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Abstract. A test case mnsistsof two parts: atest input to exercise the program
uncer test and a test orade to chedk the corrednessof the test exeaution. A test
orade is often in the form of exeautable assertions such as in the JUnit test-
ing framework. Manually generated test cases are valuable in exposing program
faults in the aurrent program version or regressim faults in future program ver-
sions. However, manually generated test cases are often insufficient for asauring
high software quality. We can then use an existing test-generation tool to generate
new test inputs to augment the existing test suite. However, without spedfi cations
these automatically generated test inputs often do nd have test orades for expos-
ing faults. In this paper, we have developed an automatic approach and its sup-
porting tool, cdled Orstra, for augmenting an automatically generated unt-test
suite with regressian orade chedking. The augmented test suite has an improved
cepability of guarding against regressim faults. In our new approach, Orstra first
exeautes the test suite and collects the dassunder test’s object states exercised
by the test suite. On collected object states, Orstra aedes as%rtions for asert-
ing behavior of the object states. On exeauted olserver methods (puldic methods
with nonvoid returns), Orstra dso credes assertions for asserting their return
values. Then later when the dassis changed, the augmented test suite is exeauted
to chedk whether assertion violations are reported. We have evaluated Orstra on
augmenting automatically generated tests for eleven subjects taken from a va-
riety of sources. The experimental results show that an automatically generated
test suite’s fault-detection cgpability can be df edively improved after being aug-
mented by Orstra.

1 Introduction

To expose faultsin aprogram, developers crede atest suite, which includes a set of test
cases to exercise the program. A test case aonsists of two parts: atest inpu to exercise
the program uncer test and atest orade to chedk the mrreanessof the test exeaution. A
test orade is often in the form of runtime asertions [2, 36] such as in the JUnit testing
framework [19]. In Extreme Programming [7] pradice writing urit tests has beame
an important part of software development. Unit tests help expase nat only faultsin the
current program version bu also regresson faults introduced during program changes:
these written unit tests allow developers to change their code in a continuows and con-
trolled way. However, some spedal test inpus are often overlooked by developers and
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typicd manually creaed urit test suites are often insufficient for asauring high software
quality. Then developers can use one of the eisting automatic test-generation tools
[8,11,12,31,42-44 to generate alarge number of test inputs to complement the man-
ually creaed tests. However, without spedfications, these automaticaly generated test
inpus do nd have test orades, which can be used to chedk whether test exeautions are
corred. In this paper, we have developed a new automatic goproach that adds asser-
tions into an automaticdly generated test suite so that the augmented test suite has an
improved cgpability of guarding against regresgon faults.

Our approach focuses on oljed-oriented unt tests, such as the ones written in the
JUnit testing framework [19]. An oljed-oriented unit test consists of sequences of
method invocaions. Our approach proposes a framework for asserting the behavior
of amethodinvocaion in an obed-oriented unit-test suite. Behavior of an invocaion
depends on the state of the recever objed and method arguments at the beginning o
the invocation. Behavior of an invocaion can be asserted by cheding at the end o the
invocaion the return value of the invocation (when the invocaion's return is not void),
the state of the recaver objed, and the states of argument objeds (when the invocation
can modify the states of the agument objeds). Automatic test-generation tools often
do nd creae as<ertions but rely on urcaught exceptions or program crashes to deted
problemsin aprogram [11,12].

To addressinsufficient test orades of an automaticaly generated test suite, we have
devel oped an automatic tod, cdl ed Orstra, to augment the test suite for guarding against
regressonfaults. Orstra exeautes testsin the test suite and colleds the dassunder test’s
objed states exercised bythetest suite; an ohjed’s dateis charaderized bythe values of
the objed’s transitively readable fields [43]. On colleded objed states, Orstrainvokes
observers (pudic methods with nonvoid returns) of the dassunder test, coll eds their
adual return values, and creaes assertions for chedking the returns of observers against
their adual colleded values. In addition, for ead colleded ohjed state .S, Orstra de-
termines whether there is another colleded ohjed state S’ that is equivalent to S (state
equivalenceis defined by graphisomorphism [8,43)); if so, Orstraremnstructs S’ with
method sequences and creaes an assertion for cheding the state equivalence of .S and
S’

This paper makes the foll owing main contributions:

— We propose aframework for asserting the behavior of a method invocaion in an
objed-oriented unit-test suite.

— We devel op an automatic test-orad e-augmentation toal that systematicdly adds as-
sertions into an automaticaly generated test suite in order to improve its capability
of guarding against regresson faullts.

— We evaluate our approach onaugmenting automaticdly generated tests for eleven
Java dassestaken from avariety of sources. The experimental results how that our
test-orade augmentation can eff edively improve the fault-detedion capability of a
test suite.

The rest of this paper is organized as follows. Sedion 2 pesents an ill ustrating
example. Sedion 3 presents our framework for asserting behavior of a method invoca
tionin atest suite. Sedion 4 pesents our Orstra tod for automaticdly augmenting a
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test suite. Sedion 5 presents an experiment to assessour approadh. Sedion 6 dscusses
isaues of the goproach. Sedion 7reviews related work, and Sedion 8concludes.

2 Example

We next ill ustrate how Orstra augments an automaticdly generated test suite's regres-
sion aade dheding. As an ill ustrating example, we use aJava implementation o a
bounded stadk that stores unique dements. Stotts et al. [40] used this Jva implemen-
tation to experiment with their algebraic-spedfication-based approach for systemati-
cdly creding urit tests. In the ebreviated implementation shown in Figure 1, the dass
Myl nput isthe comparable type of elements dored in the stac. In the dassimplemen-
tation o the bouncdkd stadk, the aray el ens contains the dements of the stadk, and
nunber O El enent s isthe number of the dements and the index of the first freeloca
tionin the stack. The max isthe cgadty of the stadk. The puldic methods in the dass
interfaceinclude two standard stadk operations: push and pop, aswell asfive observer
methods, whaose returns are not voi d.

Given a Java dass existing automatic test-generation tools [11, 12, 31,43, 44] can
generate atest suite automaticdly for the dass For example, Jtest [31] alows users
to set the length of cdling sequences between ore and threg and then generates
randam cdli ng sequences whose lengths are not greder than the user-spedfied ore.
JCrasher [11] automaticdly constructs method sequences to generate non-primitive a-
guments and wses default data values for primitive aguments. JCrasher generates tests
as cdli ng sequences with the length of one.

For example, given the UBSt ack class existing automatic test-generationtools[11,
12,31,43,44] can generate test suites auch asthe example test suite UBSt ack Test with
two tests (exported in the JUnit testing framework [19]) shown in Figure 2. Each test
has sveral method sequences onthe objeds of the dass For example, t est 1 credesa
stadk s1 andinvokes push, t op, pop, andi sMenber onitinarow.

Note that there ae no as=rtions generated in the UBSt ackTest test suite. There-
fore, when the test suite is run, tods auch as Xrasher [11] and CnC [12] deted prob-
lems by observing whether uncaught exceptions are thrown; tods such as Korat [8]
deted problems by observing whether the exeaution o the test suite violates design-
by-contrad annaations [9, 23, 28] (equipped with the program under test), which are
tranglated into run-time assertions[2, 36].

Given a test suite such as UBSt ackTest , Orstra systematicdly augments the test
suite to produce an augmented test suite such as UBSt ackAugTest shown in Figure 3.
For ill ustration, we anndate UBSt ackAugTest with line numbers and mark in bdd
font those lines of statements that correspondto the statementsin UBSt ackTest . The
augmented test suite UBSt ackAugTest is equipped with comprehensive asrtions,
which refled the behavior of the aurrent program version uncer test. These new asr-
tions can guard against regresson faults introduced in future program versions.

We next ill ustrate how Orstra automaticdly creaes assertions for UBSt ack Test
to produce UBSt ackAugTest . By running UBSt ack Test , Orstra dynamicdly morn-
itors the method sequences exeauted by UBSt ackTest and colleds the exer-
cised state of a UBSt ack-recever objed by colleding the values of the re-
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public class Myl nput inplenments Conparable {
private int o;
public Mylnput(int i) {o=1i; }
public bool ean equal s(bj ect that) {
if (!(that instanceof Mylnput)) return false;
return (o == ((Mylnput)that).o);

}

public class UBStack {
private Conparabl e[] elens;
private int nunberOf El enents;
private int max;
public UBStack() { ... }
//standard stack operations
public void push(Conmparable i) { ... }
public void pop() { ... }
/I stack observer methods
public int getNumberOfElenents() { ... }
public boolean isFull() { ... }
public boolean isEnpty() { ... }
public bool ean i sMenber(Conparable i) {... }
public Mylnput top() { ... }

Fig. 1. A bounced stack implementation (UBSt ack) in Java

public class UBStackTest extends TestCase {
public void test1() {
UBSt ack s1 = new UBStack();
M/l nput i1 = new Myl nput (3);
s1. push(il);
sl.top();

s1. pop();
s2.isMenber (il);

}

public void test2() {
UBSt ack s2 = new UBStack();

s2.isEnmpty();
s2.isFull();
s2. get Nunber Of El enent s() ;

Fig. 2. An automatically generated test suite UBSt ackTest for UBSt ack

caver objed’s transitively readable fields. Based on the olleded method in-
vocdions, Orstra identifies UBSt ack’s observer methods that are invoked by
UBSt ackTest :top(),i sMenber (new Myl nput (3)),isEnt py(),isFull(),and
get Nunber O El enent s() .

Then on eat UBSt ack-recaver-objed state exercised by UBSt ackTest , Orstra
invokes the olleaed observer methods. For example, after the constructor invocation
(showninLine 2 of Figure 3), Orstrainvokesthe five observer methods onthe UBSt ack
objed s1. After invoking these observer methods, Orstra mlleds their return values
and then makes an asrtion for ead observer method by adding a JUnit asertion
method (assert Equal s), whose first argument is the observer method's return and
second argument is the mlleded return value. The five inserted assertions are shown
in Lines 4-9. Similarly, Orstra inserts asertions after the push invocaion (shown in
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0 public class UBStackAugTest extends TestCase {
1 public void testAugl() {

2 UBSt ack s1 = new UBSt ack();

3 /lstart inserting new assertions for observers
4  assertEqual s(sl.isEnmpty(), true);

5 assert Equal s(sl.isFull (), false);

6  assertEqual s(sl. get Nunber O El enents(), 0);

7 Myl nput tenp_il = new Myl nput (3);
8 assertEqual s(sl.isMenber(tenp_il),
9 assert Equal s(sl.top(), null);

10 //finish inserting new assertions for observers

11 MWlnput i1 = new Myl nput(3);

12 si.push(il);

13 //start inserting new assertions for observers

14 assertEqual s(sl.isEnpty(), false);

15 assertEqual s(sl.isFull (), false);

16 assertEqual s(sl. get Nunber O El ements(), 1);

17 assertEqual s(sl.isMenber(tenp_i1l), true);

18 //finish inserting new assertions for observers

19 assertEqual s(Runtine.genStateStr(sl.top()), "o0:3;");

20 //insert no new assertions for top

21 sl.pop();

22 //start inserting new assertions for state equival ence
23 UBStack tenp_sl = new UBStack();

24 Equal sBui |l der.refl ecti onEqual s(s1, tenp_sl);

25 //finish inserting new assertions for state equival ence
26 assertEqual s(s2.isMenber(il), false);

27 /linsert no new assertions for isMenber

28 }

fal se);

30 public void testAug2() {

31 UBStack s2 = new UBStack();

32 //insert no new assertions because the equivalent state
33 //has been asserted in testl

34 assertEqual s(s2.isEmpty(), true);

35 assertEqual s(s2.isFull (), false);

36 assertEqual s(s2. get Nunber Of El enents(), 0);

Fig. 3. An Orstra-augmented test suite for UBSt ack Test

Line 12) for aserting the state of the recever s1. Becauseint est 1 of UBSt ackTest ,
there is an observer methodt op invoked immediately after the push invocation, in the
inserted assertions for s1 after the push invocation, Orstra does naot include another
dupicaet op observer invocation. Then Orstra still adds an assertion for the original
t op invocaion (shown in Line 19). When Orstra mlleds the return value of t op, it
determines that the value is not of a primitive type but of the Myl nput type. It then
invokes its own runtime helper method (Runt i ne. genSt at eSt r) to colled the state-
representation string of the Myl nput -type return value. The string consists of the values
of al transitively reatable fields of the Myl nput -type objed, represented as “o: 3; ”,
whereo isthe field name and 3 isthefield value.

After thet op invocation (shown in Line 19), Orstrainserts no new asertionfor as-
sertingthe state of s1 immediately after thet op invocaion, becaise Orstradynamicaly
determinest op to be astate-preserving o side-eff ed-freemethod al it sinvocaionsin
the test suite do nd modify the state of the recaver objed.

After the pop invocation (shownin Line 21), Orstradetedsthat s1's dateis equiv-
alent to ancther colleded oljed state that is produced by a shorter method sequence: an
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objed state produced after the constructor invocation; Orstra determines date equiva-
lence of two oljeds by comparing their state-representation strings. Therefore, instead
of invoking olserver methods ons 1, Orstra constructs an assertionfor asserting that the
state of s1 isequivalent to the state of t enp_s1, which is produced after the construc-
tor isinvoked. Orstra aedes the assertion by wsing an equals-assertion-buil der method
(Equal sBui | der. refl ecti onEqual s) from the Apache Jakarta Commons subpro-
jed [4]. This method wses Jva refledion mechanisms [5] to determine if two obeds
are gqual based onfield-by-field comparison. If an equal s methodis defined as a pub-
lic method d the dassunder test, Orstra can also alternatively use the equal s method
for building the assertion.

After thei sMenber invocaion (shown in Line 26), Orstrainserts no new assertion
for assrtingthe state of s1 immediately after thei sMenber invocation, becaise Orstra
dynamicdly determinesi sMenber to be astate-preserving method

When augmenting t est 2, Orstra does not insert assertions for the state of s2 im-
mediately after the constructor invocation, becaise the objed state that is produced
by the same method sequence has been asserted in t est Augl. Int est Aug2, Orstra
adds asertions only for those observer-methodinvocaionsthat are originaly int est 2
(shown in Lines 34-36).

3 Framework

This dionformalizes ome nationsintroduced informally in the previous sdion. We
first describe gpproaches for representing states of non-primitive-type objeds and then
compare these gproadies. We finally describe how these state representations can be
used to buld assertions for the recaver objed and return value of a methodinvocation.

3.1 State Representation

When a variable (such as the return of a method invocation) is of a primitive type or
aprimitive-objed typesuch as St ri ng and | nt eger , Orstra asrts its value by com-
paring it with an expeded value. When a variable (such as the return or recever of a
methodinvocation) isanon-primitive-type objed, Orstra constructs assertions by using
several types of state representations; method-sequence representation [43], concrete-
state representation [43], and olserver-abstradion representation [46].

Method-Sequence Representation The method-sequencerepresentation ted-
nique [43] represents the state of an oljed by using sequences of method invocations
that produce the objed (following Henkel and Diwan [22] who use the representation
in mapping Java dasses to agebras). Then Orstra ca reconstruct or clone an ohjed
state by re-exeauting the method invocations in the method-sequence representation;
the caability of reconstructing an oljed state is crucial when Orstra wants to asert
that the state of the objed under consideration is equivalent to that of ancther objed
constructed elsewhere.

The state representation uses symbali ¢ expressons with the grammar shown below:
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exp:=prim|invoc “. state” | invoc “. retval ”

args::=e| exp|args"“, " exp
invoc ::=method*“(” args*”) ”

prlm:':“nul | ” |“tl’u6" |“f al sen |u0n |nln |u_1n | .

Each ohed or valueis represented with an expresson. Arguments for amethodin-
vocdion are represented as fquences of zero or more expressons (separated by com-
mas); the recever of a nonstatic, non-constructor method invocation is treged as the
first method argument. A static method invocation o constructor invocdion daes not
have arecaver. The. st at e and. r et val expressons denate the state of the recaver
after the invocation and the return of the invocation, respedively. For brevity, the gram-
mar shown abowve does nat spedfy types for the expressons. A method is represented
uniquely by its defining class name, and the entire signature. (For brevity, we do nd
show amethod s defining classor signature in the state-representation examples of this
paper.) For example, int est 1, the state of the objed s1 after the push invocdionis
represented by

push(UBSt ack<init>().state, Mylnput<init>(3).state).state.
where UBSt ack<i ni t > and Myl nput <i ni t > represent constructor invocations.

Note that the state representation based onmethodsequences all owsteststo contain
loops, arithmetic, aiasing, and pdymorphism. Consider the following two testst est 3
andt est 4:

public void test3() {

UBSt ack t = new UBStack();
UBSt ack s3 =t;
for (int i =0; i <=1; i++4)

s3. push(new Myl nput (i));

public void test4() {
UBSt ack s4 = new UBSt ack();
int i =0;
s4. push(new Myl nput (i));
s4. push(new Myl nput (i + 1));
}

Orstra dynamicdly monitors the invocaions of the methods on the adua ob-
jeds creded at runtime and colleds the acua argument values for these invocdions.
For example, it represents the states of both s3 and s4 at the end o test 3 and
test4 aspush(push(UBSt ack<init>().state, Myl nput<init>(0)).state,
Myl nput<init>(1)).state.

The aove-shown grammar does not cgpture amethod exeaution's dde dfed on
an argument: a method can modify the state of a non-primitive-type agument and this
argument can be used for ancther later method invocaion. Following Henkel and Di-
wan's aiggested extension [22], we can enhance the first grammar rule to addressthis
isae:

exp:=prim|invoc“. state” |invoc“. retval ” | invoc “. arg;”

where the added expresgon (invoc “. arg;”) denates the state of the modified ith argu-
ment after the methodinvocation.

If test code modifies diredly some pubic fields of an oljed withou invoking any
of its methods, these side dfeds on the objed are not captured by method sequences
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in the method-sequence representation. To addressthisisale, Orstra can be extended to
creae apubic field-writing methodfor ead pubic field of the objed, and then monitor
objed-field accesses in the test code. If Orstra deteds at runtime the exeaution o the
objed’sfield-writeinstructionin thetest code, it caninsert a correspondngfield-writing
methodinvocation in the method-sequence representation.

Concrete-State Representation A program is exeauted uponthe program state that
includes a program hegp. The mncrete-state representation o an oljed [43] considers
only parts of the heg that are reatable from the objed. We dso cdl eadt part a “hegd”
and view it as agraph: nodes represent objeds and edges represent fields. Let P bethe
set consisting o al primitive values, including nul I , integers, etc. Let O be aset of
objedswhose fields form a set F'. (Each ohjed has afield that represents its class and
array elements are considered index-labelled ohed fields.)

Definition 1. A hegp is an edge-labelled graph (O, E), where E = {(o, f,0')|o €
O,f e F,oe0OUP}.

Hegp isomorphism is defined as graph isomorphism based on noc bijedion [8].

Definition 2. Two heaps (O, E1) and (O, E5) are isomorphic iff thereis a bijedion
p: O1 — Oy such that:

Ey = {(p(0), £, p(0"))[{0, f,0) € E1,0" € O1} U
{{p(0), f.0")|{0, f,0') € E1,0" € P}.

Thedefinitional owsonly objed identitiesto vary: two isomorphic hegs have the same
fieldsfor al objeds and the same values for al primitive fields.

The state of an oljed is represented with a rooted hegp, instead of the whale pro-
gram heap.

Definition 3. Arooted heapisa par (r, h) of aroct objed r and a reap h whase all
nocdes are reachale fromr.

Orstra lineaizes rooted hegs into strings auch that cheding heg isomorphism
corresponds to chedking string equality. Figure 4 shows the pseudo-code of the lin-
eaizaionagorithm. The lineaizaion agorithm traverses the entire rooted heg in the
depth-first order, starting from the roat. When the dgorithm visits a noce for the first
time, it assgns a unique identifier to the node, and keeps this mappingini ds so that
already assgned identifiers can be reused by nodes that appea in cycles. We can show
that the lineaization namalizesrooted hegosinto strings. The states of two oljeds are
equivalent if their strings resulted from lineaizaion are the same.

Observer-Abstraction Representation The observer abstradion technique [46] rep-
resents the state of an oljed by using abstradion functions that are cnstructed based
on observers. We first define an observer following Henkel and Diwan’s work [22] on
spedfying algebraic spedficaionsfor a dass
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Map i ds;
String linearize(Node root,
ids = new Map();
return lin("root",

}

String lin(String fiel dName, Node root,
if (ids.containsKey(root))
return fiel dName+":"+String.valueOf (ids.get(root))+";";
int id=ids.size() + 1;
ids.put(root, id);
StringBuffer rep = new StringBuffer();
rep. append(fiel dNane+": "+String.valueOf (id)+";");
Edge[] fields = sortByField({ <root, f, 0>in E });
foreach (<root, f, o> in fields) {
if (isPrimtive(o))
rep. append(f+":"+String.valueX(o)+";");
el se
rep. append(lin(f, o,

/1 maps nodes into their unique ids
Heap <O E>) {

root, <O EBE>);

Heap <O E>) {

<0 B>));

return rep.toString();

Fig. 4. Pseudo-code of the lineaization algorithm

Definition 4. Anobserver of aclasscisamethodob in ¢’sinterfacesuch that the return
type of ob is nat void.

An observer invocdionis a methodinvocaion whose methodis an olserver. Given
an olged o of classc and a set of observer cals OB = {oby,0by, ..., 0b, }* of ¢,
the observer abstradion technique represents the state of o with n values OBR =
{obry, obra, ..., 0br, }, where eab value obr; represents the return value of observer
cdl ob; invoked ono.

When behavior of an oljed is to be as%rted, Orstra can asert the observer-
abstradion representation o the objed: asserting the return values of observer invo-
caions onthe objed.

Among dff erent user-defined observersfor adasst oSt ri ng() [41] deserves e
cia attention. This observer returns a string representation o the objed, often being
concise and human-readable. j ava. | ang. Obj ect [41] defines a default t oSt ri ng,
which returns the name of the objed’s class followed by the unsigned hexadedmal
representation o the hash code of the objed. The Java APl documentation [41] recom-
mends developersto override thist oSt ri ng methodin their own classs.

Comparison In this sdion, we mmpare different state representations in terms of
their relationships and the extent of reveding implementation detail s, as well as their
eff eds on asserting method invocdion behavior.

We first define subsumption relationships among state representations as foll ows.
State representation S; subsumes state representation S, if and orly if any two objeds
that have the same S; representations also have the same S, representations. State rep-
resentation S; strictly subsumes state representation S- if S; subsumes S, and for some
objeds Oand O , the S; representations differ but the S, representations do nd. State

! Orstradoes nat use an observer defined in j ava. | ang. Obj ect [41].
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representations S; and S> areincomparableif neither S; subsumes S, nor S, subsumes
S;. State representations S; and S» are equivalent if S; subsumes S, and S» subsumes
St.

If state representation S; subsumes date representation S», and S; has been asserted
(by cheding whether the adual state representationisthe same asthe expeded ore), it
isnot necessary to asert S»: aserting S» isredundarn after we have assserted S .

The method-sequence representation strictly subsumes the concrete-state repre-
sentation. The concrete-state representation strictly subsumes the observer-abstradion
representation. Among dfferent observers, the representation resulting from the
toString() observer often subsumesthe representationresulting from other observers
and is often equivalent to the mncrete-state representation.

Diff erent state representations expose diff erent level s of implementation cetails. If a
state representation exposes more implementation cdetail s of a program, it i s often more
difficult for developers to determine whether the program behaves as expeded ornce an
assertion for the state representation is violated. In addition, If a state representation
expaoses more implementation detail s, developers can be overwhelmed by assertion vi-
olationsthat are not symptoms of regresson faults but due to expeded implementation
changes (such as during program refactoring [18]). Althoughthese assertion violations
can be useful during software impad analysis [6], we prefer to put assertions on state
representations that reveds fewer implementation detail s.

Among the three representations, the aoncrete-state representation exposes more
implementation detail s than the other two representations: the concrete-state represen-
tation o an oljed is snsitive to changes on the objed’s field structure or the semantic
of itsfields, even if these changes do nd cause any behavioral differencein the objed’s
interface To addressthisisaue of the concrete-state representation, when Orstra aeaes
an aseertion for an ohed’s concrete-state representation, instead of diredly asserting
the concrete-state representation string, Orstra as<erts that the objed is equivaent to
another objea produced with a different method sequence if such an oljed can be
found(note that state equivalenceis dill determined based onthe comparison o repre-
sentation strings). This drategy isinspired by state-equivalence deding in algebraic-
spedficaions-based testing [16, 22]. One such exampleisin Line 24 o Figure 3.

3.2 Method-Exeaution-Behavior Assrtions
The exeaution o atest case produces a sequence of method exeautions.

Definition 5. A method exeaution is a sexuple e = (m, Sargs, Sentrys Sewits Sargs’s
r) where m, Surgs, Sentry, Sewits Sargs’, @ndr are the method name (including the
signaure), the argument-objed states at the method entry, the recever-objed state at
the methodentry, the recaver-ohjed state at the methodexit, the argument-objed states
at the method exit, andthe methodreturn value, respedivdy.

Note that when m’sreturnisvoid, r isvoid; when m is astatic method, S¢y,, and
Sezit are empty; when m isa wnstructor method, S, iS empty.

When amethodexeaution e isapullic method d the dassunder test C' and nore of
e'sindired or dired cdlersisamethod d C, we cdl that e isinvoked onthe interface
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of C. For ead such method exeaution e invoked onthe interfaceof C, if S..;: isnot
empty, S..;; can be asserted by using the following ways.

— If another method sequence can be foundto produce an ohjed state S’ that is ex-
peded to be gyuivalent to S..;;, an assrtionis creaed to compare the state repre-
sentations of S” and S...;:.

— If an observer methodob is defined by the dassunder test, an assertionis creged to
compare the return of an ob invocaion onS.,.;; with the expeded value (the ways
of comparing return values are described below).

Asisdiscussd in Sedion 31, we do nd crede an assertion that diredly compares
the mncrete-state representation string o the recaver objed with the expeded string,
because such an assertionis too sensitive to some internal i mplementation changes that
may not affed the interfacebehavior.

If amethodinvocationis a state-preserving method, then asserting S..;; isnot nec
essry; insteal, the existing purity analysistecniques[37,39] can be exploited to stat-
icdly ched its purity if its purity isto be asserted.

Similarly, we can asert S, inthe same way as asserting Se,;¢. If amethodinvo-
caion daes not modify argument objeds’ states, then asserting S,,4 iS N0t Necessary.

For eath methodexeaution e that isinvoked onthe interfaceof the dassunder test,
if » isnot void, itsreturn value r can be asserted by wsing the foll owing ways:

— If r is of a primitive type (including primitive-type objeds auch as Stri ng and
I nt eger ), an assertionis creaed to compare r with the expeaed primitive value.

— If r is of the dassunder-test type (which is a non-primitive type), an assertionis
creded by using the éove ways of as®rting arecaver-objed state S.,.:.

— If r isof anonprimitive type R but not the dassunder-test type,
— if the observer method t oSt ri ng is defined by R, an assertion is creded to
comparethereturn of thet oSt ri ng invocation onr with the expeded string value;
— otherwise, an assertion is creded to compare r's concrete-state representation
string with the expeded representation string value?.

When a method exeaution throws an uncaught exception, we can add an assertion
for asserting that the exception is to be thrown and it is not necessary to add aher
asrtionsfor Seqit, Sargs, OF 7.

4 Automatic Test-Oracle Augmentation

The precaling sedion presents a framework for asserting the behavior exhibited by a
method exeaution in a test suite. Although avelopers can manually write assertions
based on the framework, it is tedious to write comprehensive assertions as edfied

2 Note that we do nd intend to creae another method sequencethat produces an object statethat
is expeded to be gquivalent to » but diredly assert r’s concrete-staterepresentation string, be-
causer is not of the dassunder-test type andits implementation details often remain relatively
stable.

11

by the framework. Some automatic test-generation tools such as Xrasher [11] do nd
generate any assertions and some tools duch as est [31] generate alimited number
of assrtions. In pradice, the as<ertions in an automaticdly generated test suite ae
often insufficient to provide strong adade deding. This sdion presents our Orstra
tod that automaticdly adds new assertions into an automaticaly generated test suite
based onthe propaosed framework. The automatic augmentation consists of two phases:
state-capturing phese and as<ertion-buil ding phese. In the state-cepturing phese, Orstra
dynamicdly colleds objed states exercised by the test suite and the method sequences
that are neaded to reproduce these objed states. In the assertion-building phese, Orstra
buil ds assertions that assert behavior of the clleded oljed states and the returns of
observer methodks.

4.1 State-Capturing Phase

In the state-capturing phese, Orstraruns agiven test suite 7" (in the form of a JUnit test
class[19]) for the dassuncer test C' and dyramicdly rewrites the byteaodes of eadh
classat classloadingtime (based onthe Byte Code Engineeing Library (BCEL) [13]).

Orstra rewrites the T' classbyteaodes to colled recaver objed references, method
names, method signatures, arguments, and returns at cdl sites of those method se-
quences that lead to C-objed states or argument-objed states for C’s methods. Then
Orstra can use the mlleded method cdl information to recnstruct the method se-
quence that leads to a particular C-objed state or argument-objed state. The recon-
structed method sequence can be used in constructing assertions for C-objed statesin
the as<ertion-buil ding phese.

Orstra dso rewrites the C' classbyteadesin order to colled a C-objed’s concrete-
state representations at the entry and exit of ead method cdl i nvoked throughthe C-
objed’s interface Orstra uses Jva refledion mecdhanisms [5] to reaursively colled all
thefieldsthat arereatablefrom aC-objed and usesthelineaizaionagorithm (shown
in Figure 4) to producethe objed’s date-representation string.

Additionally Orstra mlleds the set OM of observer-method invocaions exercised
by T'. These observer-methodinvocdions are used to insped and asert behavior of an
C-objed state in the assertion-building prese.

4.2 As=rtion-Building Phase

In the essertion-building phese, Orstraiterates throughead C-objed state o exercised
by the initial test suite 7. If o is equivalent to a nonempty set O of some other objed
states exercised by 7', Orstra picks the objed state o’ in O that is produced by the short-
est methodsequencem’. Then Orstra aeaes an assertionfor aserting state eguivalence

by using the techniques described in Sedion 32.

In particular, if an equal s methodis defined in C’s interface Orstra aedes the
following JUnit assertion method (assert Tr ue) [19] to ched state equivalence dter
invoking the method sequence m’ to produceo’:

Co =n;
assert True(o. equal s(0’))
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Note that m’ needs to be replacal with the adual method sequence in the exported

assertion code. ) o ] ] .
If noequal s methodisdefined in C’sinterface Orstra aeaesan assertion by wsing

an equals-assertion-buil der method(Equal sBui | der . ref | ecti onEqual s), whichis
from the Apadhe Jakarta Commons aubprojed [4]. This method wses Jva refledion
medhanisms [5] to determine if two oljeds are equal by comparing their transitively
readable fields. We can show that if two oljeds o and o’ have the same state represen-
tation strings, the return value of Equal sBui | der. refl ecti onEqual s(o, 0') is
t rue. Orstra aedes the following assertion to ched state equivalence dter invoking
the method sequencem’ to produceo’:

Co =m;
Equal sBui | der. refl ecti onEqual s(o, 0’)

If o isnot equivalent to any other objed state exercised by T, Orstra invokes on o
ead observer methodom in OM colleded in the state-cgpturing phese. Orstra colleds
the return value r of the om invocation and makes an asrtion by wsing the techniques

described in Sedion 3.2. o ) )
In particular, if r is of a primitive type, Orstra aedes the following asrtion to
chedk thereturn of om:

assert Equal s(o.om r_str);

where r_str isthe string representation d r’s value.
If risof the C type, Orstra uses the ebove-described technique for constructing an

assrtionfor aC objed if there exist any other objed states that are equivalent to r.
If r is of a non-primitive type R but nat the C' type, Orstra aedes the following
asertionif at oSt ri ng methodis defined in R'sinterface

assert Equal s((o0.on).toString(), t_str);

where ¢_str is the return value of thet oSt ri ng methodinvocéion. If notoStri ng
methodis defined in R’s interface Orstra aeaes the foll owing assertion:

assert Equal s(Runtinme. genStateStr(o.onm), s_str);

where Runt i ne. genSt at eSt r is Orstra’'s own runtime helper method for returning
the concrete-representation string o an ohjed state, and s_str isthe concrete-state rep-
resentation string o r.

The precaling assertion bulding techniques are generally exhaustive, enumerating
possble medhanisms that developers may use to write asertions manually for these
different cases.

Inthe end o the assertion-buil ding phese, Orstra produces an augmented test suite,
which is an exported JUnit test suite, including generated assertions together with the
origind testsin 7.

Note that an automaticdly generated test suite can include ahigh percentage of
redundant tests [43], which generally do nd add value to the test suite. It is not neces-
sary to runthese redunchnt tests or add assertions for these reduncant tests. To produce
a ompad test suite with necessary asertions, the implementation o Orstra adualy
first colleds al norequivalent method exeautions and creaes assrtions only for these
method exeautions; therefore, the testsin the adually exported JUnit test suite may not
correspond ore-on-one to the testsin the original JUnit test suite.
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Table 1. Experimental subjects

class meths | puldic | ncnb | Jtest | JCrasher | faults
meths | loc | tests tests
IntStack 5 5 44 94 6 83
UBStack 11 11 | 106 | 1423 14 305
ShoppngCart 9 8 70 | 470 31 120
BankAccourt 7 7 34 519 135 42
BinSeachTree 13 8| 246 | 277 56 309
BinomialHegp 22 17 | 535 | 6205 438 310
DisjSet 10 7| 166 | 779 64 307
FibonacdHeg 24 14 | 468 | 3743 150 311
HashMap 27 19 597 | 5186 47 305
LinkedList 38 32| 398 | 3028 86 298
TreeMap 61 25| 949 | 931 1000 | 311

5 Experiment

This dion presents our experiment condicted to addressthe foll owing research ques-
tion:

— RQ: Can ou Orstra test-orade-augmentation tod i mprove the fault-detedion ca
pability (which approximates the regresson-fault-detedion cgpability) of an auto-
maticdly generated test suite?

5.1 Experimental Subjeds

Table 1 lists eleven Java dasses that we use in the experiment. These dasses were
previously used in evaluating ou previous work [43] on deteding redundant tests.
UBSt ack istheill ustrating example taken from the experimental subjeds used by Stotts
et a. [40]. | nt St ack was used by Henkel and Diwan [22] inill ustrating their approach
of discovering algebraic spedficaions. Shoppi ngCart isan example for JUnit [10].
BankAccount isan example distributed with Jtest [31]. The remaining seven classes
are data structures previously used to evaluate Korat [8]. The first four columns how
the dassname, the number of methods, the number of pullic methods, and the number
of non-comment, non-blank lines of code for eat subjed.

To addressthe research question, our experiment requires automaticaly generated
test suites for these subjeds s that Orstra can augment these test suites. We then use
two third-party test-generationtoadls, Jtest [31] and JCrasher [11], to automaticdly gen-
erate test inpus for these deven Java dasses. Jest alows users to set the length of
cdling sequences between ore and three we set it to threg and Jtest first generates al
cdli ng sequences of length ore, then those of length two, and finally those of length
three JCrasher automaticdly constructs method sequences to generate non-primitive
arguments and wses default data values for primitive aguments. JCrasher generates
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tests as cdli ng sequences with the length of one. The fifth and sixth columns of Table 1
show the number of tests generated by Jtest and JCrasher.

Although ouw ultimate research question is to investigate how much better an aug-
mented test suite guards against regresson faults, we canna colled sufficient red re-
gressonfaultsfor the experimental subjeds. Instead, in the experiment, we use genera
fault-detedion capability of a test suite to approximate regresson-fault-detedion ca
pability. In particular, we measure the fault-detedion capability of a test suite before
and after Orstra’'s augmentation. Then our experiment requires faults for these deven
Java dasss. These Java dasses were not equipped with such faults; therefore, we used
Ferastrau [24], a Java mutation testing todl, to sead faults in these dasses. Ferastrau
modifiesasingle line of codein an original versionin order to produce afaulty version.
We oonfigured Ferastrau to produce aound 300faulty versionsfor ead class For three
relatively small classes, Ferastrau generates a much smaller number of faulty versions
than 30Q The last column of Table 1 shows the number of faulty versions generated by
Ferastrau.

5.2 Measures

To measure the fault-detedion capabilit y of atest suite, we use ametric, fault-exposure
ratio (FE): the number of faults deteded by the test suite divided by the number of to-
tal faults. A higher fault-exposure ratio indicates a better fault-detedion capability. The
JUnit testing framework [19] reports that atest fail swhen an assertionin thetest isvio-
lated or an uncaught exceptionisthrown from the test. An initial test suite generated by
JCrasher or Jtest may include some faili ng testswhen being run onthe original versions
of some Java dasses shownin Table 1, becaise some automaticaly generated tests may
beill egal, violating (undacumented) preconditions of some Java dasses. Therefore, we
determine that a test suite exposes the seeded fault in a faulty version if the number
of failing tests reported onthe faulty version is larger than the number of faili ng tests
on the original version. We meésure the fault-exposure ratio F'E,,.;, of an initial test
suite and the fault-exposure retio F'E,,,, of its augmented test suite. We then measure
the improvement factor, given by the equation: ZZ2—"Feris /A higher improvement
factor indicates a more substantial i mprovement of the falllt-detedion cgpability.

5.3 Experimental Results

Table 2 shows the experimental results. The results for JCrasher-generated test suites
are shown in Columns 2-4 and the results for Jtest-generated test suites are shown in
Columns 5-7. Columns 2 and 5show the fault-exposure ratios of the original test suites
(before test-orade augmentation). Columns 3 and 6 show the fault-exposure ratios of
the test suites augmented by Orstra. Columns 4 and 7 show the improvement fadors
of the augmented test suites over the original test suites. The last two rows show the
average and median data for Columns 2-7.

Withou containing any as<ertion, a JCrasher-generated test exposesafault if an un
caught exceptionisthrown duringthe exeaution o the test. We observed that JCrasher-
generated tests has 0% fault-exposure ratios for two classes (Shoppi ngCart and
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Table 2. Fault-exposure ratios of Jtest-generated, JCrasher-generated, and augmented test suites,
and improvement fadors of test augmentation.

class JCrasher-gen tests Jest-gen tests

orig | aug [ improve | orig | aug [ improve
IntStack 9% | 40% 336 | 47% | 47% 0.00
UBStack 39% | 53% 0.36 | 60% | 60% 0.00
ShoppingCart 0% | 48% oo | 56% | 56% 0.00
BankAccourt 0% | 98% oo | 98% | 98% 0.00
BinSeachTree | 8% | 20% 158 | 20% | 27% 0.34
BinomialHegp | 18% | 95% 419 | 85% | 95% 0.12
DisjSet 23% | 31% 0.36 | 26% | 43% 0.65
FibonacdHeg | 9% | 96% 9.28 | 55% | 96% 0.74
HashMap 14% | 76% 430 | 22 | 76% 243
LinkedList 7% | 35% 373 | 45% | 45% 0.01
TreeMap 2% | 8% 5440 | 12% | 8% 6.29
Average 12% | 62% 9.06 | 48% | 67% 0.96
Median 9% | 53% 355 | 47% | 60% 0.12

BankAccount ), because no seaded faults for these two classes cause uncaught excep-
tions. Jtest equips its generated tests with some assertions: these asertions typicaly
assert those method invocations whose return values are of primitive types. (Sedion 7
discusses main differences between Orstra and Jtest’s asertion credion.) Generally,
Jest-generated test suites have higher fault-expaosure ratios than JCrasher-generated test
suites. The phenomenonis due to two fadors: Jtest generates more test inpus (with
longer method sequences) than JCrasher, and Jtest has gronger orade cheding (with
additional assertions) than JCrasher.

After Orstra augments the JCrasher-generated test suites with additional asertions,
we ohserved that the augmented test suites achieve substantial improvements of fault-
exposureratios. After augmenting the JCrasher-generated test suitefor Tr eeMap, Orstra
adhieves an improvement facor of even beyond 50 The augmented Jtest-generated test
suites also gain improvements of fault-exposure ratios (although no substantialy as
JCrasher-generated test suites), except for the first four classes. These four classs are
relatively simple and seeded faults for these dasses can be exposed with a lesscom-
prehensive set of assertions; Jtest-generated assertions are dready sufficient to expose
those exposable seaded faults.

5.4 Threatsto Validity

The threds to external validity primarily include the degreeto which the subjed pro-
grams and their existing test suites are representative of true pradice Our subjeds are
from various sources and the Korat data structures have nortrivial sizefor unit testing.
Our experiment had used initial test suites automaticdly generated by two third-party
todls, one of which (Jtest) is popuar and used in industry. These threas could be fur-
ther reduced by experiments on more subjeds and third-party todls. The main threas
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to internal validity include instrumentation eff eds that can bias our results. Faults in
our tool implementation, Jest, or JCrasher might cause such effeds. To reduce these
threds, we have manually inspeded the source mde of augmented tests and exeaution
traces for several program subjeds. The main threas to construct validity include the
uses of thase measurements in our experiment to assessour todl. To assessthe dfec
tivenessof our test-orad e-augmentation toadl, we measure the exposure ratios of faults
seeded by a mutation testing toal to approximate the exposure ratios of red regresson
faults introduced as an effed of changes made in the maintenance process Although
empiricd studies showed that faults seeded by mutation testing todls yield trustwor-
thy results [3], these threds can be reduced by condwcting more experiments on red
regresson faults.

6 Discusson

6.1 Analysis Cost

In general, the number of assertions generated for an initial test suite can be goproxi-
mately charaderized as

lassertions| = O(|nonEquStates| x |observers|+

|states EquToAnother|)

where |nonEquStates| x |observers| is the number of norequivalent objed states
exercised by the initial test suite being multiplied by the number of observer cdls ex-
ercised by the initial test suite; recdl that Orstra generates an assertion for the return
of an olserver invoked ona norequivalent objed state. |states EquToAnother| isthe
number of objed states (produced by norequivalent methodexeautionsin theinitial test
suite) that can be foundto be equivalent to ancther objed state produced by a diff erent
method sequence recdl that Orstra generates an assertion for aserting that an ohjed
state produced by a method sequenceis equivalent to another objed state produced by
adiff erent method sequenceif any.

Using Orstrain regresson testing adiviti es incurs two types of extra wst. The first
type is the st of augmenting the initial test suite. In our experiment, the dapsed red
time of running ou test augmentation is reasonable, being upto several sends, de-
termined primarily by the dasscomplexity, the number of tests in the test suite, the
number of generated assertions. Note that Orstra needs to be run orce when the initial
test suite is augmented for the first time, and later to be run when reported assertion
violations are determined na to be caised by regresgon faults. In future work, foll ow-
ing the ideaof repairing GUI regresson tests [27], we plan to improve Orstra so that it
can fix those violated assertions in the augmented test suite withou re-augmenting the
whaleinitial test suite.

The secondtype of cost isthe cost of running additional assertion cheding in the
augmented test suite, determined primarily by the number of generated as<ertions. Al-
thoughthis cost isincurred every time the augmented test suite is run (after the program
is changed), running the initia unit-test suite is often fast and running these alditi onal
assertion cheding slows down the exeaution o the test suite within severa fadors. In-
ded, if aninitial test suite exercises many nonequivalent objed states and the program
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under test has many observer methods, the st of both augmenting the test suite and
runnng the augmented test suite could be high. Under these situations, developers can
configure Orstra to trade wedker orade chedking for efficiency by invoking a subset
of observer methods during asertion generation. In additi on, regresson test prioriti za-
tion[15] or test seledion [20] for Java programs can be used to order or seled testsin
the Orstra-augmented test suite for exeaution when the exeautiontime istoo long

6.2 Fault-Free Behavioral Changes

Orstra observes behavior of the program under test when being exercised by atest suite
and then automaticdly adds assertions to the test suite to assert the program behavior is
preserved after future program changes. Indeed, sometimes violations of inserted asser-
tions do nd necessrily indicae red regresson faults. For example, consider that the
program uncer test contains afault, which is not expased by the initial test suite. Orstra
runs the test suite on the aurrent (faulty) version and creae as<ertions, some of which
assert wrong kehavior. Later developers find the fault and fix the program. When run-
ning the Orstra-augmented test suite on the new program version, assertion violations
are reported bu there ae no regresgon faults. In addition, althoughOrstra has been
carefully designed to assert as few implementation detail sin ohjed-state representation
as posdble, some program changes may violate inserted asertions but still preserve
program behavior that developers care ebout. To help developers to determine whether
an assertion violation in an augmented test suite indicaes red regresson faults, we
can use change impad analysis toals auch as Chianti [33] to identify a set of affeding
changes that were resporsible for the assertion violation.

Some types of programs (such as multi-threaded programs or programs whase be-
haviors are related to time) may exhibit nonceterministic or diff erent behaviors aadoss
multi ple runs: running the same test suite twice may produce diff erent observer returns
or recaver-objed states. For example, aget Ti me methodreturnsthe aurrent time anda
get RandonmNunber methodreturnsarandam number. After we add assertionsfor these
types of methodreturnsin atest suite, runnng the aigmented test suite on the aurrent
Or new program version can report assertion violations, which do nd indicaered faults
or regresson faults. To addressthisisale, we can run atest suite multiple times on the
current program version and remove those asertions that are not consistently satisfied
aaossmultiple runs.

6.3 Availability of Observers

Orstra aedes assertions for the returns of observers of the dassunder test. These ob-
server cdls may already exist in the initia test suite or may be invoked by Orstra to
assert objed-state behavior. Although olservers are commonin a dassinterface there
aresituationswhere a dassinterfaceincludesfew or no olservers. Even when a dassin-
terfaceincludes no olserver, we can till apply Orstrato augment atest suite generated
for the dasshy asserting that arecever-objed state produced by a method sequenceis
equivalent to ancther recaver-objed state produced by a diff erent method sequence
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6.4 Iterations of Augmentation

Orstraruns an automaticaly generated test suite andthen adds assertionsto the test suite
to produce a augmented test suite. When some observer methods are state-modifying
methods, running them for preparing assertion cheding in the augmented test suite
can produce new recaver-objed states that are not exercised by the initial test suite.
Therefore, if we gply Orstra on the augmented test suite again, the second iteration
of augmentation can produce atest suite with more assertion chedking and thus often
stronger orade chedking. However, if the augmented test suite &ter the first iteration
does not produce any new recaver-objed state, the seaond a later iteration of augmen-
tation adds no rnew asertionsto the test suite.

6.5 Quality of Automatically Generated Unit-Test Suites

Thetests generated by JCrasher and Jtest (the two third-party test-generationtod s used
in the experiment) include arelatively high number of redundant tests [43], which do
not contribute to achieving new structural coverage or better fault-detedion cgability.
Rostra and Symstra (two test-generation tools developed in our previous work [43,44])
can generate atest suite of higher quality (e.g., higher structural coverage) than a test
suite generated by JCrasher or Jtest. Augmenting a test suite generated by Rostra or
Symstra can achieve ahigher improvement fador than augmenting a test suite gener-
ated by JCrasher or Jest. In general, the higher quality a test suite is of, the higher
improvement fador Orstra can achieve when augmenting the test suite.

6.6 Augmentation of Other Types of Test Suites

AlthoughOrstra focuses on augmenting a unit-test suite, it is draightforward to extend
Orstrato augment an integration-test suite, which intendsto test the interadions of mul-
tiple dasses. When we as<ert the return values of a method exeautionin an integration-
test suite, we can diredaly apply Orstra withou any modificaion. When we as<rt the
recaver-objed state & a method exit, we can adapt Orstra to invoke on the recaver
objed the observer methods of the recaver-objed classrather than the observer meth-
ods of al the dasses under test because there ae multiple dasses under test for an
integration-test suite.

So far Orstra has been evaluated on augmenting an automaticdly generated test
suite. Generally Orstra can also be used to augment a manually generated test suite,
becaise theinpu to Orstrais smply a JUnit test classno matter whether it i s generated
automaticdly or manually. Because it is tedious to manually write comprehensive &s-
sertionsfor atest suite, amanually written test suite often does not have comprehensive
assertions. We hypahesize that applying Orstra to augment a manually generated test
suite can also improve the test suite’s fault-detedion cgpability. We plan to validate this
hypahesisin ou future experiments.

