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It is shown that pulsar radio emission can be generated effectively through a streaming motion in the
polar-cap regions of a pulsar magnetosphere causing nonresonant growth of waves that can escape di-
rectly. As in other beam models, a relatively low-energy high-density beam is required. The instability
generates quasitransverse waves in a beam mode at frequencies that can be well below the resonant fre-
quency. As the waves propagate outward, growth continues until the height at which the wave frequency is
equal to the resonant frequency. Beyond this point, the waves escape in a natural plasma mode (LO mode).
This one-step mechanism is much more efficient than previously widely considered multistep mechanisms.
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Since the discovery of pulsars in 1967, the mechanism
of generation of their highly nonthermal (brightness tem-
peratures up to 1029 K) pulsed radio emission (in the range
108 1011 Hz) remains one of the most intriguing astro-
physical puzzles [1]. Compact sizes (radius Rp � 106 cm),
fast rotation (period P � 1 s), and superstrong polar mag-
netic fields (B � 1012 G) result in the efficient avalanche
production of an ultrarelativistic pair plasma (Lorentz fac-
tor gp ¿ 1) in the vicinity of the magnetic poles of the
neutron star (see, e.g., Ref. [2]). This plasma flows out-
ward along the open magnetic field lines and escapes the
pulsar magnetosphere as a relativistic wind beyond the
light cylinder, R � cP�2p. In a standard polar-cap model,
a primary beam (Lorentz factor gb ¿ gp) of particles of
one species propagates through a secondary pair plasma
[1]. The superstrong magnetic field of the pulsar implies
a very short lifetime for the electrons and positrons to ra-
diate away all their perpendicular momenta, so that the
plasma distribution is one dimensional. The properties of
this pulsar plasma determine the natural wave modes, and
the problem is to explain how excitation of these modes
occurs and how it produces the observed radiation that es-
capes from the magnetosphere.

It is probable that the radio spectrum forms in the
inner magnetosphere [3], where the infinite magnetic
field approximation is appropriate. The properties of low-
frequency (well below the cyclotron frequency) waves in
a one-dimensional, relativistic pair plasma have been ex-
tensively studied (e.g., Ref. [4] and references therein). It
has been found [5,6] that for a rather wide class of plasma
distributions the natural modes are the electromagnetic t
mode, v � kc, and two mixed (with transverse and lon-
gitudinal components of the electric field vector) modes,
the almost nondispersive Alfvén mode, v � kkyA (here
and hereafter subscripts k and � refer to the direction
with respect to the external magnetic field), and the LO
mode which has a long wavelength cutoff. The LO mode
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is superluminal, v�kk . c, near the cutoff but can be sub-
luminal for sufficiently small angles, u, of propagation at
high frequencies. The critical features of any plausible
mechanism for the radio wave generation can be summar-
ized as follows [5]. Only t waves (which cannot be
generated through a beam instability) and waves which
eventually appear on the LO branch can freely leave the
pulsar magnetosphere. Beam instabilities are widely fa-
vored, and in the pulsar magnetosphere are of hydrody-
namical type, where the whole beam excites the modes,
in contrast to kinetic instabilities which are driven only by
a group of resonant particles [7].

One of the most widely favored scenarios for the ra-
dio emission mechanism involves a resonant instability in
which an energetic beam causes quasilongitudinal sublu-
minal waves to grow. This mechanism encounters cer-
tain difficulties. The first difficulty is that the emission
mechanism is indirect: The postulated growing waves
need to be converted into quasitransverse waves (in the t
or LO modes) via some secondary (e.g., nonlinear) mecha-
nism before they can produce escaping radiation. A di-
rect mechanism in which the escaping waves are gener-
ated directly by the instability would be preferable, and the
mechanism proposed here has this desirable feature. The
second difficulty concerns the beam: When the generation
is attributed to the primary, highly relativistic, gb � 107,
the growth is too slow to be effective. Thus, efficient
beam instability requires a denser, lower energy beam. One
suggestion is that such a beam results from nonstationary
avalanche pair generation [8,9]. Alternatively, even in the
steady avalanche regime, the high-energy tail of the pair
plasma distribution [10] transforms into a dense beam due
to the inverse Compton scattering [11]. The resulting
distribution typically consists of a plasma body with gp �
101 102 and a beam with gb � 103. In the steady case
such a beam forms at about 10Rp . Although existence of
such a beam seems plausible, it is still a model dependent
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assumption. The third difficulty is related to the nature of
the wave generation. Most authors have concentrated on
resonant excitation of parallel (to the magnetic field) propa-
gating modes (Langmuir waves) [4,11–13], where it is
widely believed that there is a sharp maximum of the growth
rate. Growth for slightly oblique propagation has been
considered [5,14] and also found to favor quasilongitudinal
LO waves. Only subluminal waves can be resonantly exci-
ted by a beam. The LO mode becomes subluminal only
at frequencies �gp 3 plasma frequency [5]. Growth is
possible at the resonant frequency, which is just above the
frequency where the waves become subluminal. These LO
waves can eventually escape directly. However, the fre-
quencies are too high to account for the broadband pulsar
emission extending to much lower frequencies (so that a
conversion mechanism to lower frequencies would be re-
quired). Moreover, growth is restricted to a narrow range
of heights in the magnetosphere where the resonance con-
dition is satisfied, restricting the growth factor to too small
a value to allow effective growth [5]. These constraints led
to our relatively pessimist view in [5] of the effectiveness
of direct growth of escaping quasitransverse waves.

