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Abstract

In the previous paper, boundary conditions matching the probe to the crystal wave function in scanning transmission

electron microscopy were applied by matching the whole wave function across the boundary. It is shown here how that

approach relates to previous Bloch wave formulations using (phase-linked) plane wave boundary conditions for wave

vectors implied by the range of transverse momentum components in the incident probe. Matching the whole wave

function across the boundary, and including a suitably fine mesh in the reciprocal space associated with the crystal to

allow matching of transverse momentum components within the probe, leads to a structure matrix A containing many

elements which would normally be excluded for plane wave incidence. For perfect crystals, the A-matrix may be block

diagonalised. This leads to a considerable increase in the computational efficiency of the model and yields important

insights into the physics of convergent probes in perfect crystals—reciprocity in coherent imaging and the small

aperture limit for coherent and incoherent contrast are considered. The numerical equivalence of the incoherent lattice

contrast calculated in this Bloch wave method and the multislice method using mixed dynamic form factors will be

demonstrated. Comparison between both these methods and the frozen phonon model, a prevalent multislice method

for annular dark field simulation which has the theoretical advantage of handling double channelling, will be made.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the previous paper [1], boundary conditions
for scanning transmission electron microscopy
(STEM) were applied such that the total probe
wave function was matched to a crystal wave

function which incorporated all the transverse
momenta in the incident probe, as usually done in
the multislice formulation [2–4]. This differs from
the prevalent Bloch wave description of STEM
contrast [5–10] which constructs the total wave
function from a coherent superposition of Bloch
states excited from a series of incident plane waves
that span the full range of transverse momentum
components in the focused probe. This begs the
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question as to how these methods are related. We
will demonstrate that the crystal wave functions
produced in these seemingly disparate approaches
are identical.
For a focused coherent electron probe, the

reciprocal lattice mesh associated with the crystal
must be adequate not only for a sampling of the
structure of the crystal but also for sampling of the
transverse momentum components of the probe.
This results in a structure matrix A which con-
tains elements usually excluded for plane wave
incidence. This A-matrix can be of large
order, increasing the numerical demands of the
eigenvalue problem to be solved considerably.
However, as suggested by Rez [11], the A-matrix
may be block diagonalised in the case of perfect
crystals.
Block diagonalisation leads to a natural sub-

division of the wave function into pieces based
on sets of reciprocal lattice vectors differing
by what we will refer to as physical reciprocal
lattice vectors—those having non-zero structure
factors. From this reformulation, the method for
applying the boundary conditions in the form of
continuity of the entire wave function will be
shown to be equivalent to alternative Bloch
wave formulations in the literature—those of a
coherent superposition of phase-linked plane
waves [5–10]. The block diagonalisation provides
insight into the physics involved in the coupling of
the probe to the wave function in the target. It also
lends itself to ready proofs of reciprocity for
coherent contrast and to a demonstration of the
lack of contrast in coherent and incoherent lattice
imaging for apertures which do not encompass a
physical reciprocal lattice vector. From a compu-
tational point of view, the eigenvalue/eigenvector
problem and the calculation of incoherent lattice
contrast can be handled for the individual block
matrices, with substantial gains in computational
efficiency.
The formulation of the previous paper [1]

allowed the generalisation of previous cross-
section expressions for inelastic scattering, incor-
porating the concept of the mixed dynamic form
factor (MDFF), from the case of incident plane
waves to the case of any probe. It was shown there
to have an equivalent multislice implementation.

While having the distinct advantage of generality,
one possible short-coming of the approach based
on the MDFF is that it is assumed that the
scattered electrons do not undergo further dyna-
mical diffraction, i.e. a single channelling approx-
imation. The expression for incoherent lattice
contrast can be generalised to include double
channelling [12] but the calculation then scales
as N8 rather than N4; where N is the order of the
A-matrix, and hence is numerically demanding.
One multislice method which incorporates double
channelling but is only applicable to incoherent
imaging based on thermal diffuse scattering
(TDS), for example annular dark field (ADF)
STEM imaging, is known as the frozen phonon
(FPh) model [4,13,14]. Calculations will be pre-
sented here which compare the FPh approach with
both Bloch wave and multislice implementations
of the MDFF approach. The results suggest that
the differences between these models may be small
for moderately large detectors, in agreement with
theoretical arguments [6]. As such, the slight gain
in accuracy obtained from the FPh model may in
many instances be outweighed by the greater
computational efficiency of the Bloch wave or
multislice MDFF methods.
Perhaps the most significant conclusion arising

from the equivalence of the Bloch wave and
multislice MDFF methods of STEM image
simulation is that one may choose the most
suitable approach to any given problem. The
relative computational efficiency of the algorithms
is briefly discussed.

2. Calculation of the wave function in the Bloch

wave method—block diagonalisation

2.1. Notation

Several different vector notations are used in
what follows; the distinctions are worth emphasis-
ing. Capitalised vectors G and H denote what shall
be referred to as physical reciprocal lattice vectors,
those with non-zero structure factors, the set of
which we denote by fFg: Lower case vectors g and
h denote the ‘‘nearly continuous’’ set of reciprocal
lattice vectors, as required to sample the transverse
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momentum components in a STEM probe. We
denote the set thereof by ffg:
We shall denote by ql an element of the set fqg

of vectors about 0 which, when added to the
vectors in the set fFg; produces the set ffg: The
vectors fqg are all taken to be in the first Brillouin
zone. The vector q1 will always be taken as 0: Note
that this construction ensures that any vector g

may uniquely be written as g ¼ Gþ ql :
The set ffg may be equivalently generated

by an m � m supercell. In this case the subscript
l will run from 1 to m2: It should be noted that
the supercell need not be restricted to m � m

in size, in fact it may be computationally
convenient to chose an m � n supercell where
man: For simplicity we will restrict much of the
following discussion to m � m; the extension to
m � n being straight forward. One should chose m

so as to ensure convergence of incoherent lattice
contrast calculations. If convergence under plane
wave illumination would require an N � N

A-matrix (i.e. N elements in the set fFg), then
an overall A-matrix in the STEM case of size
m2N � m2N is used. By using all the physical
reciprocal lattice vectors of the supercell, a much
finer sampling of the reciprocal mesh is achieved
than would be the case for the (smaller) conven-
tional unit cell.
Fig. 1 illustrates the generation of the vector set

using the /0 0 1S zone axis orientation for a
simple cubic structure and a 2� 2 supercell. (Note:
It is our experience that typically an 8� 8 supercell

is required for converged calculations). For ease of
illustration only 49 beams are generated in the
physical set fFg: The additional vectors for the set
ffg are included in this case by the addition of
the four reciprocal space vectors ql shown. Each
subset fFþ qlg is indicated by the use of
differently shaded circles.

