (simp add mon-ctr
finally show do {x«p; y«<—q; r x y} = do {y«0q; x<p; r Xy} .
ged

In this case, type annotations are necessary, since we cannot quantify over types of pro-
grams. The type for given here is precisely what is needed for the proof to go through.

lemmacommute-3-1[cp g cp p, dis g dis o] =
Vri'a= b= (("ax’b)x(‘ax’b)) T.
do{x<p; y—q; rxy} = do{y—q; x—p; rxy} =
cp (do {x—p; y—q; ret(x,y)::("a* 'b) T})
proof —
let ?s= do {x—p; y«q; ret(x,y)}
assumea: cpgcp pdisqdisp
assumec: Vr::'a= b= ((‘ax'b)x(‘ax’b)) T.
do {x—p; y—q; r xy} = do{y—q; x—p; rxy}
havedo {w—?s z—?s ret (w,z)} = do {u—p; ve0q; x—p; y«0; ret((u,v),(x,y))}
by (simp add mon-ctr)
also from c have... = do {u«p; x<—p; v«—q; y<q; ret((u,v),(x,y))} by simp
also fromahave... = do {u—p; v«—q; ret((u,v),(u,v))} by (simp only cp-arb)
also have... = do {w«<?s ret(w,w)} by (simp addmon-ctr
finally show ?thesisby (simp add cp-def)
ged

lemmacommute-1-3[cp g cp p dis g dis o] =
cp (do {x—p; y«q; ret(xy)}) =
Vr. do {x—p; y—q; r xy} = do {y—a; x—p; r X y}
— More or less just transitivity of implication
apply(rule commute-2-8
apply(simp-all)
apply(rule commute-1-p
apply(simp-all)
done

This weird axiom is needed to obtain the general commutativity of a discardable and copy-
able program from its commuting with dbolvalued programs.

axioms

C.2 Basic Notions of Monadic Programs 106

commute-bool-arb[dis g cp g Vgl:bool T. cp(ql) A dis(ql) —
cp(do {x—p; y—q1; ret(xy)})] =
(Va. cp(a) A dis(q) — cp(do {x—p; y«—q; ret(x,y)}))
In order to introduce the subtype déef programs, we must prove it is not empty.

theorem dsef-ret[simp: dsef (ret x)
proof (unfold dsef-def
havecp (ret x) by (simp add cp-def)
moreover havedis (ret x) by (simp add dis-def)
moreover have(Vg. cp qA dis g— cp (do {x—ret x; y—q; ret (x, y)}))
by (simp add weak-cp-sejp
ultimately show cp (ret x) A dis (ret x) A
(Vq. cp gA dis g— cp (do {x<ret x; y—q; ret (x,¥)}))
by blast
ged

C.2.2 Introducing the Subtype of dsef Programs

Introducing the subtypé@ D of 'a T comprising thedsef programs; since Isabelle lacks true
subtyping, it is simply declared as a new type with coercion functiReys-Dsef.: aD = ‘a
T andAbs-Dsef:: 'a T = ‘a D whereAbs-Dsef ps of course only sensibly defineddbef p
holds.
typedef (Dsef) (‘a) D = {p::'a T. dsef g

apply(rule exl[of - ret ¥)

apply(blast intro dsef-re}

done

Minimizing the clutter caused b&bs-DsefandRep-Dsef

syntax
-absdsef s’aT="'aD (f-[200 199
-repdsef saD="aT ({-]200 199

translations
tp = Abs-Dsefp
Ip = Rep-Dsefp

All representatives of terms of typa D are dsef and thus in particular discardable and
copyable.

lemmadsef-Rep-Dsefsimg: dsef({ a)
proof (induct a rule Abs-Dsef-indugt
fix a
assumea : Dsef
thus dsef({} (1 a))
by (simp add Abs-Dsef-inverse Dsef-def
ged

lemmadis-Rep-Dsefdis (|} a)
apply(insert dsef-Rep-Dsédf &)
apply(unfold dsef-def

apply(blast)
done

lemmacp-Rep-Dsefcp (| a)

C.2 Basic Notions of Monadic Programs 107

apply(insert dsef-Rep-Dsédf a)
apply(unfold dsef-def
apply(blast)

done

Convention: We will denote functions ifD that are simply abstracted versions of appro-
priate functions inT by the same name with the first letter capitalised.

constdefs
Ret:: 'a= aD
Ret x= 1 (ret x)

lemmaRet-ret || (RetX = ret x

proof —
havel (RetX = | (1} (retx)) by (simp only Ret-dej
also have... = ret xby (simp add Dsef-def Abs-Dsef-inverse
finally show ?thesis.

ged

Lifting operations will allow us to introduce monadic connectivesv, etc. by simply
lifting the HOL ones. Theorerdsef-retwill assert these to beésef (see below).

constdefs

iftM :: [a="b,aT]="bT

liftM f p = do {x < p; ret (fx)}

iftM2 :: ['a=b="c,aT,bT]="T

iftM2fpg=do{x«— p;y<q;ret(fxy)}

liftM3 :: [[a="b="c=d aT,bT, cT =dT
iftM3fpgr=do{x—p;y«qz«r;ret(fxy2}

— The most general form of lifting; the above may be expressed by it
ap:f[(a="b)T,aT=DbT (infixl $$100)

apmp=do{f —mx—p;ret(fx)}

lemmaliftM-ap: liftM f x = (ret f $$x)
by (simp add ap-def liftM-def)

lemmaliftM2-ap: liftM2 f x y = (ret f $$x $$y)
by (simp add mon-ctr ap-def liftM2-def

lemmaliftM3-ap: liftM3 fxy z=ret f $$x $$y $$z
by(simp add mon-ctr ap-def liftM3-def

theorem dsef-ret-apdsef p—- dsef (ret f $$p)
apply(simp add ap-def dsef-def
apply(clarify)
apply(rule conijl)
apply(erule weak-cp-seq
apply(rule conijl)
apply(erule weak-dis-seq
apply(clarify)
apply(drule-tac x= qin speg
apply(simp add mon-ctr weak-cp-seq
apply(simp(no-asm-simponly: cp-seq-re}

C.2 Basic Notions of Monadic Programs 108

done

dsefprograms may be swapped.

lemma commute-dsef[dsef p dsef § —-

Vr. do {x—p; y—q; r x y} = do {y—q; x<p; r x y}
apply(rule commute-1-8
apply(simp-all add dsef-dej
apply(clarify)
apply(drule commute-bool-anb
apply(assumptioj-
apply(drule-tac x= qin speg

by(blast)

lemma commute-bool[dsef p cp (g::bool T); dis) =
Vr. do {x—p; y—0q; r xy} = do {y<—q; x—p; r x y}
by (rule commute-1-3simp-all add dsef-dej

A formalisation of the essential fact thasef programs are actually stable under sequenc-
ing; this has only been proposed BY], but has not been shown.

theorem dsef-seq[dsef p Vx. dsef(q x)] = dsef(do {x—p; q x})
proof —
assumeal: dsefp
assumea2: vVx. dsef(q x)
from alhavedisp dis pby (rule dsef-di$
from alhavecpp cp pby (rule dsef-cp
from a2 havedisqg Vx. dis (g x) by (unfold dsef-defblast)
from a2 havecpg Vx. cp (g x) by (unfold dsef-defblast)
let ?s= do {x<—p; q x}
— The proof proceeds in three parts, each one asserting some property stated in the defutsidn of
terms. Firstlydsefterms are discardable.
havedis ?s
proof —
havedo {x—?s ret ()} = do {x<p; q x; ret ()} by (simp add seq-dej
also from disp disq
have... = ret () by (simp add dis-left dis-left2
finally show ?thesisby (simp add dis-def)
ged
— dsefterms are also copyable. We unfold the definition and prove the required equation directly.
moreover havecp ?s
proof —
havedo {x—?s y—7?s ret (x,y)} =
do {Uu—p; X—q U ve—p; y—q V; ret (x,y) }
by simp
also have... = do {u«p; v«—p; x—q U; y«q V; ret (x,y) }
proof —
— This swapping step is a bit more difficult; we have to assist the simplifier by the following
general statement:
haveVu. do {x—q u; v—p; y«—q v; ret (x,y) } = do {v—p; x—q u; y—q V; ret (xX,y) }
(isVu. ?Au="?B u)
proof
fix u
from a2 havedsef(q u) by (rule speg
from this al

C.2 Basic Notions of Monadic Programs 109

haveVr::'b="a=("bx'b) T. do {x<q u; ve—p; r X v} = do {v«—p; x—q U; r X v}
by (rule commute-dsef
thus ?A u= ?B uby (rule speg¢
ged
thus ?thesisby simp
ged
also from cpp cpghave... = do {u—p; x—q u; ret (x,x) }
by (simp add cp-arb)
finally show ?thesisby (simp add cp-def)
ged
— The final step is thgh >>= g commutes with bool-valued programs:
moreover haveVq::bool T. cp qA dis g— cp (do {x—?s y«<q; ret(x,y)})
proof
— The proof is carried out by a so called raw proof block, where the succeeding application of
blast spares us having to do the trivial proof steps.
fix ga
{ assumecpqa cp (qa:bool T)
assumedisga dis qa
havecp (do {x—do{u—p; q u}; y—aa; ret (x, y)})
proof —
let 2w = do {x«—do{u«p; q u}; y—qa; ret (x, y)}
havedo {x—?w; y—?w; ret (x,y)} =
do {u—p; x—q U, y—qa, u"—p; x"—q u’; y'—qa; ret((xy),(x’y"))}
by (simp del bind-assoc addmon-ctr)
also from al cpga disqa
have... = do {u—p; x<q U; U«—p; y«~—qa x'—q U; y'—qa; ret((x,y),(x’,y’))}
by (simp add commute-bool
also fromal a2
have... = do {u«p; U—p; x—q U; y—qa; x"—q U; y'—qa; ret((x,y),(x’y"))}
proof —
— This fact is needed to help the simplifier solve the goal
haveVu. do {x<q u; u’—p; y«—qa; x'—q u’; y'—qa; ret((x,y),(x’,y")} =
do {u’—p; x—q U, y—qa; X'—q u’; y'—qa; ret((xy),(x"y")}
(isVu. ?2Au="?B)
proof
fix u
from a2 havedsef(q u) by (rule speg
from this alhaveVr. do {x«q u; u«p; r x u’} = do {u’—p; x—q u; r x u’}
by (rule commute-dsef
thus ?A u= ?B uby (rule speg
ged
thus ?thesisby simp
ged
also from a2 cpga disqa
have... = do {u«p; U—p; x—q u; x'—q U; y—qa y'—qa; ret((x,y),(x’y"))}
by (simp add commute-bogl
also from cpp cpg cpgdnave. .. = do {u—p; x<—q u; y«—aga; ret((x,y),(x,y))}
by (simp add cp-arb)
finally show ?thesisby (simp del bind-assoc addmon-ctr cp-def
ged

thus cp (ga::bool T) A dis qa— cp (do {x—do {u—p; q u}; y—qa; ret (x, y)})
by blast

C.3 Introducing Propositional Connectives 110

ged
ultimately show dsef ?<by (simp adddsef-dej
ged

Given thatdsef programs are stable under sequencing, this weak form, which comes in
handy sometimes, can easily be proved.

lemmaweak-dsef-seqisef p—> dsef(do {x—p; ret (fx)})
by(simp add dsef-se{

With the help of theorerdsef-sedhe following proof is immediate.

lemmadsef-liftM2 [dsef p dsef = dsef(liftM2 f p q)
proof —
assumeal: dsef pand a2 dsef q
from alhavedsef(do {x—p; y—q; ret (fxy)})
proof (rule dsef-sej
show Vx. dsef(do {y«q; ret (fxy)})
proof
fix x from a2 showdsef(do {y—q; ret (fxy)})
proof (rule dsef-sey
show Yy. dsef(ret (f x y))
proof
fix y showdsef (ret (f x y)) by (rule dsef-ref
ged
ged
ged
ged
thus dsef (liftM2 f p q) by (simp only liftM2-def)
ged

lemma Abs-Dsef-inverse-liftMZsimg: [dsef p dsef § —
I (1 (litM2 fp g)) = liftM2fp q
by (simp add Abs-Dsef-inverse Dsef-def dsef-liftM2

end
C.3 Introducing Propositional Connectives

theory MonLogic= MonProp

C.3.1 Propositional Connectives

As usual in intuitionistic logics, we introduce conjunction, disjunction and implication inde-
pendently of each other.