In this Letter, we show that a nonresonant version of the
instability causes a beam mode to grow over a broad range
of lower frequencies. These waves can grow over a large
range of heights. As they propagate outward, that ratio of
their frequency to the resonant frequency decreases and,
at the height at which this ratio become unity, they evolve
into LO mode waves, and escape, without any secondary
conversion process being required.

We use the following notation: p � mu is the (one-
dimensional) particle momentum, with m the electron
mass, and y � u�g, g � �1 2 y2�21�2 � �1 1 u2�1�2 is
the particle velocity in units with c � 1. We assume
that the distribution function consists of a pair (p) and a
beam (b) component, f�u� � npfp�u� 1 nbfb�u�, withR

fp du �
R

fb du � 1. We adopt the infinite magnetic
field limit, which is justified in the inner part of the plasma
magnetosphere where the beam-plasma system is formed
[11], and then it is not necessary to distinguish between
electrons and positrons, which contribute in an identical
manner. The dispersion relation for this beam-plasma
system takes the following form [4–6]:

ek �
tan2u

z2 2 1
, (1)

with z � v�kk, kk � k cosu, k� � k sinu, and where
ek � 1 2 �v2

p�k2
k�W�z� 1 eb is the parallel dielectric con-

stant. Here vp � �8pnpe2�m�1�2 (equal electron and
positron densities) is the plasma frequency for the pairs,
W �

R`

2`�y 2 z 2 it�21�dfp�du� du, t ! 10, is the
dispersion function for the pairs; the contribution of the
beam is eb � 2v

2
bg

23
b �v 2 kkyb�22. We consider a

cold beam for simplicity; the cold approximation is justi-
fied when the instabilities are known to be hydrodynamic.
The dispersion relation (1) takes the form
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v
2
b

g
3
b�v 2 kkyb�2

�
z2 2 cos22u

z2 2 1
2

v2
pW �z�

k2
k

� K�z� .

(2)

In the absence of the beam, the dispersion relation for the
natural modes of the pair plasma is K�z� � 0, which can
be written in the parametric form (recall c � 1)

k2
k �

v2
pW�z2 2 1�

z2 2 cos22u
, v2 �

v2
pWz2�z2 2 1�
z2 2 cos22u

. (3)

The inclusion of the beam introduces additional solutions,
called beam modes, and hydrodynamic instabilities may be
attributed to a beam mode becoming intrinsically growing.
The instability is said to be nonresonant when the beam
mode does not coincide with a natural mode of the pair
plasma, and resonant when it does. The contribution of
the beam is significant only when the denominator in the
left-hand side of (2) is small, that is, near z � yb. Writing
v � kkyb 1 dv, jdvj ø jvj, one finds

dv � vbg
23�2
b K�yb�21�2

� vbg
23�2
b

∑
y

2
b 2 cos22u

y
2
b 2 1

2
v2

pW �yb�y2
b

v2

∏21�2

.

(4)

The unstable solution dv � iG, G . 0, exists for
K�yb� , 0, that is, v2 , v2

pW�yb �y2
b�y2

b 2 1���y2
b 2

cos2u�, which requires W�yb� . 0. This is the non-
resonant beam instability which sets on the beam mode
v � kkyb.

The expression (4) becomes invalid for K�yb� ! 0, that
is, where the beam mode v � kkyb resonates with the LO
mode [which is the solution of K�yb� � 0]. In this case,
the right-hand side of (2) should be Taylor expanded up
to the first nonzero term, which immediately gives (see,
e.g., Ref. [4]) Gr � Imdv � �

p
3�2� �v2

b�g
3
bK 0�1�3, with

K 0 � �≠K�≠v�res � 2y
2
bg

4
b tan2u�v 2 v2

py
3
bW 0�yb��v3,

and W 0�z� � dW�dz. For a wide class of distributions the
approximation W 0�yb� � g2

pW �yb� holds. This implies
that the resonant growth rate is insensitive to u & gp�g

2
b ,

and decreases slowly with u * gp�g
2
b. This point is im-

portant in the following discussion: If the growth rate were
very sensitive to u, then a small change in u as the waves
propagate outward along the curved field lines would re-
strict the distance over which growth can occur, and, hence,
severely limit the possible growth factor.

