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Abstract. In this paper, we will be following the historical development of
the law of quadratic reciprocity leading up to its proof.

1. Introduction

The law of quadratic reciprocity was an important breakthrough in number
theory. It can be stated today in the following form:

For two distinct odd primes, p and q,(
p

q

)(
q

p

)
= (−1)(

p−1
2 )( q−1

2 ), where
(

p

q

)
represents the Legendre symbol of p and q.

We will start in Section 2 by giving a brief historical sketch of the problem. In
Section 3 notations used in quadratic reciprocity such as the Legendre symbol
and its related counterparts will be defined. In Section 4, we will cover some of
Euler’s conjectures as well as Euler’s criterion and the supplements to quadratic
reciprocity. We will also discuss Legendre’s work on the theorem and outline his
attempted proof in Section 5. Section 6 and 7 will give proofs of the main result.
To conclude, Section 8 will deal with some applications and examples.

2. History

Euler first stated the theorem in 1783 but without a proof. Legendre gave the
first proof in 1785 but it contained errors. And, finally in 1796, Gauss published the
first correct proof. [Weisstein, http://mathworld.wolfram.com/Quadratic Reciproc-
ityTheorem.html] Gauss claimed the proof as his own without mentioning that he
was improving Legendre’s work. Legendre was very hurt by this and wrote:

This excessive impudence is unbelievable in a man who has suffi-
cient personal merit to have need of appropriating the discoveries
of others. [O’Connor]

Gauss published eight proofs of the quadratic reciprocity law throughout his life
and claimed this theorem as being his favorite in number theory. According to
John Stillwell, this is the most proved theorem in mathematics, after Pythagoras’
theorem [Stillwell, p.162]. Today, there are more than 200 proofs published by a
large number of mathematicians. The date of publication and authors of the first
196 proofs are listed in the appendix.
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3. Notations: Legendre and Jacobi symbols

Definition 3.1. The Legendre symbol, sometimes called the quadratic character
symbol, is defined for distinct odd primes p and q by:(

p

q

)
=
{

1 if p is a quadratic residue of q
−1 if p is a quadratic non-residue of q

It satisfies the following properties [Weisstein, http://mathworld.wolfram.com/
LegendreSymbol.html]: ( n

m

)(n′

m

)
=
(

nn′

m

)
(

n2

m

)
= 1( n

m

)
=
(

n′

m

)
if n ≡ n′ mod m(

−1
m

)
= (−1)

m−1
2 =

{
1 if m ≡ 1 mod 4
−1 if m ≡ −1 mod 4(

2
m

)
= (−1)

m2−1
8 =

{
1 if m ≡ ±1 mod 8
−1 if m ≡ ±3 mod 8

This symbol simplifies the notations while calculating quadratic residues and
therefore, has been very useful for the proofs of the law of quadratic reciprocity.

As we study quadratic reciprocity, it is important to be informed about the
Jacobi symbol which is a generalization of the Legendre symbol. It first appeared
in Jacobi’s paper Über die Kreistheilung und ihre Anwendung auf die Zahlentheorie,
in 1837 [Lemmermeyer].

Definition 3.2. The Jacobi symbol is defined for positive, odd and relatively prime
integers n and m (not necessarily primes numbers) as( n

m

)
=
(

n

p1

)a1
(

n

p2

)a2

. . .

(
n

pk

)ak

where m = p1
a1p2

a2 . . . pk
ak is the prime factorization of m and

(
n
pi

)
is the Legendre

symbol.

The Jacobi symbol satisfies the same properties as the Legendre symbol [Weisstein,
http://mathworld.wolfram.com/JacobiSymbol.html].

The quadratic reciprocity law stated at the beginning of this paper is in fact the
quadratic reciprocity law of the Legendre symbol.

Theorem 3.3. The quadratic reciprocity law of the Jacobi symbol is stated as the
following [Komatsu]:(m

n

)( n

m

)
= (−1)

m−1
2

n−1
2 + sgnm−1

2
sgnn−1

2

Proposition 3.4. The properties of the Jacobi symbol are sometimes stated in the
following way [Komatsu]: (

−1
n

)
= (−1)

n−1
2 + sgnn−1

2
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(
2
n

)
= (−1)

n′−1
4 where n′ = (−1)

n−1
2 n

and can be reduced to two of the properties stated above for the Legendre symbol.

Proof.
• 3.4 First Property

If n > 0, then sgnn−1
2 = 1−1

2 = 0
⇒
(−1

n

)
= (−1)

n−1
2 + sgnn−1

2 = (−1)
n−1

2

If n < 0, then
(−1

n

)
=
(
−1
−n

)
since − 1 ≡ a2 mod n means − 1 − a2 =

kn for some k, or equivalently, (−k)(−n) so − 1 ≡ a2 mod − n

⇒
(−1

n

)
= (−1)

n−1
2 + sgnn−1

2 = (−1)
n−1

2

Therefore,
(−1

n

)
= (−1)

n−1
2 for all n.

• 3.4 Second Property

Let’s suppose n ≡ 1 mod 8
⇒ n = 8k + 1 ⇒ n′ = (−1)

8k
2 (8k + 1)

⇒
(

2
n

)
= (−1)

n′−1
4 = (−1)

8k
4 = 1 = (−1)

n2−1
8

Let’s suppose n ≡ −1 mod 8
⇒ n = 8k − 1 ⇒ n′ = (−1)

8k−2
2 (8k − 1)

⇒
(

2
n

)
= (−1)

n′−1
4 = (−1)

−8k
4 = 1 = (−1)

n2−1
8

Let’s suppose n ≡ 3 mod 8
⇒ n = 8k + 3 ⇒ n′ = (−1)

8k+2
2 (8k + 3)

⇒
(

2
n

)
= (−1)

n′−1
4 = (−1)

−8k−4
4 = −1 = (−1)

n2−1
8

Let’s suppose n ≡ −3 mod 8
⇒ n = 8k − 3 ⇒ n′ = (−1)

8k−4
2 (8k − 3)

⇒
(

2
n

)
= (−1)

n′−1
4 = (−1)

8k−4
4 = −1 = (−1)

n2−1
8

Therefore,
(

2
n

)
= (−1)

n2−1
8 for all m and n, relatively prime integers.