consts

Valid :: bool D= bool ((F-) 15

AD :: [bool D, bool D] = bool D (infixr 35)
Vb ;2 [bool D, bool D] = bool D (infixr 30)

—p :: [bool D, bool D] = bool D (infixr 25)

C.3 Introducing Propositional Connectives 111

According with the definition in34], the connectives are simply lifted from HOL, and
validity amounts to being equal to a program always returiing:

defs
Valid-def: - P = || P =do {x—({ P); ret True}
conjD-def P Ap Q = 1 (liftM2 (opA) (4 P) (I Q))
disjD-def: P vp Q = 1 (liftM2 (op V) (I P) (I Q))
impD-def. P —p Q=1 (liftM2 (op—) (} P) (U Q))

constdefs
iffD ;2 [bool D, bool D] = bool D (infixr «—p 20)
P+——pQ=(P—pQ) Ap(Q—npP)
NotD :: bool D= bool D (—p - [40] 40)
-p P=P —p Ret False

Because of discardability, the definition galid, which was simply taken over from the
definition of global validity of terms of typbool T, can be simplified.

lemma Valid-simp (- p) = (I p=ret True)
proof
assumevp: - p
show | p = ret True
proof —
from vphave |l p=do{{ p; ret True}
by (simp only Valid-def seq-def

also have... = ret Trueby (rule dis-left rule dis-Rep-Dsef
finally show ?thesis.
ged
next

assumel p = ret True
hencel} p = do {x< p; ret True} by simp
thus - p by (simp only Valid-def)

ged

lemma Valid-simpD (F P) = (P = Ret True
apply(simp add Valid-simp Ret-ret Ret-def
apply(induct-tac P rule Abs-Dsef-indugt
apply(simp add Dsef-def Abs-Dsef-inverse
apply(rule Abs-Dsef-inje¢symmetri¢)
by (simp-all add Dsef-def

There is a notion of homomorphism associated with lifted operations. The formulation
does not really make clear what is intended, but the subsequent lemmas should illuminate the
idea.

theoremlift-Ret-hom (f (liftM2 f (| (Retd) (J (RetDb)))
=Ret(fab)
proof —
haveq (liftM2 f (| (Retd) (I (Reth))
=1t (do {x—({ (Retd); y—(l} (Reth); ret (fx y)})
by (simp only liftM2-def)
also have... = 1 (do {x—({ (1} (reta)));

y—((fr (retb))); ret (fx y)})
by (simp add Ret-def

C.3 Introducing Propositional Connectives 112

also have... = 1} (do {x<ret & y—ret b; ret(fx y)})
by (simp add Dsef-def Abs-Dsef-inverse
also have... = 1} (ret (fa b)) by simp
also have... = Ret(f a b) by (simp only Ret-def
finally show ?thesis.
ged

lemma conjD-Ret-homRet(anb) = ((Ret 8 Ap (Reth)

by (simp add lift-Ret-hom conjD-def
lemmadisjD-Ret-homRet(avb) = ((Ret @ Vp (Retbh)

by (simp add lift-Ret-hom disjD-def
lemmaimpD-Ret-homRet(a—b) = ((Ret§ —p (Ret)

by (simp add lift-Ret-hom impD-def

lemmaNotD-Ret-homRet(— P) = (—p (Ret P)
by(simp add NotD-def impD-Ret-hofaymmetri¢)

If a formula depending on variables valid for allx, then we may also ‘substitute’ it by a
dsefterm.

lemmadsef-form Vx. - P x=Vb.F { (do{a—{ b; || (Pa)})
proof
fix b
assumeal: Vx. P x
hencell ({} (do{a<| (b::'aD); | (P a)})) =
I (1 (do{a<{ (b::’a D); ret True}))
by (simp add Valid-simp
also have... = do{a<J b; ret True}
proof (rule Abs-Dsef-inverge
havedsef(do {a— b; ret True})
by (simp add dsef-ret dsef-Rep-Dsef dsef-seq
thus do {a<{ b; ret True} € Dsefby (simp add Dsef-def
ged
also have... = ret Trueby (simp add dis-left2 dsef-diOF dsef-Rep-Dséf
finally show - 1} (do {a<{ (b::'a D); |} (P a@)})
by (simp add Valid-simp
ged

Every true formula may be injected intb@ol D by Retto yield a valid formula of dynamic
logic. And the converse also holds!

theorem Valid-Ret[simgd: (- RetP =P
proof
assumep: P
have|l (Ret B = do {x<{ (Ret P; ret True}
proof —
havedsef (| (Ret P) by (rule dsef-Rep-Dsef
henceds dis (| (Ret P) by (simp only dsef-dej
have | (Ret P = ret Pby (rule Ret-re}

also from p have... = ret Trueby simp
also fromdshave... = do{| (Ret P; ret True} by (rule dis-lefisymmetri¢)
finally show ?thesisby (simp only seq-dej

ged

thus - Ret Pby (simp only Valid-def)

C.3 Introducing Propositional Connectives 113

next
assumerp: - Ret P
hencell (Ret P = ret Trueby (rule iffD1[OF Valid-simp)
henceret P = ret True
by (simp add Ret-def Dsef-def Abs-Dsef-inverse
henceP = Trueby (rule ret-inject
thus P by rules
ged

A bit more tedious, but conversely Y@lid-simpit is also true that every valid formula that
is a negation equalet False

lemma Valid-not-eq-ret-False(k —p b) = ({} b = ret False
proof
assume- —p b
hencent: || (—p b) = ret Trueby (simp add Valid-simp
show | b = ret False
proof —
havedsef (do {x—{ b; ret (= x)})
by (rule weak-dsef-sequle dsef-Rep-Dsgf
hencebnnb b = (—p (—p b))
by (simp add NotD-def impD-def liftM2-def
Ret-ret Abs-Dsef-inverse Dsef-def mon-ctr Rep-Dsef-inyerse
from nthave{ (I (—p b)) = Ret Trueby (simp add Ret-def
hence(—p b) = Ret Trueby (simp only Rep-Dsef-inverge
hence(—p (—p b)) = (—p (Ret Trug) by simp
with bnnbhaveb = Ret(— True) by (simp add NotD-Ret-horfsymmetri¢)
thus ?thesisby (simp add Ret-re
ged
next
assume| b = ret False
hencef (| b) = 1 (ret False by simp
hencebf: b = Ret Falseby (simp add Rep-Dsef-inverse Ret-def
havel (—p b) = ret True
proof —
from bf have | (—p b) = || (Ret False—p Ret Falsé
by (simp add NotD-def)
also have... = |} (Ret Trug
proof —
have (Ret False—p Ret Fals¢ = Ret(False— False)
by (rule impD-Ret-horfisymmetri)
thus ?thesisby simp

ged
also have... = ret Trueby (rule Ret-re}
finally show ?thesis.
ged
thus - —p b by (simp only Valid-simp
ged

LemmasValid-simp Valid-not-eqg-ret-Falseand Valid-Retshow that, since the classical
typeboolis taken as the carrier of truth values, the whole calculus is classical.

C.3 Introducing Propositional Connectives 114

C.3.2 Setting up the Simplifier for Propositional Reasoning

Since natural deduction rules don’t get us far in the calculus of global validity judgments (in
particular, we do not have an analogon for the implication introduction rule), we algebraize
it and perform proofs by term manipulation.

All these axioms are in fact provable; it is just the shortage of time that forces us to impose
them directly.

constdefs
xorD :: [bool D, bool D] = bool D (infixr @®p 20)
xorDPQ = (PAp -0 Q) Vp (b PAp Q)

axioms
apl-and-assoc (P Ap Q) Ab R) = (P Ap (QAp R))
apl-xor-assoc ((P®p Q) ®p R) = (P ®p (Q®p R))
apl-and-comm (P Ap Q) =(QAp P)
apl-xor-comm (P @p Q) = (Q®p P)
apl-and-LC (P AD (Q AD R)) (Q AD (P AD R))
apl-xor-LC. (Pep (Q@p R)) =(Q®p (Pep R)
apl-and-True-r (P Ap Ret Trug =P
apl-and-True-! (Ret Truenp P) =P
apl-and-absorb (PAp P) =P
apl-and-absorb2 (P Ap (P Ap Q)) = (P Ap Q)
apl-and-False-l (Ret FalseAp P) = Ret False
apl-and-False-r (P Ap Ret Fals¢ = Ret False
apl-xor-False-r (P @p Ret Fals¢ =P
apl-xor-False-l (Ret Falsepp P) =P
apl-xor-contr. (P @&p P) = Ret False
apl-xor-contr2 (P @p (P®p Q)) =Q
apl-and-ldist (PAp (Q@p R)) = ((PAp Q) @p (P Ap R))
apl-and-rdist ((P®p Q) Apb R) = ((PAb R) @p (Q Ap R))
— Expressing the connectives by conjunction and exclusive or
apl-imp-xor. (P —p Q) = ((P Ap Q) ®p P &p Ret Trug
apl-or-xor. (PvpQ)=(P®p Q®p (PAp Q))
apl-not-xor. (—p P) = (P ¢p Ret True
apl-iff-xor: (P +«——p Q) = (P ®p Q ®p Ret Trug

e

pdl-tautis the collection of all these rules, so that they can be handed over to the simplifier
conveniently.

This set of rewrite rules is complete with respect to normalisation of propositional tautolo-
gies to their normal fornRet True Hence, we can prove monadic tautologies in one fell
swoop by applying the tactisimp only pdl-taut Valid-Re}.

lemmaspdl-taut= — ... all axioms above

lemmasmon-prop-reasor- Abs-Dsef-inverse dsef-liftM2
Dsef-def conjD-def disjD-def impD-def NotD-def

A proof showing in what manner the above axioms may be proved.

lemma (P Ap (—p P)) = Ret False
apply(simp add mon-prop-reasorsimp only liftM2-def)
apply(unfold Ret-def

C.3 Introducing Propositional Connectives 115

rule condof Abs-Dsef Abs-Dsefrule refl)
simp add Abs-Dsef-inverse Dsef-def

simp add mon-ctr dei bind-assog

simp add cp-arb dsef-cfOF dsef-Rep-Dséf
rule dis-left2

rule dsef-difOF dsef-Rep-Dséf

apply
apply
apply
apply
apply
apply
done

—_AA A A

And another one, following the same scheme, only that the simplifier now needs help from
the classical reasoner to finish.

lemma (P &p Q) = (Q @p P)
apply(simp add disjD-def conjD-def NotD-def impD-def liftM2-def xorD-def Retjdef
apply(simp add Abs-Dsef-inverse Dsef-def dsef-seq dsef-Rep-Dsef mon-dhimilassog
apply(simp add commute-dsébf || Q | P))
apply(simp add dsef-cp cp-arb
apply(subgoal-tacVx y. (X A=y V = XAY) = (YA =XV =Y AX),simp
by blast

C.3.3 Proof Rules

Proof rules, which can all be proved to be correct, since we have the semantics built into the
logic (i.e. we can access it within HOL). Some proofs however simply employ the above
tautology reasoner.

theorem pdl-excluded-middte- P Vp (—p P)
by (simp add pdI-taut)

theorempdl-mp [F P —p Q;F P =FQ
by(simp add Valid-simp impD-def liftM2-def Rep-Dsef-inveyse

Disjunction introduction

theorempdl-disjlL F P—=F (P Vp Q)

proof —
assume- P
hencept: || P = ret Trueby (simp only Valid-simp
havell (P Vvp Q) = ret True

proof —
havel (1 (liftM2op Vv ({ P) (J Q))) = ret True
proof —
havell (1 (do{x—{ Q; ret True})) = ret True
proof —

have (1} (do {x<{ Q; ret True})) =
do {x—{ Q; ret True}
by (simp add Abs-Dsef-inverse Dsef-def weak-dsefyseq
also have... = do {{ Q; ret True} by (simp onlyseq-dej
also have... = ret Trueby (simp add dis-Rep-Dsef dis-left
finally show ?thesis.
ged
with pt show ?thesisby (simp add liftM2-def)
ged
thus ?thesisby (simp only disjD-def)
ged