The polarization of the unstable mode is given by
�E��Ek� � tanu�1 2 z2�21 � g

2
b tanu. Thus, the un-

stable mode is quasilongitudinal (E k B0) for u & g
22
b

and quasitransverse (E�B0) otherwise. The polarization
of the growing waves is relatively unimportant in practice:
The polarization evolves as the waves propagate outward,
and the observed polarization may be quite different from
the polarization at the point of emission [15].

The derived expressions give the growth rate for arbi-
trary propagation angle and beam parameters. For small
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u ø 1 and a highly relativistic beam yb � 1 2 1�2g
2
b ,

gb ¿ 1, the growth rate for the nonresonant instability
(4) reduces to

Gn � vbg
21�2
b

∑
v2

pW�yb�
v2

2 1 2 g2
bu2

∏21�2

, (5)

which is a slightly increasing function of u. In the range
g

22
b & u & g

21
b , where the waves are quasitransverse, the

dependence on u is negligible. The maximum unstable
frequency, v2

m � v2
pW�yb���1 1 g

2
bu2�, is also the fre-

quency at which the resonant instability occurs, and it is
also almost independent of u in this range. We conclude
that under quite general conditions the beam instability
generates weakly oblique, quasitransverse waves with a
similar efficiency to that for quasilongitudinal waves.

To illustrate the results in the simplest possible way,
we use the cold plasma approximation, fp � d�u 2 up�.
In this case, one has W�z� � g23

p �z 2 yp�22. The para-
metric equations (3) become k2

k � v2
p�z2 2 1��g3

p�z2 2

cos22u� �z 2 yp�2, v � kkz. For small u and gb ¿

gp ¿ 1, the growth rate of the nonresonant instability
becomes

Gn � vbg
23�2
b �4v2

pgp�v2 2 1 2 g2
bu2�21�2. (6)

Thus, the growth rate for the resonant instability also de-
creases monotonically with increasing u. Although these
results are derived using the cold plasma expressions, as
we plan to show in detail elsewhere, they are illustrative of
a rather wide class of distributions due to the fact that the
hydrodynamic instability is insensitive to the details of the
beam distribution.

For small propagation angles u & 1�gb , the growth
rates are almost independent of u, and we can use the fol-
lowing approximations. In the ultrarelativistic limit gb ¿
gp ¿ 1, one has Gn � vbg23�2

b
�4v2

pgp�v2 2 1�21�2.
For low frequencies, v ø 2vpg1�2

p , this expression sim-
plifies to Gn � vvb�2vpg3�2

b
g1�2

p . The resonant fre-
quency is vr � 2vpg1�2

p , and the resonant growth rate

is Gr � 31�2224�3�vpv
2
b�1�3�gbg1�2

p . Note that Gn�v �

vr ��Gr � �gp�gb�1�2�nb�np�1�3 implies that for moder-
ate npgp�nbgb the ratio of the two growth rates is of the
order of unity. One can approximate the growth rate in the
whole range by G � �v�2g3�2

b
g1�2

p �H�vr 2 v�, where
H�x $ 0� � 1 and H�x , 0� � 0. This approximation is
also valid if the above ratio is small, except in a narrow
frequency range around that resonant frequency. We ex-
ploit this approximation in our estimates below. Note that
the condition gb ¿ gp is made for simplicity, and it is not
an essential condition for the instability to operate.

The direct excitation of quasitransverse waves is a fast
process, faster than any nonlinear conversion mechanism.
Let the growth rate be G�v�, which is a function of the
plasma parameters, np , nb , gp , gb, and np , through which
it depends on the radius, R from the center of the star.
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The wave amplitude evolves according to �dav�dt� �
G�v, R�av . With the plasma streaming outward at close
to the speed of light, the solution implies av�R� �
av�R0� exp�

R
R
R0

G�v, R�dR�, where R0 is the radius
where the instability sets in. The power spectrum of the
escaping radiation is proportional to the square of this
amplitude.

