
Towards a
Supportive Technological Environment

for Digital Art

Greg Turner and Ernest Edmonds
Creativity and Cognition Studios, UTS, Sydney

greg@gregturner.org and ernest@ernestedmonds.com

Abstract

This paper presents the case for extending
programming languages to support digital artists
engaged in technologically-innovative work. The
anticipated result is an “environment for building
environments”, which will need to satisfy certain
technological requirements according to the areas in
which digital artists most need creative support. A
review of these areas is undertaken, and a proposal is
made to capture the specific areas in which digital
artists most need technological support.

1. Context

1.1. Artists are Technology Innovators

Artists, as the quintessential creative workers, give
form to their imaginations. The physical world of
artefacts is very different to the conceptual world of the
imagination, and artists often find themselves pushing
technology forward, creating new artefacts either as part
of, or in order to construct, their art. These new artefacts
present new ways of using and thinking about other
things. In other words, artists are excellent catalysts for
invention.

Specifically, digital artists are responsible for many
of the most exciting advances in human-computer
interaction today, precisely because they are not
exclusively technologists, who “are often taken by
surprise to find that their world can be looked at in
unfamiliar terms” (L. Candy & E. A. Edmonds, 2002, p.
32). The anthropologist Lucy Suchman cites Heidi
Tikka’s 2002 piece Mother, Child as an example of
where the most promising developments in interaction
are coming from (Suchman, 2002). Stephen Wilson
states, “We are at an interesting place in history, in
which it is sometimes difficult to distinguish between
techno-scientific research and art – a sign that broader
integrated views of art and research are developing”

(Wilson, 2002, p. 4). In this sense, digital art is most
interesting to technologists, including the HCI
community, when it is pushing technology forward.

1.2. Artists, like Most People, Struggle
with Computers

The main barrier in attempting to achieve such an
advancement of technology is the lack of understanding,
control, and consequent perceived power over current
technology. This sense of powerlessness over
technology and the onrush of progress is concomitant
with the dystopian future vision often advocated by the
traditional arts and humanities, of a world governed by
technology; the abandonment of the body and thus our
human qualities. For example, Hubert Dreyfus
expresses his fears about today’s Internet, arguing that it
“diminishes one's sense of reality and of the meaning in
one's life.” (Dreyfus, 2001, p. 102). In contrast,
technologists remain more optimistic; in control of their
destiny. Alan Kay said in 1971, “Don't worry about what
anybody else is going to do… The best way to predict
the future is to invent it” (www.smalltalk.org: Alan Kay,
2003). However, thirty years later, he is more neutral,
claiming that “the computer revolution hasn’t happened
yet” (Steinberg, 2003), that computers have helped
scientists and engineers think in entirely new ways, but
have had much less impact on the thinking in other
fields, blaming the lack of new creative environments in
these fields.

Artists have also written books and articles on
programming for other artists: John Maeda describes his
personal perceptions of the relationship between
computation and digital form and introduces the DBN
programming language as a result (Maeda, 1999); Golan
Levin et al. present artwork, case studies and code by
four artists known for their experiments in
computational design (Levin, Ward, lia, & meta, 2001).
However, these and others are accounts of artists who
are also computer scientists, which is to say that they
have also had to overcome the current problems with
learning to control technology.

In Viller & Wyeth (Eds.) Proceedings of OzCHI2003: New directions in interaction, information environments,
media and technology. 26-28 November 2003, Brisbane, Australia: Information Environments Program,
University of Queensland. Copyright the authors and CHISIG

Instead, our goal should be to improve the technology
in order to give artists, and others not primarily
concerned with technology, control over it. That means
not just the power to use technology, but the power to
explore, and hence create technology, and to create with
technology.