C.3 Introducing Propositional Connectives 116

thus (P vp Q) by (simp only Valid-simp
ged

Entirely analogous for this dual rule.
theorempdl-disjl2 - Q =+ (P Vp Q)

The following proof proceeds by a standard pattern: First insert the assumptions into some
specifically tailored do-term and then reduce this do-termetdruewith the simplifier.

theorempdl-disiE [FPVp Q;FP—p R +FQ—pR]|—=FR
proof —
assumeal: FPVp QFP—pRFQ—pR
note copy= dsef-cOF dsef-Rep-Dséf
note dsc = dsef-di$OF dsef-Rep-Dséf
— 1st part: blow up progran} Rto some giant term:
have || R= do {u«ret Trug v<ret Trug w«ret True r—| R; ret{(luU—v—w—r)}
by simp
also fromalhave... = do{u—({ (P Vvp Q));
v—({} (P—pR));
we—({l (Q —p R));
r—{ R ret (uU—v—w—r)}
by (simp add Valid-simp
— 2nd part: reduce this giant programré Trueexploiting properties of dsef programs
also have... =ret True
apply(simp add mon-prop-reason liftM2-def dsef-Rep-Dsef dsef-seq mon-ctbuhel-asso¢
apply(simp add commute-dsééf || Q | P])
apply(simp add commute-dsébf || R Q])
apply(simp add dsef-cpOF dsef-Rep-Dsé¢ftp-arb del bind-assog
apply(simp add dsef-disOF dsef-Rep-Dsédis-left2
done
finally show ?thesisby (simp only Valid-simp
ged

theorempdl-conjl: [F P;F Q] = FPAp Q
proof —
assumea: - PFQ
from a have | P = ret Trueby (simp add Valid-simp
moreover
from ahavel Q = ret Trueby (simp add Valid-simp
ultimately
havell (P Ap Q) = ret True
by (simp add mon-prop-reason liftM2-dgf
thus ?thesisby (simp add Valid-simp
ged

Derived rules of inference

theorem pdl-FalseE - Ret False— + R
proof —
assume- Ret False
henceFalseby (rule iffD1[OF Valid-Re})
thus - Rby (rule FalseBg
ged

C.3 Introducing Propositional Connectives

117

lemmapdl-notE [F P;- pP]=FR

proof (unfold NotD-dej
assumep: - P and np: - P —p Ret False
from np phavetr Ret Falseby (rule pdl-mp
thus - Rby (rule pdl-FalseB

ged

lemmapdl-conjE [FPAp Q; [FP;FQ=FR|=FR

proof —
assumeal - P Ap Q
assumea2 [~ P; - Q] = FR
havet P
proof (rule pdl-mp
showk P Ap Q —p P by (simp add pdI-taut)
ged
moreover
havet Q
proof (rule pdl-mp
showk P Ap Q —p Q by (simp add pdI-taut)
ged
moreover noteal a2
ultimately
showt Rby (rules)

ged
Some further typical rules.

lemmapdl-notl: [- P; - Ret Fals¢ —+ —p P
by(rule pdl-FalseB

lemma pdl-conjunctl-P Ap Q =+ P
proof —
assume- P Ap Q
thust P
proof (rule pdl-conjE
assume- P
thus ?thesis.
ged
ged

lemma pdl-conjunct2 assume9a. - P Ap Q showsH Q

proof —
from pgshowk Q
proof (rule pdl-conjB
assume- Q
thus ?thesis.
ged
ged

lemmapdl-iffl: [FP —p Q;FQ —pP] = FP+«—pQ

proof (unfold iffD-def)

C.3 Introducing Propositional Connectives

118

assumea: - P —p Qandb:FQ —p P
showl (P —D Q) D (Q —D P)
by (rule pdi-conjl)
ged

lemmapdI-iffE: [FP«—p Q;[FP—p Q+FQ—pP]=+FR =FR
apply(unfold iffD-def)

apply(erule pdl-conjB

by blast

lemmapdl-sym (- P «—p Q) = (- Q «—p P)

apply(erule pdI-iffE)
by(rule pdl-iffl)

lemma pdl-iffD1: - P «—p Q= FP —pQ
by(erule pdI-iffE)

lemmapdl-iffD2: FP«——p Q=+Q —p P
by (erule pdI-iffE)

lemma pdl-conjl-lifted:
assumes- P —p Qand+ P —p Rshows- P —p QAp R
proof —
havet (P —D Q) —D (P —D R) —D (P —p QAp R)
by (simp add pdl-taut)
thus ?thesisby (rule pdl-mgTHEN pdI-mp)
ged

lemmapdl-eg-if [P=Q] =+FP+«—pQ
by (simp only pdi-taut Valid-Re}

lemma pdl-iff-sym-P«—p Q=+ Q«—pP
by (simp only pdl-taut Valid-Re}

lemmapdl-imp-wk -P =+ Q —pP

proof —
assume- P
have- P —p Q —p P by (simp add pdI-taut)
thus ?thesisby (rule pdl-mp

ged

lemma pdl-False-imp+ Ret False—p P
by (simp add pdI-taut)

lemmapdl-imp-trans [A—pB;FB—pC]|=FA—pC
proof —
assumeal: - A—pBandaz B —p C

havet (A —p B) —p (B—p C) —p A —p C by (simp only pdl-taut Valid-Re}

from this al a2show ?thesisby (rule pdl-mgTHEN pdI-mp)
ged

C.4 Monadic Equality 119

Some applications of the enhanced simplifier, which is now capable of proving prop. tau-
tologies immediately.

lemma- A—pB—pA
by (simp only pdI-taut Valid-Ret

lemmat (PAp Q—p R) «—p (P—p Q—pR)
by (simp only pdI-taut Valid-Ret

lemmat (P—p Q) Vp (Q—p P)
by (simp only pdI-taut Valid-Re}

lemmak (P —D Q) A\D (_‘D P—p R) «——p (P Ap Q Vp —p P Ap R)
by (simp only pdI-taut Valid-Re}

end

C.4 Monadic Equality
theory MonEq= MonLogic

constdefs
MonEq :: ['a D, 'a D] = bool D (infixl =p 60)
MonEq a b= 1 (liftM2 (op=) (Y) (I b))

lemmaMonEg-Ret-hom((Ret 8 =p (Ret b)) = (Ret(a=b))
by (simp add lift-Ret-hom MonEg-def

Transitivity of monadic equality.

lemmamon-eg-trans[- a=p b;Fb=pc] =ta=pc
proof —
assumeab: - a=pbandbc Fb=pc
havet (a=p b) —p (b=pc) —p (a=p C)
apply(simp add MonEqg-def impD-def liftM2-def
apply(simp add Abs-Dsef-inverse dsef-Rep-Dsef Dsef-def dsef-seq mon-dhirtblassog
apply(simp add cp-arb dsef-cfOF dsef-Rep-Dséf
apply(simp add commute-dsgdf | c | a])
apply(simp add commute-dsébf || b | a])
apply(simp add cp-arb dsef-cfOF dsef-Rep-Dséflel: bind-assog¢
apply (simp add dsef-di$OF dsef-Rep-Dséflis-left?)
apply(subst Ret-désymmetri¢)
by simp
from this ab beshow ?thesisby (rule pdl-mgTHEN pdI-mp)
ged

NN N N N

Reflexivity of monadic equality.

lemmamon-eqg-refl Fa=p a

C.5 The Proof Calculus of Monadic Dynamic Logic 120

apply(simp add MonEg-def liftM2-def
apply(simp add cp-arb dsef-cfOF dsef-Rep-Dséf
apply(simp add dis-left2 dsef-di®OF dsef-Rep-Dséf
apply(subst Ret-désymmetri¢)
by (simp)

Auxiliary lemma, just to help the simplifier.

lemmasym-subst-seq&xy. cxy=cy x—
(fr (do {x—p; y—a; c xy})) = (t (do {x—p; y—q; cy X}))
by simp

Symmetry of monadic equality. The simplifier gets into trouble here, for it must apply
symmetry of real equality inside the scope of lambda terms. We circumvent this problem by
extracting the essential proof obligation througyim-subst-seg@nd then working by hand.

lemmamon-eq-sym (a=p b) = (b=p a)
apply(simp add MonEg-def liftM2-dej
apply(simp add commute-dsgéf || a || b))
apply(rule sym-subst-seq2
apply(clarify)
apply(rule arg-congwheref = ret])
by (rule eg-sym-conv

A~~~ o~

end

C.5 The Proof Calculus of Monadic Dynamic Logic

theory PDL = MonLogic

C.5.1 Types, Rules and Axioms

Types, rules and axioms for the box and diamond operators of PDL formulas.

consts
Box:: 'aT = (‘a= bool D) = bool D ([#-]- [0, 100 100)
Dmd:: aT = ("a= bool D) = bool D ({-)- [0, 100 100)

Syntax translations that let you write e.g x—p; y<—q|(ret (x=y)) for Box (do {x<p;
y—q; ret (x,y)}) (A(xy). ret (x=Yy)) Essentially, these translations collect all bound variables
inside the boxes and return them as a tuple. The lambda term that constitutes the second
argument of Box will then also take a tuple pattern as its sole argument.

nonterminals
bndseq bndstep

syntax (xsymbol$
-pdibox :: [bndsegbool D] =~ bool D (]
-pdidmd :: [bndseqgbool D] = bool D (
-pdibnd :: [idt, 'a T] = bndstep (--)
-pdiseq:: [bndstepbndseq= bndseq (-;/ -)
:: bndstep=- bndseq (-)
-pdlin :: [pttrn, bndsed = bndseq
-pdlout :: [pttrn, bndsef|=- bndseq

J- [0, 100 100)

#-
(-)- [0, 100 100)

C.5 The Proof Calculus of Monadic Dynamic Logic 121

translations

-pdibox(-pdiseq(-pdibnd x p r) phi

— Box(-pdiseq(-pdlbnd x g (-pdlin xr)) phi
-pdlbox(-pdibnd x g phi — Box p(Ax. phi)
-pdldmd(-pdiseq(-pdibnd x g r) phi

— Dmd (-pdiseq(-pdibnd x p (-pdlin x r)) phi
-pdldmd(-pdibnd x g phi — Dmd p(Ax. phi)
-pdlin tpl (-pdiseq(-pdibnd x r)

— -pdiseq(-pdlbnd x p (-pdlin (tpl, x) r)
-pdlin tpl (-pdlbnd x p

— -pdlout(tpl,x) (do {x—p; ret(tpl,x)})
-pdiseq(-pdibnd x p (-pdlout tpl r)

— -pdlout tpl(do {x<p; r})
Box (-pdlout tpl r) phi

— Box r (Atpl. phi)
Dmd (-pdlout tpl r) phi

— Dmd r (Atpl. phi)

The axioms of the proof calculus for propositional dynamic logic.

axioms
pdl-nec (Vx.F P x) = [#x—p|(P x)
pdl-mp: [+ (P —p Q);FP] =+ Q — Only repeated here for completeness.

pdl-kl + [#x—p](P x—p QX) —p [#x—p|(P X) —p [#Xx—p|(Q X)
pdl-k2 I+ [#x—p](P x —p Q X) —p (X—p)(P X) —p (x—pP)(Q X)
pdl-k3B + Ret P—p [# x—p|(Ret P

pdl-k3D: F (x—p)(RetBH —p Ret P

pdl-k& F (x—p)(P xVp Q X) —p ({(x—p)(P X) Vp (x—p)(Q X))
pdl-ks + ((x—p)(P X) —p [#x—p|(Q X)) —p [#X—p](P X—p QX)
pdl-seqB [#x—p; y«q X|(P X y) «—p [#x—p|][#y—q X (P xy)
pdl-seqD F (x—p; y—q X)(P X y) ——p (x—p){y—q X)(P xy)

pdi-ctrB: = [#x—p; y—q X(P y) —p [#y«do {x—p; q x}](Py)
pdl-ctrD: + (y—do{x—p; qx})(Py) —p (x<p;y—ax(Py)

pdl-retB + [#x—reta(P x) —p P a

pdl-retD: + (x—reta)(P x) «——p P a

pdi-dsefB dsef p= -} (do {a—p; || (P a)}) «—p [#a<p|(P a)
pdl-dsefD dsef p=> - 1 (do {a—p; | (P a)}) «——p (a—p)(P &)