2.2. Boundary conditions and the wave function in

the crystal

For ease of reference, we repeat here the three
key expressions given in the previous paper [1] that
describe the wave function in the crystal:

CðK;R; r>; zÞ ¼
X

i

aiðRÞciðK; r>; zÞ; ð1Þ

ciðK; r>; zÞ ¼ expð2pilizÞ
X
g

Ci
g expð2pig � r>Þ; ð2Þ

aiðRÞ ¼
X
g

C
i *
g expð	2pig � RÞTðgÞ: ð3Þ

An overall phase factor expð2piKzÞ; K the wave
number corrected for refraction, is omitted in
Eq. (2) for simplicity. The Ci

g; with ‘‘nearly
continuous’’ g; are Fourier components of the
Bloch state i:
Initially it may seem at odds with the Bloch

Theorem to be using a mesh finer than the physical
reciprocal lattice for the Fourier representation
of the crystal potential. However, while it is the
physical reciprocal lattice that determines the
crystal repeat distance, the incident probe no
longer has the translational symmetry of the plane
wave case. The wave function in the crystal is not

the same in adjacent cells up to a phase (the Bloch
Theorem), as this does not take the boundary
conditions into account. Rather, the intensity of
the wave function should, loosely speaking,
decrease with increasing distance from the probe
position defined by the vector R: It is the use of
Fourier series to represent this non-periodic
physical situation that necessitates the use of
supercells. The periodic nature of the Fourier
series representation means that the supercell is a
periodic feature. The probe is effectively posi-
tioned at the equivalent position Rþ Ra in each
supercell, where Ra is a vector describing the
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Fig. 1. The vector set ffg generated using a 2� 2 supercell (or

equivalently the four q vectors shown and the vector set fFg) as
described in the text.
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repeat distance of the supercell. To ensure that
two ‘‘probes’’ located at R and Rþ Ra do not
interact, a sufficiently large supercell must be used.
For the cases studied here, an 8� 8 supercell is
sufficient to ensure converged calculations. This

will vary depending on the model case under
consideration.

2.3. Block diagonalisation

The rationale behind applying the boundary
conditions in the form of continuity of the whole
wave function across the entrance surface of the
crystal has been described in the previous paper
[1], and the resultant form of the wave function in
the crystal is given above. The presence of many
zero elements in the A-matrix leads to further
simplifications of both the description of the wave
function within the crystal and the calculation of
incoherent lattice contrast.
The Bethe equations [15], including absorption,

have the form

½K2 	 ðki þ gÞ2 þ iU 0
0�C

i
g þ

X
hðagÞ

Wg	hCi
h ¼ 0; ð4Þ

where Wg	h ¼ Ug	h þ iU 0
g	h; and Ug	h and U 0

g	h

denote the coefficients of the elastic and the
absorptive potential. Following Allen et al. [16],
and the references therein, this may be cast into the
matrix form

AC ¼ 2KC½li�D; ð5Þ

where C is the matrix of eigenvectors Ci
g and ½li�D

is the matrix containing the eigenvalues, the
subscript D indicating that it is diagonal in form.

In using the matrix notation to succinctly express a
set of linear equations, there is much freedom to
choose the ordering of the rows and columns of
the A-matrix. Allen et al. [16,17] choose the
ordering

because it makes certain symmetry relations more
evident. We will consider the specific case where
the tangential component of the incident wave
vector kt ¼ 0 (the exact zone axis orientation).
Hence the diagonal elements have the form 	g2 þ
iU 0

0 and are in general non-zero. However, the off-
diagonal elements Wg	h are non-zero only if the
vector difference g	 h is a physical reciprocal
lattice vector, i.e.

Wg	ha0 if and only if g	 hAfFg: ð7Þ

Remembering that we may uniquely express g ¼
Gþ ql and h ¼ Hþ qm; where the subscripts l

and m describe elements of the set fqg; then the
off-diagonal elements of the A-matrix may be
rewritten as

Wg	h ¼ WG	Hdl;m: ð8Þ

Note that, with supercells constructed as
described above, this simplification requires
that the crystal be periodic. For imperfect
crystals this identity does not hold and hence
neither do any of the consequences that follow
from it.
In the periodic case, the resultantA-matrix may

be reordered in such a way that it is block diagonal
(as suggested by Rez [11]) since the elements at
the intersection of different groups, described by
the subscripts l and m; are all zero. The matrix

A ¼

^ ^ ^ ^ ^

? 	ðkt þ hÞ2 þ iU 0
0 Wh	g Wh Whþg W2h ?

? Wg	h 	ðkt þ gÞ2 þ iU 0
0 Wg W2g Wgþh ?

? W	h W	g 	k2t þ iU 0
0 Wg Wh ?

? W	g	h W	2g W	g 	ðkt 	 gÞ2 þ iU 0
0 W	gþh ?

? W	2h W	h	g W	h W	hþg 	ðkt 	 hÞ2 þ iU 0
0 ?

^ ^ ^ ^ ^

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; ð6Þ
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equation becomes

½Aðq1Þ� ½ 0 � ? ? ½ 0 �

½ 0 � ½Aðq2Þ� ? ? ½ 0 �

? ? & ? ?

? ? ? & ?

? ? ? ? ½AðqnÞ�

0
BBBBBB@

1
CCCCCCA

�

½Cðq1Þ� ½ 0 � ? ? ½ 0 �

½ 0 � ½Cðq2Þ� ? ? ½ 0 �

? ? & ? ?

? ? ? & ?

? ? ? ? ½CðqnÞ�

0
BBBBBB@

1
CCCCCCA

¼ 2K

½Cðq1Þ� ½ 0 � ? ? ½ 0 �

½ 0 � ½Cðq2Þ� ? ? ½ 0 �

? ? & ? ?

? ? ? & ?

? ? ? ? ½CðqnÞ�

0
BBBBBB@

1
CCCCCCA

�

½lðq1Þ�D ½ 0 � ? ? ½ 0 �

½ 0 � ½lðq2Þ�D ? ? ½ 0 �

? ? & ? ?

? ? ? & ?