�

The Kronecker’s symbol is another generalization of the Legendre symbol but it
will not be discussed here. From now on, the quadratic reciprocity law discussed
will be that of the Legendre symbol.

4. Euler’s Criterion

Although Euler offered no proof to the law of quadratic reciprocity, he did make
the following conjectures which are equivalent to the theorem [Stillwell]

Let p and q be two distinct odd primes.
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• When p and q are both of the form 4n+3 then p is a square (mod q) ⇐⇒
q is not a square (mod p).

• Otherwise, p is a square (mod q) ⇐⇒ q is a square (mod p).
Euler also stated and proved the theorem that is known today as Euler’s crite-

rion. We will state it here.

Theorem 4.1. (Euler’s Criterion) For an odd prime p, and a an integer relatively
prime to p, (

a

p

)
≡ a

p−1
2 (mod p),

or, alternatively,

a is a square (mod p) ⇐⇒ a
p−1
2 ≡ 1(mod p).

Euler gave his proof of this criterion using a result called Fermat’s little theorem
which then led to the proofs of two special cases of quadratic reciprocity. These are
referred to as the first and second supplements to quadratic reciprocity, and they
examine the quadratic character of -1 and 2 with respect to a given odd prime p.
We will now state the supplements.

Theorem 4.2. (First supplement to quadratic reciprocity)
For an odd prime p,(

−1
p

)
= (−1)

p−1
2 =

{
1 if p = 4n + 1;
−1 if p = 4n + 3.

This simply means that -1 is a quadratic residue of primes of the form 4n + 1, and
-1 is a quadratic non-residue of primes of the form 4n + 3.

(Second supplement to quadratic reciprocity)(
2
p

)
= (−1)

p2−1
8 =

{
1 if p = 8n± 1;
−1 if p = 8n± 3.

In this case, 2 is a quadratic residue of primes of the form 8n±1, and is a quadratic
non-residue of primes of the form 8n± 3.

The supplements to quadratic reciprocity can be proven using Euler’s criterion.
Yet, it should be noted that Fermat seems to have known the quadratic character of
2 with respect to any odd prime even before Euler’s Criterion was stated [Stillwell].
It is unclear, however, what methods Fermat based this knowledge on.

5. Adrien-Marie Legendre (1752-1833)

The paper presented to the Academy by Legendre in 1785 contained the following
theorems [Lemmermeyer, p.6]:

Theorem 5.1. Consider the primes a,A ≡ 1 mod 4 and b, B ≡ 3 mod 4

• Théorème I Si b
a−1
2 = +1, il s’ensuit a

b−1
2 = +1.

• Théorème II Si a
b−1
2 = −1, il s’ensuit b

a−1
2 = −1.

• Théorème III Si a
A−1

2 = +1, il s’ensuit A
a−1
2 = +1.

• Théorème IV Si a
A−1

2 = −1, il s’ensuit A
a−1
2 = −1.

• Théorème V Si a
b−1
2 = +1, il s’ensuit b

a−1
2 = +1.

• Théorème VI Si b
a−1
2 = −1, il s’ensuit a

b−1
2 = −1.
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• Théorème VII Si b
B−1

2 = +1, il s’ensuit B
b−1
2 = −1.

• Théorème VIII Si b
B−1

2 = −1, il s’ensuit B
b−1
2 = +1.

Legendre gave complete proofs for theorem I, II and VII. The proof of theorem
VIII was based on a theorem that was only later proved by Dirichlet: Let a and
b be positive integers; if gcd(a,b) = 1, then there exist infinitely many primes ≡ a
mod b. Legendre later gave complete proofs of theorem VII and VIII using Pell’s
equation but never succeeded in giving satisfactory proofs of theorems III-VI. This
came from the fact that the role of Dirichlet’s theorem in quadratic reciprocity was
unclear but Gauss later proved that quadratic reciprocity is in fact a corollary of
this theorem [Lemmermeyer, pp.6-8].

6. Gauss’ third proof

Gauss finally succeeded in discovering the first complete proof of the law of qua-
dratic reciprocity in 1796. This first proof used induction and was “a long and
ugly proof” [Stillwell]. We will not state this proof, but rather, we will give the
third published proof of the law (which is actually Gauss’ fifth discovered proof,
although it was published before his third and fourth) since the latter is considered
by Gauss and many others to be “the most direct and elegant of his eight demon-
strations” [Smith]. Gauss’ pride towards this particular proof can be viewed in the
introduction to his third proof wherein he wrote the following:

For a whole year this theorem tormented me and absorbed my
greatest efforts until at last I obtained a proof given in the fourth
section of the [Disquisitiones Arithmeticae]. Later I ran across three
other proofs which were built on entirely different principles. One
of these I have already given in the fifth section, the others, which
do not compare with it in elegance, I have reserved for future publi-
cation. Although these proofs leave nothing to be desired as regards
rigor, they are derived from sources much too remote, except per-
haps the first, which however proceeds with laborious arguments
and is overloaded with extended operations. I do not hesitate to
say that till now a natural proof has not been produced. I leave
it to the authorities to judge whether the following proof which I
have recently been fortunate enough to discover deserves this de-
scription [Smith].

We will proceed with the proof following Gauss which relies on Gauss’ lemma
as well as some key results obtained using the floor function to conclude the final
result. It is taken from a translation of Gauss’ proof contained in David Eugene
Smith’s publication: A Source Book in Mathematics [Smith].