Digital artists need to be provided with a creativity
support system, an environment in which to create art. In
the technologically-uninteresting case, one or more off-
the-shelf packages are used, unmodified, as the
environment. In more interesting situations, where
technological innovation is taking place, the
environment is constructed, by a technologist or
technologists, to fit the individual needs of the artist (L.
Candy & E. A. Edmonds, 2002, pp. 2-35). (It is worth
noting that, often, the artist and technologist is the same
person, but for endeavours beyond the technical skills of
the artist, the environment is constructed in conjunction
with a second party.) Such interdisciplinary
collaborations have been classified into three levels: the
technologist-as-assistant model, the partnership-with-
artist-control model, and the full-partnership model
(Mamykina, Candy, & Edmonds, 2002); roughly
according to the passivity of the technologist’s
participation. The technologist’s role in each of these
models is to construct and participate in an environment
which turns the expressive ideas of the artist into
something executable by a computer, and in turn, to
make the processes of the computer intelligible to the
artist (see Figure 1). The expressivity of the computer
comes from both the technologist(s) and the
environment they provide. Hence, the environment, not
the artwork, is the technological creation, so it is the
creation of the environment which needs to be
technologically supported, possibly with a so-called
“environment for building environments” (L. Candy &
E. Edmonds, 2002).

Figure 1. Technologist (right) constructing and
participating in the artist’s (left) creative

environment.

2. The Route
The first step towards providing the necessary

support for environment creation is to ask: Where are we
now? What are artists doing with digital technology
now? Where are they requiring new digital technology?
The converse question: Where are they struggling with
existing digital technology?

2.1. Historical Programming

To illustrate why we need to ask these questions, it is
useful briefly to consider the development of computer
languages to date. There are currently about five
generations of languages (Campbell, 2003), starting with
the zeroth generation, machine code and assembly
language, which are single instructions for the
computer’s processor. From working with these single
instructions, programmers found they were often
working with mathematical expressions, so the first
generation of languages created (FORTRAN I, Algol,
c1954-8) made these common expressions easier to
work with. The second generation (COBOL, Lisp,
c1958-62) added higher-level constructs such as
functions and subroutines. The third generation (Basic,
Pascal, c1962-1970) concentrated on ease of
programming, and interpretive languages. It is no
coincidence that the first digital art appeared at around
this time.

In short, each successive generation of programming
language has arisen from the need to simplify the
computer for the programmer. This is a goal shared with
the HCI community, reinterpreted to encourage
creativity, exploration and power, rather than to “ease”
the completion of a task. (C. Bradley Dilger presents a
well-considered analysis of the concept of “ease” and
describes the paradoxical notion that a technology which
supposedly eases a particular task can actually increase
the complexity of, and skills required for, the completion
of that task (Dilger, 2003).)

To simplify programming, and computing in general,
difficult operations are made more straightforward, and
common operations are sped up. Overall, intelligibility is
improved and the power of the programmer is increased.
Often, and lamentably, the “hood” is closed on the
lower-level technologies, never to be reopened,
inhibiting even interested users from looking at or
changing exactly what is going on, and forcing them to
reinvent old technologies or hack and fudge around the
existing ones.

So-called “high-level” languages are appropriately
named when compared to assembly language, but we
need to keep going. This power should now be spread to
other creative fields, and not continue to be the sole
preserve of the programmer, since programmers are no
longer the sole innovators of computer technology. John
Maeda wrote “There is no greater need for visual design
than rethinking and redesigning programming itself”
(Maeda, 2000, p. 406) – and we should expand this

45

statement to include all forms of digital creativity. The
implication is the eventual abandonment of
programming languages as we know them altogether,
working instead towards generalised creativity support
systems.

2.2. Building upon What We Know

In finding answers to the questions asked at the
beginning of this section, we are identifying the aspects
of digital art development which are currently
unnecessarily difficult, and the aspects that are tedious
and prosaic. These are areas to make quicker and easier
in the new generation of creative environments. We
would also be able to see where the boundaries of
existing practice lie – where the edges are being pushed.

Currently, it is difficult to find answers to these
questions. In general, most digital artists do not publicly
discuss in-depth the technological processes they
underwent in order to create their work – the finished
piece is often seen as the only aspect of importance to
the outside world. Since the environment for creating the
piece (rather than the piece itself) is of paramount
importance to the identification of technological
requirements, the artistic requirements of such
environments must be identified before they can be
satisfied. To achieve this, it will be useful to examine the
general requirements for environments found so far, and
to augment these with a new database of specific
technological experiences and requests of artists.
Information from analysis of the database will allow the
specification of which tools and techniques to provide to
aid the efficient building of new, customised
environments. Such a database would include
information about:

Which existing technologies were used: This will
allow the mapping of current digital art practice
according to technological areas, to indicate trends in
and relationships between technology uses in the arts.