? ? ? ? ½lðqnÞ�D

0
BBBBBB@

1
CCCCCCA
; ð9Þ

where each of the m2 sub-matrices is N � N: The
horizontal dots ‘‘?’’ indicate the presence of a
matrix of zeros. The diagonal dots ‘‘&’’ indicate
the presence of an ½AðqlÞ�; ½CðqlÞ� or ½lðqlÞ�D sub-
matrix on the diagonal associated with the vector
ql : The sub-matrices AðqlÞ (dropping the square
brackets for notational convenience) contain the
A-matrix elements with the basis vectors fFg
shifted by ql : Similarly the sub-matrices CðqlÞ
contain elements of the form Cl;k

G  Ck
GðqlÞ where

the index k labels the columns of each N � N sub-
matrix. We may now solve the eigenvalue
equation by solving the m2 individual eigenvalue
problems

AðqlÞCðqlÞ ¼ 2KCðqlÞ½l
kðqlÞ�D: ð10Þ

The block diagonal form of the C-matrix in
Eq. (9) is due to the existence of unique solutions
for the set of eigenvalue equations given in
Eq. (10) above. The superscript on the eigenvalues
lk has been changed to emphasise the fact

that k now labels the N columns within the
sub-matrix specified by the label l: Note that the
sub-matrix AðqlÞ is equivalent to that describing
plane wave incidence with tangential component
kt ¼ ql :
With the reordering used in Eq. (9) we now

replace the index i in Eq. (5), which implicitly
labels the columns of the complete C-matrix, with
the indices l; describing each sub-matrix CðqlÞ; and
k; which denotes the columns of each sub-matrix.
Rewriting the equations for the total wave
function given by Eq. (1) in terms of summations
over l and k

CðK;R; r>; zÞ ¼
Xm2

l¼1

XN

k¼1

al;kðRÞcl;kðK; r>; zÞ; ð11Þ

where the Bloch states given by Eq. (2) are now

cl;kðK; r>; zÞ

¼ expð2pill;kzÞ
X
g

Cl;k
g expð2pig � r>Þ ð12Þ

and the excitation amplitudes given by Eq. (3)
become

al;kðRÞ ¼
X
g

C
l;k *
g expð	2pig � RÞTðgÞ: ð13Þ

From the block diagonal form in Eq. (9) it
immediately follows that Cl;k

g ¼ 0 for any
reciprocal lattice vector gaGþ ql [i.e. those
elements not contained in the sub-matrix CðqlÞ].
Thus the sums over g and h reduce to sums over G
and H, giving

cl;kðK; r>; zÞ ¼ expð2pill;kzÞ
X
G

Cl;k
Gþql

� exp½2piðGþ qlÞ � r>� ð14Þ

and

al;kðRÞ ¼
X
G

C
l;k *
Gþql

exp½	2piðGþ qlÞ � R�

� TðGþ qlÞ: ð15Þ

We now use the fact that sub-matrix AðqlÞ is
equivalent to that describing plane wave incidence
with tangential component kt ¼ ql : From Eq. (10)
it is clear that the sub-matrices CðqlÞ and lðqlÞ
must also contain the eigenvectors and eigenvalues
describing plane wave incidence for kt ¼ ql : We
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may therefore write

cl;kðK; r>; zÞ ¼ exp½2pilkðqlÞz�

�
X
G

Ck
GðqlÞ exp½2piðGþ qlÞ � r>�

ð16Þ

and

al;kðRÞ ¼
X
G

C
k *
G ðqlÞ exp½	2piðGþ qlÞ � R�

� TðGþ qlÞ: ð17Þ

The total wave function given by Eq. (9) is hence a
sum over m2 independent ‘‘wave functions’’, each
associated with a plane wave incidence, with the
tangential component of the plane wave being
kt ¼ ql : These wave functions do not interact with
one another. Thus, while the probe contains a
continuum of transverse momentum components,
inside the crystal these components only interact
with others differing in value by physical recipro-
cal lattice vectors G:
In the previous paper [1] we discussed Bloch

states and Bloch wave amplitudes for normal
plane wave incidence (kt ¼ 0Þ and noted that the
first five Bloch states accounted for over 99% of
the incident intensity for plane wave incidence.
The block diagonal form of the eigenvalue
problem indicates there are likely to be m2 	 1
other such sub-sets of significant Bloch wave
amplitudes, which would not normally be excited
for plane wave incidence.
Consider a tightly bound s-type state of index k

with a concomitantly flat dispersion surface.
Fourier coefficients Ck

GðqlÞ of the eigenvector
solutions in Eq. (16) may then be considered (to
a good approximation) to be independent of ql :
The eigenvector associated with an s-type state for
a primitive unit cell [derived from the sub-matrix
Aðq1Þ; where q1 ¼ 0; in the top left-hand corner of
the block diagonalised solution of Eq. (9)] may be
distributed over the supercell by a simple tiling
of these bonding states. This may be used to
construct further combinations of bonding/anti-
bonding states across the supercell by inclusion of
each of the remaining m2 	 1 phase factors
expð2piql � r>Þ separately for each state in the
supercell, where qla0:

3. Equivalence of global and phase-linked plane

wave boundary conditions

In the previous work using a Bloch wave
framework [5–10,18,19], the boundary conditions
are applied in a conceptually different form. Those
works treat each component with differing trans-
verse momentum in the probe as if it were a plane
wave in isolation, match the boundary conditions
accordingly, and then perform the coherent
sum to obtain the total wave function. This is
predicated on the notion of superposition, where-
by the response to the whole incident wave
field is the sum of the responses to individual
components. Thus the incident probe is treated not
so much as a distorted wavefront, but rather as
a coherent superposition of phase-linked plane
waves.
The boundary conditions have not previously

been applied in the Bloch wave formalism in
the manner described in the previous paper [1].
We will now show that the phase-linked
plane wave approach is formally equivalent to
that described here, which has a conceptually
different foundation. As such, both techniques
offer different insights into the physics of the
problem. It is worth noting that in calculation
of convergent beam electron diffraction (CBED)
patterns, multislice methods have been applied
with both approaches to the boundary conditions
[20].
Eq. (5) in the paper of Nellist and Pennycook [6]

expresses the total wave function as obtained in
the phase-linked plane wave boundary conditions
approach. That equation, re-drafted for consis-
tency with the notation and sign conventions used
here, reads

FðK;R; r>; zÞ ¼
Z XN

k¼1

bkðR; pÞ

� fkðK; p; r>; zÞ dp; ð18Þ

where bk is the excitation amplitude of Bloch wave
fk: Note that the superscript k is used here,
denoting that the sum is over the N columns of the
plane wave C-matrices. Bloch waves are resolved
for each transverse component p of the focused
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probe

fkðK; p; r>; zÞ ¼ exp½2pilkðpÞz�
X
G

Ck
GðpÞ

� exp½2piðpþGÞ � r>�; ð19Þ

where again a factor of expð2piKzÞ has been
omitted. The excitation amplitude is

bkðR; pÞ ¼ C
k *
0 ðpÞ expð	2pip � RÞTðpÞ: ð20Þ

We will now demonstrate that this formalism is
equivalent to that afforded by the block diagona-
lisation, and therefore to that presented in the
previous paper [1].
Replacing the integral in the total wave function