Theorem 6.1. (Gauss’ lemma) Let p be a positive prime number and let k be any
number not divisible by p. That is, gcd(k,p)=1. Further let

A =
{

1, 2, 3, ...,
(p− 1)

2

}
and let B =

{
(p + 1)

2
,
(p + 3)

2
, ..., p− 1

}
.

We determine the smallest positive residue modulo p of the product of k by each
of the numbers in the set A. These will be distinct and will belong partly to A and
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partly to B. The set of products will be{
k, 2k, 3k, ...,

(p− 1)
2

k

}
(mod p).

If we let µ (which is now called the characteristic number [Andrews]) be the
number of these residues belonging to B, then k is a quadratic residue of p or a
quadratic non-residue of p according as µ is odd or even.

ie. (
k

p

)
= (−1)µ.

Proof. Let a, a′, a′′, ... be the residues belonging to the set A and b, b′, b′′, ... be those
belonging to B. Then the complements of these latter: (p− b), (p− b′), (p− b′′), ...
are not equal to any of the numbers a, a′, a′′, ..., for if we take a = nk ∈ A and
b = mk ∈ B where mk and nk are elements from the set of products {tk|t ∈ A}
then a ≡ p − b(mod p) =⇒ nk ≡ p −mk(mod p) =⇒ nk ≡ −mk(mod p) =⇒ n ≡
−m(mod p). However, this is impossible since m and n belong to A and hence are
both less than p−1

2 . Thus, the complements (p − b), (p − b′), (p − b′′), ... belong to
A and are distinct from the numbers a, a′, a′′, ... and together these numbers make
up the p−1

2 elements of the set A.
Consequently, we have

(1)(2)(3) · · ·
(

p− 1
2

)
= (a)(a′)(a′′) · · · (p− b)(p− b′)(p− b′′) · · · (mod p).

Since p−b ≡ −b (mod p) and since there are µ bi’s, the right-hand product becomes:(
p− 1

2

)
! ≡ (−1)µ(a)(a′)(a′′) · · · (b)(b′)(b′′) · · · (mod p)(

p− 1
2

)
! ≡ (−1)µ(k)(2k)(3k) · · · (p− 1)

2
k (mod p)(

p− 1
2

)
! ≡ (−1)µk( p−1

2 )
(

p− 1
2

)
! (mod p)

Hence
1 ≡ (−1)µk( p−1

2 ) (mod p).

That is
k( p−1

2 ) ≡ ±1 (mod p)

according as µ is even or odd. So our theorem follows from Euler’s Criterion (refer
to Theorem 4.1).

�

We will now introduce some convenient notations which will be used for the rest
of the proof.

• Let the symbol (k, p) represent the number of products among k, 2k, 3k, ..., (p−1)
2 k

whose smallest positive residue modulo p exceeds p
2 , that is (k, p) = µ from

Gauss’ lemma (Theorem 6.1).
• Further, if x is a non-integral quantity we will express by the symbol [x]

the greatest integer less than x so that x− [x] is always a positive quantity
between 0 and 1 ie.[x] is the floor function.
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We can readily establish the following relations using the floor function. The first
four are general properties whereas (5)-(9) relate the floor function to congruence
classes, the quadratic character of a number with respect to a given prime, and
Gauss’s lemma. From these we will derive some important results which will lead
us to our proof of quadratic reciprocity.

(1) [x] + [−x] = −1.
(2) [x] + b = [x + b], whenever b is an integer.
(3) [x] + [b− x] = b− 1.
(4) If x− [x] < 1

2 , then [2x]− 2[x] = 0.
If x− [x] > 1

2 , then [2x]− 2[x] = 1.

We now relate the above relations to congruence classes.
(5) If the smallest positive residue of b (mod p) < p

2 then
[

2b
p

]
− 2

[
b
p

]
= 0.

If the smallest positive residue of b (mod p) > p
2 then

[
2b
p

]
− 2

[
b
p

]
= 1.

(6) From (5), we use the products k, 2k, 3k, ..., p−1
2 k as different values for b

and add them up. This gives us the total number of these products whose
smallest positive residue is greater than p

2 . Now recall from Gauss’ lemma
(Theorem 6.1) that this number is µ, the characteristic number of k with
respect to p. That is

(k, p) =
[
2k

p

]
+
[
4k

p

]
+
[
6k

p

]
+...+

[
(p− 1)k

p

]
−2
[
k

p

]
−2
[
2k

p

]
−2
[
3k

p

]
...−2

[
(p− 1)k/2

p

]
.

(7) The following lemma demonstrates the relationship between
(

k
p

)
and

(
−k
p

)
.

Lemma 6.2.(
k

p

)
=
(
−k

p

)
⇐⇒ p− 1

2
is even. ie. p = 4n + 1.

(
k

p

)
= −

(
−k

p

)
⇐⇒ p− 1

2
is odd. ie. p = 4n + 3.

Proof. From (6) and (1) we obtain without difficulty

(k, p) + (−k, p) = −p− 1
2

+ 2
p− 1

2
Hence,

(k, p) + (−k, p) =
p− 1

2
(∗)

From (∗):
• If p = 4n+1, then p−1

2 will be even. Thus (k, p) and (−k, p) must both
be even or both be odd since they add up to an even number. Recall
from Gauss’ lemma (Theorem 6.1) that (k, p) even =⇒

(
k
p

)
= 1 and

(k, p) odd =⇒
(

k
p

)
= −1.

So when (k, p) and (−k, p) are both even we have(
k

p

)
= 1 =

(
−k

p

)
,
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and when they are both odd we have(
k

p

)
= −1 =

(
−k

p

)
.

• If p = 4n + 3, then p−1
2 will be odd. So the sum (k, p) + (−k, p) is odd

and it follows that one of (k, p) and (−k, p) must be odd and the other
must be even

�

Corollary 6.3. It is evident that in the first case, -1 is a quadratic residue
and in the second a quadratic non-residue of p since we know that (1, p) is
always even. This is another derivation of the first supplement to quadratic
reciprocity(refer to Theorem 4.2).