A simpler notion of sequencing is often more practical in real programs. Essentially this
boils down to admitting just one binding within the modal operators.

axioms
pdl-seqB-simp- ([#x—p|[#y—aX(Py)) «—p ([#y—do{x—p; ax}|(Py))
pdl-seqD-simpt ((x—p)(y—qx)(Py)) «—p ((y—do {x—p;ax})(Py))
For simple monads3H] both rules can be derived from axiopul-seqB(or pdl-seqD.
Simplicity is exploited through the use of the converse rulpdifctrB.

lemmalt- [#y«—do {x—p; q X}|(Py) —p #x—p; y—aX(Py) =
F([#pl(AX. [#9XP)) «—p ([#do{x—p; qx}|P)
apply(rule pdl-iffl)

C.5 The Proof Calculus of Monadic Dynamic Logic 122

apply(rule pdl-imp-trang
apply(rule pdl-iffD2[OF pdI-seqB)
apply(rule pdl-ctrB) — dispose of the trailing ret expression
apply(rule pdl-imp-trang
apply(assumptioh — this time dispose by the conversepafi-ctrB
apply(rule pdl-iffD1]OF pdl-seqB)
done

Further axioms satisfied by logically regular monads (which we deal with here) 3&f. [
Page 601]

axioms
pdl-eqB - Ret(p =) —p [#x<p|(P X) —p [#x—0q](P %)
pdl-eqD + Ret(p = q) —p (x—p)(P X) —p (x<q)(P X)

C.5.2 Derived Rules of Inference

‘Multiple’ modus ponens, provided for convenience.

lemmas
pdl-mp-2x= pdl-mgTHEN pdl-mpand
pdl-mp-3x= pdl-mgTHEN pdl-mp THEN pdI-mp

First half of the classical relationship between diamond and box.

lemmadmd-box-rel1t ([# x—p](P x—p Ret Fals¢ —p Ret Fals¢ —p (x—p)(P X)
(isk (?b—p Ret Fals¢ —p ?d)
proof —
— Show a classically equivalent statement
havet (?d —p Ret Fals¢ —p ?b
proof —
— The ‘usual’ axiomatic proof method
havefl: - ((?d —p [# x—p](Ret Fals¢) —p ?b) —p
(?d —p Ret Fals¢ —p ?b
by (simp add pdI-taut)
havef2: F (?d —p [# x—p](Ret Fals¢) —p ?b
by (rule pdI-k5
from f1 f2 show ?thesisby (rule pdl-mp
ged
thus ?thesisby (simp add pdI-taut)
ged

...and the second half.

lemmadmd-box-rel2F (x«—p)(P X) —p [# x—p|](P x —p Ret Fals¢ —p Ret False
proof —
havel ({x—p)(Ret Fals¢ —p Ret Fals¢ —p
([# x—p](P x—p Ret Fals¢ —p (x—p)(P x) —p (x<p)(Ret Fals¢) —p
(x—p)(P X) —p [#x—p](P x —p Ret Fals¢ —p Ret False
by (simp add pdl-taut)
from this pdI-k3D pdl-kshow ?thesisby (rule pdl-mp-2)
ged

Inheriting the classical theorems from Isabelle/HOL, one also obtains the classical equiv-
alence between the diamond and box operator.

C.5 The Proof Calculus of Monadic Dynamic Logic 123

The proofs otimd-box-rellanddmd-box-rel2mplicitly employ classical arguments through
the use of the simplifier, since the algebraization of propositional logic behaves classically.

theorem dmd-box-rel - (x<p) (P X) «—p —p [# X—p|(—p P X)
apply(rule pdl-iffl)
apply(unfold NotD-def
apply(rule dmd-box-rel2
apply(rule dmd-box-rell
done

Givendmd-box-rel one easily obtains a dual one.

theorem box-dmd-rel - [# x«—p](P X) «—p —p (X—p)(—p P X)
proof —
havel- (<X<—p>(—\D P X) «——D D [# XHpK_‘D D P X)) —D
([#x<—p|(PX) «—p —p —p [#X—p|(-D D P X)) —D
([#x—p|(PX) «—p —p (x—p)(-p P X))
by (simp add pdl-taut)
moreover
havet <X<—p>(—\D P X) «~——pD D [# XHp](—\D -p P X)
by (rule dmd-box-rel
moreover
havet [# X<—p](P X) ——D 7D D [# X<—p](—\D -p P X)
by (simp add pdl-taut)
ultimately
show ?thesis
by (rule pdl-mp-2%
ged

A specialized form of the equality rulpdl-egD that only requires the arguments of a
programp to be equal.

theorempdl-eqD-ext Ret(a=b) —p (p @)P —p (p b)P (is+ ?ab—p ?pa—p ?pb)
proof —
havel- (Ret(a=b) —p Ret(pa=pb)) —p
(Ret(pa=ph) —p ?pa—p ?pb) —p
(?ab—p ?pa—p ?pb) by (simp add pdi-taut)
moreover
havet Ret(a=b) —p Ret(pa=pb)
proof (subst impD-Ret-hofsymmetrit)
showr Ret(a=b—pa=ph)
proof (rule iffD2[OF Valid-Re})
showa=b — p a= p bby blast
ged
ged
moreover
havet Ret(pa=pb) —p ?pa—np ?pb
by (rule pdl-egD
ultimately
show ?thesisby (rule pdl-mp-2x
ged

The following are simple consequences of the axioms above; rather than monadic impli-
cation, they use Isabelle’s meta implication (and hence represent rules).

lemma box-imp-distrib - [# x«p](P X —p Q X) == I #x«p|(P X) —p [#x—p](Q X)

C.5 The Proof Calculus of Monadic Dynamic Logic 124

by(rule pdl-kITHEN pdI-mp)

lemmadmd-imp-distrib b [# x<—p](P Xx—p Q X) = F (x—p)(P X) —p (X—p)(Q X)
by (rule pdl-mgOF pdI-k3)

lemmapdl-box-reg Vx. = P X—p Q X=>F [#x—p|(P X) —p [#X—p|(Q X)
apply(rule box-imp-distrit)
apply(rule pdl-neg
apply assumption

done

lemmapdl-dmd-reg Vx. - P Xx—p Q X=F {x<—p)(P X) —p (x—p)(Q X)
apply(rule dmd-imp-distrib
apply(rule pdl-neg
apply assumption

done

theorem pdl-wkB [[#x—p](P X); VX. - PX—p Q X = F #x—p|](Q X)
apply(rule pdl-mp

apply(rule box-imp-distrib

by(rule pdl-neg

theorem pdI-wkD: [(x<—p)(P X); VX. - P X—p Q] = F (x—p)(Q X)
proof —
assumea: - (x<—p)(P x) and b: Vx. - P x —p Q X
from b havet [#x—p|(P x —p Q X) by (rule pdl-neg
hencet (x—p)(P X) —p (x<p)(Q X) by (rule pdI-kZTHEN pdI-mp)
from this ashow F (x<p)(Q x) by (rule pdl-mp
ged

The following rule comes in handy when program sequences occur inside the box.

theorem pdl-plugB [[# x—p](P X); YX. F P x—p [#y—q X(Cy)] = F [#do {x—p; g x}|C
apply(drule pdl-wkB assumptioh
by (rule pdl-iffD1[OF pdI-seqB-simpTHEN pdI-mp)

theorem pdl-plugD: [F (x—p)(P X); ¥x. - P X —p (y—q X)(C y)] = F (do {x<p; q x})C
apply(drule pdl-wkD assumptioh
by (rule pdl-iffD1]OF pdl-seqD-simpTHEN pdI-mp)

lemma box-conj-distrib1t [# x«—p|(P X) Ap [#X—p](Q X) —p [# x—p](P XAp Q X)
proof —
haveVx. - P x—p Qx—p P xAp QX
proof
fix x showr P x —p QXx—p P XAp QX
by (simp only pdl-taut Valid-Re}
ged
hencea2: + [# x«p|(P X) —p [#x—p](Q Xx—p (P xAp Q X))
by (rule pdIl-box-reg
from this pdl-k1havel [# x—p](P X) —p [# x—p](Q X) —p [#x—p](P XAp Q X)
by (rule pdl-imp-trang
thus ?thesisby (simp only pdl-taut)

C.5 The Proof Calculus of Monadic Dynamic Logic 125

ged

lemmabox-conj-distrib2 - [# x«—p](P X Ap Q X) —p [#X—p](P X) Ap [# x—p](Q X)
proof —
have Vx. - P xAp Q Xx—p P xby (simp add pdl-taut)
henceal: + [# x—p] (P xAp Q X) —p [# x—p](P x) by (rule pdl-box-reg
have Vx. - P xAp Q Xx—p Q X by (simp add pdI-taut)
hencea2 + [#x—p] (P xAp Q X) —p [#x—p|(Q X) by (rule pdl-box-reg
let 7P = [# x—p|(P x) and ?Q = [# x<—p|(Q X) and ?PQ = [# x«—p|(P xAp Q X)
havel (?PQ —p ?P) —p (?PQ —p ?Q) —p (?PQ—p ?P Ap ?Q)
by (simp only pdl-taut Valid-Re}
from this alhavel (?PQ—p ?Q) —p (?PQ—p ?P Ap ?Q) by (rule pdl-mp
from this a2show?thesisby (rule pdl-mp
ged

The box operator distributes over (finite) conjunction.

theorem box-conj-distrib i [# x—p](P X Ap Q X) «—p [#X<—p](P X) Ap [# X—p|(Q X)
apply (rule pdl-iffl)
apply (rule box-conj-distrib2
apply (rule box-conj-distribl

done

Split and join rules for boxes and diamonds.

lemma pdl-seqB-splitt [#do {x—p; y«<q X ret (x, y) }](A(X, y). P x y)
=+ [#p|(Ax. [#qXP x)
by (rule pdl-seqBTHEN pdl-iffD1, THEN pdI-mp)

lemma pdl-seqB-joint- [# p|(AX. [#q XP X)
= F [#do {x—p; y~—q X ret (x, y)}](L(x, y). P xy)
by (rule pdl-seqBTHEN pdl-iffD2 THEN pdl-mp)

lemma pdl-seqD-split- (do {x—p; y—q x ret (X, y) }) (A (X, y). P xy)
=+ (p)(Ax. (g XP X
by (rule pdl-seqDTHEN pdl-iffD1 THEN pdI-mp)

lemma pdl-segD-join - (p)(Ax. (g X)P X)
= b (do {x—p; y—q x ret (x, y) })(A(x, y). P xy)
by (rule pdl-seqDTHEN pdl-iffD2 THEN pdl-mp)

Working in an axiomatic proof system requires a lot of auxiliary rules; especially the lack
of an implication introduction rule(P = Q) = P — Q) cries for lots of lemmas that
are essentially just basic lemmas lifted over some premiss.