Eq. (18) by a sum over ‘‘nearly continuous’’ p;
breaking it up into a sum over physical vectors H
and a sum over l labelling the vectors of the set fqg
gives

FðK;R; r>; zÞ ¼
Xm2

l¼1

X
H

XN

k¼1

bkðR;Hþ qlÞ

� fkðK;Hþ ql ; r>; zÞ; ð21Þ

where

fkðK;Hþ ql ; r>; zÞ

¼ exp½2pilkðHþ qlÞz�
X
G

Ck
GðHþ qlÞ

� exp½2piðGþHþ qlÞ � r>�: ð22Þ

Before proceeding, recall that in the plane wave
case the eigenvalues and eigenvector elements obey
the following periodicity relations [21]:

Ck
G	HðKþHÞ ¼ Ck

GðKÞ;

lkðKþHÞ ¼ lkðKÞ: ð23Þ

Substituting these periodicity relationships into
Eq. (22), we may bring the vector H out of the
argument and into the subscript. This results in an
expression in the sum over G of terms depending
on GþH: This is a basis shift, and we may re-label
the sum as follows.

fkðK;Hþ ql ; r>; zÞ

¼ exp½2pilkðqlÞz�

�
X
G

Ck
GþHðqlÞ exp½2piðGþHþ qlÞ � r>�

¼ exp½2pilkðqlÞz�

�
X
G

Ck
GðqlÞ exp½2piðGþ qlÞ � r>�: ð24Þ

The result is that fkðK;Hþ ql ; r>; zÞ 
fkðK; ql ; r>; zÞ; containing no dependence on the
vector H: Note that the above Bloch wave
expression is identical to the Bloch wave expres-
sion of the block diagonal form, Eq. (16), so
fkðK; ql ; r>; zÞ  cl;kðK; r>; zÞ:
Because there is noH dependence in fk; the sum

over H in the total wave function, Eq. (21), may be
grouped with the excitation amplitudes bk: ButX

H

bkðR;Hþ qlÞ

¼
X
H

C
k *
0 ðHþ qlÞ exp½	2piðHþ qlÞ � R�

� TðHþ qlÞ

¼
X
H

C
k *
H ðqlÞ exp½	2piðHþ qlÞ � R�

� TðHþ qlÞ; ð25Þ

where again we have made use of the periodicity
relations. Now note that the above equation is
identical to the block diagonal expression for the
excitation amplitudes, Eq. (17). So

P
H bkðR;Hþ

qlÞ  al;kðRÞ: Thus Eqs. (21), (24) and (25) describ-
ing the wave function are identical to Eqs. (11),
(16) and (17). The wave functions in the two
formulations are equivalent.
In obtaining the block diagonal form from the

formulation of the previous paper [1], it was shown
that no connection exists between wave functions
described by plane waves with wave vectors which
do not differ by a physical reciprocal lattice vector,
although it initially seemed implied by that model.
In working the phase-linked plane wave approach
towards an equivalent form it was shown, by
subsuming the sum over H into the terms bk and
fk; that a meaningful physical connection exists
between incident plane waves with wave vectors
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differing by a physical reciprocal lattice vector,
although it initially seemed that this was not implied
by that model. This is the insight gained through the
comparison of these models. Thus the useful
physical picture and efficient coding method is the
half-way point between the two formulations.

4. Reciprocity—coherent imaging

In the previous paper [1] it was emphasised that
this Bloch wave formulation for the STEM wave
function in no way made use of assumptions of
reciprocity. However the result of reciprocity is
well established [22–24]; the technique presented
must reproduce it. It shall now be shown that the
phenomenon of reciprocity follows naturally from
this formulation. In this section we will use C to
denote reciprocal space wave functions and c to
denote real space wave functions. Fig. 2 shows
schematically the formation of a diffraction
pattern in STEM and an image in transmission
electron microscopy (TEM).

Consider first the STEM case, taking the
incident wave to originate from a point source.
The reciprocal (Fourier space) representation of
the wave function at the source, labelled (a) in
Fig. 2, is unity

CaðpÞ ¼ 1: ð26Þ

Transmission through the lens, in the reciprocal
space notation, is obtained by multiplication with
the contrast transfer function (CTF) of the lens,
denoted TðpÞ: In addition we must introduce the
phase factor expð	2pip � RÞ to account for the
position of the centre of the lens with respect to a
chosen origin on the crystal surface. The reciprocal
space representation of the wave function at (b) is
then

CbðpÞ ¼ TðpÞ expð	2pip � RÞ: ð27Þ

The real space wave function is simply the Fourier
transform of this

cbðrÞ ¼
X
p

TðpÞ expð	2pip � RÞ expð2pip � rÞ: ð28Þ

We now introduce the concept of the S-matrix.
The S-matrix relates the incident and exit surface
waves. Specifically,Sg;h is the transition amplitude
for the incident plane wave component labelled h

to be transmitted to the exit plane wave compo-
nent labelled g: Sg;h is given by Allen et al. [16]

Sg;h 
X

i

Ci
g expð2pil

itÞC
i *
h : ð29Þ

Using Eq. (29) and the reciprocal space represen-
tation for the entrance surface wave function at (b)
given in Eq. (27), the reciprocal space representa-
tion for the exit surface wave function is

CcðqÞ ¼
X
p

Sq;pTðpÞ expð	2pip � RÞ

¼
X
p

X
i

Ci
q expð2pil

itÞC
i *
p

" #

� TðpÞ expð	2pip � RÞ: ð30Þ

The bright field STEM amplitude is simply the
zeroth component of the above expression

A0 STEM ¼Ccð0Þ ¼
X
H

X
i

Ci
0 expð2pil

itÞC
i *
H

" #

� TðHÞ expð	2piH � RÞ: ð31Þ

STEM TEM

a

b

c a’

b’

c’