What custom technologies were created: Where
common answers are given, this will serve to highlight
were existing technology is repeatedly failing artists.
Where less common answers are given, this is a guide to
the new technological areas which are the foci of artistic
endeavours and in which artists require most
customisation.

Which hardware and software products were
used: As well as assisting in the above analyses,
individual projects can use this data as a problem-
avoiding/solution-finding device, where the project
exhibits similarities to works in the database.

How the artist achieves control of the technology:
The path of the high-level concept to technological
manipulation and the nature of any collaboration which
took place, either with the technology directly or
indirectly through human collaborators. Analysis of the
results in this category will help to identify the

popularity of techniques that artists employ to impart
their expressivity to a computer.

The technological barriers encountered: What
technological issues or constraints particularly hindered
the development of work. Of particular interest are HCI
issues that can be addressed by technological or design
improvements.

This database may be populated in a number of ways,
each with its own advantages. The database should allow
for all of these levels of information, as each type can
contribute to trend-finding and analysis:

1. At the most basic level, the technological features
externally apparent in digital artwork can be inferred
from the description provided by the artist or others, for
example, the use of animated displays or web
interaction. Such information could be gained merely
from a technologist’s review of existing artwork, and
some examples are given in section 4. This approach is
limiting because it provides no insight into the
developmental process, or even the nature of the
environment used. However, in a publicly-accessible
database, such information does act as a lure for artists
to check over their entry and make additions!

2. A questionnaire completed by the artist would
provide more details, such as the exact technologies used
(for example, the development environment and
manufacturers of equipment used), the nature of any
collaboration, and some idea of the difficulties
encountered. This would be useful because of the ability
to disseminate the questionnaire and to obtain results of
statistical significance, but is limiting in the types of
response sought.

3. The database could also contain the results of
interviews with artists, where open-ended questions
could be asked and clarifications sought, and to which
the artist could add additional observations.

4. Information could also be used from observational
studies of artists and technologists during collaborations,
as exemplified in the “COSTART” projects of the
Creativity & Cognition Studios (L. Candy & E. A.
Edmonds, 2002, ; Edmonds & Candy, 2002). These
studies contain detailed descriptions of the events which
took place during each residency, from the perspectives
of artist, technologist, and an observer, to control for
subjectivity, and are a rich source of empirical data.

In order to demonstrate the technological usefulness
of this approach, the next two sections contain a review
of the technological implications of support for a) the
generalised features of creativity support systems and b)
the specific technological features of digital art which
have been identified so far.

3. Identifiable Generalised Creativity
Support Features

The results of the proposed database will build upon
the work already done in the area of creativity support
tools, in which some generalised features of good

46

creativity support systems have been identified. The
proposed new work will combine these general
guidelines with specific technological requirements in
order to specify and create actual tools for building
environments.

In earlier research, empirical studies were used to
identify some examples of aspects of creative
exploration: Breaking with convention, immersion in the
activity, holistic view, parallel channels of exploration
(Edmonds & Candy, 2002). Ben Shneiderman lists eight
specific operations that should “help more people be
more creative more of the time”: Searching (for
knowledge and inspiration), Visualising, Consulting,
Thinking, Exploring, Composing, Reviewing,
Disseminating (Shneiderman, 2002). In the digital art
domain some of these tasks would be highly interrelated
(for instance, visualisation, exploration and
composition). Michael Terry and Elizabeth D. Mynatt
highlight the need for support of Schön’s theory of
reflection-in-action: near-term experimentation
(previews of the results of actions), longer-term
variations, and evaluation of actions, each demonstrated
in the “Side Views” application (Terry & Mynatt, 2002).

These general requirements map well onto desired
technological features of creative environments. Some
examples of these follow:

3.1. Visualisation

Obviously, all creative environments are dynamic,
interactive systems – even if the finished piece is non-
dynamic and/or non-interactive. Technologically, this
would mean the standard provision of, for example, a
double-buffered graphical display, on more than one
screen, which is capable of showing the artwork and
environmental controls and, if relevant, multi-channel,
multi-tracked audio.