lemma pdl-wkB-liftedt [A —p [#p|B; VX.F Bx—p CX =+ A —p [#p|C
proof —

assumeal - A —p [#p|Band a2 Vx. - Bx—p Cx

from a2 havet [#p|B —p [# p|C by (rule pdl-box-reg

with alshow ?thesisby (rule pdl-imp-trang
ged

lemma pdl-wkD-lifted [A —p (p)B; VX. F BXx—p CX| =+ A—p (p)C
proof —

C.5 The Proof Calculus of Monadic Dynamic Logic 126

assumeal: - A —p (p)Band a2 Vx. - Bx—p C X
from a2 havet (p)B —p (p)C by (rule pdl-dmd-reg
with alshow?thesisby (rule pdl-imp-trang

ged

lemma box-conj-distrib-lifted1t (A —p [# p](AX. P X Ap Q X)) «—p ((A —p [#p|P) Ap (A
—p [#p|Q))
proof (rule pdl-iffl)
showr (A —p [#p](AX. PXAp QX)) —p (A—p [#p|P) Ap (A —p [#p|Q)
proof —
havel ([#p](Ax. PXxAp Q X) —p [#p|P Ap [#p|Q) —b
(A —D [# p](lx PxAp Q X)) —D
(A—p [#pIP) Ap (A —p [#p|Q)
by (simp add pdI-taut)
from this box-conj-distribZhow ?thesisby (rule pdl-mp
ged
next
showr ((A—p [#p|P) Ap (A—p [#p|Q)) —p A—p [#p](AX. PXAp QX
proof —
havet- ([#pl]P Ap [#p]Q —b #p](AXx. PXAp QX)) —p
((A—p [#p|P) Ap (A —p [#P]Q)) —b
A —p [#p](AX. PXAp QX)
by (simp add pdI-taut)
from this box-conj-distriblshow ?thesisby (rule pdl-mp
ged
ged

lemma pdl-seqB-liftedi- (A —p [#p](AX. [#qXP)) «—p (A—p [#do{x—p; q x}|P)
proof (rule pdl-iffl)
showh (A —p [#p](Ax. [#qXP)) —p A —p [#do {x—p; q x}|P
proof —
havet ([#pl(Ax. [#qXP) —p [#do{x<p; qx}|P) —p
(A—p [#pl(Ax. [#qXP)) —p
(A —p [#do{x—p; g x}]P)
by (simp add pdI-taut)
from this pdI-iffD]OF pdl-seqB-simjpshow ?thesisby (rule pdl-mp
ged
next
showr (A —p [#do {x—p; qx}|P) —p A —p [#p](AX. [#qXP)
proof —
havet- ([#do {x—p; q X}|P —p [#p|(Ax. [#qXP)) —p
(A —p [#do {x—p; q x}|P) —p
(A—p [#p|(Ax. [#qXP))
by (simp add pdI-taut)
from this pdI-iffD2ZOF pdl-seqB-simjpshow ?thesisby (rule pdl-mp
ged
ged

lemma pdl-seqD-liftedi (A—p (x—p)(q X)P) «—p (A —p (do{x—p; q x})P)
proof (rule pdl-iffl)
showt- (A —p (p)(Ax. (@ X)P)) —p A —p (do {x—p; g x})P
proof —
havel- ((p)(Ax. (g X)P) —p {do {x—p; q x})P) —p

C.5 The Proof Calculus of Monadic Dynamic Logic 127

(A—p (P)(AX. (AXP)) —p
(A —p (do {x—p; g x})P)
by (simp add pdI-taut)
from this pdI-iffD]OF pdl-segD-simpshow ?thesisby (rule pdl-mp
ged
next
showtr (A —p (do {x<p; q x})P) —p A —p (p)(Ax. (Q X)P)
proof —
haver ({do {x—p; 4 X})P —p (p)(Ax. (G X)P)) —p
(A —p (do{x—p; g x})P) —p
(A—p (P)(AX. (AXP))
by (simp add pdI-taut)
from this pdI-iffD2ZOF pdl-seqD-simpshow ?thesisby (rule pdl-mp
ged
ged

lemma pdl-plugB-liftedt [- A —p [#p|B; VX. - BX—p [#qXC] = - A —p [#do {x<p; q
x}|C
proof —
assumeal - A —p [#p|Bandaz Vx. B x—p [#qXC
from al a2havet A —p [#p|(Ax. [#q XC) by (rule pdl-wkB-liftedd
thus ?thesisby (rule pdl-iffD1OF pdl-seqB-liftedI7THEN pdI-mp)
ged

lemmapdI-plugD-liftedt [- A —p (p)B; V. F Bx—p (q X)C] =+ A —p (do{x<p; q x})C
proof —

assumeal - A —p (p)Band a2 Vx. - B x—p (X C

from al a2havet A —p (x<—p)(g X C by (rule pdl-wkD-lifted)

thus ?thesisby (rule pdl-iffD1]OF pdl-seqD-lifted1 THEN pdI-mp)
ged

lemmaimp-box-conji- A —p [#p|(Ax. BxAp CX) =+ A —p [#p|B
proof (rule pdl-wkB-lifted)
assume- A —p [#p](Ax. BxAp C X)
showk A —p [#p](AX. BXAp CX) .
next
assume- A —p [#p](Ax. BXAp CX)
showVx. F BxAp Cx—p Bx
proof
fix x showt B x Ap C x —p B xby (simp add pdI-taut)
ged
ged

lemmaimp-box-conj2- A —p [#p](AX. BXAp CX) = F A —p [#p|C
proof (rule pdl-wkB-lifted)

assume- A —p [#p](Ax. BxAp C X)

showk A —p [#p](Ax. BXAp CX) .
next

assume- A —p [#p](Ax. BxAp C X)

C.5 The Proof Calculus of Monadic Dynamic Logic 128

showVx. - BxAp Cx—p CXx
proof
fix x showr B x Ap C x—p C xby (simp add pdi-taut)
ged
ged

The following lemmas show how one can split and join boxes freely with the help of axiom
pdl-segB-simp

lemma pdl-imp-id F A —p A
by (simp add pdI-taut)

lemmat [#do {x1—p1; x2—p2 x3—p3; r X1 x2 x3|P —p
[# xL—pl [# x2—p2| [# x3—pJ [# x1 X2 X3P
apply(rule pdl-imp-trans rule pdl-iffD2[OF pdl-seqB-simp rule pdl-box-regrule alll)+
by (simp add pdI-taut)

lemmat- [# X1—p1][# x2—p2] [# X3—p3]| [# xd—p4] [# x1 X2 X3 X4P —p
[# do {x1—pl; x2—p2;, x3—p3; x4—p4; r X1 X2 X3 x4|P
apply(rule pdl-plugB-lifted1 rule pdl-imp-id rule alll)+
by (simp add pdI-taut)

C.5.3 Examples

Examples from8, Theorem 6].

lemmat- (x—p)(P X) Vp (x~p)(Q X) —p (x«—p)(P xVp Q X)

proof —
have Vx. P x—p P x Vp Q xby (simp add pdl-taut)
henceal: - {x—p)(P X) —p (x—p)(P x Vp Q X) by (rule pdl-dmd-reg
have Vx. - Q x—p P x Vp Q xby (simp add pdI-taut)
hencea2: + (x—p)(Q x) —p (x<—p)(P x Vp Q x) by (rule pdl-dmd-reg
let ?P = (x<p)(P x) and ?Q = (x<p)(Q x) and ?PQ= (x<p)(P xVp Q X)
havel (?P —D ?PQ) —D (7Q —D ?PQ) —D (?P Vp ?Q —p ?PQ)

by (simp only pdI-taut Valid-Re}

from this alhavet (?Q —p ?PQ) —p (?P Vp ?Q —p ?PQ) by (rule pdl-mp
from this a2show ?thesis by (rule pdl-mp

ged

lemmat- (x—p)(P X) Ap [#Xx—p](Q X) —p (X—pP)(P XAp QX)
proof —
have Vx. F Q x—p P x—p P xAp Q xby (simp add pdl-taut)
hencer [#x—p|(Q X) —p [#x—p|(PX —p PXAp QX)
by (rule pdI-box-reg
moreover havel- [# x«—p](P X —p P XAp Q X) —p (X<—p)(P X) —p (*—p)(P XAp Q X)
by (rule pdI-k2
ultimately have F [# x<—p](Q X) —p (X—p)(P X) —p (X«<—p)(P XAp Q X)
by (rule pdl-imp-trang — transitivity of implication
thus ?thesisby (simp only pdl-taut)
ged

C.6 A Deterministic Parser Monad with Fall Back Alternatives 129

lemma pdl-conj-dmd F (x«—p)(P X Ap Q X) —p (x—p)(P X) Ap (X—p)(Q X)
proof —
— first proving the ‘P-part’
havedp: F (x—p)(P xAp Q X) —p (X—p)(P X)
proof —
havefa: Vx. - P x Ap Q X —p P xby (simp add pdI-taut)
thus ?thesis
proof —
assumevx. - P xAp Q x—p P X
thus - (x—p)(P xA\p Q X) —p (Xx<—p)(P X) by (rule pdl-dmd-reg
ged
ged
— the same for Q
moreover
havedq: F (x—p)(P xAp Q X) —p (x<—p)(Q X)
proof —
havefa: Vx. - P x Ap Q Xx—p Q x by (simp add pdI-taut)
thus ?thesis
proof —
assumevx. - P xAp Q x—p QX
thus - (x—p)(P xAp Q X) —p (X<p)(Q X) by (rule pdl-dmd-reg
ged
ged
— Now assemble the results to arrive at the main thesis
ultimately show ?thesisby (rule pdl-conjl-lifted)
ged

lemmat [#x—p|(P X) Vp [#x—p|](Q X) —p [#x—p|](P xVp QX

proof —
have Vx. P x—p P x Vp Q x by (simp add pdI-taut)
henceal: + [# x—p|(P X) —p [#x—p|(P x Vp Q x) by (rule pdl-box-reg
have Vx. - Q x—p P x Vp Q xby (simp add pdI-taut)
hencea2: + [# x—p|(Q X) —p [#x—p|(P x Vp Q X) by (rule pdl-box-reg
let ?P = [# x—p|(P x) and ?Q = [# x<—p|(Q x) and ?PQ= [#x—p|(P x Vp Q X)
havet (?P —D ?PQ) —D (7Q —D ?PQ) —D (?P Vp ?Q —p ?PQ)

by (simp only pdlI-taut Valid-Re}

from this al a2show ?thesisby (rule pdl-mp-2}

ged

end

C.6 A Deterministic Parser Monad with Fall Back
Alternatives

theory Parsec= PDL + MonEq

In a typical implementation of this parser monddwould have the fornrT A= (S=- (E
+ A) x S), i.e. it would be a state monad (over staBsvith exceptions of typ&. The fall
back alternativey in p||g would then only be used f failed to terminate.

consts
item :natT — Parses exactly one character (natural number)

C.6 A Deterministic Parser Monad with Fall Back Alternatives 130

fal ='aT — Always fails
alt :'aT='aT='aT (infixl | 140) — Prefer first parser, but fall back on second if necessary

getlnput :: nat list T— read the current state
setlnput :: nat list=- unit T

constdefs
eot::bool T
eot= (do{i < getlnput ret (nulli)})
Eot:: bool D
Eot= 1} eot
Getlnput:: nat list D
Getlnput= 1 getinput

GetlnputandEot are the abstractions fa D of the resp. lower case terms’mT.

axioms
dsef-getinputdsef getinput
fail-bot: - [#fail](Ax. Ret Fals¢
eot-item - Eot —p [# x—item(Ret False
set-get + (setlnput X(Au. Getinput=p Ret %
get-item - Getlnput=p Ret(y#ys) —p (x—item)(Ret(x =y) Ap Getlnput=p Ret y3
altB-iff: = [# x—p||q](P X) <—p ([#x—p|(P X) Ap (x—p)(Ret Trug) Vp
([#x—q](P x) Ap [#x—p](Ret Fals¢)
altD-iff : F (x—p||q) (P X) ——p (x—p)(P X) Vp ({(x—q)(P X) Ap [#x—p](Ret Falsg)
determ + (x—p)(P xX) «——p [#x—p|(P X) Ap (x—p)(Ret True

Axiom determis the typical relationship betweep)P and[# p|P when no nondetermin-
ism is involved. AxiomsaltB-iff altD-iff describe the fall back behaviour of the alternative
operation.

dsef getinpuimpliesdsef eat

lemmadsef-eotdsef eot
by (simp add eot-def dsef-seq dsef-ret dsef-getlnput

Another way to state the properties of alternation (for the diamond operator).

axioms
altD-left: - (p)P —p (p||q)P
altD-right: - ()P —p (p)(Ax. Ret Trug Vp (p||a)P

Proof thatEot actually is just an abbreviation.