Fig. 2. Schematic of electron diffraction in STEM producing a

diffraction image (left) and in TEM to produce an exit surface

image (right).
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Note that this is Eq. (11) of the previous paper [1]
for the diffraction amplitude. There the restric-
tion to the subset of vectors H associated with
the fundamental unit cell was taken as an
assumption. Now it is seen to be a direct
consequence of the concepts underlying the block
diagonalisation.
Now consider the TEM case. The above

treatment followed the standard convention that
the z-direction is identified with the incident beam
direction—down in Fig. 2 for STEM. For the
following treatment of TEM we will break that;
instead we shall retain the z-direction as down,
despite the incident beam direction being up in
Fig. 2. Thus here we shall be propagating
‘‘backwards’’. In order to do so we may be guided
by the rationale that the operations performed
should, if applied to the STEM case described
above, be those which undo the operations
performed there.
With this in mind, propagating ‘‘backwards’’

through the crystal is accomplished in a matrix
sense by multiplying by S	1: To do this we must
neglect absorption (absorption removes the idea-
lised result of reciprocity, though see Pogany and
Turner [25] for a discussion of approximate
reciprocity including inelastic scattering). If we
neglect absorption, then the S-matrix is unitary:
S	1  Sw: Careful consideration of the matrices
then gives

S ¼ C½expð2pilitÞ�DC
w;

S	1 ¼ Sw ¼ C½expð	2pilitÞ�DC
w; ð32Þ

which is also the result obtained by putting t-	 t

in Eq. (29). Examining individual elements

Sw
g;h 

X
i

Ci
g expð	2pil

itÞC
i *
h : ð33Þ

In TEM, as shown in Fig. 2, the incident plane
wave at ða0Þ is given by the reciprocal space
representation

Ca0 ðpÞ ¼ dp;0: ð34Þ

The reciprocal space representation for the wave
function at ðb0Þ may then be obtained by inter-
preting Sw

g;h as the transition amplitude for
incident plane wave labelled h to the exit plane

wave labelled g: So

Cb0 ðhÞ ¼
X
p

Sw
h;pdp;0 ¼ Sw

h;0;

Cb0 ðHÞ ¼
X

i

Ci
H expð	2pilitÞC

i *
0 ; ð35Þ

where we have changed notation h to H to reflect
that in the plane wave case the exit surface wave
comprises only plane waves related to the incident
plane wave by tilts of physical reciprocal lattice
vectors.
As in the STEM case, the positioning of

the lens means that the reciprocal space represen-
tation of the image results from multiplying
the reciprocal space wave function at ðb0Þ
with the complex conjugate of the CTF (corre-
sponding to propagating backwards through the
lens)

Cc0 ðHÞ ¼
X

i

Ci
H expð	2pilitÞC

i *
0 TnðHÞ: ð36Þ

Finally, the real space wave function in the image
plane at ðc0Þ is constructed by inverse Fourier
transform, giving

ATEMðRÞ ¼cc0 ðRÞ

¼
X
H

X
i

Ci
H expð	2pilitÞC

i *
0

" #

� TnðHÞ expð2piH � RÞ: ð37Þ

Note that R has now been used to describe the
position in the image. This usage is different to
that in the STEM discussion. However this
notational subtlety has been tolerated because it
aids a comparison between Eqs. (31) and (37).
Inspection shows that they are the complex
conjugates of one another, in particular they have
the same magnitude. The phase is irrelevant,
since it has little meaning in the diffraction plane
in the STEM case. Thus the reciprocity theorem
for the equivalence of TEM and STEM as
appearing in the literature [22–24] has been
demonstrated from the Bloch wave expression
for the wave function.
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5. Rapid calculation of incoherent scattering

contrast—Bloch wave method

In the previous paper [1], the following
expression for the cross section per unit volume
for inelastic scattering was presented

sðR; tÞ ¼
X

i;j

BijðR; tÞ
X
g;h

Ci
gC

j *
h mh;g

þ 1	
X

i;j

BijðR; tÞ
X
g

Ci
g C

j *
g

" #
m0;0;

ð38Þ

where

BijðR; tÞ ¼ aiðRÞaj * ðRÞ
exp½2piðli 	 lj * Þt� 	 1

2piðli 	 lj * Þt
: ð39Þ

The first term in Eq. (38) represents the
z-integrated dynamical contribution to sðR; tÞ
after absorption, and the second term accounts
for a background contribution from absorbed
electrons. Eqs. (38) and (39) provide a frame-
work for calculating the cross section for any in-
coherent scattering process via the inelastic scat-
tering coefficients mh;g: For TDS this includes
incoherent scattering detected by ADF or back-
scattered electron (BSE) detectors. For ionisation
this includes electron energy loss spectroscopy
(EELS) and energy dispersive X-ray (EDX)
analysis.
We now recast this expression into matrix form.

For clarity we will adopt the following notation.
Cg;i  Ci

gAC; the matrix of eigenvectors. Also we
define Bi;j  BijðR; tÞAB and mh;gAU; where B and
U are m2N � m2N matrices. In this notation the
first subscript labels the rows and the second
subscript the columns of each matrix. We will also
use the superscript T to represent the transpose
of these matrices and their related elements. For
example Cg;i ¼ CT

i;gACT:
We first consider the sum occurring in the

diffuse contribution to the inelastic cross
section.

X
i;j

Bi;j

X
g

Cg;iC
n

g;j ¼
X

i;j

Bi;j

X
g

CT
i;gCn

g;j

¼
X

i;j

Bi;jðCTCnÞi;j

¼
X

j

X
i

BT
j;iðC

TCnÞi;j

¼
X

j

ðBTCTCnÞj;j

¼TrðBTCTCnÞ: ð40Þ

Similarly we may write the dynamical contribu-
tion as

X
i;j

Bi;j

X
h;g

Cg;iC
n

h;jmh;g

¼
X

i;j

Bi;j

X
h

Cn

h;j

X
g

mh;gCg;i

¼
X

i;j

Bi;j

X
h

Cn

h;jðUCÞh;i

¼
X

i;j

Bi;j

X
h

C *T

j;h ðUCÞh;i

¼
X

i

X
j

Bi;jðC*TUCÞj;i

¼
X

i

ðBC*TUCÞi;i

¼ TrðBC*TUCÞ: ð41Þ

Hence the inelastic cross section per unit volume
may be written

sðR; tÞ ¼TrðBC*TUCÞ

þ ½1	 TrðBTCTCnÞ�m0;0: ð42Þ

We now make use of the block diagonal nature of
the eigenvalue problem. Because the matrices C
and U are both block diagonal, the matrix
products C*TUC and CTCn occurring in Eq. (9)
are also block diagonal. Therefore the calculation
of TrðBC*TUCÞ and TrðBTCTCnÞ involves only
terms in the matrix B that correspond to the
sub-matrices CðqlÞ and UðqlÞ and hence only
these terms need be calculated. We shall denote
these sub-matrices as BðqlÞ: Eq. (42) can thus be
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expressed as a sum of traces for each sub-matrix