In a homogeneous static plasma, the fastest growing
mode is the resonant one, and one might expect that the
resonant frequency ultimately dominates the spectrum. In
the inhomogeneous plasma of the pulsar magnetosphere,
the conditions change with the radius. A wave which is ex-
cited at the frequency v at radius R0 propagates outward
into the lower density plasma. A wave initially at reso-
nance does not remain resonant as it then propagates. The
frequency width of the resonance is �Gr ø vr , where
Gr ~ vr ~ n1�2 ~ R23�2. For a given v, the resonant
condition jv 2 vr�R�j & Gr �R� is satisfied only for a
small DR�R � Gr�vr . As a consequence, the resonant
growth condition can be met only for a short time, and
effectively only at a single height in the magnetosphere,
which places a severe restriction on the gain factor G �
exp�2

R
G dR�. It is the gain factor G which determines the

efficiency of the wave generation and not the local growth
rate G. It was for this reason that a pessimistic view of the
effectiveness of the resonant instability was taken in [5].
However, a wave at a given v can grow nonresonantly for
v & vr , and the slightly lower growth rate for the non-
resonant instability, compared with the resonant instability,
is relatively unimportant compared with the much greater
distance over which nonresonant growth occurs. The much
longer growth path through the magnetosphere results in
a much larger gain factor. We note that during the propa-
gation the wave vector, in general, deviates from the ini-
tial propagation direction, so that the propagation angle
u changes, and, in principle, this would limit the growth
if the wave moves out of resonance as u increases. This
issue will be studied elsewhere. A wave that starts grow-
ing nonresonantly with v ø vr at some radius, R0, keeps
growing while propagating outward until vr ~ R23�2 de-
creases to vr � v. At this resonant point, the beam mode
joins onto the LO mode [16]. Beyond this point amplifi-
cation ceases and the wave escapes as in the LO mode.

Let us estimate the gain factor using the approxi-
mation for Gn for the cold plasma case, assuming gp

and gb do not change during the outflow, with vr ~
n1�2

p ~ R23�2 [1]. The gain factor at a given v is G �
exp�2

R
`
R0

G�v, R� dR� � exp�2�vb0R0�g3�2
b

�x�x22�3 2
1��, where vp0 is the plasma frequency at R � R0,
and x � v�2vp0g1�2

p . The factor G is a maximum
at x � 0.2 and, reverting to ordinary units, Gmax �
exp�0.25vb0R0�cg3�2

b
�. For numerical estimates we use

the following parameters: P � 1 s, B � 1012 G, np �
MnGJ � 102 3 6 ? 1010 cm23 (near the pulsar surface),
gp � 10 [10,17], gb � 103, nb�np � 1, and R0 � 10Rp

[11]. This immediately shows that the maximum is
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achieved at v�2p � 500 MHz. The corresponding gain
factor exp�G� � exp�30� � 1012, which implies efficient
growth. Lower multiplicities would result in lower maxi-
mum gain frequencies. Lower gb, on the other hand,
would make the instability more efficient. Better knowl-
edge of the pulsar plasma parameters is required for direct
comparison of our predictions with observations. The
above estimate is invalid for low frequencies, correspond-
ing to wave excitation at very large radii R . 102R0. At
such radii, one has vr � V�gp [6], where V is the
gyrofrequency, and then the infinite magnetic field ap-
proximation is no longer valid. Thus, there should be a
significant decrease of efficiency of wave growth at low
frequencies. Specifically, using parameters chosen by
Ref. [6], the spectrum should be cut off for v�vr , 1023.

Let us summarize the predictions of the proposed model.
Quasitransverse waves are generated efficiently in a wide
frequency range below vp0g1�2

p for small angles of propa-
gation. The power spectrum of the escaping radiation is
assumed ~ G2, where G is the gain factor, and there is
a maximum in G2 at the frequency vmax � 0.1vp0g1�2

p .
The efficiency of wave growth decreases at both v ,

vmax and v . vmax, and the rate of decrease [steepness
of the curve G�v�] increases with the distance from vmax.
The implied form of spectrum is consistent with observa-
tions (e.g., Ref. [1]).

We conclude that the nonresonant beam instability effi-
ciently generates quasitransverse waves in the radio range
in a one-step process. The growing waves are in a beam
mode well below the resonant frequency. As these waves
propagate outward through the magnetosphere, they evolve
into the LO mode when their frequency matches the reso-
nant frequency. It is also the place where the growth ceases
and, therefore, the spectrum forms. This emission mecha-
nism plausibly reproduces the basic features of the ob-
served radio spectra of pulsar, notably the existence of a
maximum frequency with the spectrum steepening towards
both higher and lower frequencies. However, a detailed
interpretation of the observed power spectra requires that
the emission mechanism proposed here be complemented
with a statistical model for the emission. The observed
spectra are obtained by integration over many pulses, and
each pulse probably involves emission from a statistically
large number of individual beams. Moreover, there re-
mains a potential problem in explaining the lowest fre-
quencies inferred for some pulsar emission: Although
121101-4
the nonresonant model allows emission considerably be-
low the resonant frequency, a more detailed investigation
is required to determine whether the frequency range can
extend low enough. A more detailed model for pulsar ra-
dio emission based on the mechanism proposed here will
be presented elsewhere.
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