(8) Our next lemma provides us with another formula for (k, p).

Lemma 6.4. • When p is of the form 4n + 1,

(k, p) =
(k − 1)(p− 1)

4

−2
{[

k

p

]
+
[
3k

p

]
+
[
5k

p

]
+ ... +

[
(p− 3)k/2

p

]}
−
{[

k

p

]
+
[
2k

p

]
+
[
3k

p

]
+ ... +

[
(p− 1)k/2

p

]}
• When p is of the form 4n + 3

(k, p) =
(k − 1)(p + 1)

4

−2
{[

k

p

]
+
[
3k

p

]
+
[
5k

p

]
+ ... +

[
(p− 1)k/2

p

]}
−
{[

k

p

]
+
[
2k

p

]
+
[
3k

p

]
+ ... +

[
(p− 1)k/2

p

]}
Proof. We transform the formula given in (6) as follows: From (3) we have[

(p− 1)k
p

]
= k − 1−

[
k

p

]
,[

(p− 3)k
p

]
= k − 1−

[
3k

p

]
,[

(p− 5)k
p

]
= k − 1−

[
5k

p

]
, ...

where we have set

b = k and x =
(p− i)k

p
for i = 1, 3, 5, ...

When p is of the form 4n + 1, we apply these substitutions to the p−1
4

corresponding terms as follows:
From (6) we have

(k, p) =
[
2k

p

]
+
[
4k

p

]
+...+

[
(p− 5)k

p

]
+
[
(p− 3)k

p

]
+
[
(p− 1)k

p

]
−2
[
k

p

]
−2
[
2k

p

]
...−2

[
(p− 1)k/2

p

]
.
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We make the substitutions to get

(k, p) =
[
2k

p

]
+
[
4k

p

]
+...+k−1−

[
5k

p

]
+k−1−

[
3k

p

]
+k−1−

[
k

p

]
−2
[
k

p

]
−2
[
2k

p

]
...−2

[
(p− 1)k/2

p

]
.

When we gather like terms we have

(k, p) =
(k − 1)(p− 1)

4
− 2

[
k

p

]
−
[
k

p

]
− 2

[
2k

p

]
+
[
2k

p

]
− 2

[
3k

p

]
−
[
3k

p

]
...

−2
[
(p− 3)k/2

p

]
−
[
(p− 3)k/2

p

]
− 2

[
(p− 1)k/2

p

]
+
[
(p− 1)k/2

p

]
,

and consequently,

(k, p) =
(k − 1)(p− 1)

4

−2
{[

k

p

]
+
[
3k

p

]
+
[
5k

p

]
+ ... +

[
(p− 3)k/2

p

]}

−
{[

k

p

]
+
[
2k

p

]
+
[
3k

p

]
+ ... +

[
(p− 1)k/2

p

]}
.

Similarly, when p is of the form 4n+3, we apply such substitutions; however,
we apply them to p+1

4 terms instead of p−1
4 terms. �

(9)

Corollary 6.5. In the special case k = 2 it follows from lemma 6.4 that

(2, p) =
{

p−1
4 if p = 4n + 1

p+1
4 if p = 4n + 3

,

which is equivalent to the second supplement to quadratic reciprocity (Refer
to Theorem 4.2). This works out for 2 since each term in the square brackets
of our lemma is less than 1 and thus each floor function goes to zero.

Our next theorem will provide us with a relationship between certain floor func-
tions and the reciprocals of those floor functions, keeping in mind that quadratic
reciprocity is our main goal!

Theorem 6.6. If x is a positive non-integral quantity such that none of x, 2x, 3x, ..., nx
are integers, and we let [nx] = b then none of the multiples of the reciprocals
1
x , 2

x , 3
x , ..., b

x are integers, and we can say that:

nb =
{

[x] + [2x] + [3x] + ... + [nx]
+
[

1
x

]
+
[

2
x

]
+
[

3
x

]
+ ... +

[
b
x

]
Proof. Let Ω = [x] + [2x] + [3x] + ... + [nx]. In this series, all the terms from the
first up to and including the

[
1
x

]th are zero, the following terms up to and including

the
[

2
x

]th are equal to 1, and the following up to the
[

3
x

]th term are equal to 2 and
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so on. Hence we have

Ω =

0×
[

1
x

]
+1×

{[
2
x

]
−
[

1
x

]}
+2×

{[
3
x

]
−
[

2
x

]}
+3×

{[
4
x

]
−
[

3
x

]}
·
·
·
+(b− 1)×

{[
b
x

]
−
[

b−1
x

]}
+b×

{
n−

[
b
x

]}


= −

[
1
x

]
+
[

2
x

]
−2
[

2
x

]
+2
[

3
x

]
−3
[

3
x

]
+...+(b−1)

[
b

x

]
−b

[
b

x

]
+bn

Thus,

Ω = bn−
[

1
x

]
−
[

2
x

]
−
[

3
x

]
− ...−

[
b

x

]
.

�

This next theorem connects Theorem 6.6 to quadratic reciprocity.

Theorem 6.7. If k and p are positive odd numbers which are relatively prime to
each other, we have[

k
p

]
+
[

2k
p

]
+
[

3k
p

]
+ ... +

[
(p−1)k/2

p

]
+
[

p
k

]
+
[
2p
k

]
+
[
3p
k

]
+ ... +

[
(k−1)p/2

k

]  =
(k − 1)(p− 1)

4
.

Proof. Supposing that k < p we have

k(p− 1)/2
p

<
k

2
but

k(p− 1)/2
p

>
k − 1

2
=⇒

[
k(p− 1)/2

p

]
=

k − 1
2

From this it is clear that the theorem follows at once from theorem 6.6 if we set
k

p
= x,

p− 1
2

= n,
k − 1

2
= b.

