
Programming the FlexRAM
Parallel Intelligent Memory System�

Basilio B. Fraguela Jose Renauy Paul Feautrierz David Paduay Josep Torrellasy

Dept. de Electrónica e Sistemas, Universidade da Coruña, Spain
basilio�udc�es

yDept. of Computer Science, University of Illinois at Urbana-Champaign, USA
frenau�padua�torrellasg�cs�uiuc�edu

zLIP, Ecole Normale Supérieure de Lyon, France
Paul�Feautrier�ens�lyon�fr

ABSTRACT
Intelligent memory architectures enhance the memory chips
of a computer with many simple processors� The result is
a highly�parallel� heterogeneous machine that is able to ex�
ploit computation in memory� Examples of such architec�
tures are FlexRAM� DIVA� and Active Pages�
In this paper� we address how to e�ectively hand�program

such an architecture� We propose a family of compiler di�
rectives inspired by OpenMP called CFlex� Such directives
enable the memory processors to cooperately execute the
program with the main processor� In addition� we pro�
pose libraries of highly�optimized functions called Intelligent
Memory Operations �IMOs�� These functions program the
processors in memory through CFlex� but make them com�
pletely transparent to the programmer� Simulation results
show that� with CFlex� a server with intelligent memory of�
ten delivers a performance that is �� times higher �or more�
than a plain server�

Categories and Subject Descriptors
C���� 	Processor Architectures
� Parallel Architectures�
D��� 	Programming Techniques
� Concurrent Program�
ming� D�� 	Programming Languages
� Language Con�
structs and Features

General Terms
Languages

�This work was supported in part by the National Science
Foundation under grants EIA�������� EIA��������� and
CHE�������� by DARPA under grant F��������C������
by the Ministry of Science and Technology of Spain under
contract TIC���������C������ and by gifts from IBM and
Intel�

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...�5.00.

Keywords
Intelligent memory architecture� compiler directives� pro�
gramming heterogeneous computers� parallel languages�

1. INTRODUCTION
Integrating processors and main memory in the same chip

is a promising approach to address the processor�memory
communication bottleneck� In such chips� processors en�
joy short�latency and high�bandwidth communication with
memory� One way to use these chips is as intelligent memo�
ries that replace all or some of the standard memory chips in
a server or workstation� This is the approach followed by the
FlexRAM 	��
� DIVA 	�
� and Active Pages 	��
 intelligent
memory systems�
This use of processor�memory chips as intelligent memory

is very appealing because it requires relatively few changes
to general�purpose computers� and it supports the execution
of applications without modi�cations� Indeed� applications
can be gradually modi�ed or compilers gradually improved
to take advantage of processing�in�memory capabilities�
Unfortunately� the challenging problem of e�ectively pro�

gramming such machines has received only limited atten�
tion� Speci�cally� there are some proposals where the pro�
grammer identi�es and isolates the code sections to run on
the memory processors 	�� �� ��� ��
� However� these pro�
posals are largely concerned with dividing sections of code
across a set of identical memory processors and lack porta�
bility� The resulting approach is often not much di�erent
from running code on a conventional parallel processor�
An alternative approach has been to use a compiler that

automatically partitions the code into loops and other sec�
tions and then schedules each section on either the main
processor or the one in memory 	��
� This approach has only
been tried for a system with a single processor in memory�
it has not been applied to a general heterogeneous system
with several main processors and many memory processors�
In this paper� we present a language and necessary ope�

rating�run�time system support to enable the e�cient pro�
gramming of such a general heterogeneous architecture� Our
goal is to provide language support to develop highly�tuned
applications that are relatively easy to understand and mod�
ify� To this end� we devise CFlex� a set of directives resem�
bling those of OpenMP 	�
 that control execution on an

Administrator
a server with intelligent memory may perform 10 times faster than a conventional server. On the average, fewer than 1.7% additional instructions were required to transform conventional programs into an efficient Cflex parallel from.

intelligent memory system� CFlex exposes the intelligent
memory architecture to the programmer� therefore unlock�
ing the performance potential of the system� Moreover� the
use of directives results in portable programs� which can be
compiled for execution on plain systems by simply ignoring
the directives�
Since applications should also be able to pro�t from intel�

ligent memory without the programmer having to be con�
cerned with the architecture organization� we brie�y study
libraries of Intelligent Memory Operations �IMOs�� They
are written using CFlex and hide from the programmer the
organization of the intelligent memory�
Our discussion of CFlex� its implementation� use� and

evaluation are all made in the context of the FlexRAM in�
telligent memory architecture 	��
� In this environment� our
simulation results show that� with CFlex� a server with intel�
ligent memory often delivers a performance that is �� times
higher �or more� than a plain server�
The rest of this paper is organized as follows� Section �

outlines the FlexRAM architecture� Section describes the
relevant operating and run�time system support� Section �
describes CFlex and provides illustrative examples� Section �
discusses IMO libraries� Section � shows how CFlex can be
applied to other intelligent memory architectures� Section �
presents the environment that we use to evaluate CFlex on
FlexRAM� Section � presents the evaluation� Section � dis�
cusses related work� and Section �� concludes�

2. FLEXRAM ARCHITECTURE
A FlexRAM system is an o��the�shelf workstation or server

where some of the DRAM chips in the main memory are
replaced by FlexRAM processor�memory chips 	��
� Each
FlexRAM chip contains DRAM memory plus many simple�
general�purpose processing elements called PArrays� To the
main processor of the system� which we call PHost� the re�
sulting memory system appears as a versatile accelerator
that can o��load memory�intensive or highly�parallel com�
putation� While the machine can have multiple PHosts� in
this paper we consider a single�PHost system� Each PArray
can be programmed independently and� therefore� PArrays
can execute SPMD or MIMD code� PHost and all PAr�
rays share a single address space� Finally� if the PHost runs
legacy applications� the memory system appears as plain
memory� A FlexRAM system is shown in Figure ��

FlexRAM Chip Controller

PArray

FlexRAM Chip Controller FlexRAM Chip Controller

Memory System Interconnect

FlexRAM Bus

PHost

Figure �� A FlexRAM intelligent memory system�

The architectural parameters of a FlexRAM chip have

been upgraded from 	��
� the new parameters are described
in 	��
� In this upgraded design� each FlexRAM chip has ��
PArrays� a FlexRAM chip controller �FXCC� that interfaces
the PArrays to the PHost� and �� Mbytes of DRAM orga�
nized in �� banks� Each PArray has an ��Kbyte write�back
data cache and a ��Kbyte instruction cache �Figure ��� A
FlexRAM chip has a ��D torus that connects all the on�chip
PArrays� Moreover� all the FlexRAM chips are connected to
a communication bus called the FlexRAM bus� With these
links� a PArray can access any of the memory banks in its
chip and in other FlexRAM chips�

2KB ICache 8KB DCache

Local
Controller

PArray processor

2 issue in-order

Local Bank (1MB)

DRAM

Router

Figure �� Structure of a PArray and a memory bank
inside a FlexRAM chip�

PArrays use virtual addresses in the virtual address space
of the application run by the PHost� Each PArray has a
small TLB that contains some entries from the PHost�s page
table� PArrays serve their own TLB misses� However� they
invoke the PHost operating system for page faults and mi�
grations�

2.1 Interprocessor Communication
Since the memory system interconnect of a FlexRAM ma�

chine is o��the�shelf� FlexRAM chips cannot be masters of
it� As a result� any communication between PArrays and
PHost has to be done in one of two ways� through memory
or via memory�mapped registers in the FXCCs� Memory
communication involves writing and reading a memory lo�
cation� and is typically used to pass the input arguments
and outputs of the tasks executed on the PArrays� FXCC
register communication involves writing and reading special
registers in the FXCCs� and is used for commands and ser�
vice requests� We consider FXCC register communication
next�
The PHost communicates with the PArrays to spawn tasks

on them� answer service requests� and order maintenance op�
erations such as �ushing cached pages or invalidating TLB
entries� In all cases� the PHost issues a command to an
FXCC register and passes at most two words� namely the
address of the routine to execute and a pointer to the input
argument bu�er� The FXCC stores this information and
passes it to the corresponding PArray�s��
A PArray communicates with the PHost to request a ser�

vice� such as the handling of a page fault� In this case� the
PArray writes a register in its FXCC� The FXCC cannot
deliver this request to the PHost because FlexRAM chips
cannot be masters of the memory system interconnect� Con�
sequently� the PHost periodically polls the FXCCs to check
for requests�

2.2 Synchronization

Administrator
and, therefore, PArrays can execute MIMD code.(SPMD is a form of MIMD code)

Administrator
parameters of the FlexRAM chip assumed in this paper differ from the parameters assumed in [11]

Administrator
In all cases, the PHost stores on FXCC registers the address of the routine implementing the service and a pointer to the argument list. The FXCC passes the information to the appropriate PArray(s).