The artist should be able to visualise aspects of the
development in different ways. For instance, a section of
code could be viewed as text, a diagram, a plain- or
pseudo-English explanation (with the aid of metadata to
describe the semantics of the code) or as an interactive
process in which the artist can try inputs and witness the
outputs. The same applies for debugging. For example,
adding a “watch” to a variable which is a y-coordinate
should cause a visual indication of the coordinate to be
overlaid on the space to which it applies.

The work of Manfred Mohr, for example, is centrally
about handling data that can only be visualised with the
aid of a computer, because of its multi-dimensional
complexity (Mohr, 2002), see Figure 2.

3.2. Exploration and Thinking

Generally, as with any interactive system, the
principles of good HCI design (most importantly, user
testing) should be followed. Specifically in this context,
the results of changes made to the environment should
be immediately apparent where possible, either during

execution of the artwork or in preview. Code-
modification during runtime is a feature of some
interpreted programming languages such as Max
(Edmonds et al., 2003), and so-called “late-binding”
virtual machines such as Squeak Smalltalk (Ingalls,
Kaehler, Maloney, Wallace, & Kay, 1997). Manual-
override variable modification during runtime should be
supported.

Yasunao Tone’s work with Creativity and Cognition
Studios used Max/MSP as the basis of a very open
exploration in which, quite deliberately, nobody new
what the outcome might be. In this case exploration into
the unknown was at the core of the approach to the art
(Edmonds et al., 2003).

3.3. Reviewing

As is generally understood (Lieberman & Fry, 1997),
the ability to undo/redo and keep/recover/move previous
versions of the program/artwork is useful, as would be
the ability to artificially slow down or step through a
process in order to understand its behaviour more
clearly.

3.4. Holistic View

The ability to “fold up” complex processes or
structures into simple entities allows the artist to take a
holistic view. This is a feature of many visual
programming languages (Edmonds et al., 2003) and
document-centric creativity support tools (for example,
the “Document Map” feature of MS Word).
Additionally, the functionality (particularly that provided
by the technologist) should be expressible in a way that
is intelligible to the artist.

3.5. Immersion in the Activity

This is not only a physical environmental
requirement, but it is also important not to burden the
artist with the minutiae of operating the interface or
dealing with peripheral tasks. For example, syntax errors
should be fixed automatically or semi-automatically, if
possible. For example, the pedantic requirement for
semicolons at the ends of lines of code should be
removed or reduced to the level of automation to avoid
annoying interruptions to the user’s process. As
mentioned in 3.2, the delay of the code-compile-execute
cycle should be minimised.

3.6. Breaking with Convention

The creative environment should allow the breaking
of its own convention – its own modification and
extension, which, when taken to the extreme, implies
that the environment should be created in (a subset of)
itself, and should allow its own manipulation. Such
recursion is often seen in Art-Technology collaborations
like the one depicted in Figure 1, where the technologist

47

Table 1. Depth of interactivity (input)

Type of Input Additional Technological implications
None (except potentially the passage of time).
e.g. Pictures; film; animation; recorded music

Few, bearing in mind that the artwork may need to
be stopped or restarted.

Simple input: the user or physical environment crosses thresholds or
makes selections, usually continuous along one dimension only.
e.g. Switches; Hyperlinks; Interactive DVD; Simple Motion Sensing;
specifically cubeLife (Everitt, Turner, 2002)

The actions of the user, and possibly the actions of
the program, can be represented in a flow-chart-
style diagram, and be debugged relatively easily.
Some discrete input must be derived, using simple
signal analysis, from continuous input (for
example, sensing a heartbeat).

Complex input: the user or physical environment provides input that can
take a large number of values, permutations, or dimensions, allowing for
greater expressivity.
e.g. Text; Speech; Gesture; Video; Continuous Biosensors; specifically
Iamascope (Fels & Mase, 1999)

There is a need for signal processing and
calibration tools in the environment. For example,
fuzzy logic processing. Debugging is more complex
– manually-overriding the input should be
supported.

Table 2. Depth of interactivity (output)

Type of Output Additional Technological implications
None None. Although conceptual artists may disagree,

we presume that all art has an output of some sort.
Simple output: The art outputs only one result, or one of a discrete set of
results (the intricacy of these results is irrelevant for this case).
e.g. Static art; interactive DVD; linearly-animated art; most “predictable
behaviour” art (see Table 3).