�

We note that it is possible to prove in a similar way that if k is even and relatively
prime to p then[

k
p

]
+
[

2k
p

]
+
[

3k
p

]
+ ... +

[
(p−1)k/2

p

]
+
[

p
k

]
+
[
2p
k

]
+
[
3p
k

]
+ ... +

[
kp/2

k

]  =
(k)(p− 1)

4
.

However we will not prove this proposition as it is not necessary for our purpose.
Now the main theorem follows from the combination of theorem 6.7 with lemma 6.4

as well as the following lemma.

Lemma 6.8. If k and p are any distinct, positive prime numbers (not equal to 2),
and we set

L = (k, p) +
[
k

p

]
+
[
2k

p

]
+
[
3k

p

]
+ ... +

[
(p− 1)k/2

p

]
M = (p, k) +

[p

k

]
+
[
2p

k

]
+
[
3p

k

]
+ ... +

[
(k − 1)p/2

k

]
then L and M will always be even numbers.
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Proof. From lemma 6.4, there are two cases for L: p = 4n + 1 and p = 4n + 3.

• When p = 4n + 1,

L = (k, p) +
[
2k

p

]
+
[
3k

p

]
+ ... +

[
(p− 1)k/2

p

]
.

Notice that (k, p)− L is exactly the last line in the sum in lemma 6.4 and
these terms will cancel. From the fact that k is of the form 2m + 1 (odd),
we have

L =
(k − 1)(p− 1)

4
− 2

{[
k

p

]
+
[
3k

p

]
+
[
5k

p

]
+ ... +

[
(p− 3)k/2

p

]}
=

(2m)(4n)
4

− 2[· · · ]

= 2[mn− [· · · ]] which is even.

• When p = 4n + 3, a similar argument shows that L = 2[m(n + 1) − [· · · ]]
which is even.

• The same arguments work for M in both cases.
�

Now it follows from theorem 6.7 and lemma 6.8 that

L + M = (k, p) + (p, k) +
(k − 1)(p− 1)

4
.

Therefore, (k−1)(p−1)
4 is even when one or both of the primes k or p is of the

form 4n + 1. This means that (p, k) and (k, p) are either both even or both odd.
On the contrary, (k−1)(p−1)

4 is odd when k and p are both of the form 4n + 3.
Then, necessarily one of (p, k), and (k, p) is even and the other odd.

In the first case, the relations of k to p, and of p to k (as regards to the quadratic
character of one of with respect to the other) are the same. In the second case they
are opposite. Thus we have the law of quadratic reciprocity.

Q.E.D.

7. General overview of quadratic reciprocity as a proof

The following is an overview of Euler’s work on quadratic reciprocity that uses
examples and generalizations in order to be presented in the form of a proof. This
helps us to better visualize what the law really implicates. It is taken from the
paper entitled Quadratic Reciprocity: Its Conjecture and Application written by
David A. Cox [Cox] from the Department of Mathematics at Amherst College and
published in 1988.

Euler proved the following theorems where p is an odd prime. The theorems
were first stated by Fermat and were really useful for the proof of quadratic reci-
procity. [Cox, (0.3)]:

Theorem 7.1.
p = x2 + y2, x, y ∈ Z ⇔ p ≡ 1 mod 4
p = x2 + 2y2, x, y ∈ Z ⇔ p ≡ 1, 3 mod 8
p = x2 + 3y2, x, y ∈ Z ⇔ p = 3 or p ≡ 1 mod 3

From these theorems, came the next very important lemma [Cox, lemma 1.1].
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Lemma 7.2. Let p be a prime not dividing n. Then there are relatively prime
integers x and y such that p|(x2 +ny2) if and only if

(
−n
p

)
= 1, where

(
−n
p

)
is the

Legendre symbol.

Proof. Let’s suppose that
(
−n
p

)
= 1.

∃a ∈ Z such that − n ≡ a2 mod p
⇒ a2 + n ≡ 0 mod p
Let x = a and y = 1
⇒ p | (x2 + ny2)

Now, let’s suppose that p | (x2 + ny2)
⇒ x2 + ny2 ≡ 0 mod p
⇒ x2 ≡ −ny2 mod p
p does not divide n and (x, y) = 1, therefore p does not divide y
also, p is prime, therefore (p, y) = 1 and ∃b such that yb ≡ 1 mod p
⇒ x2b2 ≡ −ny2b2 mod p
⇒ (xb)2 ≡ −n(yb)2 mod p
⇒ (xb)2 ≡ −n mod p

⇒
(
−n
p

)
= 1 �

Lemma 7.2 and Theorem 7.1 imply that [Cox, (1.2)]:(
−1
p

)
= 1 ⇔ p ≡ 1 mod 4(

−2
p

)
= 1 ⇔ p ≡ 1, 3 mod 8(

−3
p

)
= 1 ⇔ p ≡ 1 mod 3

We find that in order to notice a pattern, we must work modulo 4n. If we search
for all primes p for which

(
5
p

)
= 1, we notice that they are all congruent to 1 or

11 mod 20. Here are some examples (we treat the case where n 6= 1,2 and p does
not divide n) [Cox, (1.3)]:(

−3
p

)
= 1 ⇔ p ≡ 1, 7 mod 12(

−5
p

)
= 1 ⇔ p ≡ 1, 3, 7, 9 mod 20(

−7
p

)
= 1 ⇔ p ≡ 1, 9, 11, 15, 23, 25 mod 28(

3
p

)
= 1 ⇔ p ≡ ±1 mod 12(

5
p

)
= 1 ⇔ p ≡ ±1,±11 mod 20(

7
p

)
= 1 ⇔ p ≡ ±1,±3,±9 mod 28
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Since, for example, 11 ≡ −9 mod 20, the bottom three examples stated above
are equivalent to [Cox, (1.4)]:(