Administrator
PHost has to poll the FHCCs ..

Each FXCC manages a set of locks that can be acquired
and released by the PHost� and by the on� and o��chip PAr�
rays� Upon a request for a free lock� the home FXCC grants
ownership to the requester� If the lock is currently taken�
the FXCC is able to queue up a certain number of requests�
and reply to each of them when it can grant ownership� If
the number of requesters exceeds a certain threshold� the
FXCC replies back with a �busy� message�

2.3 Data Coherence
A FlexRAM system lacks hardware support for cache co�

herence between the PHost and PArrays� Data coherence is
maintained by explicit �total or partial� cache writeback and
invalidation commands 	��
� Speci�cally� before the PHost
initiates a PArray task� it writes back the dirty lines in its
caches that contain data that may be read by the PArray
task� This ensures that the PArray sees the correct ver�
sion of the data� Moreover� before the PHost executes code
that may use results from a task executed by a PArray� the
PHost invalidates from its caches the lines with data that
may have been updated by the PArray� This ensures that
the PHost does not use stale data� As for a PArray� when
it completes a task� it writes back its dirty cache lines and
invalidates its small cache� The PArray caches also include
a dirty bit per word� so that only the modi�ed words actu�
ally update memory� This is done to tolerate false sharing
between PArrays�

3. OPERATING & RUN-TIME SYSTEM
To use the FlexRAM system� we need several extensions

to the Operating System �OS� of the PHost and a small
per�PArray kernel� In general� the PHost OS is in charge of
all the I�O operations� PHost CPU scheduling� and virtual
memory management� The PArray kernel manages the PAr�
ray�s TLB� and the spawn and termination of local tasks� In
addition� we have developed a library�based user�level run�
time system for both the PHost and PArrays to improve
the programmability of the machine� In the following� we
describe the management of virtual memory and the user�
level run�time system�

3.1 Managing Virtual Memory
PHost and PArrays share a common view of the address

space of the tasks that cooperate in the execution of an
application� The PArray kernel reads the page table of the
process and updates its local TLB� However� only the PHost
OS can update the page table� perform page swapping� or
migrate pages�
To maximize access locality� the PHost OS tries to map

the virtual pages that a PArray references� to physical pages
located in the PArray�s local memory bank� Currently� we
support this approach with a ��rst�touch� mapping policy�
where the �rst PArray to reference a given page becomes its
owner and allocates it locally�
The PHost OS cooperates with the PArray kernels to keep

the PArray TLBs coherent when the page table changes�
Speci�cally� there is a shared software structure that con�
tains� for each page mapping� the list of PArrays that cache
it in their TLBs� This structure is updated by the PArray
kernels as they update their TLBs� When the PHost OS
moves a page to disk� it informs all the PArrays that cache
the mapping of that page in their TLBs� Then� the corre�

sponding kernels invalidate that TLB entry and the relevant
cache lines� The structure described is also used in other sit�
uations when the PHost OS modi�es the page table� such as
when it migrates pages�

3.2 User-Level Run-Time System
We developed a library�based user�level run�time system

for both the PHost and PArrays to perform several func�
tions� These functions include task management� synchro�
nization� heap memory management� and polling for re�
quests� We consider these functions in turn�
Tasks are spawned on the PArrays by the user�level run�

time system� Each task has an associated software bu�er
that contains the task input data that is not shared and�
sometimes� the results of the task� The former includes pri�
vate copies of global variables that the task needs� the latter
is not necessary if all the results are stored in shared memory
structures� To start a task� the user�level run�time system
�lls the inputs in this bu�er and then sends a spawn message
to the FXCC of the FlexRAM chip where the task is to run�
The PHost can then use the run�time system to spin on a
location in the bu�er that the PArray task will set when it
�nishes�
The run�time system also includes synchronization rou�

tines that use the FXCC locks� often building higher�level
constructs such as barriers�
The run�time system also performs heap memory manage�

ment� including parallel allocation and deallocation of heap
space by the PArray tasks� Standard malloc and free func�
tions are used� both in the PHost and PArrays� Those in the
PArrays operate on local pages of the heap that the run�time
system in the PHost has allocated� assigned to that partic�
ular PArray� and requested that the OS map them in that
particular PArray�s local memory bank� When the PArray
task runs out of local heap� it asks for more to the PHost
run�time system�
Finally� another function of the run�time system in the

PHost is to poll the FXCCs to detect requests from the
PArrays�
Note that the run�time system exports its functions and

variables not only to the compiler but also to the program�
mer� The complete description of its interface is found in 	�
�

4. CFLEX
To exploit the functionality of FlexRAM while keeping

the portability of the programs� we program the FlexRAM
system using a family of compiler directives� Our computa�
tional model requires these directives to be able to express
the task partitioning between the PHost and the PArrays�
and the synchronization between the generated tasks� Other
desirable properties are scalability as the number of pro�
cessors available in memory increases� and hiding as much
system details as possible from the programmer� It is also
important that the directives be powerful and �exible� so
that they allow the generation of parallel programs that are
easy to read and modify for a wide class of problems�
The latter objective is essential for our environment be�

cause of the nature of the FlexRAM system architecture�
Speci�cally� the PArrays are much simpler than the PHost�
have a lower clock rate� and lack �oating�point units� This
means that they are not particularly well suited to speed up
typical parallel applications based on �oating�point opera�
tions and loops that use regular� cache�friendly data struc�

Administrator
lock, FXCC where hte lock resides

Administrator
Before the PHost

Administrator
The PHost and PArray user-level run-time system performs task management, synchronization, heap memory managemetns, and polling.

Administrator
Each task spawned on a PArray by the PHost has an ..(Drom the sentence "Tasks are ... system")

Administrator
task, the PHost run-time system fills ...

Administrator
Parrays cannot spawn tasks.

Administrator
heap that the PHost run-time system ahs allocated,

tures� Instead� the PArrays�s most valuable property is their
low memory access time� which allows them to accelerate
irregular� memory�intensive applications� This is an inter�
esting challenge for the design of our family of directives�
Indeed� currently available parallelization directives such as
OpenMP 	�
 or HPF 	�
� are especially oriented to loop�
parallel codes� and not well suited for irregular applications
like those using pointers or indirect accesses�
CFlex is a family of directives that addresses these is�

sues� The structure of CFlex directives is similar to that
of OpenMP directives� but there are also di�erences� We
implemented CFlex as annotations to the C language� and
use C in the discussion below� However� CFlex can be easily
used with other languages like FORTRAN�
The general structure of a CFlex directive is

�pragma FlexRAM directive�type �clauses�

CFlex directives may be classi�ed in three groups�

� Execution modi�ers indicate how a given segment of
code should be executed� These are the most widely
used directives� They include the requests to spawn a
given portion of the program for execution on a given
processor or group of processors�

� Data modi�ers request that data structures satisfy cer�
tain conditions� An example are directives to pad one
of the dimensions of an array to make its size a multi�
ple of the page size�

� Executable directives appear like instructions in the
program� Examples of this class include barriers or
prefetch operations�

In the following� we brie�y discuss the three kinds of direc�
tives and then show some examples of their use� A complete
description of CFlex is found in 	�
�

4.1 Execution Modifiers
These directives partition the computation into PHost

and PArray tasks� and synchronize tasks� For example� one
important execution modi�er speci�es the kind of processor
where the next statement should be executed� It does so
by setting directive�type to either phost or parray� Since
PArrays cannot spawn new tasks� these directives may only
appear in the code executed by the PHost� and they will
spawn either a new PHost task or a PArray task� A series
of optional clauses enrich the semantics of the directive�

� on home�x� speci�es that the task should be executed
on the PArray whose local memory bank contains the x
data structure� If the directive�type is phost� then this
clause only has e�ect when the target computer is a
NUMA machine� In this case� it speci�es that the new
task should be run on the PHost whose local memory
contains x�

� sync�async speci�es whether the task spawning the
new task must stop until the new task �nishes �sync�
or it can continue �async�� The default is sync� A task
does not �nish until all the tasks that it has spawned
have �nished� CFlex only allows the creation of asyn�
chronous tasks inside the syntactical scope of a syn�
chronous task� This provides a clear point of synchro�
nization where all asynchronous tasks are known to

have �nished� This point is the end of the synchronous
task inside which the asynchronous ones have been
spawned� This approach is illustrated in Section ����

� if�cond� controls the execution of the directive where
it appears� The directive is executed only if cond is
true�

� else also controls the execution of a directive� The
directive is executed if the cond in the if clause in
the immediately preceding directive is false� Note that
execution modi�ers cannot be nested for the very same
piece of code� Therefore� there is no need to implement
symmetric conditionals�

� shared� private� lastprivate� firstprivate� reduc�
tion have the same semantics as the directives of the
same name in OpenMP� In contrast to OpenMP� CFlex
allows them to apply to only one part of a structure�
such as one �eld of a struct or one element of a vector�

� flush speci�es variables such that� if their correspond�
ing lines are dirty in the PHost cache� the lines are
written back to memory� This is done so that the
PArray�s� executing the task�s� have access to the lat�
est version of the data they require in memory� If this
clause is not present� the compiler writes back all the
dirty lines in the PHost cache� The programmer can
use this clause to improve the performance by restrict�
ing the writeback to a certain set of variables�

Note that the ability to spawn new PHost tasks allows
CFlex to express parallelism in systems without processing
in memory� In this case� the on home clause is useful to
control locality of execution when the PHosts belong to a
NUMA machine�
A migrate clause can be added in the future to designate

shared data structures whose pages should migrate to the
�rst PArray or PHost that touches them after the task�s�
created by this directive begin their execution� However�
page migration can be very costly�
A second execution modi�er declares a code segment as

a critical section with a given name� This is done with the
critical directive�type� All the critical sections with the
same name are mutually exclusive� This is accomplished
through the use of the same FXCC lock for all of them�
This directive implies a synchronization between processors
to work on some shared data that may be modi�ed� This
directive can take the single optional clause flushinval to
specify a list of variables� These variables are those that
may be written in the critical section� or read in the critical
section and written somewhere else� In this case� the lines
with such variables are written back from the processor�s
cache �if dirty� and invalidated before entering the critical
section� This forces the processor to read the latest version
of the variables in the critical section� Moreover� these cache
lines are written back to memory �if dirty� when the proces�
sor exits the section� This enables the next processor that
will enter the critical section to access the new version of
the variables� If the flushinval clause is not present� the
operations described are performed on the whole cache�

4.2 Data Modifiers
We propose three directives of this kind� namely alignable�

page aligned� and align� The �rst two directives can pre�
cede the declaration of a C struct or union and instruct

Administrator
valuable quality is

Administrator
Drop "but there are also deifferences"

Administrator
directives are instructions that must be executed by the parallel program.

Administrator
CFlex can be found

Administrator
where the statements that immediately follows the directive should be executed

Administrator
There are two execution modifier directives: phost and parray.

Administrator
finished. Only 'async' directive can appear inside tasks created with the 'sync' directive. The end of a 'sync' task T can therefore be used as a syncrhonization point of all the task spawned inside T. This approach is illustrated in Section 4.4

Administrator
What are symmetric conditionals ?

Administrator
clause could be

Administrator
Drop: " This directive ... modified"

Administrator
flushinval(variable, variable, ...) that specifies the variables that may be written within the critical section

the compiler to pad the data structure to align it� Speci��
cally� the alignable directive increases the size of the data
structure until it becomes a power of two� the page aligned
directive increases the size until it becomes a multiple of
the page size� Finally� the align directive aligns the di�
mensions of an array to page boundaries� This directive
takes a syntax such as array name������ where the number
of square�bracket pairs speci�es which dimension to align�

4.3 Executable Directives
CFlex has several executable directives that perform a

variety of functions� As an example� the barrier directive
implements a barrier for n processors using FXCC locks�
As another example� the flush directive speci�es a series of
variables to write back to memory if the corresponding lines
are dirty in the cache of the processor� This directive takes
the optional invalidate clause� which additionally causes
these lines �or a subset of them� to be invalidated after the
potential writeback�

4.4 Examples
To gain more insight into the CFlex directives� we now

show several simple examples of their use� A �rst example
involves traversing a linked list and performing some pro�
cessing on each of its nodes in parallel �Figure �� The �rst
directive in the �gure generates a synchronous task in the
PHost that will execute a whole loop� The purpose of this
directive is to provide a context for synchronization of other
tasks that will be spawned inside the loop� Indeed� each
iteration of the for loop that constitutes the synchronous
task generates one asynchronous task� The latter executes
on the PArray whose local memory bank contains p�	data�

�pragma FlexRAM phost sync
for�p � head� p �� NULL� p � p��next�

�pragma FlexRAM parray async on�home�	�p��data��

firstprivate�p�

process�p��data��

Figure �� Parallelized linked�list processing using
the sync and async clauses�

Each one of these asynchronous tasks receives a privatized
copy of the value of pointer p for the corresponding iteration�
and processes a node from the list� Since these tasks are
asynchronous� the PHost task continues to iterate the loop
and spawn tasks until it reaches the end of the loop� Then�
the synchronous task waits for all of the asynchronous tasks
to complete� When they do� the synchronous task �nally
completes�
In this example� we have illustrated the general scheme

used to parallelize a loop� declare the loop as a synchronous
task and each of its iterations as an asynchronous one� Since
loops are the most common source of parallelism� we have
extended CFlex with a pfor clause that tells the compiler
to break the loop following it into a series of asynchronous
tasks and wait for their completion before continuing� Thus�
the previous loop can be re�written using a pfor clause as
shown in Figure �� Note that although OpenMP is largely
designed for loop parallelism� a parallel version of this loop
in OpenMP would require the use of the ordered clause and
would be less readable and e�cient�
A more complex parallelization scheme is required when

there are portions of code that must be run sometimes in the

�pragma FlexRAM parray pfor on�home�	�p��data��

firstprivate�p�

for�p � head� p �� NULL� p � p��next�
process�p��data��

Figure �� Parallelized linked�list processing using
the pfor clause�

PHost and sometimes in the PArrays� An example is shown
in Figure �� The example implements the routine that allo�
cates the tree in the TreeAdd application from the Olden
suite 	��
� The routine allocates a binary tree of height
level� Our parallelization strategy selects a level cutlevel�
The nodes below that level are allocated by the PArrays and
the nodes in that level and up to the root �highest level� are
allocated by the PHost� Recall that the runtime system al�
lows the PArrays to allocate and deallocate heap memory in
parallel �Section ����

tree�t 	TreeAlloc �int level� �
if �level �� �� return NULL�
else �

struct tree 	new 	right 	left�

new � �struct tree 	� malloc�sizeof�tree�t���
�pragma FlexRAM phost if �level �� cutlevel�

�
�pragma FlexRAM parray async if �level �� cutlevel�
�pragma FlexRAM phost async else

left � TreeAlloc�level����

�pragma FlexRAM parray async if �level �� cutlevel�
right�TreeAlloc�level����

�
new��val � ��
new��left � �struct tree 	� left�
new��right � �struct tree 	� right�
return new�

�
�

Figure �� Parallelized tree allocation�

The tree is allocated from root down� As long as the level

 cutlevel condition is not satis�ed� TreeAlloc is called
by the PHost� Under these conditions� however� the PHost
spawns a new task on the PHost to build the left subtree
of each node� We follow the approach of creating multiple
PHost tasks to avoid modifying the original code� When
cutlevel is reached� both the left and right subtree alloca�
tion tasks are run on PArrays� Note that a single PArray
task allocates a whole subtree� This is because a PArray
ignores these execution modi�ers since it cannot spawn new
tasks� With this support� a whole subtree is allocated in a
local memory bank� The resulting partitioning of the work
is shown in Figure �� In the �gure� the dashed lines rep�
resent the spawn of a new task on the PHost� If there is
not enough space in a memory bank to keep a whole sub�
tree� some pages are allocated from another bank� and the
PArray accesses them remotely� To avoid these remote ac�
cesses� it is best to choose a cutlevel that guarantees that
a subtree built by a PArray �ts in its local memory bank�
This work�partitioning strategy may be applied to any

parallel processing of tree data structures� For example�
the second step of the TreeAdd application is a reduction

Administrator
The align(array-name[] [] ...) directive aligns a dimension of the array array-name to a page boundary. The dimension is specified by the number of []s in the directive.

Administrator
lists the variables that must be written to memory

Administrator
syncronous ('sync') task

Administrator
synchronization of the tasks that are spawned by each iteration of the loop.

Administrator
Drop "Indeed... task"

Administrator
('async')

Administrator
TreAdd benchmark.I believe we should use benchmark instead of application. I belive nobody uses application. If I am worn ignore this comment

Administrator
allocated top down starting at the root.

Administrator
PArrays ignore the phost and parray directives since they

Administrator
it is better to choose ...

PA
rr

ay
 0

cutlevel

PA
rr

ay
 1

PA
rr

ay
 2

PA
rr

ay
 3

PA
rr

ay
 4

PA
rr

ay
 5

PA
rr

ay
 6

PA
rr

ay
 7

Figure 	� Partition of the work between the PHost

level cutlevel and above� and the PArrays for the
code in Figure ��

that adds the values stored in all the nodes of the tree�
we have parallelized it in the same way� As an additional
optimization� the task that adds the values in a subtree built
by a PArray is spawned using the on home clause to ensure
that the reduction is performed by the PArray that owns
the subtree� This approach exploits locality�
In practive� our compiler generates two versions of the rou�

tine in Figure �� one for the PHost and one for the PArrays�
While the PHost version includes the directives� the PArray
version does not� The reason is that PArrays cannot create
new tasks� so these directives do not apply� Recall also that
PHost and PArrays have di�erent ISAs� Consequently� the
backend compiler has to generate two versions anyway� even
if the high�level code is exactly the same for both kinds of
processors�
Finally� we consider an example where several data struc�

tures need to be processed together� In this case� while
we can use the on home clause to ensure that accesses to
one data structure are local� the accesses to the other data
structures may end up being remote� To address this prob�
lem� we could use a migrate clause to migrate the pages of
the remote data structures� but the overhead could be high�
Instead� an approach that often works is to make use of
the �rst�touch page�placement policy of our OS� With this
support� we may implicitly align at the page level the data
structures that are used together throughout the code�
As an example� Figure � shows two loops in the Swim

application from the SPEC OMP���� application suite� In
the �gure� the directives start slightly di�erently than before
because the language used is FORTRAN� The �rst loop is
from the INITAL routine and contains the �rst accesses in
the program to vectors UOLD� VOLD and POLD� The on home
clause forces iteration J to be executed by the PArray that
holds element ���J� of matrix U� This PArray is also the �rst
processor in the system to access column J of UOLD� VOLD�
and POLD� As a result of our �rst�touch policy� the OS places
the pages that contain such columns in the local memory
bank of the same PArray� A similar strategy was used in
previous loops to place the pages containing the columns of
matrices U� V� and P� If the column sizes are �or can be made�
such that the columns can be aligned to page boundaries�
and each matrix starts at a page boundary� then all the
accesses in the code end up being local� Figure � shows the
resulting data layout assuming that each memory bank ends
up allocating � columns from every matrix� In the �gure�
each box inside a memory bank represents a page�aligned
chunk of memory that extends over several pages�
When related data structures are referenced later on by

the same program� we have to distribute the corresponding

C�FlexRAM parray pfor on�home�U��J�� private�I�
DO J�� NP�

DO I�� MP�
UOLD�IJ� � U�IJ�
VOLD�IJ� � V�IJ�
POLD�IJ� � P�IJ�

END DO
END DO
���

C�FlexRAM parray pfor on�home�U��J�� private�I�
DO J��N

DO I��M
UOLD�IJ� � U�IJ� � ALPHA 	 ���
VOLD�IJ� � V�IJ� � ALPHA 	 ���
POLD�IJ� � P�IJ� � ALPHA 	 ���
U�IJ� � UNEW�IJ�
V�IJ� � VNEW�IJ�
P�IJ� � PNEW�IJ�

END DO
END DO

Figure �� Alignment of data structures using the
on home clause and the rst�touch page�placement
policy�

POLD(:,1:8)

PArray n bank

U(:,1:8)

V(:,1:8)

P(:,1:8)

UOLD(:,1:8)

VOLD(:,1:8)

PArray 0 bank

POLD(:,9:16)

U(:,9:16)

V(:,9:16)

P(:,9:16)

VOLD(:,9:16)

PArray 1 bank

UOLD(:,9:16)

...

POLD(:,NP1-7:NP1)

U(:,NP1-7:NP1)

V(:,NP1-7:NP1)

P(:,NP1-7:NP1)

UOLD(:,NP1-7:NP1)

VOLD(:,NP1-7:NP1)

Figure �� Alignment of the matrix columns from the
rst loop in Figure �� In the gure� each box inside
a memory bank represents a page�aligned chunk of
memory that extends over several pages�

loop among the PArrays following the same policy� This is
illustrated in the second loop of Figure �� extracted from
the CALC� routine�
Overall� note that none of the examples in this section

required adding or modifying any line of the original se�
quential code� All the parallelization semantics have been
expressed by means of compiler directives� This is typical of
the codes that we have parallelized for FlexRAM�

5. INTELLIGENT MEMORY OPERATIONS
The family of compiler directives presented in the previous

section enables the parallelization of a large set of codes and
the exploitation of locality while hiding many of the system
details from the programmer� However� to develop e�cient
programs� the programmer must be aware of the existence
of the FlexRAM chips and must decide how to partition and
coordinate the work between the PHost and the PArrays�
All these details can be hidden and performance can be

improved with the use of library routines� Speci�cally� we
envision the use of a library of Intelligent Memory Opera�
tions �IMOs�� IMOs are memory�intensive operations that
can be encapsulated relatively easily� IMOs perform com�
mon operations on data structures that are often used in
programs�

Administrator
same way as the tree allocation step.

Administrator
Our compiler ..

Administrator
loops in Swim from ..Olden suite

Administrator
In Figure 7, we use the FORTRAN form of the CFlex directives.

Administrator
parallelized using CFlex

Administrator
IMOs are encapsulated operations that make use of the PArrays.