The provision of tools for pre-calculating,
collecting and enumerating these states, if there are
a large number of them, would be useful. The
operation of the artwork might also be described
with flow-charts, or state-event modelling.

Complex output: The art outputs any of an extremely large set of states.
e.g. Virtual environments; generative art

Mathematical modelling, AI and, signal processing
tools are all potentially useful.

places himself in the creative environment which he has
constructed for the artist. In the software world, this is
less common, although several compilers and tools for
programming are written in the very languages they
support.

The environment should also be general. In other
words, every problem that is solvable by computer
should have some solution in the environment
(Campbell, 2003).

A number of examples of such behaviour have been
seen to be partly supported by interpreted visual
programming methods (Edmonds et al., 2003). The
immediacy of feedback and the holistic view provided
seem to be significant factors.

4. Identifiable Creativity Support
Features for Digital Art

The authors examined digital artworks created in
previous studies (L. Candy & E. A. Edmonds, 2002) and
published descriptions of works, e.g. the review by
Stephen Wilson (Wilson, 2002). By considering the
external attributes of these works, it was possible to
begin to map out the specific technological requirements
of the environments which gave rise to them, which
augment the list in the previous section. These external
attributes fall into two general categories – the way
digital artworks are presented, and their apparent

behaviour. (The purpose here is not to “classify” art, nor
to present an exhaustive review, but to show how
considering various aspects and dimensions of art can
help describe future technological requirements.)

4.1. Presentation

Digital art has brought with it artworks which
communicate, or are perceived, in two directions.
Communication takes place on a number of levels, from
the excitation of photons or electrons (the level at which
hardware and software operates) to the ‘obvious’,
concrete object (the level at which both artists and
technologists can communicate), to the ‘subtle’ language
of the work (the level at which artists conceptualise).

The technological communications requirements of
completed artworks are straightforward to identify by
observing them. To support the most common paradigm,
onscreen drawing of 2D output and mouse-and-
keyboard input, would be the trivial case. Common
extensions to simple visual media are more complex
forms such as video and 3D. Of these, 3D output is
particularly difficult to satisfy convincingly, because it
often imposes a “look” on the image as a result of the
use of conventional 3D rendering techniques. Ideally,
artists would be able to modify the rendering engine to
customise the depiction of 3D objects.

48

Saved and printed output should also be provided;
a difficulty arises if there is a need for high-resolution
output. This means that the information for a vector-
based description of the onscreen image should either be
maintained in real-time or calculable off-line, perhaps by
a high-resolution recreation of the actions which formed
the display.

Audio output, via multi-channel, multi-track
waveform or MIDI events should be supported.
However, real-time digital audio processing (as with
digital video processing) is both an extremely complex
and extremely wide-ranging technology, and is likely to
require the ability to communicate with third-party
software for anything more than simple (or created-
from-scratch) applications.

Almost all specialised hardware devices communicate
with the serial, or USB protocol. The environment
should ease the interpretation of the messages which
such devices use to communicate, for example by aiding
the mapping of high-level commands to sequences of
serial data (and vice-versa) and providing visualisation
tools to examine these sequences at a higher level (for
example, video).

A growing number of artworks (and hardware
devices) exhibit some form of communication over a
network. Given the limitations of the Internet Protocol
(IP), these artworks most often communicate in UDP
(change-centric data; not all data must arrive at its
destination) and TCP (event-centric data; all data is
important). Again, aiding the mapping of these messages
to higher-level constructs is useful. In addition, some
artworks may require distribution (one-to-many, or
many-to-many) or storage of messages via a central
server, rather than just communication with one other
computer (one-to-one). Tools for communicating with a
computer not under the control of an artist (for example,
to get the weather) would also be beneficial.

Last but not least, the communication which a
computer has with files is important for storing
information ready to be used at a later time. The three
most ubiquitous types are text files, binary files (difficult
to work with for non-technologists) and SQL databases
(again, an understanding of SQL is currently necessary).
Fast previews and overviews of such files, again where
possible, would aid their design and creation by the
artist.