3
p

)
= 1 ⇔ p ≡ ±1 mod 12(

5
p

)
= 1 ⇔ p ≡ ±1,±9 mod 20(

7
p

)
= 1 ⇔ p ≡ ±1,±25,±9 mod 28

We notice that p is congruent to odd squares! But we must be careful, this is
only the case when n is prime. For example,

(
6
p

)
= 1 ⇔ p ≡ 1, 5 mod 24. We can

now generalize with the following conjecture which we will then prove is equivalent
to the law of quadratic reciprocity:

If p and q are distinct odd primes, then

(7.1)
(

q

p

)
= 1 ⇔ p ≡ ±β2 mod 4q for some odd β

Let p and q be distinct odd primes and set p∗ = (−1)
p−1
2 p (Note that p∗ ≡ 1

mod 4). We assume the following properties:(
−1
q

)
= (−1)

q−1
2 (see thm 4.2)(

ab

q

)
=
(

a

q

)(
b

q

)

⇒
(

p∗
q

)
=

(
(−1)

p−1
2

q

)(
p

q

)
= (−1)

p−1
2

q−1
2

(
p

q

)
Therefore, we need to prove either(

q

p

)
=
(

p∗
q

)
or
(

q

p

)
= 1 ⇔

(
p∗
q

)
= 1

in order to prove the law of quadratic reciprocity.
By comparing this with (7.1), we see that, in fact, we need to prove

(7.2)
(

p∗
q

)
= 1 ⇔ p ≡ ±β2 mod 4q for some odd β

If β is odd, then β2 ≡ 1 mod 4, so the ± sign must be (−1)
p−1
2 . Hence,

p ≡ ±β2 mod 4q ⇔ p ≡ (−1)
p−1
2 β2 mod 4q ⇔ p∗ ≡ β2 mod 4q

So let’s prove (7.2) as the following:(
p∗
q

)
= 1 ⇔ p∗ ≡ β2 mod 4q

Suppose p∗ ≡ β2 mod 4q. This implies p∗ ≡ β2 mod q, so
(

p∗
q

)
= 1 follows

immediately. Conversely, lets suppose
(

p∗
q

)
= 1. Then p∗ ≡ α2 mod q for some

α. Let β = α or α + q, depending on whether α is even or odd, we get p∗ ≡ β2



14 VÉRONIQUE BOISVERT AND ELIZABETH MALTAIS

mod 4q, (by Lemma 7.3 and Lemma 7.4) and we have proven the law of quadratic
reciprocity!!

Lemma 7.3. If α is even, then set β = α and conclude that p∗ ≡ β2 mod 4q.

Proof. (Use the Chinese Remainder Theorem.) �

Lemma 7.4. If α is odd, then set β = α + q and conclude that p∗ ≡ β2 mod 4q.

Proof. (Use the Chinese Remainder Theorem.) �

8. applications and examples

8.1. Evaluation of the Legendre symbol. Quadratic reciprocity is very useful
to simplify the evaluation of a Legendre symbol.

Example.
(

12
10005007

)
may seem difficult to evaluate at first but, thanks to the law

of quadratic reciprocity, we can find that(
12

10005007

)
=
(

3
10005007

) (
4

10005007

)
=
(

3
10005007

)
= (−1)

3−1
2

10005007−1
2

(
10005007

3

)
= −

(
10005007

3

)
Since 10005007 ≡ 1 mod 3,

(
10005007

3

)
=
(

1
3

)
= 1. Therefore,

(
3

10005007

)
= −1.

8.2. More supplements to quadratic reciprocity. Quadratic reciprocity also
helps us in such problems as trying to find every odd prime p for which a, also an
odd prime, is a quadratic residue mod p.

Example. [Pong] Let’s determine the set of all odd primes p such that
(

3
p

)
= 1.

Since(
3
p

) (
p
3

)
= (−1)

p−1
2

3−1
2 = (−1)

p−1
2 =

{
1 if p ≡ 1 mod 4
−1 if p ≡ −1 mod 4

we have,(
3
p

)
=
{ (

p
3

)
if p ≡ 1 mod 4

−
(

p
3

)
if p ≡ −1 mod 4

But
(

p
3

)
= 1 ⇔ p ≡ 1 mod 3

So,
(

3
p

)
= 1 if either of the two following statements are true:

• p ≡ 1 mod 3 and p ≡ 1 mod 4 ⇒ p ≡ 1 mod 12
• p ≡ −1 mod 3 and p ≡ −1 mod 4 ⇒ p ≡ −1 mod 12

Therefore,
(

3
p

)
= 1 ⇔ p ≡ ±1 mod 12.

8.3. The method of excludents. Suppose we have established that a certain
number, say r is a quadratic residue of a prime p using the law of quadratic reci-
procity. If we wish to find a square which leaves r as a remainder when divided by
p, then we may use the method of excludents [Beiler].

We know that x2 ≡ r(mod p) ⇐⇒ r + py = x2, for some multiple y of p. The
method of excludents allows us to look at r + py with respect to some arbitrary
small modulus, E, and exclude values of y for which r + py is not a square (mod
E). We repeat this with other choices for E until a value for y is deduced.

It should be noted that values of y greater than p/4 need never be tried since
x is a solution =⇒ p−x is another solution. Hence x or p−x < p/2 =⇒ x2 or (p−
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x)2 < p2/4. Therefore py must be less than p2/4, so y < p/4.

Example. Given that
(

17
263

)
= 1, let’s find y such that 17+263y = x2. We use E=3

to start. First, 17+263y becomes 2+2y (mod 3). Possible values for y are 0, 1, or
2 (mod 3) and using these values for y, possible values of 2 + 2y become 2, 1, or 0
(mod 3). However, only 0, and 1 are quadratic residues of 3. This means that the
values of y which make 2 + 2y ≡ 2 (mod 3) must be excluded, and y can only be
congruent to 1 or 2 (mod 3). Therefore, we exclude values of y of the form 3k.