sðR; tÞ ¼
Xm2

l¼1

Tr½BðqlÞC*TðqlÞUðqlÞCðqlÞ�

þ 1	
Xm2

l¼1

Tr½BTðqlÞC
TðqlÞ

(

� CnðqlÞ�

m0;0; ð43Þ

where CðqlÞ and lðqlÞ [required for the evaluation
of BðqlÞ] are calculated using Eq. (10).
Since the numerical solution of an eigenvalue

problem goes as the third power of the order of the
matrix [26], one may utilise the block diagonal
nature of the problem so that in calculating for the
wave function, rather than solving the eigenvalue
problem for an order m2N matrix [which scales as
ðm2NÞ3�; one can solve the eigenvalue problem for
m2 matrices of order N [which scales as m2ðN3Þ�:
Since fully converged calculations require mC8;
this gives a reduction of computation time of the
order of 103—a considerable gain in the computa-
tional efficiency for this model.
In addition, the dynamical term given in

Eq. (41) scales as the fourth power of the order
of the matrix. Block diagonalisation reduces the
problem from scaling as ðm2NÞ4 to scaling as
m2ðN4Þ: For m ¼ 8 as used above, a reduction in
size of the numerical problem of the order of 105 is
obtained.
The matrix products C*TðqlÞUðqlÞCðqlÞ and

CTðqlÞC
nðqlÞ are independent of probe position

R; the R dependence being confined to the matrix
BðqlÞ: This means that they need only be
calculated once, and only BðqlÞ needs be recalcu-
lated as a function of position. Equivalently, the
summations over g and h occurring in Eq. (38)
need only be calculated once, with cross sections
for subsequent probe positions requiring only
summations over i and j:

6. The small aperture limit for incoherent

contrast—Bloch wave method

The conceptualisation resulting from the block
diagonalisation has been shown to yield a ready

proof of the equivalence between our approach of
matching the whole wave function at the incident
boundary and the technique for the coherent
superposition of phase-linked plane waves. It also
led to a simplification of the inelastic cross-section
expression for perfect crystals. It can further be
shown to lend itself to ready proofs of some well-
known properties of STEM images, namely the
lack of contrast present in STEM images when
the aperture is too narrow to allow transverse
momentum components which differ by a physical
reciprocal lattice vector [20,27].
The statement is commonly seen that coherent

STEM image contrast requires an aperture that
encompasses at least two beams with tangential
component differing by a physical reciprocal
lattice vector [27]. It will now be demonstrated,
in the Bloch wave, block diagonal formalism, that
this is equally true for the case of incoherent
contrast. For completeness, a discussion of the
small aperture limit for coherent contrast is given
in Appendix A.
Consider an aperture of size less than the

magnitude of the smallest (non-forbidden) G

vector which, for normal incidence, will be centred
on the origin of reciprocal space. Thus it is
assumed that

TðHþ qlÞ ¼ dH;0TðqlÞ: ð44Þ

Substituting this into Eq. (17) for the excitation
amplitude in the block diagonal formulation

akðRÞ ¼ C
k *
0 ðqlÞ expð	2piql � RÞTðqlÞ: ð45Þ

Thus all the R dependence is coupled to terms ql :
But the block diagonal formulation has shown
that the contributions from differing ql may be
added together separately. For any given wave
function ql ; the terms Bi0j0 contain R dependence
only through the expression ai0 ðRÞaj0 * ðRÞ which,
from the form of Eq. (45) above, is independent of
R: Thus the resultant images contain no contrast
at all.
Fig. 3 shows a simulation of ADF incoherent

lattice contrast in /1 1 0S ZnS as a function of
aperture size. The magnitude of the smallest
physical reciprocal lattice vector is 0:32 (A	1; which
is just excluded by an aperture with radius
0:16 (A	1: We indeed see a steady reduction in
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contrast as the aperture size is reduced from the
optimal aperture of 0:90 (A	1 to an aperture of
0:16 (A	1; this last giving no contrast.

7. Comparison of the FPh model and the MDFF

model for ADF imaging

That multislice methods have been applied using
both formulations of the boundary conditions
discussed in this paper, see for example Self and
O’Keefe [20], suggests that a multislice algorithm

may also be used to calculate STEM images using
the MDFF method. Such an algorithm has been
presented by Ishizuka [28,29]. A generalisation of
this, incorporating a diffuse background term and
allowing nonlocal as well as local potentials, was
presented in the previous paper [1]. Calculations of
incoherent STEM images in the Bloch wave
and multislice MDFF models have shown that
excellent numerical agreement exists between these
algorithms.
However, before we present one such calcula-

tion, there is another related comparison of
interest. The plane wave theory, of which the
Bloch wave model for incoherent lattice-resolution
contrast described in the preceding paper is a
generalisation, has been used successfully in
calculating channelling contrast as a function of
rocking beam orientation for TDS into ADF or
BSE detectors, as well as for contrast derived from
atomic ionisation events and observed by EELS or
EDX [30–33]. This gives much confidence in the
validity of the method; the generality of the
method is another strong point in its favour. One
noteworthy approximation made is the assump-
tion of single channelling. Since a multislice
MDFF algorithm has been presented, the question
naturally arises as to how the results of these
calculations compare to the FPh model, a multi-
slice model which, though readily applicable only
to ADF simulations, naturally takes double
channelling into account. It is interesting and
instructive therefore to compare three models for
ADF STEM imaging—the Bloch wave MDFF
model, the multislice MDFF model and the
multislice FPh model.
We begin with a very brief summary of the

concepts behind the FPh model, drawing heavily
on the discussions by Loane and co-workers
[4,13,14].
In the MDFF method we deal with the thermal

motion of atoms in an Einstein model using
Debye-Waller factors. In that model, the atoms
are treated as stationary, but the potential is
effectively time-averaged. However it may be
reasoned [13] that the interaction time of the
incident electrons with any particular atom in the
solid is on the order of 10	4 vibrational periods of
the atom. Therefore, any given electron can be said

aperture = 0.30 Å-1

aperture = 0.16 Å-1aperture = 0.20 Å-1

aperture = 0.40 Å-1

aperture = 0.60 Å-1aperture = 0.90 Å-1

Fig. 3. ADF STEM image contrast for the case of electrons

incident along the /1 1 0S zone axis of ZnS, with incident

energy of 200 keV; for different aperture sizes. A spherical

aberration coefficient Cs of 0:05 mm and the corresponding

Scherzer defocus of 129:3 (A have been assumed. The ADF

detector spans 60–160 mrad: The aperture size of 0:90 (A	1 is

the optimal case. The aperture size of 0:16 (A	1 is fractionally

too small to encompass reciprocal vectors differing by a full

physical reciprocal lattice vector and as such the resulting

STEM image has no contrast, as predicted.
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to see a static configuration of atomic positions.
Note that the motion of the atoms means that not
all electrons see this same distribution. Thus
another way to build up a physically reasonable
picture is to determine the average diffraction
pattern for several different thermal configurations
of atomic positions. It may be argued [14] that the
different electrons see different distributions of
atoms which are essentially uncorrelated with one
another. As such, the average taken is incoher-
ent—an average over intensities (rather than
complex amplitudes). This constitutes a Monte
Carlo style integration over phonon configuration
space. This is the essence of the FPh model.
The position of atoms in a specimen for a given