4.2. Behaviour

Stroud Cornock and Ernest Edmonds classified art
according to behaviour in 1973 (Cornock & Edmonds,
1973). The categories given were Static, Dynamic-
Passive, Dynamic-Interactive and Dynamic-Interactive
(varying). In the light of the present examination of the
digital art climate, we can reconfigure these categories in
order to elicit further technological requirements. Three
axes of behaviour become apparent: depth of
interactivity for both input and output, and complexity of
change. A single artwork may exhibit one or more
characteristics in each axis.
The depth of the interactivity is independent for the
input (see Table 1) and output (see Table 2) media for
any given artwork, and consists of three levels. Each
level, for both input and output, has certain
technological implications for a supportive environment,
beyond those which may arise from other requirements.

The complexity of change in behaviour of an
artwork is an informal ranking of how predictable the
artwork is (see Table 3). This is a subjective
classification, as it depends on the level at which the
artwork is analysed (on a state-event level, every
operation of a computer is inherently predictable.
Conversely, it is often easier to execute the instruction
than to predict its result). The classification here

Table 3. Complexity of change

Level of Complexity Additional Technological implications
Predictable: the artist, and familiarised audience, is able to
predict what should happen in response to certain events.
e.g. Interactive DVD

Bug-finding is relatively easy. Predictable art normally has
discrete input and output, or no input.

Exploratory: the art produces interesting responses to stimuli,
which may be entirely deterministic and comprehensible, but
the affordance of exploration, or new comprehension by the
artist or audience is imperative.
e.g. Manfred Mohr (Mohr, 2002), (see Figure 2); Iamascope
(Fels & Mase, 1999)

Bug-fixing is more complex, as many permutations of complex
inputs and outputs all need to be evaluated. Aids to testing and
process-control displays are paramount.

Emergent-Algorithmic: The computer makes unpredictable
changes as a result of internal calculations or random
decisions.
 e.g. Complex Systems;
Artificial Life; specifically Olivine Trees (Miranda, 2001)
Emergent-Environmental: The computer makes changes to its
behaviour as a result of unpredictable factors outside of its
control, namely humans and natural entities (i.e. the weather)
e.g. AI and Expert Systems

Emergent art calls for extensive experimentation and
debugging before it is exhibited. Additionally, emergent art is
the result of complex systems, so tools to inspect, override,
simulate or replay the complex interactions would be useful.
The science of complex systems is in its infancy so such tools
are not widely available.

49

illustrates the types of exploration and debugging
activities at the human level.

Figure 2. P-701/B, Manfred Mohr,
enduraChrome/canvas, 1999 (from

http://research.it.uts.edu.au/creative/ccrs/
gallery/mmohr/mmohr.htm)

5. Conclusion
The externally-apparent requirements of digital art

and the general requirements for creativity support map
closely onto technological requirements for a supportive
environment for digital art. Digital artworks have
further, distinctive and unique technological
requirements not obvious from an external observer’s
perspective: types of behaviour and calculation not
directly related to output (and simple input); the
technologies used by the environment; and other, new-
technology aspects. The proposed database will assist
greatly in identifying these further requirements, and
thus can be used to actually construct an “environment
for building environments”.

(As a further consideration, technical quality should
not be ignored in meeting the requirements for such an
environment. If recognised, open standards and
protocols are used for depiction, communication and
interaction within the environment, the flexibility,
extensibility, and hence longevity of the artworks will
benefit.)

Existing programming languages are all examples of
creative environments – someone with knowledge, skills
and perseverance can create an environment which does

exactly what is required. The problem is that
programming languages are hardly any good for anyone
without these skills. As Alan Kay remarked, “I thought
we would be way beyond where we are now… The
irony is that today it looks pretty good. The result of our
[Xerox PARC] work is techniques for doing software in
an interesting and more powerful way. That was back in
the seventies. People today aren't doing a lot of work to
move programming to its next phase” (Steinberg, 2003).
The issue for the HCI community in particular is to build
exploratory, rather than task-oriented environments,
since it is exploration which most encourages creativity.