Similarly, we can take E=5. Then 17 + 263y ≡ 2 + 2y (mod 5), and we find that
values of y of the form 5k, and 5k + 2 may be excluded.

If we repeat this process once more using E=7, we exclude values of y of the
form 7k, 7k + 4, and 7k + 6.

For p = 263, we need to consider numbers less than 263/4 = 65 as candidates for
the value of y. However, we can exclude all multiples of 3, and our list of candidates
becomes: 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32,
34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65.

Then we delete any which are of the form 5k or 5k + 2 and are left with: 1, 4,
8, 11, 13, 14, 16, 19, 23, 26, 28, 29, 31, 34, 38, 41, 43, 44, 46, 49, 53, 56, 58, 59, 61,
64.

Next, we delete any numbers of the form 7k, 7k + 4 and 7k + 6 to get: 1, 8, 16,
19, 23, 26, 29, 31, 38, 43, 44, 59, 61, 64.

The third value in this list works! If we let y = 16, then we have

17 + 263y = 17 + 263(16) = 4225 = 652.

And we also have another solution: 263 − x = 263 − 65 = 198 and we find that
1982 = 263(149) + 17.
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APPENDIX [Lemmermeyer, Appendix B]

The following table lists the authors of the first 196 proofs of the quadratic reci-
procity law as well as the dates of publication. It also reveals which mathematical
concept was most important for each proof. This information is taken directly from
the book entitled Reciprocity Laws: From Euler to Eisenstein by Franz Lemmer-
meyer.

proof year comments
1. Legendre 1788 Quadratic forms; incomplete
2. Gauss 1 1801 Induction; April 8, 1796
3. Gauss 2 1801 Quadratic forms; June 27,1796
4. Gauss 3 1808 Gauss’ Lemma; May 6,1807
5. Gauss 4 1811 Cyclotomy; May 1801
6. Gauss 5 1818 Gauss’ Lemma; 1807/08
7. Gauss 6 1818 Gauss sums; 1807/08
8. Cauchy 1829 Gauss 6
9. Jacobi 1830 Gauss 6

10. Dirichlet 1835 Gauss 4
11. Lebesgue 1 1838 N(x2

1 + ...x2
q ≡ 1 mod p)

12. Schonemann 1839 Quadratic period equation
13. Eisenstein 1 1844 Generalized Jacobi sums
14. Eisenstein 2 1844 Gauss 6
15. Eisenstein 3 1844 Gauss’ Lemma
16. Eisenstein 4 1845 Sine
17. Eisenstein 5 1845 Infinite products
18. Liouville 1847 Cyclotomy
19. Lebesgue 2 1847 Lebesgue 1
20. Schaar 1847 Gauss’ Lemma
21. Genocchi 1852 Gauss’ Lemma
22. Dirichlet 1854 Gauss 1
23. Lebesgue 3 1860 Gauss 7,8
24. Kummer 1 1862 Quadratic forms
25. Kummer 2 1862 Quadratic forms
26. Kedekind 1 1862 Quadratic forms
27. Gauss 7 1862 Quadratic periods; Sept. 1796
28. Gauss 8 1863 Quadratic periods; Sept. 1796
29. Mathieu 1867 Cyclotomy
30. von Staudt 1867 Cyclotomy
31. Bouniakowski 1869 Gauss’ Lemma
32. Stern 1870 Gauss’ Lemma
33. Zeller 1872 Gauss’ Lemma
34. Zolotarev 1872 Permutations
35. Kronecker 1 1872 Zeller
36. Schering 1875 Gauss 3
37. Kronecker 2 1876 Induction
38. Mansion 1876 Gauss’ Lemma
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proof year comments
39. Dedekind 3 1877 Gauss 6
40. Dedekind 3 1877 Dedekind Sums
41. Pellet 1 1878 Stickelberger-Voronoi
42. Pépin 1 1878 Cyclotomy
43. Schering 1879 Gauss’ Lemma
44. Petersen 1879 Gauss’ Lemma
45. Genocchi 1880 Gauss’ Lemma
46. Kronecker 3 1880 Gauss 4
47. Kronecker 4 1880 Quadratic period
48. Voigt 1881 Gauss’ Lemma
49. Pellet 2 1882 Mathieu 1867
50. Busche 1 1883 Gauss’ Lemma
51. Gegenbauer 1 1884 Gauss’ Lemma
52. Kronecker 5 1884 Gauss’ Lemma
53. Kronecker 6 1885 Gauss 3
54. Kronecker 7 1885 Gauss’ Lemma
55. Bock 1886 Gauss’ Lemma
56. Lerch 1887 Gauss 3
57. Busche 2 1888 Gauss’ Lemma
58. Hacks 1889 Schering
59. Hermes 1889 Induction
60. Kronecker 8 1889 Gauss’ Lemma
61. Tafelmacher 1 1889 Stern
62. Tafelmacher 2 1889 Stern/Schering
63. Tafelmacher 3 1889 Schering
64. Busche 3 1890 Gauss’ Lemma
65. Franklin 1890 Gauss’ Lemma
66. Lucas 1890 Gauss’ Lemma
67. Pépin 2 1890 Gauss 2
68. Pields 1891 Gauss’ Lemma
69. Gegenbauer 2 1891 Gauss’ Lemma
70. Gegenbauer 3 1893 Gauss’ Lemma
71. Schmidt 1 1893 Gauss’ Lemma
72. Schmidt 2 1893 Gauss’ Lemma
73. Schmidt 3 1893 Induction
74. Gegenbauer 4 1894 Gauss’ Lemma
75. Bang 1894 Induction
76. Mertens 1 1894 Gauss’ Lemma
77. Mertens 2 1894 Gauss sums
78. Busche 4 1896 Gauss’ Lemma
79. Lange 1 1896 Gauss’ Lemma
80. de la Vallée Poussin 1896 Gauss 2
81. Lange 2 1897 Gauss’ Lemma
82. Hilbert 1897 Cyclotomy
83. Alexejewsky 1898 Schering
84. Pépin 3 1898 Legendre
85. Pépin 4 1898 Gauss 5
86. Konig 1899 Induction
87. Fischer 1990 Resultants
88. Takagi 1903 Zeller
89. Lerch 1903 Gauss 5
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proof year comments
90. Mertens 3 1904 Eisenstein 4
91. Mirimanoff and Hensel 1905 Stickelberger-Voronoi
92. Busche 5 1909 Zeller
93. Busche 6 1909 Eisenstein
94. Aubry 1910 = Eisenstein 3
95. Aubry 1910 = Voigt
96. Aubry 1910 = Kronecker
97. Pépin 1911 Gauss 2
98. Petr 1 1911 Mertens 3
99. Pocklington 1911 Gauss 3