Function Description Abstract Expression Syntax

Apply func f with arg a exec f�v�i�a�� � �i� N Vector apply�vfa�

Search element that ful�lls ret any v�i� such that Vector search�vfa�
condition f with arg a f�v�i�a��� �� � �i� N
Generate vector with the result v��i��f�v�i�a� v��Vector map�vfa�
of applying func f with arg a � �i� N
Reduce vector applying func f� ret f����f�f�av����v�������� Vector reduce�vfa�
whose neutral element is a where f�ax��x

Process together two vectors and v��i��f�v�i�v��i�a� v��Vector map��vv�fa�
an arg a� generating a new vector � �i� N

Table �� Examples of IMOs for vector containers�

Simple examples of IMOs are �nding the minimum value
in a vector of numbers or adding two matrices� Other� more
structured examples of IMOs are STL classes 	��
� Such
IMOs may de�ne and operate on containers such as vec�
tors� lists� hash tables� or sets� They may make use of the
intelligent memory to perform parallel allocations and deal�
locations� searches� insertions� retrievals� and other compu�
tations on the elements stored in these containers� Some
examples of IMOs for vector containers are proposed in Ta�
ble ��
In practice� IMO libraries should implement two versions

of the functions provided to the programmer� one to be used
when no FlexRAM chips are detected in the system� and an�
other one programmed in CFlex that exploits the capabili�
ties of the FlexRAM chips� Both versions should be highly
optimized and completely hide from the programmer issues
such as task partitioning� scheduling� and synchronization�

6. APPLICATION TO OTHER ARCHITEC-
TURES

There are other architectures that� like FlexRAM� are
built out of a powerful PHost processor and a main mem�
ory with many simpler processors� Examples of such ar�
chitectures are Active Pages 	��
 and DIVA 	�
� For these
architectures� CFlex and IMOs can also provide appropriate
programming support� In fact� 	��
 illustrates the use of the
STL array class to program Active Pages� very much in the
line of our IMOs�
However� there are di�erences that seem to make Active

Pages and DIVA more sensitive to the data placement than
FlexRAM� In the case of Active Pages� the reason is that
all the communications between the memory processors are
serialized through the PHost� As a result� the PHost may
become a bottleneck when many non�local accesses are re�
quired� Consequently� it would be important for a CFlex
programmer to improve data placement and alignment of
data structures�
In DIVA� exchange of data between memory chips requires

the use of messages called parcels� Passing a parcel involves
software processing by either user� or supervisor�level code
at both ends 	�
� which makes it more expensive than the
hardware approach followed by FlexRAM� Consequently� it
would also be important for a CFlex programmer to max�
imize locality� Moreover� a CFlex compiler may improve
performance by inserting e�cient code required to manage
the message passing when the communication between tasks
is regular enough�

7. EVALUATION ENVIRONMENT
For our evaluation� we use an execution�driven simulation

infrastucture that can model aggressive out�of�order super�
scalar processors and complete memory subsystems 	��
� In
the following� we describe the architecture modeled and the
applications used�

7.1 Architecture Modeled
Our baseline architecture is a workstation with a high�

performance ��� GHz �ve�issue PHost processor similar to
IBM�s Power� 	
� The performance of this workstation is
compared to that of two upgraded versions of it� one where
the plain main memory is replaced by a single FlexRAM
chip� and one where it is replaced by two FlexRAM chips�
The main architectural parameters of the system modeled

are shown in Table �� In the table� the times for each pro�
cessor are measured in that processor�s cycles� Note that
the PHost is very powerful� has a large L� cache� and is
able to sustain many simultaneous memory accesses� Conse�
quently� the baseline architecture is very aggressive� On the
other hand� recent advances in merged logic�DRAM tech�
nology seem to enable the integration of high�speed logic
with high�density memory in the same chip 	�� ��
� Con�
sequently� we have set the frequency of the PArrays to be
��� of that of the PHost� Recall that each FlexRAM chip
has �� PArrays� As shown in Table �� these PArrays are
much simpler than the PHost� Speci�cally� each PArray has
a single integer adder and shares an integer multiplier with
other PArrays� Moreover� PArrays lack �oating�point hard�
ware� which they emulate in software� We assume that the
latencies of emulating a �oating�point add�subtract� mul�
tiply� and divide�sqrt operation are � ��� and �� cycles�
respectively�
We also simulate the parts of the OS and run�time system

that are most likely to be exercised� For the OS� this includes
building and keeping a two�level page table� allocating and
mapping the virtual pages to the appropriate physical pages�
maintaining the TLBs in both PHost and PArrays� and per�
forming task scheduling� As for the run�time system� we
model it completely� including task spawning� memory allo�
cation by both the PHost and PArrays� and periodic polls
and other accesses to synchronize PHost and PArrays� The
size of the pages used is �� Kbytes�

7.2 Applications Used
To evaluate the programmability and performance of a

FlexRAM system using CFlex or IMOs� we select eight ap�
plications� These applications have a wide variety of char�
acteristics� which can help us discover which attributes are

Administrator
To make code containing IMO calls postable to conventional machines, IMO

Administrator
FlexRAM. In Active Pages, all the communications between the memory processors areserialized through the PHostAs a result the PHost maybecome a bottleneck when many non local accesses are required.In DIVA exchange of data between memory chips requiresthe use of messages called parcels.Passing a parcel involvessoftware processing by either user or supervisor level codeat both ends which makes it more expensive than thehardware approach followed by FlexRAM.More programming effort than that required for FlexRAM may be required to overcome the data placement sensitivity of Active Pages and DIVA. IN the case of DIVA, a CFlex compiler may...

Administrator
measured in terms of processor cycles

PHost Processor PHost Caches Bus � Memory

Freq� ��� GHz L� Size� 	
 KB Bus� Split Trans
Issue Width� � L� OC�RT� ��	 Bus Width� � B
Dyn Issue� yes L� Assoc�
 Bus Freq� �� MHz
I�Window Size� � L� Line� �
� B Mem RT� ���
Ld�St Units�
�� L� MSHR� �� ���
�� ns�
Int�FP Units� �� L
 Size� � MB
Ld Queue� 	
 L
 OC�RT� ��

St Queue� 	
 L
 Assoc� �
BR Penalty� �
 L
 Line� �
� B
TLB Entries� �
� L
 MSHR� �

PArray Processor PArray Cache FlexRAM Torus� Bus

Freq� ��
GHz L� Size� � KB Avg Torus RT� �
Issue Width�
 L� OC�RT� ��
 Torus Freq� ��
 GHz
Dyn Issue� no L� Assoc�
 Bus� Split Trans
Ld�St Units� ��� L� Line� 	
 B Bus Width� � B
Int�FP Units� ��� Blocking Bus Freq� �� MHz
Ld�St Queue�
�

BR Penalty� �
TLB Entries� 	

PArrays�Chip� �

Table �� Parameters of the architecture modeled�
In the table� BR� OC� RT� and MSHR stand for
branch� occupancy� latency of a round trip from the
processor� and miss status handling register� respec�
tively�Each PArray has a single integer adder and
shares an integer multiplier with � other PArrays�

most suitable for FlexRAM� and what problems arise in
FlexRAM programming� These applications have been an�
notated by hand with CFlex directives or with calls to an
IMO library that we created� We have also modi�ed the
SUIF compiler 	��
 to accept CFlex pragmas and compile
the applications� The resulting executable �le is passed to
our simulator infrastructure�
The IMO library contains operations to handle singly�

linked lists� It includes both STL�like operations such as
insertion� retrieval� or search� and many high�level opera�
tions� Examples of the latter include those in Table � ap�
plied to linked lists� and the processing with a function of
all the pairs of elements taken from two lists� The library
uses a linked list that is distributed among the PArrays� It
makes extensive use of the run�time system functionallity
that enables PArrays to allocate and deallocate portions of
heap memory in parallel� All the operations are used in our
applications� Overall� the library contains ��� lines of soure
code� including the CFlex directives�
Table lists the applications used� TSP and TreeAdd

are taken from the Olden suite of pointer�intensive sequen�
tial applications 	��
� Swim and Mgrid are from the SPEC
OMP���� suite� Dmxdm and Spmxv are numerical kernels�
and Distance and Path are written from problem descrip�
tions in 	�
� Distance and Path are coded with IMO library
calls� while the other applications use CFlex directives�
We use four axes to broadly classify the behavior of each

application� Speci�cally� the access patterns may be irreg�
ular due to pointers �Ptr� or due indirections in the form
of subscripted indices �Ind�� or regular �Reg�� The compu�
tation may use mostly integer �Int� or �oating�point �FP�
operations� When several data structures are involved in
the computation� we are able to align all of them �Yes�� only
some of them �Part�� or none of them �No�� Finally� the typ�

ical number of instructions in the tasks sent to the PArrays
may be tens of thousands �Small�� hundreds of thousands
�Med�� or over one million �Large�� The tasks in Mgrid have
a variety of sizes� Overall� we can see that our applications
cover a wide variety of behaviors�
The table also lists the data set size of the applications�

and the average Instructions Per Cycle �IPC� of the applica�
tions running on the architecture without FlexRAM chips�
The last three columns of the table attempt to estimate
the e�ort required to map the applications to the FlexRAM
system� �From left to right� they list the original number of
lines of code� the number of CFlex directives inserted� and
the additional lines of code required to map the code to the
FlexRAM system� For the two applications coded with IMO
calls� the last two columns have a slightly di�erent meaning�
number of CFlex directives in the IMO functions used� and
the static number of calls to IMO functions� respectively�
The original code size re�ects the number of lines of the
applications without including the IMO library� Note that
little e�ort has been made to optimize all the parallel ver�
sions� other than using a strategy that distributes the tasks
evenly among the PArrays� Rather� we have stressed the
simplicity of the mapping process by making as few modi��
cations as possible� as the �gures in the table show�

7.2.1 Details on Individual Applications
To help understand the mapping better� we now give some

details on individual applications� We start with TSP and
TreeAdd� which operate on trees built with pointers� TreeAdd
is parallelized and mapped as discussed in Section ���� TSP
follows a similar approach but has some di�erences� Specif�
ically� subtrees in TreeAdd are processed independently by
di�erent PArrays� while the PHost performs the computa�
tion above a certain tree level� In TSP� instead� processing a
node of the tree requires accessing the whole subtree below
the node� Thus� assigning the processing of the upper lev�
els of the tree to the PHost would leave a lot of parallelism
unexploited� In our parallelization� we let PArrays work at
all levels of the tree and only reserve the root for the Phost�
As the processing moves up the tree� there are fewer sub�
trees� which means both fewer active PArrays and that those
PArrays have to access data in more memory banks�
Swim and Mgrid use the test input data set� Their access

patterns are very regular and �oating�point operations dom�
inate the computation� We exploit the vast loop�level par�
allelism in these applications by simply replacing the orig�
inal OpenMP directives by the corresponding CFlex ones�
Note that� although the data set size of Swim uses about
�� Mbytes� its page footprint in memory is larger than ��
Mbytes because of internal page fragmentaton� As a result�
Swim requires at least two FlexRAM chips to execute with�
out intensive swapping� Consequently� we do not perform
experiments with Swim using a single FlexRAM chip�
Dmxdm and Spmxv are matrix multiplication kernels�

Dmxdm multiplies two ���� � ���� dense matrices of dou�
ble precision �oating point elements with blocking in the
three dimensions� Each submatrix is copied into consec�
utive locations to improve the locality� One of the loops
is also unrolled and jammed� Spmxv multiplies a sparse
������ ����� matrix with three million entries by a vector�
The matrix is stored in Compressed Row Storage �CRS� for�
mat 	�
� Column indices and non�zero values are not aligned
because of their di�erent size �four and eight bytes� respec�

Administrator
directives or modified by replacing part of the code with calls to IMO routines.

Administrator
To compiler CFlex programs, we modified SUIF [18] to accept ..

Administrator
distributed across the pArrays

Administrator
operations including those in Table 1 implemented to accept the vector parameters in the form of linear lists. The library ...

Administrator
Path were written

Administrator
Distance and Path exploit parallelism within IMO library routines, while ...

Administrator
remove ?

Administrator
Note that rather than attempting to heaviliy modify the code in order to exploit as much parallelism as possible, we have focused on the simplicity of...

Administrator
leave much parallelism

Administrator
we did not perform

Administrator
28 Mbytes, its memory footprint is larger than

Applic� Coding Application Characteristics Data Set Baseline Original Number Additional
Access Data Align Task Size Size �MB� IPC Lines Directives Lines

TSP CFlex Ptr FP � Large �� ���� ��� �� �
TreeAdd CFlex Ptr Int � Large �� ���� �� � �
Swim CFlex Reg FP Yes Med �� ���� ��� � �
Mgrid CFlex Reg FP Yes Var �� ��� ��� � �
Dmxdm CFlex Reg FP Part Large � ��� �� � �
Spmxv CFlex Ind FP No Med � ���� �� � �
Distance IMOs Ptr Int � Large � ���� ��� �� �
Path IMOs Ptr Int � Small � �� ��� �� �
Average ��� ���� ����� ��� ��

Table �� Characteristics of the applications used�

tively�� These two kernels are parallelized by assigning a
di�erent PArray to compute a block of rows of the destina�
tion matrix �in Dmxdm� or a set of consecutive elements of
the destination vector �in Spmxv�� In both kernels� a single
directive is required to parallelize the outer loop�
Finally� Distance and Path are programs with singly�linked

list data structures that use our IMO library of operations
on these structures� Distance takes a set of points in a two�
dimensional space and �nds all pairs of points that are closer
than given distance� Path �nds the shortest path between
two given points in a graph� The IMO functions are designed
to be very e�cient for both the sequential �no FlexRAM�
and the parallel �FlexRAM� execution of these applications�
Still� there are some cases where the performance of the se�
quential execution can be hindered by IMO code structure
that is better suited for parallel execution� In those cases� we
write versions of these IMO functions that are optimized for
the sequential execution� and we use them when evaluating
the no�FlexRAM architecture�

8. EVALUATION

8.1 Application Speedups
To evaluate the impact of the intelligent memory� we use

the execution speedups of the FlexRAM system over the
baseline workstation� We examine FlexRAM systems with
one or two FlexRAM chips� Figure � shows the resulting
speedups for each application and their geometric mean� Re�
call that� to accommodate the working set of Swim� we need
two FlexRAM chips� In the �gure� the speedups correspond
to the execution of the complete applications� All applica�
tions spend more than ��� of their original execution time
in the section of the code parallelized with CFlex�
The �gure shows that� for one FlexRAM chip� the speedup

�gures are quite good� they range from ��� to ��� with a ge�
ometric mean of �� In general� the applications with the
highest speedups are those with irregular access patterns
and those with integer computation� This is likely because
the other types of applications are relatively better matched
to the large caches and good �oating�point support of the
PHost�only baseline workstation� In addition� applications
such as Path where PArray tasks largely use data located
in the local memory bank obtain better speedups than ap�
plications such as Spmxv where PArrays require data from
other banks�
The locality of PArray accesses also a�ects the changes

in speedups as we go from one to two FlexRAM chips� In

 TSP TreeAdd Swim Mgrid Dmxdm Spmxv Distance Path GMean
0

10

20

30

40

50

60

S
p

ee
d

u
p

1 FlexRAM Chip
2 FlexRAM Chips

Figure �� Execution speedups obtained using the
FlexRAM system�

applications with good locality� the speedups go up� while in
those with poor locality� the opposite occurs� In the second
class of applications� the FlexRAM bus becomes a bottle�
neck for accesses to banks in other chips� Overall� without
considering the contribution of Swim� the geometric mean
of the speedups for two FlexRAM chips is also about �� In
general� contention in the FlexRAM bus and overheads due
to synchronization and task spawn will grow with the num�
ber of FlexRAM chips� Consequently� unless the applica�
tion requires little data movement and synchronization� it is
generally advisable to use the smallest number of FlexRAM
chips required to hold its data set�

8.2 Compiler and Run-Time Optimizations
Our experiments produced some unexpected results� Specif�

ically� note that the CFlex versions of our applications of�
ten use the on home clause to leverage our �rst�touch page
allocation policy and align data structures for local compu�
tation� We call these versions Opt� The speedups shown in
Figure � have been calculated using these versions� Surpris�
ingly� we found that CFlex versions of Swim and Mgrid with�
out any on home clauses are faster than their corresponding
Opt versions� In these new versions� which we call NoOpt�
tasks are assigned following the default scheme when the
on home clause is not present� round robin across chips and

Administrator
wrote version

Administrator
memory, we measured the

Administrator
geometric mean (GMean)

Administrator
This was to be expected because dense numerical applications tend to make better us of of large ..

