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Abstract. A test case consistsof two parts: a test input to exercise the program
under test and a test oracle to check the correctnessof the test execution. A test
oracle is often in the form of executable assertions such as in the JUnit test-
ing framework. Manually generated test cases are valuable in exposing program
faults in the current program version or regression faults in future program ver-
sions. However, manually generated test cases are often insufficient for assuring
high softwarequality. We can then use an existing test-generation tool to generate
new test inputsto augment the existing test suite. However, without specifications
these automatically generated test inputsoften do not havetest oracles for expos-
ing faults. In this paper, we have developed an automatic approach and its sup-
porting tool, called Orstra, for augmenting an automatically generated unit-test
suite with regression oracle checking. The augmented test suite has an improved
capability of guarding against regression faults. In our new approach, Orstrafirst
executes the test suite and collects the classunder test’s object states exercised
by the test suite. On collected object states, Orstra creates assertions for assert-
ing behavior of theobject states. On executed observer methods (public methods
with non-void returns), Orstra also creates assertions for asserting their return
values. Then later when the classis changed, the augmented test suite is executed
to check whether assertion violations are reported. We have evaluated Orstra on
augmenting automatically generated tests for eleven subjects taken from a va-
riety of sources. The experimental results show that an automatically generated
test suite’s fault-detection capability can be effectively improved after being aug-
mented byOrstra.

1 Introduction

To exposefaults in aprogram, developerscreate atest suite, which includesaset of test
cases to exercise the program. A test case consists of two parts: a test input to exercise
theprogram under test andatest oracle to check the correctnessof thetest execution. A
test oracle is often in the form of runtime assertions [2,36] such as in the JUnit testing
framework [19]. In Extreme Programming [7] practice, writing unit tests has become
an important part of softwaredevelopment. Unit testshelp exposenot only faults in the
current program version but also regression faults introduced during program changes:
these written unit tests allow developers to change their code in a continuous and con-
trolled way. However, some special test inputs are often overlooked by developers and
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typical manually created unit test suitesareoften insufficient for assuring highsoftware
quality. Then developers can use one of the existing automatic test-generation tools
[8,11,12,31,42–44] to generate alarge number of test inputs to complement the man-
ually created tests. However, without specifications, these automatically generated test
inputs do not have test oracles, which can be used to check whether test executions are
correct. In this paper, we have developed a new automatic approach that adds asser-
tions into an automatically generated test suite so that the augmented test suite has an
improved capabilit y of guarding against regression faults.

Our approach focuses on object-oriented unit tests, such as the ones written in the
JUnit testing framework [19]. An object-oriented unit test consists of sequences of
method invocations. Our approach proposes a framework for asserting the behavior
of a method invocation in an object-oriented unit-test suite. Behavior of an invocation
depends on the state of the receiver object and method arguments at the beginning of
the invocation. Behavior of an invocation can be asserted by checking at the end of the
invocation the return value of the invocation (when the invocation’s return is not void),
the state of the receiver object, and the states of argument objects (when the invocation
can modify the states of the argument objects). Automatic test-generation tools often
do not create assertions but rely on uncaught exceptions or program crashes to detect
problems in aprogram [11,12].

To addressinsufficient test oraclesof an automatically generated test suite, wehave
developed an automatic tool, called Orstra, to augment thetest suitefor guardingagainst
regressionfaults. Orstra executes tests in thetest suite andcollects the classunder test’s
object statesexercised bythetest suite; an object’s stateischaracterized bythevaluesof
theobject’s transitively reachablefields [43]. On collected object states, Orstra invokes
observers (public methods with non-void returns) of the classunder test, collects their
actual return values, andcreatesassertions for checking thereturnsof observersagainst
their actual collected values. In addition, for each collected object state S, Orstra de-
termines whether there is another collected object stateS′ that is equivalent to S (state
equivalenceisdefined by graph isomorphism [8,43]); if so, Orstra reconstructsS′ with
methodsequences and creates an assertion for checking the state equivalenceof S and
S′.

This paper makes the followingmain contributions:

– We propose aframework for asserting the behavior of a method invocation in an
object-oriented unit-test suite.

– Wedevelopan automatic test-oracle-augmentationtool that systematically addsas-
sertions into an automatically generated test suite in order to improve itscapabilit y
of guardingagainst regression faults.