‘‘run’’ are formed by displacing each atom a
distance based on a Gaussian probability distribu-
tion arising from a simple harmonic oscillator
model. Loane et al. [13,14] have demonstrated that
to get a random sampling of phonon configura-
tion space, rather than calculating a new random
slice for each successive ‘‘run’’, it is sufficient to
randomly displace the lattice sites by integer
multiples of the lattice translation vectors in either
direction.
‘‘A natural consequence of explicitly calculating

the scattering from each phonon configuration is
the inclusion of multiple elastic and TDS scatter-
ing to all orders’’ [13]. As such, the images display
a thermal background showing Kikuchi band
structure. In this sense, it may be argued that the
FPh model is theoretically more realistic, though
there is some reason to expect that for ADF
STEM images the integration over the annular
detector is such that the difference between these
two models on this score should be small [6]. It is
this sort of issue that our comparison between the
methods will endeavour, in an empirical sense, to
address.
In conformity with the previous paper, we will

consider the incoherent ADF STEM image result-
ing from scattering through /1 1 0S ZnS. Because
of the computational demands of the FPh model,
only line scans will be shown. Fig. 4 shows the
projected potential for /1 1 0S ZnS with the line
scan denoted explicitly.
The case considered will be a 122:4 (A thick

sample of /1 1 0S ZnS (16 repeat distances along

the propagation direction). The incident energy is
taken as 200 keV: The spherical aberration coeffi-
cient is assumed to be Cs ¼ 0:05 mm; with the
corresponding Scherzer defocus Df ¼ 129:3 (A and
optimal cutoff of 0:90 (A	1: The annular detector is
taken to span the range 40–80 mrad: Fig. 5 shows

Fig. 4. The projected potential for /1 1 0S ZnS. The locations

of columns of Zn and S are shown, as is the line scan used in

Fig. 5.
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Fig. 5. ADF STEM image contrast along the line scan (shown

in Fig. 4) for the case of 200 keV electrons incident along the

/1 1 0S zone axis of ZnS. The spherical aberration is Cs ¼
0:05 mm; with the corresponding Scherzer defocus of Df ¼
129:3 (A and optimal cutoff of 0:90 (A	1: The annular detector is
taken to span 40–80 mrad: It is seen that the two MDFF

formalisms, theoretically equivalent but possessing distinct

encodings, do indeed give virtually identical results. It is seen

that the FPh model is in excellent agreement with the results of

the MDFF models. For this case, the discrepancies between

these single and double channelling models are small.
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the line scans simulated for these parameters in the
Bloch wave MDFF model (solid line), the multi-
slice MDFF model (long dashed line) and the FPh
model (short dashed line). The Bloch wave MDFF
model uses 129 beams in each of the sub-matrices
of the block diagonalised structure matrix and an
8� 8 supercell. The multislice MDFF model used
a 512� 512 grid inside which the unit cell used was
tiled 8� 6 times. For the FPh model, adequate
convergence required a 1024� 1024 grid (the FPh
model being more susceptible to errors in the high
frequency range) inside which the unit cell used
was also tiled 8� 6 times. In the FPh case the unit
cell was sliced as per a higher order Laue zone
(HOLZ) simulation as is the usual practice,
although HOLZ effects are believed to make a
small contribution to ADF imaging [18], a notion
borne out by our calculations.
It is readily seen from Fig. 5 that the agreement

between the two distinct codings of the MDFF
model is excellent. The comparison of the results
of the MDFF model with the FPh model is also
very favourable. This implies that the contribution
to the image from coherently scattered electrons
and the effect of double channelling of thermally
scattered electrons are small for the example
considered here.
The theoretical basis of the FPh model, inher-

ently taking double channelling into account, is
superior to that of the MDFF model (for ADF)
and as such the accuracy of the FPh model will
naturally be preferred in many cases. However
there is another concern which should not be
wholly neglected in choosing between the three
methods discussed and that is computation time.
Let us first neglect the FPh model and consider

only the comparison between the two MDFF
models. For the case of perfect crystals, the block
diagonalisation of the A-matrix makes the Bloch
wave method very efficient for the calculation of
STEM images.1 For such cases the Bloch wave

method is to be preferred. However, consider now
the simulation of diffraction through imperfect
(defect) structures. One standard method of
treating such structures is to use supercells (the
method of periodic continuation [34,35]) and so is
naturally suited to the requirements of STEM
calculations. The multislice MDFF coding is
equally amenable to this case as to the periodic
case, however, as regards the Bloch wave imple-
mentation, the block diagonalisation property is
lost. Thus for such cases it is often the multislice
method that is to be preferred. A further
consideration is that the multislice calculation
time scales linearly with thickness whilst the Bloch
wave calculation time is independent of the value
of the thickness.
We have neglected the FPh model in the above

discussion because the MDFF model is applicable
to any form of incoherent scattering for which the
form factors may be calculated. Such examples
include EDX analysis and EELS. The FPh model
has been primarily restricted to the simulation of
ADF images. If we now consider ADF simulations
then all three models are viable choices. For a
single ‘‘run’’ through the crystal, the FPh model
and multislice MDFF model take the same
amount of computation time. However in order
to adequately sample the phonon configuration
space in the Monte Carlo type integration in the
FPh model, it becomes necessary to propagate
through the crystal many times for each probe
point considered. Our calculations have used 20
points in the Monte Carlo integration, Loane et al.
[14] give a similar number as adequate. Thus while
the FPh model is theoretically preferred, a
converged FPh calculation takes around 20 times
longer than a multislice MDFF calculation.
Accuracy cannot be divorced from the choice of
algorithm, however when there is reason to believe
that the MDFF model will give adequate results

1 It should be noted that the conceptualisation of the coupling

of reciprocal vectors differing by physical reciprocal lattice

vectors, and the decoupling between sets which are not, is a

physical effect and thus not particular to the Bloch wave model.