lemma Eot-Getlnput Eot = (Getlnput=p Ret]))
proof —
havenull-eg-nil: ¥x. null x = (x=[])
proof
fix x shownull x = (x = [])
proof (cases X
assumex = [] thus null x = (x = []) by simp
next
fix a listassumex = (a#list) thus null x = (x = []) by simp
ged
ged

C.6 A Deterministic Parser Monad with Fall Back Alternatives 131

show ?thesis
by(simp add Eot-def eot-def Getlnput-def MonEg-def liftM2-def
dsef-getinput Abs-Dsef-inverse Dsef-def Ret-def null-§g-nil
ged

lemma Getlnput-item-fail - Getlnput=p Ret[] —p [#item](Ax. Ret Fals¢
apply(rule subsfOF Eot-Getlnpu)

by (rule eot-item
We can show that an alternative parser terminates iff one of its constituent parsers does.

lemmapar-term + (x — p||q)(Ret Trug¢ «——p (x<—p)(Ret Trug Vp (x—q)(Ret Trug
proof (rule pdl-iffl)
havet ((x—pl|q)(Ret Tru¢ —p (x<—p)(Ret Trug Vp (x—q)(Ret Trug Ap [# x—p](Ret Fals¢)
—D
(x—pl||a)(Ret Trug¢ —p (x—p)(Ret True Vp (x—q)(Ret Trug
by (simp add pdl-taut)
moreover notepdl-iffD1[OF altD-iff]
ultimately show F (p || q)(Ax. Ret Trug¢ —p (p)(Ax. Ret True Vp (q)(Ax. Ret Trug
by (rule pdl-mp
next
havet ((x—p)(Ret Trug Vp (x—q)(Ret Trug Ap [# x—p](Ret Fals¢ —p (x— p || q)(Ret Trug
) —D
([#x<p|(Ret Fals¢ «——p —p (x—p)(—p Ret Fals¢) —p
(x—p)(Ret Trug Vp (x<—0q)(Ret Tru¢ —p (x— p || q)(Ret Trug
by (simp add pdl-taut)
moreover
note pdI-iffD2[OF altD-iff]
moreover
note box-dmd-rel
ultimately
showt (x—p)(Ret Trug Vp (x—q)(Ret Tru¢ —p (x— p || q)(Ret Trug
by (rule pdl-mp-2%
ged

The following two lemmas are immediate from the axioms.
lemmaparll: - [#x—p|(P X) Ap (x—p)(Ret Tru¢ —p [#x—p||q](P x)

lemmaparl2: - [# x—p]|(Ret Fals¢ Ap [# x—q](P X) —p [#Xx— p||q](P X)

C.6.1 Specifying Simple Parsers in Terms of the Basic Ones

constdefs
sat : (nat=bool)=natT
sat p= do {x—iten if p x then ret x else fa}l
digitp =natT
digitp = sat(Ax. x < 10)
The intended semantics ofanyis that it maps a parsegrinto one that appliep as often as

possible and collects the results (which may be nomanylrequires at least one successful
run of p.

consts
many:: ‘aT= ‘alistT

C.6 A Deterministic Parser Monad with Fall Back Alternatives 132

manyl:‘aT= ‘alistT

We cannot defingnany since it is not primitive recursive and there is no termination
measure.

axioms
many-unfold many p= ((do {x « p; xs« many pret (x#xs)}) || ret[])

defs
manyl-def manyl p= (do {x < p; xs«< many p ret (x#xs)})

This is the most convenient and expressive rule we can hope for at the moment.

lemmamany-step[- ((do {x < p; xs<— many pret (x#xs)}))P Vp
(ret)P Ap [#x—p](Ret Fals¢]| = F (many pP

constdefs

natp::natT

natp= do {ns+ manyl digitpret (foldl (Arn. 10« r 4+ n) 0 ng}

The parser for natural numbanatpworks on an input stream that conists of natural num-
bers and reads numbers between 0 and 9 (inclusive) until no such number can be read. Then
it transforms its result list into a number by folding an appropriate function into the list.

Of course, one might just as well consider an input stream of bounded numbers (e.g. ASCII
characters in their numeric representation) and then read ‘0’ to ‘9", but this would not provide
any interesting further insight.

C.6.2 Auxiliary Lemmas

A convenient rendition of axioraltD-iff as a rule.

lemma altD-iff-lifted1: [F A —p (x—q)(P X); F A —p [# x—p|(Ret Falsg¢] — + A —p (X
pla)(P X
proof —
havel- ((x—pl|a)(P) ——p (xp)(P X) Vb (x—0)(P X) Ap [#x—p](Ret Fals¢) —p
(A—p (x—0)(P X)) —p (A—p [#x—p](Ret Falsg) —p
A—p (x— pllg)(P %)
by (simp add pdI-taut)
moreover
note altD-iff
moreover
assume- A —p (x—q)(P x)
moreover
assume- A —p [#x—p]|(Ret Fals¢
ultimately
show ?thesisby (rule pdl-mp-3x
ged

The correctness afatpobviously relies on the correctnessdifitp, which is proved first.

theorem digitp-nat - Getlnput=p Ret(1#ys) —p (x<digitp)(Ret(x = 1) Ap Getlnput=p Ret
ys)

(isk ?A —p (digitp) (Ax. ?C xAp ?D))

apply(unfold digitp-def sat-def

apply(rule pdl-plugD-lifted)

apply(rule get-item)

C.6 A Deterministic Parser Monad with Fall Back Alternatives 133

apply(rule alll)

apply(simp add split-if)

apply(safe

apply(rule pdl-iffD2OF pdl-retD})

by (simp add pdI-taut) — For the else-branch we obtain a contradiction, since the input was 1

On empty inputdigitp will fail.

theorem digitp-fail: - Getlnput=p Ret[] —p [# digitp](Ax. Ret Fals¢
apply(simp add digitp-def sat-def
apply(rule pdl-plugB-liftedl
apply(rule Getlnput-item-fail
apply(rule alll)
apply(rule pdl-False-imp
done

lemmaret-nil-aux - AAp B—p
(ret[]Y(Axs AAp B Ap Ret(xs=]))

lemmaret-one-aux- A —p
(ret (Suc Q)(An. Ret(n=Suc g Ap A)

lemmapdl-eqD-auxit- (B Ap C —p (p b)P) —p Ret(a=b) Ap BAp C —p (p)P
lemmapdl-eqD-aux2 (A —p (pb)P) —p AAp Ret(a=b) —p (p a)P

lemmapdl-imp-str gt A—p C=F+FAApB—pC
lemma pdl-imp-strg2+-B —p C=F+FAAp B—p C

C.6.3 Correctness of the Monadic Parser

The following is a major theorem, more because of its complexity and since it involves most
of the axioms given for the monad, than because of its theoretical insight. Essentially, it states
thatnatpbehaves totally correct for a given input.

theorem natp-corr. - (do {uu—setinput[1]; natp})(An. Ret(n = 1) Ap Eot)
proof —
havet (uu—setinput[1])(Getinput=p Ret[1])
by (rule set-get
moreover
haveYuu::unit. - Getlnput=p Ret[1] —p (n—natp)(Ret(n = 1) Ap Eot)
proof
fix uu
— The actual proof starts here: from a given input, show tiadpis correct
showt Getlnput=p Ret[1] —p (natp)(An. Ret(n= 1) Ap Eot)
proof —
— Prove the formula with defn. ofatpunfolded
havet- Getlnput=p Ret[1] —p (do {x—digitp; xs—many digitp ret (foldl (Ar. op+ (10xr))
xx9}(An. Ret(n=1) Ap Eot) (isk-?a—p ?b)
proof — — Work out each atomic program separately
havet Getinput=p Ret[1] —p (x—digitp)(Ret(x=1) Ap Getlnput=p Ret[])
by (rule digitp-nad
moreover

C.7 A Simple Reference Monad with while and if 134

haveVvx. - (Ret(x=(1::nat)) Ap Getlnput=p Ret[]) —p
({do {xs—many digitp ret (foldl (Ar. op+ (10 r)) x X9 })(An. Re{n=1) Ap Eot))
proof — Here,digitp will fail, ie. manywill return []
fix x
showtr Ret(x = 1) Ap Getlnput=p Ret[] —p
(do {xs—many digitp ret (foldl (Ar. op+ (10 r)) X X9 })(An. Ret(n = 1) Ap Eot)
proof (rule pdl-plugD-liftedJwhere B = Axs Ret(x = 1) Ap Getlnput=p Ret[] Ap
Ret(xs= [])])
showtk Ret(x = 1) Ap Getlnput=p Ret[] —p
(many digitp (Axs Ret(x = 1) Ap Getlnput=p Ret[] Ap Ret(xs=[]))
apply(subst many-unfold
apply(rule altD-iff-lifted1)
apply(rule ret-nil-aux
apply(rule pdl-plugB-lifted]
apply(rule pdl-imp-strg2
apply(rule digitp-fail)
apply(rule alll)
by (simp add pdl-taut)
next
showVxs F Ret(x = 1) Ap Getlnput=p Ret[] Ap Ret(xs=[]) —p
(ret (foldl (Ar. op+ (10xr)) x x9)(An. Ret(n = 1) Ap Eot)
apply(rule alll)
apply(rule pdl-egD-auxITHEN pdI-mp)
apply(rule pdl-eqD-auxZIr'HEN pdI-mp)
apply(simp
apply(subst Eot-Getlnpyt
by (rule ret-one-aux
ged
ged
ultimately
show?thesisby (rule pdl-plugD-liftedl
ged
thus ?thesishy (simp add natp-def many1-def mon-ctr délind-assog
ged
ged
ultimately show ?thesisby (rule pdl-plugD)
ged
end

C.7 A Simple Reference Monad with while and if

theory State= PDL + MonEqg
Read/write operations on references of arbitrary type, and a while loop.

typedecl’a ref

consts

newRef ::'a= ‘arefT

readRef ::’aref="aT

writeRef :: ‘aref = ‘a= unit T ((-:=-) [100, 10] 10

monWhile :: bool D=-unitT=unitT (WHILE (4-) /DO (4-) /END)

C.7 A Simple Reference Monad with while and if 135

To make the dsef operation of reading a reference more readable (pun unintended), we
introduce syntactical suga#r stands for} readRef r

syntax
-readRefD:: ‘aref = aD (x- [100 100)

translations
-readRefDr = 1 (readRef})

This definition is rather useless as it stands, since one actually whiref r to be a
formula inbool D. The quantifier is necessary to avoid introducing a fresh variable the
right hand side of the definition.

The idea is appealing however, since it would provide a statement about the existence of
as a reference.

constdefs
oldref :: ‘aref = bool
oldrefr = Va. I [# s—newRef §Ret(—(r=s)))

The basic axioms of a simple while language with references. In the following we will not
make use of operatiomewRefand hence neither of its axioms.

axioms
dsef-read dsef(readRef)
read-write F [#r :=X](Auu. xr =p Ret ¥
read-write-other-gen 1} (do {u—readRefrret (fu)}) —p
[#s:=Yy](Auu. Ret(r#s) —p 1} (do {u—readRefrret (fu)}))
while-par. P Ap b —p [#p](Au. P) = F P —p [# WHILE b DO p END(AX. P Ap —p b)
read-new |+ [#r—newRef § Ret a=p *r)
read-new-othert (Ret x=p *r) —p [# s+« newRef }((Ret x=p xr) Vp Ret(r=s))

lemmaread-write-other (xr =p Ret ¥ —p [#s:=Yy|(Auu. Ret(r#£s) —p (*xr =p RetX)
proof —
havet {} (do {u—readRefrret (u=x)}) —p
[#s:=y](Auu. Ret(r#s) —p 1} (do {u—readRefrret (u=x)}))
by (rule read-write-other-gen
thus ?thesis
by (simp add MonEg-def liftM2-def Dsef-def Ret-def Abs-Dsef-inverse dseffread

ged
It is not really necessary to step back to the do-notatiomefad-write-other-gen
lemmat- xr =p Ret bAp Ret(fb) —p 1} (do{a~readRefrret (fana=Dhb)})

Definitions of oddity and evenness of natural numbers, as well as an algorithm for com-
puting Russian multiplicatiorumult

constdefs
nat-even:: nat=- bool
nat-even n= 2 dvd n
nat-odd :: nat=- bool
nat-odd n= — nat-even n
rumult ::nat= nat= natref= natref= natref=natT
rumult a b x y r= do {x:=a; y:=b; r:=0;

C.7 A Simple Reference Monad with while and if 136

WHILE (ff (do {u—readRef xret (0 < u)}))
DO do {u—readRef xv—readRef yw«—readRef
if (nat-odd y then(r :=w + v) else ret();
x:=udiv2y:=vx* 2} END; readRef §

C.7.1 General Auxiliary Lemmas

Following are several auxiliary lemmas which are not general enough to be placed inside the
general theory files, but which are used more than once below — and thus justify their mere
existence.