100. Dedekind 4 1912 Zeller
101. Heawood 1913 = Eisensterin 3
102. Frobenius 1 1914 Zeller
103. Frobenius 2 1914 Eisenstein 3
104. Lasker 1916 Stickelberger-Voronoi
105. Cerone 1917 Eisenstein 4
106. Bartelds and Schuh 1918 Gauss’ Lemma
107. Stieltjes 1918 Lattice points
108. Teege 1 1920 Legendre
109. Teege 2 1921 Cyclotomy
110. Arwin 1924 Quadratic forms
111. Rédei 1 1925 Gauss’ Lemma
112. rédei 2 1926 Gauss’ Lemma
113. Whitehead 1927 Genus theory (Kummer)
114. Petr 2 1927 Theta functions
115. Skolem 1 1928 Genus theory
116. Petr 3 1934 Kronecker (signs)
117. van Veen 1934 Eisenstein 3
118. Fueter 1935 Quaternion algebras
119. Whiteman 1935 Gauss’ Lemma
120. Dockeray 1938 Eisenstein 3
121. Dorge 1942 Gauss’ Lemma
122. Rédei 3 1944 Gauss 5
123. Lewy 1946 Cyclotomy
124. Petr4 1946 Ciclotomy
125. Skolem 2 1948 Gauss 2
126. Barbilian 1950 Eisenstein 1
127. Rédei 4 1951 Gauss 3
128. Brandt 1 1951 Gauss 2
129. Brandt 2 1951 Gauss sums
130. Brewer 1951 Mathieu, Pellet
131. Furquim de Almeida 1951 Finite fields
132. Zassenhaus 1952 Finite fields
133. Riesz 1953 Permutations
134. Frohlich 1954 Class Field Theory
135. Ankeny 1955 Cyclotomy
136. D. H. Lehmer 1957 Gauss’ Lemma
137. C. Meyer 1957 Dedekind sums
138. Holzer 1958 Gauss sums
139. Rédei 5 1958 Cyclotomic polynomial
140. Reichardt 1958 Gauss 3
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proof year comments
141. Carlitz 1960 Gauss 1
142. Kubota 1 1961 Cyclotomy
143. Kubota 2 1961 Gauss sums (sign)
144. Skolem 3 1961 Cyclotomy
145. Skolem 4 1961 Finite fields
146. Hausner 1961 Gauss sums
147. Swan 1 1962 Stickelberger-Voronoi
148. Koschmieder 1963 Eisenstein, sine
149. Gerstenhaber 1963 Eisenstein, sine
150. Rademacher 1964 Finite Fourier analysis
151. Weil 1964 Theta functions
152. Kloosterman 1965 Holzer
153. Chowla 1966 Finite fields
154. Burde 1967 Gauss’ Lemma
155. Kaplan 1 1969 Eisenstein
156. Kaplan 2 1969 Quadratic congruences
157. Birch 1971 K-theory (Tate)
158. Reshetukha 1971 Gauss sums
159. Agou 1972 Finite fields
160. Brenner 1973 Zolotarev
161. Honda 1973 Gauss sums
162. Milnor and Husemoller 1973 Weil 1964
163. Allander 1974 Gauss’ Lemma
164. Berndt and Evans 1974 Gauss’ Lemma
165. Hirzebruch and Zagier 1974 Dedekind Sums
166. Rogers 1974 Legendre
167. Castaldo 1976 Gauss’ Lemma
168. Frame 1978 Kronecker (signs)
169. Hurrelbrink 1978 K-theory
170. Auslander and Tolimieri 1979 Fourier transform
171. Brown 1981 Gauss 1
172. Goldschmidt 1981 Cyclotomy
173. Kac 1981 Eisenstein, Sine
174. Barcanescu 1983 Zolotarev
175. Zantema 1983 Brauer groups
176. Ely 1984 Lebesgue 1
177. Eichler 1985 Theta function
178. Barrucand and Laubie 1987 Stickelberger-Voronoi
179. Peklar 1989 Gauss’ Lemma
180. Barnes 1990 Zolotarev
181. Swan 2 1990 Cyclotomy
182. Rousseau 1 1990 Exterior algebras
183. Rousseau 2 1991 Permutations
184. Keune 1991 Finite fields
185. Kubota 3 1992 Geometry
186. Russinoff 1992 Gauss’ Lemma
187. Garrett 1992 Weil 1964
188. Motose 1993 Group algebras
189. Rousseau 1994 Zolotarev
190. Young 1995 Gauss sums



20 VÉRONIQUE BOISVERT AND ELIZABETH MALTAIS

proof year comments
191. Brylinski 1997 Group actions
192. Merindol 1997 Eisenstein, sine
193. Watanabe 1997 Zolotarev
194. Ishii 1998 Gauss 4
195. Motose 1999 Group algebras
196. Lemmermeyer 2000 Lebesgue 1, Ely
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