6.7 Incorporation of Oracle Augmentation in Test Generation

Orstrahas been developed as an independent componrent that can augment any test suite
in the form of aJUnit test class Orstra can aso be incorporated into the test-generation
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processof an existingtest-generationtool asatwo-step process Inthefirst step, thetoad
generates test inpus and runs these generated test inputs to coll ed method returns and
objed states. This gep combines the existing test-generation processand Orstra's date
capturing phese. The second step includes Orstra's assertion-buil ding phase. Some ex-
istingtest-generationtoads auch as Xrasher do nd run generated test inputs duringtheir
test-generation process Then thesetoadls canloosely incorporate Orstraby adoptingthis
two-step process Some existingtod's auch as dest, Rostra[43], and Symstra[44] adu-
aly run generated test inpus during their test-generation process Then these todls can
tightly incorporate Orstra by including Orstra's gate-cgpturing and assertion-building
phases when these todls runthe generated test inpus during the test-generation process
In fad, Orstra has been incorporated into Rostra and Symstra as an optional comporent
for adding assertions to their generated tests.

7 Related Work

Richardson [34] developed the TAOS (Testing with Analysis and Orade Suppat)
todkit, which provides different levels of test orade suppat. For example, in lower
levels, developers can write down expeded ouputs for a test input, spedfy ranges for
variable values, or manually insped adual outputs. The orade suppat provided by ou
Orstra tod is in TAOS lower levels: generating expeded outputs for test inpus. In
higher levels, developers can use spedficaion languages (such as Graphicd Interval
Logic Langauge and Red-Time Interval Logic Language) to spedfy temporal proper-
ties. There exist a number of propased approadhes for providing arade suppats based
on dfferent types of spedfications|[9, 14,26,32,35]. In particular, for testing Java pro-
grams, Cheon and Leavens[9] developed aruntime verificaiontoa for JavaModelli ng
Language (JML) [23] and then provided orade suppats for automaticdly generated
tests. Thisorade cheding approach was a so adopted by automatic spedfication-based
test generation tods such as Korat [8]. Different from these spedfication-based orade
suppats, Orstradoes nat require spedfications but Orstra can enhance orade chedking
only for exposing regresson faults.

When spedficdions do nd exist, automatic test-generation tods guch as
JCrasher [11] and CnC [12] use program crashes or uncaught exceptions as ymptoms
of the aurrent program version's faulty behavior. Like Orstra, Jtest [31] can aso cre-
ate some assertions for its generated tests. Orstra differs from Jtest in several ways.
Jest credes assertions for its own generated tests only, whereas Orstra can augment
any third-party test suite. Jtest creaes assertions for method invocations whaose return
values are of primitive types, whereas Orstra aeaes more types of assrtions, such
as asserting returns with nonprimitive types and asserting behavior of recever-objed
states. Unlike Orstra, Jtest does nat systematicaly or exhaustively creae assertions to
assert exercised program behavior. Our experimental results (shown in Sedion 53) in-
dicae that Orstra can till effedively augment a Jtest-generated test suite, which has
been equipped with Jest-generated assertions.

Saff and Ernst [38] as well as Orso and Kennedy [29] developed techniques for
capturing and replaying interadions between a seleded subsystem (such asa das9 and
the rest of the gpplication. Their techniques focus on creding fast, focused urit tests
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from slow system-widetests, whereas our Orstratod focuses onadding more assertions
to an existing urit-test suite. In addition, Orstra’'s techniques go beyond capturing and
replaying, because Orstra aedes new hel per-methodinvocations for assertion cheding
and these new methodinvocations might not be exercised in the original test suite.

Memon et a. [25 model a GUI state in terms of the widgets that the GUI con-
tains, their properties, and the values of the properties. Their experimental results show
that comparing more-detailed GUI states (e.g., GUI states asociated with all or visible
windows) from two versions can deted faults more dfedively than comparing less
detail ed GUI states (e.g., GUI states associated with the adive window or widget). Our
experiment shows a similar result: chedking more-detailed behavior (with augmented
test suites) can more dfedively expose regresson faults.

Both Harrold et a’s gpedra comparison approach [21] and ou previous value-
spedra comparison approac [47] aso focus on exposing regresson faults. Program
spedra usually capture internal program exeaution information and these goproaches
compare program spedra from two program versions in order to expose regresson
faults. Our new Orstratod comparesinterfacevisible behavior of two versions without
comparing internal exeaution information. On ore hand, Orstra may not report behav-
iora differences that are reported by spedra comparison approaces, if these internal
behavioral differences canna cause behaviora diff erencesin theinterface On the other
hand, Orstra may report behavioral differences that are not reported by spedra com-
parison approades, if these behavioral differences are exhibited only by new Orstra-
invoked observers (spedra comparison approaches do nd creae any new methodinvo-
cdion).

When there aeno aradesfor alarge number of automaticaly generated tests, devel-
opers canna aff ord to insped the results of such alarge number of tests. Our previous
operational violation approach [45] seleds a small subset of automaticaly generated
tests for inspedion; these seleded tests violates the operational abstradions [17] in-
ferred from the existing test suite. Pache and Ernst [30] extended the goproach by
additionally using heuristicsto filter out ill egal test inputs. Agitar Agitator [1] automat-
icaly generates initial tests, infers operational-abstradion-li ke observations, lets devel-
opers confirm these ohservations to assertions, and generates more tests to violate these
inferred and confirmed observations. The operational violation approach primarily in-
tendsto expaose faulty behavior exhibited by new generated tests onthe aurrent program
version, whereas Orstraintends to enhancethe orade dheding o an existing test suite
so that it has an improved capability of exposing faulty behavior exhibited by the same
test suite on future program versions.

Orstra has been implemented based on ou two previous approaches. Our previ-
ous Rostra goproadc [43] provides date representation and comparison techniques, but
Rostra compares dates in order to deted redundant tests out of automaticdly gener-
ated tests. Our previous Obstra goproach [46] aso invokes observers on oljed states
exercised by an existing test suite. Obstra uses the return values of observersto abstrad
concrete states and constructs abstrad-ohjed-state machines for inspedion. Obstra d-
lows developers to insped the behavior of the aurrent program version, whereas Orstra
uses the return values of observers as well asrecaver objed statesto assert that behav-
ior of future program versions is the same as behavior of the aurrent program version.
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In contrast to Rostra and Obstra, Orstra makes new contributions in developing an ap-
proach for enhancing the regresson arade chedking o an automaticadly generated test
suite.

8 Conclusion

An automatic test-generation tod can be used to generate alarge number of test inpus
for the dassunder test, complementing manually generated tests. However, withou
spedficdionsthese automaticaly generated test inpus do nd have test oradesto guard
against faultsin the aurrent program version a regresson faultsin future program ver-
sions. We have developed a new automated approac for augmenting an automaticaly
generated test suite in guarding against regresson faults. In particular, we have pro-
posed aframework for asserting behavior of a methodinvocationin an objed-oriented
unit-test suite. Based on the framework, we have developed an automatic test-orade-
augmentation toadl, cdled Orstra, that systematicdly adds assertions into an automati-
cdly generated test suite in order to improve its cgpability of guarding against regres-
sionfaults. We have condcted an experiment to asessthe df edivenessof augmenting
tests generated by two third-party test-generation todls. The results how that Orstra
can effedively increase the fault-detedion capability of automaticdly generated tests
by augmenting their regresson arade chedking.
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