Some weakening rules.

lemma pdl-conj-imp-wki- A—p C—+AApB—pC
proof —
assume- A—p C
havet (A —D C) —pAADB—pC
by (simp add pdI-taut)
thus ?thesisby (rule pdl-mp
ged

lemma pdl-conj-imp-wk2- B —p C=—=FAAD B—pC
proof —
assume- B —p C
havet (B —D C) —pAANDB—pC
by (simp add pdl-taut)
thus ?thesisby (rule pdl-mp
ged

The following can be used to prove a specific goal by proving two parts separately. It is
similar topdl-iffD2 | OF box-conj-distrib-liftedl THEN pdIl-mp|, which is

F (A-2—p [#p-2P-2) Ap (A-2—p [#Pp-2Q-2) =
FA-2 —p [#p-2(Ax. P-2 xAp Q-2 X)

lemma pdlI-conj-imp-box-split[- A —p [# p|C; F B —p [#p]|D] = F A Ap B —p [#x—p|(C
X Ap D X)
proof (rule pdl-iffD2[OF box-conj-distrib-lifted1 THEN pdl-mp)
assumeal - A —p [#p|Canda2 B —p [#p|D
showt (A Ap B—p [# p]C) AD (A Ap B—p [# p]D)
proof (rule pdl-conjl)
showk A Ap B—p [#p]C
proof (rule pdl-conj-imp-wk]
show- A —p [#p|C.
ged
next
showk AAp B—p [# p}D
proof (rule pdl-conj-imp-wk2
showr B —p [#p|D .
ged
ged
ged

C.7 A Simple Reference Monad with while and if 137

Since dsef programs may be discarded, a formula is equal to itself prefixed by such a
program.

lemmadsef-form-eqdsef p— P = 1 (do {a<—p; | P})
proof —
assumeal: dsefp
havefl: do{a—p; | P} ={ P
proof (rule dis-left?)
showdis p
by (rule dsef-difOF al])
ged
thus ?thesis
proof —
haveP =1 (| P)
by (rule Rep-Dsef-inversgymmetri¢)
with f1 show?thesisby simp
ged
ged

A rendition ofpdl-dsefB

lemmadsefB-D dsef p= - P —p [# x—p|P
by(subst dsef-form-éqf p P, assumptionrule pdl-iffD1]OF pdl-dsefB)

An even number is equal to the sum of its div-halves.

lemmaeven-div-egnat-even n= (n div 2+ ndiv2=n)
apply(unfold nat-even-def
by arith

Dividing n by two and adding the result to itself yields a number one lessrithan

lemma odd-div-eq nat-odd(x::nat) = (x div 2+ x div 2+ 1 = X)
apply(simp add nat-odd-def nat-even-dgf
by (arith)

A slight variant ofpdI-dsefBfor stateless formulas.

lemmapdl-dsefB-retdsef p—> F 1} (do {a<—p; ret (P a)}) «——p [# a—p|(Ret(P a))
apply(subgoal-tacva. ret (P @) = || Ret(P a))
apply(simp)
apply(rule pdl-dsefB
apply(assumptioin
apply(simp add Ret-re}
done

C.7.2 Problem-Specific Auxiliary Lemmas

The following lemmas are required for the final correctness proof to go through, but are of
rather limited interest in general.

lemmavar-auxt F (*y =p RetbAp Ret(X#y Ay #r AX#T1) Ap (Ret(x#Yy) —p xx =p Ret
a)) —o
(X =p RetaAp xy =p RetbAp Ret(X#AYAY#Tr AX#T))
by (simp add conjD-Ret-hom pdI-tait

C.7 A Simple Reference Monad with while and if 138

lemmavar-aux2 - ((xr =p Ret OAp Ret(x £y Ay#r AX#r)) Ap (Ret(Xx#r) —p *x =p Ret
a)) AD
(Ret(y #r) —p *y =p Reth —p
(xx=p RetaAp xy =p Ret bAp xr =p Ret(0::nat) Ap Ret(X£AYAY#T AXZET))
by (simp add conjD-Ret-hom pdl-tayt

The following proof it typical: since some formulas are built from do-terms and then lifted
into bool D, the usual proof rules will not get us far. The standard scheme in this case is to
proceed as documented in the following side remarks.

lemmaderive-inv-aux - xx =p Ret aAp *y =p Ret bAp *r =p Ret(0::nat) Ap Ret(X £y Ay #r
AXF#T)
—pRet(XAYAYATAXET) Ap
1} (do {u—readRef xv—readRef yw—readRef r ret (uxv+w = axb)})
(isk ?xAp ?y Ap ?r Ap 2diff —p ?diff Ap ?seq
proof —
— Simplify the goal by proving something tautologously equivalent.
havet (?XAp ?y Ap ?r —p ?seq —p
(?XAp ?y Ap ?r Ap ?2diff —p ?diff Ap ?seq by (simp add pdl-taut)
moreover
havet ?Xx Ap ?y Ap ?r —p ?seq
— Turn the formula into a straight program sequence
apply(simp add liftM2-def impD-def conjD-def MonEq-def dsef-read Abs-Dsef-inverse Dsef-def
Ret-re}
apply(simp add dsef-read Abs-Dsef-inverse Dsef-def dsef-seq
apply(simp add mon-ctr def bind-asso¢
— Sort programs so that equal ones are next to each other
apply(simp del dsef-ret addcommute-dsébf readRef r readRef| xsef-read
apply(simp del dsef-ret addcommute-dsébf readRef y readRef xsef-read
apply(simp del dsef-ret addcommute-dsé¢df readRef r readRef] ywisef-read
— Remove duplicate occurrences of all programs
apply(simp add dsef-cOF dsef-reafbf X] cp-arb)
apply(simp add dsef-cOF dsef-reafbf yj] cp-arb)
apply(simp add dsef-cpOF dsef-reafbf r]] cp-arb)
— Finally prove the returned stateless formula and conclude by reducing the progrinitoe
apply(simp add dsef-di$OF dsef-readdis-left2)
apply(simp add Valid-simp Abs-Dsef-inverse Dsef-glef
done
ultimately show ?thesisby (rule pdl-mp
ged

lemmadoterm-eql-awdo {u—readRef xv—readRef yw—readRefrret (uxv+w=axb)} =
do {u—readRef x| (1} (do {v<readRef yw—readRefrret (uxv+w=a=xb)}))}

lemmadoterm-eq2-awdo {v—readRef yw«—readRefrret (uxv+w=axb)} =
do{v—readRefy| (} (do{w«readRefrret (uxv+w=a=xb)}))}

lemmaarith-aux [nat-oddyusxv+w=axb] = (udiv2+udiv2 «v+ (W+Vv)=axb
lemmarell-aux nat-odd U=+ (Ret(X#YyAYy#Tr AX#Tr) Ap *r =p Ret(w + v) Ap Ret(u =

v+w=axh))—p
Ret(x£y A y£r A x#£r) Ap 1t (do {w«—readRefrret (udiv2+udiv2 xv+w=ax
b)})

C.7 A Simple Reference Monad with while and if 139

(is?0dd=+ (?diff Ap ?r Ap ?ar) —p ?diff Ap ?seq

lemmawrt-other-aux - Ret(X£y A y#r A X#£r) Ap (do {w«readRefrret (fw)}) —p
[#x:= a](Auu. Ret(X£y A yZ£r A x#£r) Ap 1 (do {w«—readRefrret (fw)}))

lemmawrt-other2-aux - Ret(X#£y A y#r A x#r) Ap 1 (do {w—readRefrret (fw)}) —p
[#y:=b](Auu. Ret(x£y A yZ£r A x#£r) Ap 1 (do{w—readRefrret (fw)}))

lemmard-seg-auxt f} (do {w«readRefrret (faw)}) Ap *x =p Reta—p
1} (do {u—readRef xw«readRefrret (fuw)})

lemmaarith2-aux (u div(2::nat) +udiv2) xv+w=axb—udiv2x (vx2)+w=axb

lemmaasm-results-auxt (Ret(x # y) —p *x =p Ret(u div (2::nat))) Ap

xy =p Ret(v* 2) Ap

Ret(Xx£ZYAYy#r AX#T1) Ap ft (do{w«—readRefrret (udiv2+udiv2 xv+w=ax
b)}) —o

Ret(x£yAy#r AXx#r) Ap 1 (do {u—readRef xv—readRef yw—readRef rret (u v+
w=axh)})

Yet another dsef formula extension.

lemmayadfe [dsefpdsefqdsefrVxyzfxyZ = F 1 (do{x—p;y—q; z—r;ret(fxy2})
proof —
assumeds dsef p dsef q dsefr
assumeal: Vxyzfxyz
hencell ((do {x—p; y«q; z—r;ret(fxy 2})) =
I (r (do {x—p; y<—q; z—r; ret True}))
by (simp)
also fromdshave... = ret True
by (simp add Abs-Dsef-inverse Dsef-def dsef-seq dis-left2 dsef-dis
finally show ?thesisby (simp add Valid-simp
ged

lemmaconclude-aux - (Ret(X#YyAY# T AX#T) Ap
1} (do {u—readRef xv—readRef yw«—readRef rret (u v+ w= (a:nat) « b)})) Ap
—p 1 (do {u~readRef xret (0 < u)}) —p
[# readRef f(AX. Ret(x = a x b))

C.7.3 Correctness of Russian Multiplication

Equipped with all these prerequisites, the correctness proof of Russian multiplication is ‘at
your fingertips™. We will not display the actual rule applications but only the important
proof goals arising in between.
theoremrussian-multF (Ret(X£y A y#r A X#r)) —p [#rumultab xy f(Ax. Ret(x = a x b))
apply(unfold rumult-dej — First, unfold the definition ofumult
apply(simp only seq-dej
apply(rule pdl-plugB-liftedl

Establish the ‘strongest postcondition’ of the assignmert to

FRet(X£YAY#r AX#r) —p [#rumultabxy f(Ax Ret(x=ax b))
LERet(Xx£YyAYy#rAX#r) —p [#x:=a?B

C.7 A Simple Reference Monad with while and if 140

From this postcondition proceed with assignment to

FRet(X£ZYyAYy#TrAX#r) —p [#rumultabxy f(Ax. Ret(x=ax b))
1. AxaFRet(x£yAy#rAX#r) Ap xX=p Reta—p [#y:=b]?B9I xa

After the final assignment toall variables will have their initial values

FRet(X£YAY#r AX#r) —p [#rumultabxy f(Ax. Ret(x=ax b))
1. Axa xaa
F«x=p RetaAp *y =p RetbAp Ret(XAYAY#T AX#T) —p
[#r :=0]?B27 xa xaa

Now we have arrived at the while-loop, with the invariant readily established.