– We evaluate our approach onaugmenting automatically generated tests for eleven
Java classestaken from avariety of sources. The experimental results show that our
test-oracle augmentation can effectively improve the fault-detectioncapabilit y of a
test suite.

The rest of this paper is organized as follows. Section 2 presents an ill ustrating
example. Section 3 presents our framework for asserting behavior of a methodinvoca-
tion in a test suite. Section 4 presents our Orstra tool for automatically augmenting a
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test suite. Section 5 presents an experiment to assessour approach. Section 6 discusses
issuesof the approach. Section 7reviews related work, andSection 8concludes.

2 Example

We next ill ustrate how Orstra augments an automatically generated test suite’s regres-
sion oracle checking. As an ill ustrating example, we use aJava implementation of a
bounded stack that stores unique elements. Stotts et al. [40] used this Java implemen-
tation to experiment with their algebraic-specification-based approach for systemati-
cally creating unit tests. In the abbreviated implementationshown in Figure1, the class
MyInput is the comparable typeof elements stored in thestack. In the classimplemen-
tation of the bounded stack, the array elems contains the elements of the stack, and
numberOfElements is thenumber of the elements and the index of thefirst freeloca-
tion in the stack. The max is the capacity of the stack. The public methods in the class
interfaceinclude two standard stack operations: push andpop, aswell asfiveobserver
methods, whose returns arenot void.

Given a Java class, existing automatic test-generation tools [11,12,31,43,44] can
generate a test suite automatically for the class. For example, Jtest [31] allows users
to set the length of calli ng sequences between one and three, and then generates
random calli ng sequences whose lengths are not greater than the user-specified one.
JCrasher [11] automatically constructs methodsequences to generate non-primitive ar-
guments and uses default data values for primitive arguments. JCrasher generates tests
as calli ngsequences with the length of one.

For example, given theUBStack class, existingautomatic test-generation tools [11,
12,31,43,44] can generatetest suites such asthe example test suiteUBStackTest with
two tests (exported in the JUnit testing framework [19]) shown in Figure 2. Each test
has several methodsequenceson theobjectsof the class. For example, test1 createsa
stack s1 and invokespush, top, pop, andisMember on it in a row.

Note that there are no assertions generated in the UBStackTest test suite. There-
fore, when the test suite is run, tools such as JCrasher [11] and CnC [12] detect prob-
lems by observing whether uncaught exceptions are thrown; tools such as Korat [8]
detect problems by observing whether the execution of the test suite violates design-
by-contract annotations [9, 23, 28] (equipped with the program under test), which are
translated into run-time assertions [2,36].

Given a test suite such as UBStackTest, Orstra systematically augments the test
suite to produce an augmented test suitesuch asUBStackAugTest shown in Figure 3.
For ill ustration, we annotate UBStackAugTest with line numbers and mark in bold
font those lines of statements that correspondto the statements in UBStackTest. The
augmented test suite UBStackAugTest is equipped with comprehensive assertions,
which reflect the behavior of the current program version under test. These new asser-
tions can guard against regression faults introduced in futureprogram versions.

We next ill ustrate how Orstra automatically creates assertions for UBStackTest
to produce UBStackAugTest. By running UBStackTest, Orstra dynamically mon-
itors the method sequences executed by UBStackTest and collects the exer-
cised state of a UBStack-receiver object by collecting the values of the re-
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public class MyInput implements Comparable {
private int o;
public MyInput(int i) { o = i; }
public boolean equals(Object that) {

if (!(that instanceof MyInput)) return false;
return (o == ((MyInput)that).o);

}
}

public class UBStack {
private Comparable[] elems;
private int numberOfElements;
private int max;
public UBStack() { ... }
//standard stack operations
public void push(Comparable i) { ... }
public void pop() { ... }
//stack observer methods
public int getNumberOfElements() { ... }
public boolean isFull() { ... }
public boolean isEmpty() { ... }
public boolean isMember(Comparable i) {... }
public MyInput top() { ... }

}

Fig.1. A bounded stack implementation (UBStack) in Java

public class UBStackTest extends TestCase {
public void test1() {

UBStack s1 = new UBStack();
MyInput i1 = new MyInput(3);
s1.push(i1);
s1.top();
s1.pop();
s2.isMember(i1);

}

public void test2() {
UBStack s2 = new UBStack();
s2.isEmpty();
s2.isFull();
s2.getNumberOfElements();

}
}

Fig.2. An automatically generated test suite UBStackTest for UBStack

ceiver object’s transitively reachable fields. Based on the collected method in-
vocations, Orstra identifies UBStack’s observer methods that are invoked by
UBStackTest: top(), isMember(new MyInput(3)), isEmtpy(), isFull(), and
getNumberOfElements().