A Fourier space encoding of the multislice could equally well be

‘‘block diagonalised’’ by separately propagating the different

vector sets. Thus in principle one may, say, perform 8 multislice

(footnote continued)

calculations on 64� 64 grids rather than a single calculation on

a 512� 512 grid. However, it is our experience that the

requirements of adequate sampling in the multislice require the

‘‘block diagonal’’ grids to be large and as such the computa-

tional saving afforded is smaller than that of the Bloch wave

model.
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(as in our test case), its relative computational
simplicity makes it extremely competitive.
Table 1 shows the computation times for the

case shown in Fig. 5, with the exception that the
FPh model times refer to a 512� 512 grid for fair
comparison with the multislice MDFF model
(which computationally corresponds to a small
sacrifice in accuracy of the FPh model). It also
shows how the different algorithms scale with the
number of pixels used in the scan (or image), with
the sample thickness, and, for the FPh case, with
the number of times one traverses the sample in the
Monte Carlo style integration, the ‘‘run’’ number.
Note that the Bloch wave method is not precisely
linear with pixel number since the eigenvalue
problem must be performed in entirety regardless
of the number of points scanned. Once performed,
the remaining time in the Bloch wave calculation
scales linearly with number of points. Note that the
Bloch wave computation time is independent of
crystal thickness. The difference in time between the
multislice MDFF model and the FPh model is
primarily due to the requirement in the latter of
propagating multiple times through the crystal for
each point—20 times in our simulation.
We stress again that accuracy is always the

primary consideration. However, in cases where all
models are of similar validity, the computation
times and scaling behaviour in Table 1 should be
considered carefully in the selection of the algo-
rithm to be used.

8. Summary and conclusions

In the Bloch wave formulation of the previous
paper [1] the boundary conditions for STEM were
applied by requiring continuity of the entire wave

function. It has been shown here that the resultant
A-matrix, which embodies the solution of the
Schr .odinger equation, may be block diagonalised
in the case of perfect crystals. This leads to a more
efficient implementation of that algorithm, but more
importantly gives considerable insight into the
physics of the coupling between the probe and the
electron wave function within the crystal. It has been
seen that plane wave components in the incident
probe which differ by what have been called physical
reciprocal lattice vectors can profitably be treated
together, while those which do not differ by such
vectors do not interact within the crystal.
This conceptualisation led to a proof of the

equivalence with the prevalent method for the
boundary conditions (the coherent superposition
of phase-linked plane waves), an increase in the
efficiency of the cross-section calculation and
simple proofs of some well-known properties of
STEM images. Thus the authors consider this
approach to have, in addition to computational
convenience, much pedagogical merit.
The numerical agreement between the Bloch

wave and multislice methods for calculation of
incoherent lattice contrast in the MDFF method
was presented. The excellent agreement obtained
allows this technique to be applied in a variety of
situations where the particular computational
technique may be selected based on the problem
in question. For fairly simple structures, where the
dependence on parameters such as thickness,
spherical aberration and defocus are of interest,
the Bloch wave method is most apt; it allows ready
simulation of all requisite images while only
solving once for the wave function. Conversely,
for more complex structures, particularly struc-
tures with defects, the multislice method may be
preferred. In such cases it is computationally

Table 1

Comparison of computation times and scaling behaviour between the models

Model Bloch wave MDFF Multislice MDFF FPh

Calculation time for Fig. 5 70 s 420 s 12� 103 s

Scaling with point number Non-linear Linear Linear

Scaling with thickness None Linear Linear

Scaling with ‘‘run’’ number — — Linear

A dash denotes that a category is not applicable to that particular algorithm.
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simpler; the Bloch wave method becomes cumber-
some when block diagonalisation is no longer
possible and the number of beams involved is
large.
The FPh model, which is theoretically preferable

but computationally demanding, was also com-
pared with the MDFF method, with the conclu-
sion that the discrepancy between these models is
in some cases very small. As such, the speed
provided by the latter makes it competitive.
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Appendix A. The small aperture limit for coherent

contrast

It was proven in Section 6 that incoherent
STEM images contained no contrast if the
aperture was too small to admit two beams which
differed by a physical reciprocal lattice vector. A
similar line of reasoning serves to prove the more
common statement that there is no coherent image
contrast as a function of probe position if the
CBED disks do not overlap [20]. The criterion of
no overlap is precisely the criterion that no two
beams in the aperture differ by a physical
reciprocal lattice vector.
The coherent amplitude Ag scattered to a point

g in the far field (diffraction pattern) is obtained by
Fourier transformation of the exit surface wave
function, i.e.

Ag ¼
X

i

Ci
g expð2pil

itÞ
X
h

C
i *
h

� expð	2pih � RÞTðhÞ; ðA:1Þ

where the index h is used for points which lie
within the aperture. A ronchigram [36] is obtained
from the intensity distribution as a function of g
and, if a detector is located at the origin and
the maximum momentum transfer admitted by the
lens, pmax; is sufficiently large [27], a coherent
STEM lattice image jA0ðRÞj2 may be calculated as
a function of probe position R:
Now, choosing a particular direction g ¼ Gþ ql

restricts the i values for which the element Ci
g are

non-zero to a subset Ck
GðqlÞ: So

AGþql
¼

X
k

Ck
GðqlÞ expð2pil

ktÞ

�
X
h

C
k *
h expð	2pih � RÞTðhÞ: ðA:2Þ

This in turn restricts the possible values of h for
which C

k *
h is non-zero, specifically to Hþ ql : Thus

AGþql
¼

X
k

Ck
GðqlÞ expð2pil

ktÞ
X
H

C
k *
H ðqlÞ

� exp½	2piðHþ qlÞ � R�TðHþ qlÞ: ðA:3Þ

Using Eq. (44), which expresses that the aperture is
centred about the origin in reciprocal space (i.e.
the wave vector k is normal to the surface; an
unnecessary but typical condition) we obtain

AGþql
¼

X
k

Ck
GðqlÞ expð2pil

ktÞC
k *
0 ðqlÞ

� expð	2piql � RÞTðqlÞ: ðA:4Þ

The exponential term in R is independent of k and
so may be brought out of the sum as a phasing
term. As a result, the intensity of the g ¼ Gþ ql

diffraction beam, given by jAGþql
j2; is independent

of R; there is no contrast in such an image. This
completes the proof.
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