It is time to broaden the focus of creating new digital
technology from new computer tools towards new
creativity support systems, and from the programmer to
the generalised digital creator. In the time to come, the
computer should be moulded by the ideas of anyone who
wishes to create within its possibilities, much as wood or
clay has for millennia. It will become a creative medium
in the truest sense. Digital artists are currently the closest
fit to the ubiquitous digital creators of the future, and it
is their work which is responsible for much of the
innovation in interaction technology today.

6. Acknowledgements
The authors would like to thank the OZCHI reviewers,
Dave Everitt, Keir Smith and Alastair Weakley for their
valuable perspectives and insights on the issues
presented in this paper.

7. References
Campbell, J. (2003). Lessons in Object-Oriented

Programming, from
http://www.cs.qub.ac.uk/~J.Campbell/myweb/oop/oophtml/
node4.html

Candy, L., & Edmonds, E. (2002). Interaction in Art and
Technology. Crossings: eJournal of Art and Technology
(http://crossings.tcd.ie/), 2(1).

Candy, L., & Edmonds, E. A. (2002). Explorations in Art and
Technology: Springer.

Cornock, S., & Edmonds, E. (1973). The Creative Process
Where The Artist Is Amplified Or Superseded By The
Computer. Leonardo(6), 11-16.

Dilger, C. B. (2003). Ease in Composition Studies. PhD
Dissertation, University of Florida, Florida.

Dreyfus, H. L. (2001). On The Internet: Thinking in Action.
New York: Routledge.

Edmonds, E., & Candy, L. (2002). Creativity, Art Practice and
Knowledge. Communications of the ACM, 45(10), 91-95.

Edmonds, E., Candy, L., Fell, M., Knott, R., Pauletto, S., &
Weakley, A. (2003). Developing Interactive Art Using
Visual Programming. Paper presented at the Proceedings of
HCI International 2003, Crete.

Everitt, D. (Artist), G. Turner (Collaborator). (2002). cubeLife:
An Internet-Resident Artwork [Interactive Art];
http://www.cubelife.org.

Fels, S., & Mase, K. (1999). Iamascope: A Graphical Musical
Instrument. Computers and Graphics, 2(23), 277-286.

50

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A.
(1997). Back to the Future: The Story of Squeak, A
Practical Smalltalk Written in Itself. Paper presented at the
OOPSLA'97 Conference, Atlanta, Georgia.

Levin, G., Ward, A., lia, & meta. (2001). 4x4 Generative
Design: Beyond Photoshop: Friends Of Ed.

Lieberman, H., & Fry, C. (1997). ZStep 95, A Reversible,
Animated Source Code Stepper. In J. Stasko, J. Domingue,
M. Brown & B. Price (Eds.), Software Visualization:
Programming as a Multimedia Experience. Cambridge,
MA,: MIT Press.

Maeda, J. (1999). Design By Numbers: MIT Press.
Maeda, J. (2000). Maeda@Media: Thames & Hudson.
Mamykina, L., Candy, L., & Edmonds, E. (2002).

Collaborative Creativity. Communications of the ACM,
45(10), 96-99.

Miranda, E. R. (2001). On the Origins and Evolution of Music
in Virtual Worlds. In D. W. Corne & P. J. Bentley (Eds.),
Creative Evolutionary Systems: Morgan Kaufmann.

Mohr, M. (2002). Generative Art. In L. Candy & E. A.
Edmonds (Eds.), Explorations in Art and Technology:
Springer.

Shneiderman, B. (2002). Creativity Support Tools:
Establishing a framework of activities for creative work.
Communications of the ACM, 45(10), 116-120.

Steinberg, D. H. (2003). Daddy, Are We There Yet? A
Discussion with Alan Kay, from
http://www.openp2p.com/pub/a/p2p/2003/04/03/alan_kay.h
tml

Suchman, L. (2002). Replicants and Irreductions: Affective
encounters at the interface. European Association for the
Study of Science and Technology (EASST).

Terry, M., & Mynatt, E. D. (2002). Recognizing Greative
Needs in User Interface Design. Paper presented at the
Creativity and Cognition Conference 2002, Loughborough,
UK.

Wilson, S. (2002). Information Arts: Intersections of Art,
Science and Technology. Cambridge, Massachusetts: The
MIT Press.

www.smalltalk.org: Alan Kay. (2003). from
http://www.smalltalk.org/alankay.html

51