FRet(X£ZYAY#£TAX#£T) —p [#rumultabxy f(Ax. Ret(x=ax b))
1. Axa xaa xb
FRet(X£ZYAYy#TAXET) Ap
1} (do {u—readRef x
v—readRef yw«—readRefrret (uxv+w=axb)}) —p
[# do {x—WHILE 1} (do {u—readRef xret (0 < u)})
DO do{u<readRef x
v—readRefy
w«—readRef r
xa—if nat-odd u then r=w + v else ret);
x—x:=udiv2y:=vk2}
END;
readRef }](AX. Ret(x = ax b))

apply(rule pdl-plugB-liftedl
apply(rule while-par) — applied the while rule

After splitting off the while-loop as a single box formula, we can apply the while rule, so that we
obtain the following proof goal, telling us to establish the invariant after one run of the loop body:

FRet(Xx£YyAy#r AX#r) —p [#rumultab xy H(Ax. Ret(x=ax b))
1. Axa xaa xb
F(Ret(X£ZYAY#TAXET) Ap
1 (do {u—readRef x
v—readRef yw—readRefrret (uxv+w=axh)})) Ap
1} (do {u—readRef xret (0 < u)}) —p
[# do {u—readRef x
v—readRefy
w«—readRef 1
xa—if nat-odd u then r=w + v else ret);
x—x:=udiv2
yi=Vx
2} (Au. Ret(X Ay Ay #T AX#T) Ap
1} (do {u—readRef x
v—readRefy
w—readRefrret (uxv+w=a=xb)}))

C.7 A Simple Reference Monad with while and if 141

After having worked off all read operations, we again have to establish the strongest postcondition
that is required after the if-statement.

FRet(X£YyAYy#TrAxX#£r) —p [#rumultabxy f(Ax. Ret(x=ax b))
1. Auvw
F Ret(0 < u) Ap
Ret(X£YAY#ATAXET) Ap
Ret(uxv+w=a=xb) Ap
1} (do{w«readRefrret (uxv+w=ax*b)}) —p
[#if nat-odd u then r=w + v else ret()]?B111 uvw

Here we see what the just mentioned postcondition looks like: it says that the following relation
(found in the premiss of the implication) holds:

FRet(X£YyAy#Tr AX#r) —p [#rumultab xy H(Ax. Ret(x=ax b))
1. Auvwxa
FRet(X£ZYAY#TAXET) Ap
1} (do{w—readRefrret ((udiv2+udiv2 xv+w=axb)}) —p
#x:=udiv2?Bl42uvwxa

Now only the assignment premains.

FRet(X£YAY#r AX#r) —p #rumultabxy f(Ax. Ret(x=ax b))
1. Auvw xa xaa
F «x =p Ret(u div 2) Ap
Ret(X#AYAY#T AX#T) Ap
1} (do{w—readRefrret ((udiv2+udiv2 xv+w=axb)}) —p
[#y:=vx*2]?B151 uvw xa xaa

We finally succeeded in re-establishing the loop invariant after one execution of the loop body. The
final part is just to read referencewhich is easily done.

FRet(X£YyAYy#TrAx#r) —p [#rumultabxy f(Ax. Ret(x=ax b))
1. Axa xaa xb xc
F(Ret(Xx£YyAYy#Tr AX#Tr) Ap
1} (do {u—readRef x
v—readRef yw«—readRefrret (uxv+w=axb)})) Ap
-p 1 (do {u—readRef xret (0 < u)}) —p
[# readRef t(Ax. Ret(x = a x b))

apply(rule conclude-aux — ... Just 124 straightforward proof steps later
done

end

Bibliography

[1] Peter B. Andrews.An Introduction to Mathematical Logic: To Truth Through Proof
Number 27 in Applied Logic Series. Kluwer Academic Publishers, 2002.

[2] Henk Barendregt. Lambda calculi with types. Mandbook of Logic in Computer
Sciencevolume 2. Clarendon, 1992.

[3] Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited — and Isabelle/Isar
experience. InTheorem Proving in Higher Order Logicsiumber 2152 in LNCS.
Springer-Verlag, 2001.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Venerviodal Logic Number 53 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

[5] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing
of Haskell programs. ICFP, Montreal, Canada, 2000.

[6] Melvin Fitting. Basic modal logic. IrfHandbook of logic in artificial intelligence
and logic programmingvolume 1, pages 368-448. Oxford University Press, Inc., New
York, NY, USA, 1993.

[7] Martin Fowler. UML Distilled. Object technology. Addison-Wesley, 3rd edition, 2004.

[8] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. Handbook of Philosophical
Logic, 2nd ed.volume 4. Kluwer Academic Publishers, Dordrecht, 2002.

[9] C.A.R. Hoare. An axiomatic basis for computer programmi@gmmunications of the
ACM, 12(10):576-583, 1969.

[10] Paul Hudak.The Haskell School of ExpressioGambridge University Press, 2000.

[11] Marieke Huisman and Bart Jacobs. Java program verification via a Hoare logic with
abrupt termination. In T. Maibaum, editétundamental Approaches to Software Engi-
neering (FASE 2000Q)olume 1783 of.NCS pages 284-303. Springer-Verlag, 2000.

[12] Graham Hutton and Erik Meijer. Monadic Parser Combinators. Technical Report
NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham, 1996.

[13] B. Jacobs and E. Poll. A monad for basic Java semantics. In T. Rus, eMior,
gebraic Methodology and Software Technology (AMAST'06lume 1816 ofLNCS
pages 150-164. Springer-Verlag, 2000.

[14] Simon P. Jones, editaraskell 98 Language and Libraries: The Revised Repoam-
bridge University Press, Apr 2003.

Bibliography 143

[15] Simon Peyton Jones and Philip Wadler. Imperative functional programmingOtin
Symposium on Principles of Programming Languadé3M Press, Jan 1993.

[16] B. Joy, G. Steele, J. Gosling, and G. Brach@he Java Language Specification
Addison-Wesley, 2000.

[17] Richard Kuhn, Ramaswamy Chandramouli, and Ricky Butler. Cost effective use of for-
mal methods in verification and validation. Foundations 02 Workshop on Verification
& Validation. Columbia, MD, Oct 2002.

[18] Saunders MacLan€&ategories for the Working Mathematicia®pringer-Verlag, 1998.
[19] E. Moggi. A semantics for evaluation logiEund. Inform, 22:117-152, 1995.

[20] Eugenio Moggi. Notions of computation and monatigormation and Computatign
93(1), 1991.

[21] Olaf Muller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. HOLCF = HOL
+ LCF. J. Functional Programmingl(1), 1998.

[22] Tobias Nipkow. Structured proofs in Isar/HOL. Tiypes for Proofs and Programs
(TYPES 2002)olume 2646 oL.NCS pages 259-278. Springer-Verlag, 2003.

[23] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenizsabelle/HOL — A Proof
Assistant for Higher-Order Logje/olume 2283 oL NCS Springer, 2002.

[24] Lawrence C. Paulson. The foundation of a generic theorem prdvAutomated Rea-
soning 5:363—-397, 1989.

[25] Lawrence C. PaulsonThe Isabelle Reference Many@004. Available ahttp://
isabelle.in.tum.de/doc/ref.pdf.

[26] Benjamin C. PierceBasic Category Theory for Computer ScientisEpundations of
Computing. MIT Press, 1991.

[27] A. M. Pitts. Evaluation logic. In G. Birtwistle, editol\/th Higher Order Workshop,
Banff 1990 Workshops in Computing, pages 162—189. Springer-Verlag, Berlin, 1991.

[28] Andrew M. Pitts. Categorical logic. IHandbook of Logic in Computer Sciene®I-
ume VI. Oxford University Press, May 1995.

[29] Gordon Plotkin. A structural approach to operational semantics, 1981. The Aarhus
notes. Available ahttp://homepages.inf.ed.ac.uk/gdp/publications/S0S.

ps.

[30] John C. ReynoldsTheories of Programming Languaggsambridge University Press,
1998.

[31] Stuart Russell and Peter Norvigrtificial Intelligence — A Modern ApproachPrentice
Hall Series in Artificial Intelligence. Pearson Education, Inc., 2nd edition, 2003.

http://isabelle.in.tum.de/doc/ref.pdf
http://isabelle.in.tum.de/doc/ref.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps

Bibliography 144

[32] Lutz Schibder and Till Mossakowski. Monad-independent Hoare logic AsEASL.
In Mauro Pezze, editorFundamental Approaches to Software Engineering (FASE
2003) volume 2621 ol ecture Notes in Computer Sciengages 261-277. Springer,
Berlin, 2003.

[33] Lutz Schibder and Till Mossakowski. Generic exception handling and the java monad.
In Algebraic Methodology and Software Technologyiume 3116 of NCS pages 443—
459, 2004.

[34] Lutz Schibder and Till Mossakowski. Monad-independent dynamic logic isH
CASL. Journal of Logic and Computatigori4(4):571-619, 2004.

[35] Alex K. Simpson.The Proof Theory and Semantics of Intuitionistic Modal LoghD
thesis, University of Edinburgh, 1994.

[36] Ann E. Kelley Sobel and Michael R. Clarkson. Formal methods application: An empir-
ical tale of software developmenEEE Transactions on Software Engineer,j28(3),
Mar 2002.

[37] Philip Wadler. How to declare an imperativdCM Computing Survey29(3):240-263,
September 1997.

[38] Dennis Walter, Lutz Scliader, and Till Mossakowski. Parametrized exceptions. In Jose
Fiadeiro and Jan Rutten, editoAdgebra and Coalgebra in Computer Scientecture
Notes in Computer Science. Springer; Berlin, 2005. To appear.

[39] Markus Wenzel. Isabelle/lsar - a versatile environment for human-readable formal
proof documentsPhD thesis, TU Ninchen, 2002.

[40] Glynn Winskel. The Formal Semantics of Programming Languages — An Introduction
The MIT Press, Cambridge, Massachusetts, 1993.

	Introduction
	Motivation and Classification
	Problem Setting
	Structure of the Thesis

	Theoretical Basis
	The Lambda Calculus
	Syntax and Terminology
	Function Evaluation by Reduction
	Adding Types and Constants

	Monads in Computer Science
	Monads in Haskell
	Monads -- the Abstract Way
	The Meta-language for Strong Monads

	Monadic Dynamic Logic
	Preliminaries
	Properties of Monadic Programs
	Global Dynamic Judgements

	Logical Operators
	Primitive Connectives
	Boxes and Diamonds

	The Monad-independent Proof Calculus
	Hoare Calculi

	Specific Extensions for the Exception Monad
	Parameterised Exceptions

	Verification with Dynamic Logic
	Basic Lemmas of Dynamic Logic
	Axiomatising the Queue-Monad
	Specification of a Reference Monad
	Correctness of a Breadth-First Search Algorithm
	Basic Facts
	Auxiliary Rules
	Proof of Total Correctness

	The Theorem Prover Isabelle
	The Meta-logic
	Basic Syntax and Terminology
	Defining Logics
	Meta-logic Rules

	Higher-order Logic (HOL)
	Constants
	Definitions

	Proof Methods
	Higher-order Resolution
	A Different Perspective
	Advanced Proof Methods
	An Example Proof

	The Isar Proof Language
	Introducing Isar by Example

	Implementation in Isabelle
	Theory Files
	Monads in Isabelle
	The do-Notation
	Properties of Monadic Programs
	Equational Reasoning in Isar
	Lifting HOL Constants

	Setting up the Logic
	Basic Proof Rules
	Proving Tautologies Automatically
	Modal Operators and the Proof Calculus
	Theorems and Proof Rules Involving Modal Operators

	A Specification of Parser Combinators
	Specification of the Basic Parsers
	Defining Complex Parsers

	A Specification of Russian Multiplication
	Proof Sketch
	Similarity to Hoare Logic Proofs

	Conclusion and Outlook
	Haskell Implementation of mbody
	Table of Rules of Isabelle/HOL
	Isabelle Theories
	Basic Monad Definitions and Laws.
	Basic Notions of Monadic Programs
	Discardability and Copyability
	Introducing the Subtype of dsef Programs

	Introducing Propositional Connectives
	Propositional Connectives
	Setting up the Simplifier for Propositional Reasoning
	Proof Rules

	Monadic Equality
	The Proof Calculus of Monadic Dynamic Logic
	Types, Rules and Axioms
	Derived Rules of Inference
	Examples

	A Deterministic Parser Monad with Fall Back Alternatives
	Specifying Simple Parsers in Terms of the Basic Ones
	Auxiliary Lemmas
	Correctness of the Monadic Parser

	A Simple Reference Monad with while and if
	General Auxiliary Lemmas
	Problem-Specific Auxiliary Lemmas
	Correctness of Russian Multiplication