Administrator
task spawning

Administrator
as the reference point for our first ...

Administrator
are scheduled following

Administrator
the default scheme: cyclically acrossround robin is more dynamic (I belive)

then� within a chip� round robin across PArrays� Pages are
still allocated using the �rst�touch policy� The di�erence in
speedups between the Opt and NoOpt versions is shown in
the �rst two bars of Figure ���

Swim 2 Fx Chips Mgrid 1 Fx Chip Mgrid 2 Fx Chips
0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

NoOpt
Opt
Opt+H
Opt+H+C
Opt+H+C+L

Figure ��� Impact of compiler and run�time opti�
mizations for task spawning and mapping�

These experiments helped us identify at least three ine��
ciencies in the way tasks are spawned and mapped� The �rst
ine�ciency occurs in the way tasks are spawned under the
on home clause� Therefore� it only a�ects the Opt version� It
occurs when the computation to be assigned to consecutive
tasks accesses consecutive pages in the memory bank of the
same PArray� The original implementation of the compiler
generates one task for each page and assigns all the tasks
to the same PArray� Unfortunately� the creation of so many
tasks causes signi�cant spawning and synchronization over�
heads� Moreover� assigning them all to the same PArray
may reduce parallelism� The reason is that our run�time
system can only spawn a task when all the previous tasks
generated by the PHost have already been spawned� More�
over� if the destination PArray is busy executing another
task� the spawn request is queued up in a register of the
chip�s FXCC� If the FXCC runs out of registers� the spawn
request cannot be queued and the run�time system has to
wait for tasks to �nish�
To eliminate this ine�ciency� we change our compiler as

follows� When the consecutive tasks would access consec�
utive pages of the same memory bank� the compiler com�
bines all the work into a single task� This approach elim�
inates overheads and the potential run�time stall problem
mentioned above� We call this optimization H for home�
allocation� and apply it to the Opt versions to obtain Opt�H�
Figure �� shows that Opt�H delivers higher speedups� es�
pecially for Swim�
The second ine�ciency occurs in machines with more than

one FlexRAM chip when tasks are mapped without the
on home clause� The default policy in this case� as stated
above� is to map the tasks round robin among the FlexRAM
chips for two reasons� to balance the usage of the chips and
to reduce the likelihood of run�time stall due to running out
of FXCC registers� Unfortunately� consecutive task spawns
generate tasks that usually access related pieces of data� and
often share the same data� Spawning these tasks on di�erent

chips often causes our �rst�touch page allocator to map the
pages of consecutive portions of vectors and arrays on dif�
ferent chips� As a result� if tasks want to access information
that is near in the virtual space� they are forced to use the
FlexRAM bus and go across chips� This a�ects particularly
the degree of locality that can be achieved in the Opt�H
versions�
To eliminate this ine�ciency� we change the mapping pol�

icy for consecutive tasks when the on home clause is not
present� We perform round�robin mapping of tasks within a
chip before moving to mapping tasks to the next chip� Con�
sequently� each chunk of �� consecutive tasks is mapped in
the same chip� We call this optimization C for consecutive�
on�chip� and apply it to theOpt�H versions to obtain Opt�H�C�
Figure �� shows the resulting speedups� which are now sig�
ni�cantly higher� Note that Opt�H�C does not apply to
single�chip systems�
Finally� there is a third� potential ine�ciency that is in�

trinsic to the use of the on home clause� When assigning the
computation to the PArray�s� on whose bank the data is lo�
cated� we certainly obtain better locality� Unfortunatly� we
also restrict the number of PArrays that cooperate in the
computation and� therefore� restrict parallelism�
Unfortunately� addressing this ine�ciency involves dis�

tributing the data among as many PArrays as possible� which
has negative e�ects on locality� Besides� we are limited by
the fact that the granularity of the distribution in our system
is the page� Therefore� computation to be parallelized using
the on home clause that operates on small pieces of data can
only be split among a few PArrays� This would particularly
hurt Mgrid�s performance� Consequently� we optimize task
spawning and mapping as follows� on home clauses are ap�
plied only on loops that have more than �� iterations� Oth�
erwise� the loop is parallelized without applying the clause�
thus losing locality but gaining in parallelism� This opti�
mization attempts to ensure that the number of PArrays
that execute the loop iterations is not too reduced despite
the restriction that on home imposes�
We call this optimization L� for limited on home� The last

bar in Figure �� shows the improvement when applying this
optimization to the Opt�H�C version of Mgrid� The other
applications do not need this optimization�

8.3 Hardware Optimizations
We have examined other ways of improving the perfor�

mance of our system� For example� applications that spawn
many tasks would bene�t from more intelligent FXCCs� par�
ticularly when the tasks have small size� The current system
�lls in the bu�er with the information for each individual
task and then communicates with a FXCC to attempt to
spawn the task� Then the process in repeated for each new
task� FXCCs could be improved to allow the runtime system
to send a single request to a FXCC to spawn several tasks�
The request would provide the number of tasks to spawn�
the pointer to the code� and a vector of pointers to their
bu�ers� Another possibility would be to locate the bu�ers
in memory positions separated by a constant stride� In this
case the address of the initial bu�er and the stride would be
communicated to the FXCC� In either case� the multispawn
facility of the FXCC would reduce the overhead of spawn�
ing multiple tasks� The system could be further extended
to allow the di�erent tasks spawned with the same message
to run di�erent codes� but the scope of applicability of this

Administrator
cyclically across

Administrator
ineficiency results from the way

Administrator
computation segments to be assigned to different tasks

Administrator
access

Administrator
changed

Administrator
Instead of generating different tasks that access

Administrator
cyclically

 TSP TreeAdd Swim Mgrid Dmxdm Spmxv Distance Path GMean
0

10

20

30

40

50

60

70
S

p
ee

d
u

p

1 FlexRAM Chip Opt
1 FlexRAM Chip Opt+H+C+L
1 FlexRAM Chip Opt+H+C+L+M
2 FlexRAM Chips Opt
2 FlexRAM Chips Opt+H+C+L
2 FlexRAM Chips Opt+H+C+L+M

Figure ��� E�ect of three optimizations in the sys�
tem� Optimization H lies in generating one task per
chunk of consecutive pages when the on home clause
is applied� Optimization C refers to the consecutive
spawn of consecutive tasks in the same chip� Opti�
mization L limites the usage of the on home clause to
loops with a minimum number of iterations� Intel�
ligent multispawn FXCCs are represented by M�

enhancement is smaller� We call this optimization M for
Multi�spawn� and apply it to the Opt�H�C versions to ob�
tain Opt�H�C�M� Fig� �� shows how the initial speedups
in Fig� � evolve for one and two chips applying the possi�
ble optimizations we have discussed so far� The e�ect of
optimization H is not shown separately because it only af�
fects Swim and Mgrid� so Fig� �� su�ces for this purpose�
Optimization L is only applicable to Mgrid� so the same ap�
plies� Multispawn FXCCs improve the behavior of virtually
all of the applications� The e�ect is particularly noticeable
in Path� which needs to spawn many small tasks�

8.4 Other Optimizations
Finally� highly optimized versions of the codes can be writ�

ten� For example� we have developed a complex Dmxdm
code version with ��� lines of code and �� CFlex direc�
tives� This code chooses a leader PArray in each FlexRAM
chip to perform the movements of data which may come
from another FlexRAM chip� The other PArrays in the
chip synchronize with it using FXCC locks in order to copy
the data from its bu�er once it has �nished� The resulting
code is about �� slower than the original one when only
one FlexRAM chip is available� but performance is doubled
when two chips are used� Sometimes the improvements ob�
tained through more complex implementations turn out to
be smaller than the new spawn and synchronization costs
they require� This happened in our experiments with Sp�
mxv� for example�
No quatitative comparison with other intelligent memory

architectures and programming environments is provided
because of the enormous di�erences both in the architec�
tural assumptions and the programming paradigms�

9. RELATED WORK
We now compare CFlex with OpenMP 	�
 and HPF 	�
�

the most widely known parallelization directives� CFlex is
inspired by the former� so their approaches have many points
in common� such as the explicit use of threads� There are�
however� several important di�erences with OpenMP� One
is that the OpenMP machine model is UMA and� as a result
OpenMP lacks the locality related clauses found in CFlex�
Local memories are meaningful to HPF but it uses replica�
tion and alignment to take advantage of them� While this
strategy is adequate for regular data structures� data struc�
tures enabled by C pointers and structs� which are the focus
for our work� cannot be partitioned with these directives�
CFlex provides mechanisms for implicitly distributing and
even aligning both regular and irregular data structures� as
the examples in Sect� ��� have shown�
Task de�nition and synchronization is also more power�

ful in CFlex than in OpenMP and HPF� The sync�async
clauses enable the spawn of new tasks dynamically outside
loops� In this way it is possible to parallelize recursive algo�
rithms and the processing of lists� trees and other pointer�
based structures using our family of directives� As we ex�
plained before� this is particularly interesting for FlexRAM�
as PIM architectures are particularly well suited for codes
with irregular access patterns� This gives CFlex a very im�
portant advantage over OpenMP� which can only parallelize
iterative constructs of the for�do type and the statically
nested parallelism of the sections and section directives�
HPF is also primarily designed to exploit loop level paral�
lelism� although version ��� 	�
 includes the TASK REGION di�
rective� which allows to implement parallel sections� nested
parallelism and data parallel pipelines� Still� it is less pow�
erful than CFlex� as the generated tasks must honor several
restrictions� For example all the data they access must be
mapped �local� to the active processor subset�
Finally� both in OpenMP and HPF all processors have

the same capabilities� But CFlex�s orientation to intelligent
memory systems forces it to explicitly distinguish two very
di�erent kinds of processors� the main processors�s� of the
system� PHost�s�� and the memory processors� PArrays�

10. CONCLUSIONS
A programming environment oriented to intelligent mem�

ory architectures has been presented and evaluated� The
target architecture is a variation of the FlexRAM architec�
ture presented in 	��
� but it is suitable to other architectures
that use the PIM chips in a similar way� Programming is
based on a set of compiler directives inspired by OpenMP
called CFlex� Our directives allow the parallelization of a
much larger class of codes than OpenMP and they include
clauses that allow the programmer to make a better exploita�
tion of locality� The programmer does not need to know
any detail of the system to use these directives� but he is
in charge of specifying the partitioning of work between the
PHost and the PArrays and how the generated tasks must
synchronize� These directives can also be used to program
general NUMA systems� as they allow to parallelize codes
without referring to PIMs� An alternative or complementary
programming may be developed using libraries with highly
optimized functions that use the FlexRAM chips while hid�
ing completely their existence� We call these functions Intel�
ligent Memory Operations� The programming environment
is completed by some Operating System extensions� and an
user runtime system�
A selection of benchmarks with very di�erent properties

and behaviors was chosen to evaluate our system� CFlex
proved to be a �exible language that allowed to parallelize
the codes� sometimes following relatively complex paralleliza�
tion schemes� making minimal changes� Despite choosing
an aggressive baseline� high speedups of ten or even more
were obtained for applications with irregular access patterns�
mainly on codes based on integers� Floating point oper�
ations prevent great performance improvements because of
the simplicity of our processors in memory� The experiments
show the importance of data alignment and locality to ob�
tain the best results� Some optimizations were suggested
by the experiments that raised the geometric mean of the
speedups obtained using one and two FlexRAM chips from
� to ����� and from ��� to ��� respectively� Still� further im�
provements may be achieved by careful optimization of the
codes� which indicates that the usage of IMOs is probably
the best option for most users�

11. ACKNOWLEDGMENTS
We thank the referees and the members of the Polaris and

IACOMA groups for their valuable feedback� particularly
George Almasi�

12. REFERENCES
	�
 R� Barrett� M� Berry� T� Chan� J� Demmel� J� Donato�

J� Dongarra� V� Eijkhout� R� Pozo� C� Romine� and
H� van der Vorst� Templates for the Solution of Linear
Systems� Building Blocks for Iterative Methods� SIAM
Press� �����

	�
 J� Chame� J� Shin� and M� Hall� Code
Transformations for Exploiting Bandwidth in
PIM�Based Systems� In Solving the Memory Wall
Problem Workshop� June �����

	
 K� Diefendor�� Power� Focuses on Memory Bandwith�
Microprocessor Report� ����� October �����

	�
 C� Foster� Content Addressable Parallel Processors�
Van Nostrand Reinhold Co� New York� �����

	�
 B� Fraguela� J� Renau� P� Feautrier� D� Padua� and
J� Torrellas� CFlex� a Programming Language for the
FlexRAM Intelligent Memory Architecture� Technical
Report UIUCDCS�R����������� Department of
Computer Science� University of Illinois at
Urbana�Champaign� July �����

	�
 M� Hall et al� Mapping Irregular Aplications to DIVA�
a PIM�based Data�Intensive Architecture� In
Supercomputing� November �����

	�
 M� Hall and C� Steele� Memory Management in
PIM�Based Systems� In Proceedings of the Workshop
on Intelligent Memory Systems� held in conjunction
with Architectural Support for Programming

Languages and Operating Systems� November �����

	�
 High Performance Fortran Forum� High Performance
Fortran language speci�cation� version ���� �����

	�
 IBM Microelectronics� Blue Logic SA���E ASIC�
http���www�chips�ibm�com�news������sa��e�
February �����

	��
 S� S� Iyer and H� L� Kalter� Embedded DRAM
technology� opportunities and challenges� IEEE
Spectrum� ����������� April �����

	��
 Y� Kang� W� Huang� S� Yoo� D� Keen� Z� Ge� V� Lam�
P� Pattnaik� and J� Torrellas� FlexRAM� Toward an

Advanced Intelligent Memory System� In
International Conference on Computer Design� pages
�������� October �����

	��
 V� Krishnan and J� Torrellas� An Execution�Driven
Framework for Fast and Accurate Simulation of
Superscalar Processors� In International Conference
on Parallel Architectures and Compilation Techniques�
pages ������� October �����

	�
 OpenMP Architecture Review Board� OpenMP C and
C�� Application Program Interface Version ����
March �����

	��
 M� Oskin� F� Chong� and T� Sherwood� Active Pages�
A Computation Model for Intelligent Memory� In
International Symposium on Computer Architecture�
pages ������� June �����

	��
 A� Rogers� M� C� Carlisle� J� H� Reppy� and L� J�
Hendren� Supporting Dynamic Data Structures on
Distributed�Memory Machines� ACM Transactions on

Programming Languages and Systems� �����������
March �����

	��
 Y� Solihin� J� Lee� and J� Torrellas� Automatic Code
Mapping on an Intelligent Memory Architecture�
IEEE Transactions on Computers� �����������������
November �����

	��
 A� A� Stepanov and M� Lee� The Standard Template
Library� Technical Report XJ�����������
WG���N����� ISO Programming Language C��
Project� May �����

	��
 R� P� Wilson� R� S� French� C� S� Wilson� S� P�
Amarasinghe� J��A� M� Anderson� S� W� K� Tjiang�
S��W� Liao� C��W� Tseng� M� W� Hall� M� S� Lam� and
J� L� Hennessy� SUIF� An Infrastructure for Research
on Parallelizing and Optimizing Compilers� SIGPLAN
Notices� ����������� �����

	��
 S��M� Yoo� J� Renau� M� Huang� and J� Torrellas�
FlexRAM Architecture Design Parameters� Technical
Report CSRD������ Department of Computer Science�
University of Illinois at Urbana�Champaign� October
�����
http���iacoma�cs�uiuc�edu��exram�publications�html�

