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ABSTRACT
Intelligent memory architectures enhance the memory chips
of a computer with many simple processors� The result is
a highly�parallel� heterogeneous machine that is able to ex�
ploit computation in memory� Examples of such architec�
tures are FlexRAM� DIVA� and Active Pages�
In this paper� we address how to e�ectively hand�program

such an architecture� We propose a family of compiler di�
rectives inspired by OpenMP called CFlex� Such directives
enable the memory processors to cooperately execute the
program with the main processor� In addition� we pro�
pose libraries of highly�optimized functions called Intelligent
Memory Operations �IMOs�� These functions program the
processors in memory through CFlex� but make them com�
pletely transparent to the programmer� Simulation results
show that� with CFlex� a server with intelligent memory of�
ten delivers a performance that is �� times higher �or more�
than a plain server�
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D��� 	Programming Techniques
� Concurrent Program�
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1. INTRODUCTION
Integrating processors and main memory in the same chip

is a promising approach to address the processor�memory
communication bottleneck� In such chips� processors en�
joy short�latency and high�bandwidth communication with
memory� One way to use these chips is as intelligent memo�
ries that replace all or some of the standard memory chips in
a server or workstation� This is the approach followed by the
FlexRAM 	��
� DIVA 	�
� and Active Pages 	��
 intelligent
memory systems�
This use of processor�memory chips as intelligent memory

is very appealing because it requires relatively few changes
to general�purpose computers� and it supports the execution
of applications without modi�cations� Indeed� applications
can be gradually modi�ed or compilers gradually improved
to take advantage of processing�in�memory capabilities�
Unfortunately� the challenging problem of e�ectively pro�

gramming such machines has received only limited atten�
tion� Speci�cally� there are some proposals where the pro�
grammer identi�es and isolates the code sections to run on
the memory processors 	�� �� ��� ��
� However� these pro�
posals are largely concerned with dividing sections of code
across a set of identical memory processors and lack porta�
bility� The resulting approach is often not much di�erent
from running code on a conventional parallel processor�
An alternative approach has been to use a compiler that

automatically partitions the code into loops and other sec�
tions and then schedules each section on either the main
processor or the one in memory 	��
� This approach has only
been tried for a system with a single processor in memory�
it has not been applied to a general heterogeneous system
with several main processors and many memory processors�
In this paper� we present a language and necessary ope�

rating�run�time system support to enable the e�cient pro�
gramming of such a general heterogeneous architecture� Our
goal is to provide language support to develop highly�tuned
applications that are relatively easy to understand and mod�
ify� To this end� we devise CFlex� a set of directives resem�
bling those of OpenMP 	�
 that control execution on an
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intelligent memory system� CFlex exposes the intelligent
memory architecture to the programmer� therefore unlock�
ing the performance potential of the system� Moreover� the
use of directives results in portable programs� which can be
compiled for execution on plain systems by simply ignoring
the directives�
Since applications should also be able to pro�t from intel�

ligent memory without the programmer having to be con�
cerned with the architecture organization� we brie�y study
libraries of Intelligent Memory Operations �IMOs�� They
are written using CFlex and hide from the programmer the
organization of the intelligent memory�
Our discussion of CFlex� its implementation� use� and

evaluation are all made in the context of the FlexRAM in�
telligent memory architecture 	��
� In this environment� our
simulation results show that� with CFlex� a server with intel�
ligent memory often delivers a performance that is �� times
higher �or more� than a plain server�
The rest of this paper is organized as follows� Section �

outlines the FlexRAM architecture� Section  describes the
relevant operating and run�time system support� Section �
describes CFlex and provides illustrative examples� Section �
discusses IMO libraries� Section � shows how CFlex can be
applied to other intelligent memory architectures� Section �
presents the environment that we use to evaluate CFlex on
FlexRAM� Section � presents the evaluation� Section � dis�
cusses related work� and Section �� concludes�

2. FLEXRAM ARCHITECTURE
A FlexRAM system is an o��the�shelf workstation or server

where some of the DRAM chips in the main memory are
replaced by FlexRAM processor�memory chips 	��
� Each
FlexRAM chip contains DRAM memory plus many simple�
general�purpose processing elements called PArrays� To the
main processor of the system� which we call PHost� the re�
sulting memory system appears as a versatile accelerator
that can o��load memory�intensive or highly�parallel com�
putation� While the machine can have multiple PHosts� in
this paper we consider a single�PHost system� Each PArray
can be programmed independently and� therefore� PArrays
can execute SPMD or MIMD code� PHost and all PAr�
rays share a single address space� Finally� if the PHost runs
legacy applications� the memory system appears as plain
memory� A FlexRAM system is shown in Figure ��

FlexRAM Chip Controller

PArray

FlexRAM Chip Controller FlexRAM Chip Controller

Memory System Interconnect

FlexRAM Bus

PHost

Figure �� A FlexRAM intelligent memory system�

The architectural parameters of a FlexRAM chip have

been upgraded from 	��
� the new parameters are described
in 	��
� In this upgraded design� each FlexRAM chip has ��
PArrays� a FlexRAM chip controller �FXCC� that interfaces
the PArrays to the PHost� and �� Mbytes of DRAM orga�
nized in �� banks� Each PArray has an ��Kbyte write�back
data cache and a ��Kbyte instruction cache �Figure ��� A
FlexRAM chip has a ��D torus that connects all the on�chip
PArrays� Moreover� all the FlexRAM chips are connected to
a communication bus called the FlexRAM bus� With these
links� a PArray can access any of the memory banks in its
chip and in other FlexRAM chips�

2KB ICache 8KB DCache

Local
Controller

PArray processor

2 issue in-order

Local Bank (1MB)

DRAM

Router

Figure �� Structure of a PArray and a memory bank
inside a FlexRAM chip�

PArrays use virtual addresses in the virtual address space
of the application run by the PHost� Each PArray has a
small TLB that contains some entries from the PHost�s page
table� PArrays serve their own TLB misses� However� they
invoke the PHost operating system for page faults and mi�
grations�

2.1 Interprocessor Communication
Since the memory system interconnect of a FlexRAM ma�

chine is o��the�shelf� FlexRAM chips cannot be masters of
it� As a result� any communication between PArrays and
PHost has to be done in one of two ways� through memory
or via memory�mapped registers in the FXCCs� Memory
communication involves writing and reading a memory lo�
cation� and is typically used to pass the input arguments
and outputs of the tasks executed on the PArrays� FXCC
register communication involves writing and reading special
registers in the FXCCs� and is used for commands and ser�
vice requests� We consider FXCC register communication
next�
The PHost communicates with the PArrays to spawn tasks

on them� answer service requests� and order maintenance op�
erations such as �ushing cached pages or invalidating TLB
entries� In all cases� the PHost issues a command to an
FXCC register and passes at most two words� namely the
address of the routine to execute and a pointer to the input
argument bu�er� The FXCC stores this information and
passes it to the corresponding PArray�s��
A PArray communicates with the PHost to request a ser�

vice� such as the handling of a page fault� In this case� the
PArray writes a register in its FXCC� The FXCC cannot
deliver this request to the PHost because FlexRAM chips
cannot be masters of the memory system interconnect� Con�
sequently� the PHost periodically polls the FXCCs to check
for requests�

2.2 Synchronization
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Each FXCC manages a set of locks that can be acquired
and released by the PHost� and by the on� and o��chip PAr�
rays� Upon a request for a free lock� the home FXCC grants
ownership to the requester� If the lock is currently taken�
the FXCC is able to queue up a certain number of requests�
and reply to each of them when it can grant ownership� If
the number of requesters exceeds a certain threshold� the
FXCC replies back with a �busy� message�

2.3 Data Coherence
A FlexRAM system lacks hardware support for cache co�

herence between the PHost and PArrays� Data coherence is
maintained by explicit �total or partial� cache writeback and
invalidation commands 	��
� Speci�cally� before the PHost
initiates a PArray task� it writes back the dirty lines in its
caches that contain data that may be read by the PArray
task� This ensures that the PArray sees the correct ver�
sion of the data� Moreover� before the PHost executes code
that may use results from a task executed by a PArray� the
PHost invalidates from its caches the lines with data that
may have been updated by the PArray� This ensures that
the PHost does not use stale data� As for a PArray� when
it completes a task� it writes back its dirty cache lines and
invalidates its small cache� The PArray caches also include
a dirty bit per word� so that only the modi�ed words actu�
ally update memory� This is done to tolerate false sharing
between PArrays�

3. OPERATING & RUN-TIME SYSTEM
To use the FlexRAM system� we need several extensions

to the Operating System �OS� of the PHost and a small
per�PArray kernel� In general� the PHost OS is in charge of
all the I�O operations� PHost CPU scheduling� and virtual
memory management� The PArray kernel manages the PAr�
ray�s TLB� and the spawn and termination of local tasks� In
addition� we have developed a library�based user�level run�
time system for both the PHost and PArrays to improve
the programmability of the machine� In the following� we
describe the management of virtual memory and the user�
level run�time system�

3.1 Managing Virtual Memory
PHost and PArrays share a common view of the address

space of the tasks that cooperate in the execution of an
application� The PArray kernel reads the page table of the
process and updates its local TLB� However� only the PHost
OS can update the page table� perform page swapping� or
migrate pages�
To maximize access locality� the PHost OS tries to map

the virtual pages that a PArray references� to physical pages
located in the PArray�s local memory bank� Currently� we
support this approach with a ��rst�touch� mapping policy�
where the �rst PArray to reference a given page becomes its
owner and allocates it locally�
The PHost OS cooperates with the PArray kernels to keep

the PArray TLBs coherent when the page table changes�
Speci�cally� there is a shared software structure that con�
tains� for each page mapping� the list of PArrays that cache
it in their TLBs� This structure is updated by the PArray
kernels as they update their TLBs� When the PHost OS
moves a page to disk� it informs all the PArrays that cache
the mapping of that page in their TLBs� Then� the corre�

sponding kernels invalidate that TLB entry and the relevant
cache lines� The structure described is also used in other sit�
uations when the PHost OS modi�es the page table� such as
when it migrates pages�

3.2 User-Level Run-Time System
We developed a library�based user�level run�time system

for both the PHost and PArrays to perform several func�
tions� These functions include task management� synchro�
nization� heap memory management� and polling for re�
quests� We consider these functions in turn�
Tasks are spawned on the PArrays by the user�level run�

time system� Each task has an associated software bu�er
that contains the task input data that is not shared and�
sometimes� the results of the task� The former includes pri�
vate copies of global variables that the task needs� the latter
is not necessary if all the results are stored in shared memory
structures� To start a task� the user�level run�time system
�lls the inputs in this bu�er and then sends a spawn message
to the FXCC of the FlexRAM chip where the task is to run�
The PHost can then use the run�time system to spin on a
location in the bu�er that the PArray task will set when it
�nishes�
The run�time system also includes synchronization rou�

tines that use the FXCC locks� often building higher�level
constructs such as barriers�
The run�time system also performs heap memory manage�

ment� including parallel allocation and deallocation of heap
space by the PArray tasks� Standard malloc and free func�
tions are used� both in the PHost and PArrays� Those in the
PArrays operate on local pages of the heap that the run�time
system in the PHost has allocated� assigned to that partic�
ular PArray� and requested that the OS map them in that
particular PArray�s local memory bank� When the PArray
task runs out of local heap� it asks for more to the PHost
run�time system�
Finally� another function of the run�time system in the

PHost is to poll the FXCCs to detect requests from the
PArrays�
Note that the run�time system exports its functions and

variables not only to the compiler but also to the program�
mer� The complete description of its interface is found in 	�
�

4. CFLEX
To exploit the functionality of FlexRAM while keeping

the portability of the programs� we program the FlexRAM
system using a family of compiler directives� Our computa�
tional model requires these directives to be able to express
the task partitioning between the PHost and the PArrays�
and the synchronization between the generated tasks� Other
desirable properties are scalability as the number of pro�
cessors available in memory increases� and hiding as much
system details as possible from the programmer� It is also
important that the directives be powerful and �exible� so
that they allow the generation of parallel programs that are
easy to read and modify for a wide class of problems�
The latter objective is essential for our environment be�

cause of the nature of the FlexRAM system architecture�
Speci�cally� the PArrays are much simpler than the PHost�
have a lower clock rate� and lack �oating�point units� This
means that they are not particularly well suited to speed up
typical parallel applications based on �oating�point opera�
tions and loops that use regular� cache�friendly data struc�
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tures� Instead� the PArrays�s most valuable property is their
low memory access time� which allows them to accelerate
irregular� memory�intensive applications� This is an inter�
esting challenge for the design of our family of directives�
Indeed� currently available parallelization directives such as
OpenMP 	�
 or HPF 	�
� are especially oriented to loop�
parallel codes� and not well suited for irregular applications
like those using pointers or indirect accesses�
CFlex is a family of directives that addresses these is�

sues� The structure of CFlex directives is similar to that
of OpenMP directives� but there are also di�erences� We
implemented CFlex as annotations to the C language� and
use C in the discussion below� However� CFlex can be easily
used with other languages like FORTRAN�
The general structure of a CFlex directive is

�pragma FlexRAM directive�type �clauses�

CFlex directives may be classi�ed in three groups�

� Execution modi�ers indicate how a given segment of
code should be executed� These are the most widely
used directives� They include the requests to spawn a
given portion of the program for execution on a given
processor or group of processors�

� Data modi�ers request that data structures satisfy cer�
tain conditions� An example are directives to pad one
of the dimensions of an array to make its size a multi�
ple of the page size�

� Executable directives appear like instructions in the
program� Examples of this class include barriers or
prefetch operations�

In the following� we brie�y discuss the three kinds of direc�
tives and then show some examples of their use� A complete
description of CFlex is found in 	�
�

4.1 Execution Modifiers
These directives partition the computation into PHost

and PArray tasks� and synchronize tasks� For example� one
important execution modi�er speci�es the kind of processor
where the next statement should be executed� It does so
by setting directive�type to either phost or parray� Since
PArrays cannot spawn new tasks� these directives may only
appear in the code executed by the PHost� and they will
spawn either a new PHost task or a PArray task� A series
of optional clauses enrich the semantics of the directive�

� on home�x� speci�es that the task should be executed
on the PArray whose local memory bank contains the x
data structure� If the directive�type is phost� then this
clause only has e�ect when the target computer is a
NUMA machine� In this case� it speci�es that the new
task should be run on the PHost whose local memory
contains x�

� sync�async speci�es whether the task spawning the
new task must stop until the new task �nishes �sync�
or it can continue �async�� The default is sync� A task
does not �nish until all the tasks that it has spawned
have �nished� CFlex only allows the creation of asyn�
chronous tasks inside the syntactical scope of a syn�
chronous task� This provides a clear point of synchro�
nization where all asynchronous tasks are known to

have �nished� This point is the end of the synchronous
task inside which the asynchronous ones have been
spawned� This approach is illustrated in Section ����

� if�cond� controls the execution of the directive where
it appears� The directive is executed only if cond is
true�

� else also controls the execution of a directive� The
directive is executed if the cond in the if clause in
the immediately preceding directive is false� Note that
execution modi�ers cannot be nested for the very same
piece of code� Therefore� there is no need to implement
symmetric conditionals�

� shared� private� lastprivate� firstprivate� reduc�
tion have the same semantics as the directives of the
same name in OpenMP� In contrast to OpenMP� CFlex
allows them to apply to only one part of a structure�
such as one �eld of a struct or one element of a vector�

� flush speci�es variables such that� if their correspond�
ing lines are dirty in the PHost cache� the lines are
written back to memory� This is done so that the
PArray�s� executing the task�s� have access to the lat�
est version of the data they require in memory� If this
clause is not present� the compiler writes back all the
dirty lines in the PHost cache� The programmer can
use this clause to improve the performance by restrict�
ing the writeback to a certain set of variables�

Note that the ability to spawn new PHost tasks allows
CFlex to express parallelism in systems without processing
in memory� In this case� the on home clause is useful to
control locality of execution when the PHosts belong to a
NUMA machine�
A migrate clause can be added in the future to designate

shared data structures whose pages should migrate to the
�rst PArray or PHost that touches them after the task�s�
created by this directive begin their execution� However�
page migration can be very costly�
A second execution modi�er declares a code segment as

a critical section with a given name� This is done with the
critical directive�type� All the critical sections with the
same name are mutually exclusive� This is accomplished
through the use of the same FXCC lock for all of them�
This directive implies a synchronization between processors
to work on some shared data that may be modi�ed� This
directive can take the single optional clause flushinval to
specify a list of variables� These variables are those that
may be written in the critical section� or read in the critical
section and written somewhere else� In this case� the lines
with such variables are written back from the processor�s
cache �if dirty� and invalidated before entering the critical
section� This forces the processor to read the latest version
of the variables in the critical section� Moreover� these cache
lines are written back to memory �if dirty� when the proces�
sor exits the section� This enables the next processor that
will enter the critical section to access the new version of
the variables� If the flushinval clause is not present� the
operations described are performed on the whole cache�

4.2 Data Modifiers
We propose three directives of this kind� namely alignable�

page aligned� and align� The �rst two directives can pre�
cede the declaration of a C struct or union and instruct
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the compiler to pad the data structure to align it� Speci��
cally� the alignable directive increases the size of the data
structure until it becomes a power of two� the page aligned
directive increases the size until it becomes a multiple of
the page size� Finally� the align directive aligns the di�
mensions of an array to page boundaries� This directive
takes a syntax such as array name������ where the number
of square�bracket pairs speci�es which dimension to align�

4.3 Executable Directives
CFlex has several executable directives that perform a

variety of functions� As an example� the barrier directive
implements a barrier for n processors using FXCC locks�
As another example� the flush directive speci�es a series of
variables to write back to memory if the corresponding lines
are dirty in the cache of the processor� This directive takes
the optional invalidate clause� which additionally causes
these lines �or a subset of them� to be invalidated after the
potential writeback�

4.4 Examples
To gain more insight into the CFlex directives� we now

show several simple examples of their use� A �rst example
involves traversing a linked list and performing some pro�
cessing on each of its nodes in parallel �Figure �� The �rst
directive in the �gure generates a synchronous task in the
PHost that will execute a whole loop� The purpose of this
directive is to provide a context for synchronization of other
tasks that will be spawned inside the loop� Indeed� each
iteration of the for loop that constitutes the synchronous
task generates one asynchronous task� The latter executes
on the PArray whose local memory bank contains p�	data�

�pragma FlexRAM phost sync
for�p � head� p �� NULL� p � p��next�

�pragma FlexRAM parray async on�home�	�p��data�� 

firstprivate�p�

process�p��data��

Figure �� Parallelized linked�list processing using
the sync and async clauses�

Each one of these asynchronous tasks receives a privatized
copy of the value of pointer p for the corresponding iteration�
and processes a node from the list� Since these tasks are
asynchronous� the PHost task continues to iterate the loop
and spawn tasks until it reaches the end of the loop� Then�
the synchronous task waits for all of the asynchronous tasks
to complete� When they do� the synchronous task �nally
completes�
In this example� we have illustrated the general scheme

used to parallelize a loop� declare the loop as a synchronous
task and each of its iterations as an asynchronous one� Since
loops are the most common source of parallelism� we have
extended CFlex with a pfor clause that tells the compiler
to break the loop following it into a series of asynchronous
tasks and wait for their completion before continuing� Thus�
the previous loop can be re�written using a pfor clause as
shown in Figure �� Note that although OpenMP is largely
designed for loop parallelism� a parallel version of this loop
in OpenMP would require the use of the ordered clause and
would be less readable and e�cient�
A more complex parallelization scheme is required when

there are portions of code that must be run sometimes in the

�pragma FlexRAM parray pfor on�home�	�p��data�� 

firstprivate�p�

for�p � head� p �� NULL� p � p��next�
process�p��data��

Figure �� Parallelized linked�list processing using
the pfor clause�

PHost and sometimes in the PArrays� An example is shown
in Figure �� The example implements the routine that allo�
cates the tree in the TreeAdd application from the Olden
suite 	��
� The routine allocates a binary tree of height
level� Our parallelization strategy selects a level cutlevel�
The nodes below that level are allocated by the PArrays and
the nodes in that level and up to the root �highest level� are
allocated by the PHost� Recall that the runtime system al�
lows the PArrays to allocate and deallocate heap memory in
parallel �Section ����

tree�t 	TreeAlloc �int level� �
if �level �� �� return NULL�
else �

struct tree 	new 	right 	left�

new � �struct tree 	� malloc�sizeof�tree�t���
�pragma FlexRAM phost if �level �� cutlevel�

�
�pragma FlexRAM parray async if �level �� cutlevel�
�pragma FlexRAM phost async else

left � TreeAlloc�level����

�pragma FlexRAM parray async if �level �� cutlevel�
right�TreeAlloc�level����

�
new��val � ��
new��left � �struct tree 	� left�
new��right � �struct tree 	� right�
return new�

�
�

Figure �� Parallelized tree allocation�

The tree is allocated from root down� As long as the level


 cutlevel condition is not satis�ed� TreeAlloc is called
by the PHost� Under these conditions� however� the PHost
spawns a new task on the PHost to build the left subtree
of each node� We follow the approach of creating multiple
PHost tasks to avoid modifying the original code� When
cutlevel is reached� both the left and right subtree alloca�
tion tasks are run on PArrays� Note that a single PArray
task allocates a whole subtree� This is because a PArray
ignores these execution modi�ers since it cannot spawn new
tasks� With this support� a whole subtree is allocated in a
local memory bank� The resulting partitioning of the work
is shown in Figure �� In the �gure� the dashed lines rep�
resent the spawn of a new task on the PHost� If there is
not enough space in a memory bank to keep a whole sub�
tree� some pages are allocated from another bank� and the
PArray accesses them remotely� To avoid these remote ac�
cesses� it is best to choose a cutlevel that guarantees that
a subtree built by a PArray �ts in its local memory bank�
This work�partitioning strategy may be applied to any

parallel processing of tree data structures� For example�
the second step of the TreeAdd application is a reduction
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Figure 	� Partition of the work between the PHost

level cutlevel and above� and the PArrays for the
code in Figure ��

that adds the values stored in all the nodes of the tree�
we have parallelized it in the same way� As an additional
optimization� the task that adds the values in a subtree built
by a PArray is spawned using the on home clause to ensure
that the reduction is performed by the PArray that owns
the subtree� This approach exploits locality�
In practive� our compiler generates two versions of the rou�

tine in Figure �� one for the PHost and one for the PArrays�
While the PHost version includes the directives� the PArray
version does not� The reason is that PArrays cannot create
new tasks� so these directives do not apply� Recall also that
PHost and PArrays have di�erent ISAs� Consequently� the
backend compiler has to generate two versions anyway� even
if the high�level code is exactly the same for both kinds of
processors�
Finally� we consider an example where several data struc�

tures need to be processed together� In this case� while
we can use the on home clause to ensure that accesses to
one data structure are local� the accesses to the other data
structures may end up being remote� To address this prob�
lem� we could use a migrate clause to migrate the pages of
the remote data structures� but the overhead could be high�
Instead� an approach that often works is to make use of
the �rst�touch page�placement policy of our OS� With this
support� we may implicitly align at the page level the data
structures that are used together throughout the code�
As an example� Figure � shows two loops in the Swim

application from the SPEC OMP���� application suite� In
the �gure� the directives start slightly di�erently than before
because the language used is FORTRAN� The �rst loop is
from the INITAL routine and contains the �rst accesses in
the program to vectors UOLD� VOLD and POLD� The on home
clause forces iteration J to be executed by the PArray that
holds element ���J� of matrix U� This PArray is also the �rst
processor in the system to access column J of UOLD� VOLD�
and POLD� As a result of our �rst�touch policy� the OS places
the pages that contain such columns in the local memory
bank of the same PArray� A similar strategy was used in
previous loops to place the pages containing the columns of
matrices U� V� and P� If the column sizes are �or can be made�
such that the columns can be aligned to page boundaries�
and each matrix starts at a page boundary� then all the
accesses in the code end up being local� Figure � shows the
resulting data layout assuming that each memory bank ends
up allocating � columns from every matrix� In the �gure�
each box inside a memory bank represents a page�aligned
chunk of memory that extends over several pages�
When related data structures are referenced later on by

the same program� we have to distribute the corresponding

C�FlexRAM parray pfor on�home�U��J�� private�I�
DO J�� NP�

DO I�� MP�
UOLD�IJ� � U�IJ�
VOLD�IJ� � V�IJ�
POLD�IJ� � P�IJ�

END DO
END DO
���

C�FlexRAM parray pfor on�home�U��J�� private�I�
DO J��N

DO I��M
UOLD�IJ� � U�IJ� � ALPHA 	 ���
VOLD�IJ� � V�IJ� � ALPHA 	 ���
POLD�IJ� � P�IJ� � ALPHA 	 ���
U�IJ� � UNEW�IJ�
V�IJ� � VNEW�IJ�
P�IJ� � PNEW�IJ�

END DO
END DO

Figure �� Alignment of data structures using the
on home clause and the rst�touch page�placement
policy�
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V(:,1:8)

P(:,1:8)

UOLD(:,1:8)

VOLD(:,1:8)

PArray 0 bank

POLD(:,9:16)

U(:,9:16)

V(:,9:16)

P(:,9:16)

VOLD(:,9:16)

PArray 1 bank

UOLD(:,9:16)
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POLD(:,NP1-7:NP1)

U(:,NP1-7:NP1)

V(:,NP1-7:NP1)

P(:,NP1-7:NP1)

UOLD(:,NP1-7:NP1)

VOLD(:,NP1-7:NP1)

Figure �� Alignment of the matrix columns from the
rst loop in Figure �� In the gure� each box inside
a memory bank represents a page�aligned chunk of
memory that extends over several pages�

loop among the PArrays following the same policy� This is
illustrated in the second loop of Figure �� extracted from
the CALC� routine�
Overall� note that none of the examples in this section

required adding or modifying any line of the original se�
quential code� All the parallelization semantics have been
expressed by means of compiler directives� This is typical of
the codes that we have parallelized for FlexRAM�

5. INTELLIGENT MEMORY OPERATIONS
The family of compiler directives presented in the previous

section enables the parallelization of a large set of codes and
the exploitation of locality while hiding many of the system
details from the programmer� However� to develop e�cient
programs� the programmer must be aware of the existence
of the FlexRAM chips and must decide how to partition and
coordinate the work between the PHost and the PArrays�
All these details can be hidden and performance can be

improved with the use of library routines� Speci�cally� we
envision the use of a library of Intelligent Memory Opera�
tions �IMOs�� IMOs are memory�intensive operations that
can be encapsulated relatively easily� IMOs perform com�
mon operations on data structures that are often used in
programs�
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Function Description Abstract Expression Syntax

Apply func f with arg a exec f�v�i�a�� � �i� N Vector apply�vfa�

Search element that ful�lls ret any v�i� such that Vector search�vfa�
condition f with arg a f�v�i�a��� �� � �i� N
Generate vector with the result v��i��f�v�i�a� v��Vector map�vfa�
of applying func f with arg a � �i� N
Reduce vector applying func f� ret f����f�f�av����v�������� Vector reduce�vfa�
whose neutral element is a where f�ax��x

Process together two vectors and v��i��f�v�i�v��i�a� v��Vector map��vv�fa�
an arg a� generating a new vector � �i� N

Table �� Examples of IMOs for vector containers�

Simple examples of IMOs are �nding the minimum value
in a vector of numbers or adding two matrices� Other� more
structured examples of IMOs are STL classes 	��
� Such
IMOs may de�ne and operate on containers such as vec�
tors� lists� hash tables� or sets� They may make use of the
intelligent memory to perform parallel allocations and deal�
locations� searches� insertions� retrievals� and other compu�
tations on the elements stored in these containers� Some
examples of IMOs for vector containers are proposed in Ta�
ble ��
In practice� IMO libraries should implement two versions

of the functions provided to the programmer� one to be used
when no FlexRAM chips are detected in the system� and an�
other one programmed in CFlex that exploits the capabili�
ties of the FlexRAM chips� Both versions should be highly
optimized and completely hide from the programmer issues
such as task partitioning� scheduling� and synchronization�

6. APPLICATION TO OTHER ARCHITEC-
TURES

There are other architectures that� like FlexRAM� are
built out of a powerful PHost processor and a main mem�
ory with many simpler processors� Examples of such ar�
chitectures are Active Pages 	��
 and DIVA 	�
� For these
architectures� CFlex and IMOs can also provide appropriate
programming support� In fact� 	��
 illustrates the use of the
STL array class to program Active Pages� very much in the
line of our IMOs�
However� there are di�erences that seem to make Active

Pages and DIVA more sensitive to the data placement than
FlexRAM� In the case of Active Pages� the reason is that
all the communications between the memory processors are
serialized through the PHost� As a result� the PHost may
become a bottleneck when many non�local accesses are re�
quired� Consequently� it would be important for a CFlex
programmer to improve data placement and alignment of
data structures�
In DIVA� exchange of data between memory chips requires

the use of messages called parcels� Passing a parcel involves
software processing by either user� or supervisor�level code
at both ends 	�
� which makes it more expensive than the
hardware approach followed by FlexRAM� Consequently� it
would also be important for a CFlex programmer to max�
imize locality� Moreover� a CFlex compiler may improve
performance by inserting e�cient code required to manage
the message passing when the communication between tasks
is regular enough�

7. EVALUATION ENVIRONMENT
For our evaluation� we use an execution�driven simulation

infrastucture that can model aggressive out�of�order super�
scalar processors and complete memory subsystems 	��
� In
the following� we describe the architecture modeled and the
applications used�

7.1 Architecture Modeled
Our baseline architecture is a workstation with a high�

performance ��� GHz �ve�issue PHost processor similar to
IBM�s Power� 	
� The performance of this workstation is
compared to that of two upgraded versions of it� one where
the plain main memory is replaced by a single FlexRAM
chip� and one where it is replaced by two FlexRAM chips�
The main architectural parameters of the system modeled

are shown in Table �� In the table� the times for each pro�
cessor are measured in that processor�s cycles� Note that
the PHost is very powerful� has a large L� cache� and is
able to sustain many simultaneous memory accesses� Conse�
quently� the baseline architecture is very aggressive� On the
other hand� recent advances in merged logic�DRAM tech�
nology seem to enable the integration of high�speed logic
with high�density memory in the same chip 	�� ��
� Con�
sequently� we have set the frequency of the PArrays to be
��� of that of the PHost� Recall that each FlexRAM chip
has �� PArrays� As shown in Table �� these PArrays are
much simpler than the PHost� Speci�cally� each PArray has
a single integer adder and shares an integer multiplier with 
other PArrays� Moreover� PArrays lack �oating�point hard�
ware� which they emulate in software� We assume that the
latencies of emulating a �oating�point add�subtract� mul�
tiply� and divide�sqrt operation are � ��� and �� cycles�
respectively�
We also simulate the parts of the OS and run�time system

that are most likely to be exercised� For the OS� this includes
building and keeping a two�level page table� allocating and
mapping the virtual pages to the appropriate physical pages�
maintaining the TLBs in both PHost and PArrays� and per�
forming task scheduling� As for the run�time system� we
model it completely� including task spawning� memory allo�
cation by both the PHost and PArrays� and periodic polls
and other accesses to synchronize PHost and PArrays� The
size of the pages used is �� Kbytes�

7.2 Applications Used
To evaluate the programmability and performance of a

FlexRAM system using CFlex or IMOs� we select eight ap�
plications� These applications have a wide variety of char�
acteristics� which can help us discover which attributes are
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PHost Processor PHost Caches Bus � Memory

Freq� ��� GHz L� Size� 	
 KB Bus� Split Trans
Issue Width� � L� OC�RT� ��	 Bus Width� � B
Dyn Issue� yes L� Assoc� 
 Bus Freq� �� MHz
I�Window Size� � L� Line� �
� B Mem RT� ���
Ld�St Units� 
�� L� MSHR� �� ���
�� ns�
Int�FP Units� �� L
 Size� � MB
Ld Queue� 	
 L
 OC�RT� ��

St Queue� 	
 L
 Assoc� �
BR Penalty� �
 L
 Line� �
� B
TLB Entries� �
� L
 MSHR� �

PArray Processor PArray Cache FlexRAM Torus� Bus

Freq� ��
GHz L� Size� � KB Avg Torus RT� �
Issue Width� 
 L� OC�RT� ��
 Torus Freq� ��
 GHz
Dyn Issue� no L� Assoc� 
 Bus� Split Trans
Ld�St Units� ��� L� Line� 	
 B Bus Width� � B
Int�FP Units� ��� Blocking Bus Freq� �� MHz
Ld�St Queue� 
�

BR Penalty� �
TLB Entries� 	

PArrays�Chip� �

Table �� Parameters of the architecture modeled�
In the table� BR� OC� RT� and MSHR stand for
branch� occupancy� latency of a round trip from the
processor� and miss status handling register� respec�
tively�Each PArray has a single integer adder and
shares an integer multiplier with � other PArrays�

most suitable for FlexRAM� and what problems arise in
FlexRAM programming� These applications have been an�
notated by hand with CFlex directives or with calls to an
IMO library that we created� We have also modi�ed the
SUIF compiler 	��
 to accept CFlex pragmas and compile
the applications� The resulting executable �le is passed to
our simulator infrastructure�
The IMO library contains operations to handle singly�

linked lists� It includes both STL�like operations such as
insertion� retrieval� or search� and many high�level opera�
tions� Examples of the latter include those in Table � ap�
plied to linked lists� and the processing with a function of
all the pairs of elements taken from two lists� The library
uses a linked list that is distributed among the PArrays� It
makes extensive use of the run�time system functionallity
that enables PArrays to allocate and deallocate portions of
heap memory in parallel� All the operations are used in our
applications� Overall� the library contains ��� lines of soure
code� including the CFlex directives�
Table  lists the applications used� TSP and TreeAdd

are taken from the Olden suite of pointer�intensive sequen�
tial applications 	��
� Swim and Mgrid are from the SPEC
OMP���� suite� Dmxdm and Spmxv are numerical kernels�
and Distance and Path are written from problem descrip�
tions in 	�
� Distance and Path are coded with IMO library
calls� while the other applications use CFlex directives�
We use four axes to broadly classify the behavior of each

application� Speci�cally� the access patterns may be irreg�
ular due to pointers �Ptr� or due indirections in the form
of subscripted indices �Ind�� or regular �Reg�� The compu�
tation may use mostly integer �Int� or �oating�point �FP�
operations� When several data structures are involved in
the computation� we are able to align all of them �Yes�� only
some of them �Part�� or none of them �No�� Finally� the typ�

ical number of instructions in the tasks sent to the PArrays
may be tens of thousands �Small�� hundreds of thousands
�Med�� or over one million �Large�� The tasks in Mgrid have
a variety of sizes� Overall� we can see that our applications
cover a wide variety of behaviors�
The table also lists the data set size of the applications�

and the average Instructions Per Cycle �IPC� of the applica�
tions running on the architecture without FlexRAM chips�
The last three columns of the table attempt to estimate
the e�ort required to map the applications to the FlexRAM
system� �From left to right� they list the original number of
lines of code� the number of CFlex directives inserted� and
the additional lines of code required to map the code to the
FlexRAM system� For the two applications coded with IMO
calls� the last two columns have a slightly di�erent meaning�
number of CFlex directives in the IMO functions used� and
the static number of calls to IMO functions� respectively�
The original code size re�ects the number of lines of the
applications without including the IMO library� Note that
little e�ort has been made to optimize all the parallel ver�
sions� other than using a strategy that distributes the tasks
evenly among the PArrays� Rather� we have stressed the
simplicity of the mapping process by making as few modi��
cations as possible� as the �gures in the table show�

7.2.1 Details on Individual Applications
To help understand the mapping better� we now give some

details on individual applications� We start with TSP and
TreeAdd� which operate on trees built with pointers� TreeAdd
is parallelized and mapped as discussed in Section ���� TSP
follows a similar approach but has some di�erences� Specif�
ically� subtrees in TreeAdd are processed independently by
di�erent PArrays� while the PHost performs the computa�
tion above a certain tree level� In TSP� instead� processing a
node of the tree requires accessing the whole subtree below
the node� Thus� assigning the processing of the upper lev�
els of the tree to the PHost would leave a lot of parallelism
unexploited� In our parallelization� we let PArrays work at
all levels of the tree and only reserve the root for the Phost�
As the processing moves up the tree� there are fewer sub�
trees� which means both fewer active PArrays and that those
PArrays have to access data in more memory banks�
Swim and Mgrid use the test input data set� Their access

patterns are very regular and �oating�point operations dom�
inate the computation� We exploit the vast loop�level par�
allelism in these applications by simply replacing the orig�
inal OpenMP directives by the corresponding CFlex ones�
Note that� although the data set size of Swim uses about
�� Mbytes� its page footprint in memory is larger than ��
Mbytes because of internal page fragmentaton� As a result�
Swim requires at least two FlexRAM chips to execute with�
out intensive swapping� Consequently� we do not perform
experiments with Swim using a single FlexRAM chip�
Dmxdm and Spmxv are matrix multiplication kernels�

Dmxdm multiplies two ���� � ���� dense matrices of dou�
ble precision �oating point elements with blocking in the
three dimensions� Each submatrix is copied into consec�
utive locations to improve the locality� One of the loops
is also unrolled and jammed� Spmxv multiplies a sparse
������ ����� matrix with three million entries by a vector�
The matrix is stored in Compressed Row Storage �CRS� for�
mat 	�
� Column indices and non�zero values are not aligned
because of their di�erent size �four and eight bytes� respec�
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Applic� Coding Application Characteristics Data Set Baseline Original Number Additional
Access Data Align Task Size Size �MB� IPC Lines Directives Lines

TSP CFlex Ptr FP � Large �� ���� ��� �� �
TreeAdd CFlex Ptr Int � Large �� ���� �� � �
Swim CFlex Reg FP Yes Med �� ���� ��� � �
Mgrid CFlex Reg FP Yes Var �� ��� ��� � �
Dmxdm CFlex Reg FP Part Large � ��� �� � �
Spmxv CFlex Ind FP No Med � ���� �� � �
Distance IMOs Ptr Int � Large � ���� ��� �� �
Path IMOs Ptr Int � Small � �� ��� �� �
Average ��� ���� ����� ��� ��

Table �� Characteristics of the applications used�

tively�� These two kernels are parallelized by assigning a
di�erent PArray to compute a block of rows of the destina�
tion matrix �in Dmxdm� or a set of consecutive elements of
the destination vector �in Spmxv�� In both kernels� a single
directive is required to parallelize the outer loop�
Finally� Distance and Path are programs with singly�linked

list data structures that use our IMO library of operations
on these structures� Distance takes a set of points in a two�
dimensional space and �nds all pairs of points that are closer
than given distance� Path �nds the shortest path between
two given points in a graph� The IMO functions are designed
to be very e�cient for both the sequential �no FlexRAM�
and the parallel �FlexRAM� execution of these applications�
Still� there are some cases where the performance of the se�
quential execution can be hindered by IMO code structure
that is better suited for parallel execution� In those cases� we
write versions of these IMO functions that are optimized for
the sequential execution� and we use them when evaluating
the no�FlexRAM architecture�

8. EVALUATION

8.1 Application Speedups
To evaluate the impact of the intelligent memory� we use

the execution speedups of the FlexRAM system over the
baseline workstation� We examine FlexRAM systems with
one or two FlexRAM chips� Figure � shows the resulting
speedups for each application and their geometric mean� Re�
call that� to accommodate the working set of Swim� we need
two FlexRAM chips� In the �gure� the speedups correspond
to the execution of the complete applications� All applica�
tions spend more than ��� of their original execution time
in the section of the code parallelized with CFlex�
The �gure shows that� for one FlexRAM chip� the speedup

�gures are quite good� they range from ��� to ��� with a ge�
ometric mean of �� In general� the applications with the
highest speedups are those with irregular access patterns
and those with integer computation� This is likely because
the other types of applications are relatively better matched
to the large caches and good �oating�point support of the
PHost�only baseline workstation� In addition� applications
such as Path where PArray tasks largely use data located
in the local memory bank obtain better speedups than ap�
plications such as Spmxv where PArrays require data from
other banks�
The locality of PArray accesses also a�ects the changes

in speedups as we go from one to two FlexRAM chips� In
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Figure �� Execution speedups obtained using the
FlexRAM system�

applications with good locality� the speedups go up� while in
those with poor locality� the opposite occurs� In the second
class of applications� the FlexRAM bus becomes a bottle�
neck for accesses to banks in other chips� Overall� without
considering the contribution of Swim� the geometric mean
of the speedups for two FlexRAM chips is also about �� In
general� contention in the FlexRAM bus and overheads due
to synchronization and task spawn will grow with the num�
ber of FlexRAM chips� Consequently� unless the applica�
tion requires little data movement and synchronization� it is
generally advisable to use the smallest number of FlexRAM
chips required to hold its data set�

8.2 Compiler and Run-Time Optimizations
Our experiments produced some unexpected results� Specif�

ically� note that the CFlex versions of our applications of�
ten use the on home clause to leverage our �rst�touch page
allocation policy and align data structures for local compu�
tation� We call these versions Opt� The speedups shown in
Figure � have been calculated using these versions� Surpris�
ingly� we found that CFlex versions of Swim and Mgrid with�
out any on home clauses are faster than their corresponding
Opt versions� In these new versions� which we call NoOpt�
tasks are assigned following the default scheme when the
on home clause is not present� round robin across chips and
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then� within a chip� round robin across PArrays� Pages are
still allocated using the �rst�touch policy� The di�erence in
speedups between the Opt and NoOpt versions is shown in
the �rst two bars of Figure ���
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Figure ��� Impact of compiler and run�time opti�
mizations for task spawning and mapping�

These experiments helped us identify at least three ine��
ciencies in the way tasks are spawned and mapped� The �rst
ine�ciency occurs in the way tasks are spawned under the
on home clause� Therefore� it only a�ects the Opt version� It
occurs when the computation to be assigned to consecutive
tasks accesses consecutive pages in the memory bank of the
same PArray� The original implementation of the compiler
generates one task for each page and assigns all the tasks
to the same PArray� Unfortunately� the creation of so many
tasks causes signi�cant spawning and synchronization over�
heads� Moreover� assigning them all to the same PArray
may reduce parallelism� The reason is that our run�time
system can only spawn a task when all the previous tasks
generated by the PHost have already been spawned� More�
over� if the destination PArray is busy executing another
task� the spawn request is queued up in a register of the
chip�s FXCC� If the FXCC runs out of registers� the spawn
request cannot be queued and the run�time system has to
wait for tasks to �nish�
To eliminate this ine�ciency� we change our compiler as

follows� When the consecutive tasks would access consec�
utive pages of the same memory bank� the compiler com�
bines all the work into a single task� This approach elim�
inates overheads and the potential run�time stall problem
mentioned above� We call this optimization H for home�
allocation� and apply it to the Opt versions to obtain Opt�H�
Figure �� shows that Opt�H delivers higher speedups� es�
pecially for Swim�
The second ine�ciency occurs in machines with more than

one FlexRAM chip when tasks are mapped without the
on home clause� The default policy in this case� as stated
above� is to map the tasks round robin among the FlexRAM
chips for two reasons� to balance the usage of the chips and
to reduce the likelihood of run�time stall due to running out
of FXCC registers� Unfortunately� consecutive task spawns
generate tasks that usually access related pieces of data� and
often share the same data� Spawning these tasks on di�erent

chips often causes our �rst�touch page allocator to map the
pages of consecutive portions of vectors and arrays on dif�
ferent chips� As a result� if tasks want to access information
that is near in the virtual space� they are forced to use the
FlexRAM bus and go across chips� This a�ects particularly
the degree of locality that can be achieved in the Opt�H
versions�
To eliminate this ine�ciency� we change the mapping pol�

icy for consecutive tasks when the on home clause is not
present� We perform round�robin mapping of tasks within a
chip before moving to mapping tasks to the next chip� Con�
sequently� each chunk of �� consecutive tasks is mapped in
the same chip� We call this optimization C for consecutive�
on�chip� and apply it to theOpt�H versions to obtain Opt�H�C�
Figure �� shows the resulting speedups� which are now sig�
ni�cantly higher� Note that Opt�H�C does not apply to
single�chip systems�
Finally� there is a third� potential ine�ciency that is in�

trinsic to the use of the on home clause� When assigning the
computation to the PArray�s� on whose bank the data is lo�
cated� we certainly obtain better locality� Unfortunatly� we
also restrict the number of PArrays that cooperate in the
computation and� therefore� restrict parallelism�
Unfortunately� addressing this ine�ciency involves dis�

tributing the data among as many PArrays as possible� which
has negative e�ects on locality� Besides� we are limited by
the fact that the granularity of the distribution in our system
is the page� Therefore� computation to be parallelized using
the on home clause that operates on small pieces of data can
only be split among a few PArrays� This would particularly
hurt Mgrid�s performance� Consequently� we optimize task
spawning and mapping as follows� on home clauses are ap�
plied only on loops that have more than �� iterations� Oth�
erwise� the loop is parallelized without applying the clause�
thus losing locality but gaining in parallelism� This opti�
mization attempts to ensure that the number of PArrays
that execute the loop iterations is not too reduced despite
the restriction that on home imposes�
We call this optimization L� for limited on home� The last

bar in Figure �� shows the improvement when applying this
optimization to the Opt�H�C version of Mgrid� The other
applications do not need this optimization�

8.3 Hardware Optimizations
We have examined other ways of improving the perfor�

mance of our system� For example� applications that spawn
many tasks would bene�t from more intelligent FXCCs� par�
ticularly when the tasks have small size� The current system
�lls in the bu�er with the information for each individual
task and then communicates with a FXCC to attempt to
spawn the task� Then the process in repeated for each new
task� FXCCs could be improved to allow the runtime system
to send a single request to a FXCC to spawn several tasks�
The request would provide the number of tasks to spawn�
the pointer to the code� and a vector of pointers to their
bu�ers� Another possibility would be to locate the bu�ers
in memory positions separated by a constant stride� In this
case the address of the initial bu�er and the stride would be
communicated to the FXCC� In either case� the multispawn
facility of the FXCC would reduce the overhead of spawn�
ing multiple tasks� The system could be further extended
to allow the di�erent tasks spawned with the same message
to run di�erent codes� but the scope of applicability of this
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Figure ��� E�ect of three optimizations in the sys�
tem� Optimization H lies in generating one task per
chunk of consecutive pages when the on home clause
is applied� Optimization C refers to the consecutive
spawn of consecutive tasks in the same chip� Opti�
mization L limites the usage of the on home clause to
loops with a minimum number of iterations� Intel�
ligent multispawn FXCCs are represented by M�

enhancement is smaller� We call this optimization M for
Multi�spawn� and apply it to the Opt�H�C versions to ob�
tain Opt�H�C�M� Fig� �� shows how the initial speedups
in Fig� � evolve for one and two chips applying the possi�
ble optimizations we have discussed so far� The e�ect of
optimization H is not shown separately because it only af�
fects Swim and Mgrid� so Fig� �� su�ces for this purpose�
Optimization L is only applicable to Mgrid� so the same ap�
plies� Multispawn FXCCs improve the behavior of virtually
all of the applications� The e�ect is particularly noticeable
in Path� which needs to spawn many small tasks�

8.4 Other Optimizations
Finally� highly optimized versions of the codes can be writ�

ten� For example� we have developed a complex Dmxdm
code version with ��� lines of code and �� CFlex direc�
tives� This code chooses a leader PArray in each FlexRAM
chip to perform the movements of data which may come
from another FlexRAM chip� The other PArrays in the
chip synchronize with it using FXCC locks in order to copy
the data from its bu�er once it has �nished� The resulting
code is about �� slower than the original one when only
one FlexRAM chip is available� but performance is doubled
when two chips are used� Sometimes the improvements ob�
tained through more complex implementations turn out to
be smaller than the new spawn and synchronization costs
they require� This happened in our experiments with Sp�
mxv� for example�
No quatitative comparison with other intelligent memory

architectures and programming environments is provided
because of the enormous di�erences both in the architec�
tural assumptions and the programming paradigms�

9. RELATED WORK
We now compare CFlex with OpenMP 	�
 and HPF 	�
�

the most widely known parallelization directives� CFlex is
inspired by the former� so their approaches have many points
in common� such as the explicit use of threads� There are�
however� several important di�erences with OpenMP� One
is that the OpenMP machine model is UMA and� as a result
OpenMP lacks the locality related clauses found in CFlex�
Local memories are meaningful to HPF but it uses replica�
tion and alignment to take advantage of them� While this
strategy is adequate for regular data structures� data struc�
tures enabled by C pointers and structs� which are the focus
for our work� cannot be partitioned with these directives�
CFlex provides mechanisms for implicitly distributing and
even aligning both regular and irregular data structures� as
the examples in Sect� ��� have shown�
Task de�nition and synchronization is also more power�

ful in CFlex than in OpenMP and HPF� The sync�async
clauses enable the spawn of new tasks dynamically outside
loops� In this way it is possible to parallelize recursive algo�
rithms and the processing of lists� trees and other pointer�
based structures using our family of directives� As we ex�
plained before� this is particularly interesting for FlexRAM�
as PIM architectures are particularly well suited for codes
with irregular access patterns� This gives CFlex a very im�
portant advantage over OpenMP� which can only parallelize
iterative constructs of the for�do type and the statically
nested parallelism of the sections and section directives�
HPF is also primarily designed to exploit loop level paral�
lelism� although version ��� 	�
 includes the TASK REGION di�
rective� which allows to implement parallel sections� nested
parallelism and data parallel pipelines� Still� it is less pow�
erful than CFlex� as the generated tasks must honor several
restrictions� For example all the data they access must be
mapped �local� to the active processor subset�
Finally� both in OpenMP and HPF all processors have

the same capabilities� But CFlex�s orientation to intelligent
memory systems forces it to explicitly distinguish two very
di�erent kinds of processors� the main processors�s� of the
system� PHost�s�� and the memory processors� PArrays�

10. CONCLUSIONS
A programming environment oriented to intelligent mem�

ory architectures has been presented and evaluated� The
target architecture is a variation of the FlexRAM architec�
ture presented in 	��
� but it is suitable to other architectures
that use the PIM chips in a similar way� Programming is
based on a set of compiler directives inspired by OpenMP
called CFlex� Our directives allow the parallelization of a
much larger class of codes than OpenMP and they include
clauses that allow the programmer to make a better exploita�
tion of locality� The programmer does not need to know
any detail of the system to use these directives� but he is
in charge of specifying the partitioning of work between the
PHost and the PArrays and how the generated tasks must
synchronize� These directives can also be used to program
general NUMA systems� as they allow to parallelize codes
without referring to PIMs� An alternative or complementary
programming may be developed using libraries with highly
optimized functions that use the FlexRAM chips while hid�
ing completely their existence� We call these functions Intel�
ligent Memory Operations� The programming environment
is completed by some Operating System extensions� and an
user runtime system�
A selection of benchmarks with very di�erent properties



and behaviors was chosen to evaluate our system� CFlex
proved to be a �exible language that allowed to parallelize
the codes� sometimes following relatively complex paralleliza�
tion schemes� making minimal changes� Despite choosing
an aggressive baseline� high speedups of ten or even more
were obtained for applications with irregular access patterns�
mainly on codes based on integers� Floating point oper�
ations prevent great performance improvements because of
the simplicity of our processors in memory� The experiments
show the importance of data alignment and locality to ob�
tain the best results� Some optimizations were suggested
by the experiments that raised the geometric mean of the
speedups obtained using one and two FlexRAM chips from
� to ����� and from ��� to ��� respectively� Still� further im�
provements may be achieved by careful optimization of the
codes� which indicates that the usage of IMOs is probably
the best option for most users�
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