Then on each UBStack-receiver-object state exercised by UBStackTest, Orstra
invokes the collected observer methods. For example, after the constructor invocation
(shown in Line2 of Figure3), Orstrainvokesthefiveobserver methodsontheUBStack
object s1. After invoking these observer methods, Orstra collects their return values
and then makes an assertion for each observer method by adding a JUnit assertion
method (assertEquals), whose first argument is the observer method’s return and
second argument is the collected return value. The five inserted assertions are shown
in Lines 4-9. Similarly, Orstra inserts assertions after the push invocation (shown in
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0 public class UBStackAugTest extends TestCase {
1 public void testAug1() {
2 UBStack s1 = new UBStack();
3 //start inserting new assertions for observers
4 assertEquals(s1.isEmpty(), true);
5 assertEquals(s1.isFull(), false);
6 assertEquals(s1.getNumberOfElements(), 0);
7 MyInput temp_i1 = new MyInput(3);
8 assertEquals(s1.isMember(temp_i1), false);
9 assertEquals(s1.top(), null);
10 //finish inserting new assertions for observers
11 MyInput i1 = new MyInput(3);
12 s1.push(i1);
13 //start inserting new assertions for observers
14 assertEquals(s1.isEmpty(), false);
15 assertEquals(s1.isFull(), false);
16 assertEquals(s1.getNumberOfElements(), 1);
17 assertEquals(s1.isMember(temp_i1), true);
18 //finish inserting new assertions for observers
19 assertEquals(Runtime.genStateStr(s1.top()), "o:3;");
20 //insert no new assertions for top
21 s1.pop();
22 //start inserting new assertions for state equivalence
23 UBStack temp_s1 = new UBStack();
24 EqualsBuilder.reflectionEquals(s1, temp_s1);
25 //finish inserting new assertions for state equivalence
26 assertEquals(s2.isMember(i1), false);
27 //insert no new assertions for isMember
28 }
29
30 public void testAug2() {
31 UBStack s2 = new UBStack();
32 //insert no new assertions because the equivalent state
33 //has been asserted in test1
34 assertEquals(s2.isEmpty(), true);
35 assertEquals(s2.isFull(), false);
36 assertEquals(s2.getNumberOfElements(), 0);
37 }
39}

Fig.3. An Orstra-augmented test suite for UBStackTest

Line12) for asserting thestateof the receiver s1. Because in test1 of UBStackTest,
there is an observer methodtop invoked immediately after thepush invocation, in the
inserted assertions for s1 after the push invocation, Orstra does not include another
duplicate top observer invocation. Then Orstra still adds an assertion for the original
top invocation (shown in Line 19). When Orstra collects the return value of top, it
determines that the value is not of a primitive type but of the MyInput type. It then
invokes its own runtime helper method(Runtime.genStateStr) to collect the state-
representationstring of theMyInput-typereturn value. Thestringconsistsof thevalues
of all t ransitively reachable fields of the MyInput-type object, represented as “o:3;” ,
whereo is thefield name and3 is thefield value.

After thetop invocation (shown in Line19), Orstra insertsno new assertion for as-
sertingthestateof s1 immediately after thetop invocation, becauseOrstradynamically
determinestop to be astate-preserving or side-effect-freemethod: all it s invocations in
the test suitedo not modify thestateof the receiver object.

After thepop invocation (shown in Line21), Orstradetects that s1’s state isequiv-
alent to another collected object statethat isproduced byashorter methodsequence: an
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object state produced after the constructor invocation; Orstra determines state equiva-
lenceof two objects by comparing their state-representation strings. Therefore, instead
of invoking observer methodsons1, Orstra constructsan assertionfor assertingthat the
state of s1 is equivalent to the state of temp s1, which is produced after the construc-
tor is invoked. Orstra creates the assertion by using an equals-assertion-builder method
(EqualsBuilder.reflectionEquals) from the Apache Jakarta Commons subpro-
ject [4]. This method uses Java reflection mechanisms [5] to determine if two objects
are equal based onfield-by-field comparison. If an equals methodisdefined asapub-
lic method of the classunder test, Orstra can also alternatively use theequals method
for building the assertion.

After theisMember invocation (shown in Line26), Orstra insertsno new assertion
for assertingthestateof s1 immediately after theisMember invocation, becauseOrstra
dynamically determinesisMember to be astate-preservingmethod.

When augmenting test2, Orstra does not insert assertions for the state of s2 im-
mediately after the constructor invocation, because the object state that is produced
by the same method sequence has been asserted in testAug1. In testAug2, Orstra
addsassertionsonly for thoseobserver-methodinvocations that areoriginally in test2
(shown in Lines 34-36).

3 Framework

This section formalizes somenotions introduced informally in theprevious section. We
first describe approaches for representing states of non-primitive-type objects and then
compare these approaches. We finally describe how these state representations can be
used to build assertions for the receiver object and return valueof amethodinvocation.

3.1 StateRepresentation

When a variable (such as the return of a method invocation) is of a primitive type or
a primitive-object type such asString andInteger, Orstra asserts its value by com-
paring it with an expected value. When a variable (such as the return or receiver of a
methodinvocation) isanon-primitive-typeobject, Orstra constructsassertionsby using
several types of state representations: method-sequence representation [43], concrete-
state representation [43], and observer-abstraction representation [46].

Method-Sequence Representation The method-sequence-representation tech-
nique [43] represents the state of an object by using sequences of method invocations
that produce the object (following Henkel and Diwan [22] who use the representation
in mapping Java classes to algebras). Then Orstra can reconstruct or clone an object
state by re-executing the method invocations in the method-sequence representation;
the capabilit y of reconstructing an object state is crucial when Orstra wants to assert
that the state of the object under consideration is equivalent to that of another object
constructed elsewhere.

Thestaterepresentation uses symbolic expressionswith thegrammar shown below:
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exp::= prim | invoc “.state” | invoc “.retval”
args::= ǫ | exp | args “,” exp

invoc::= method“(” args “)”
prim::= “null” | “true” | “false” | “0” | “1” | “-1” | . . .

Each object or value is represented with an expression. Arguments for amethodin-
vocation are represented as sequences of zero or more expressions (separated by com-
mas); the receiver of a non-static, non-constructor method invocation is treated as the
first method argument. A static method invocation or constructor invocation does not
have areceiver. The.state and.retval expressions denote the state of the receiver
after the invocationandthereturn of the invocation, respectively. For brevity, thegram-
mar shown above does not specify types for the expressions. A method is represented
uniquely by its defining class, name, and the entire signature. (For brevity, we do not
show amethod’sdefiningclassor signature in thestate-representationexamplesof this
paper.) For example, in test1, the state of the object s1 after the push invocation is
represented by

push(UBStack<init>().state, MyInput<init>(3).state).state.

whereUBStack<init> andMyInput<init> represent constructor invocations.
Notethat thestaterepresentation based onmethodsequencesallowsteststo contain

loops, arithmetic, aliasing, and polymorphism. Consider the following two teststest3
andtest4:

public void test3() {
UBStack t = new UBStack();
UBStack s3 = t;
for (int i = 0; i <= 1; i++)

s3.push(new MyInput(i));
}

public void test4() {
UBStack s4 = new UBStack();
int i = 0;
s4.push(new MyInput(i));
s4.push(new MyInput(i + 1));

}

Orstra dynamically monitors the invocations of the methods on the actual ob-
jects created at runtime and collects the actual argument values for these invocations.
For example, it represents the states of both s3 and s4 at the end of test3 and
test4 as push(push(UBStack<init>().state, MyInput<init>(0)).state,

MyInput<init>(1)).state.
The above-shown grammar does not capture amethod execution’s side effect on

an argument: a methodcan modify the state of a non-primitive-type argument and this
argument can be used for another later method invocation. Following Henkel and Di-
wan’s suggested extension [22], we can enhancethe first grammar rule to addressthis
issue:

exp::= prim | invoc “.state” | invoc “.retval” | invoc “.argi”

where the added expression (invoc “.argi” ) denotes the state of the modified ith argu-
ment after themethodinvocation.

If test code modifies directly some public fields of an object without invoking any
of its methods, these side effects on the object are not captured by method sequences
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in themethod-sequencerepresentation. To addressthis issue, Orstra can be extended to
create apublic field-writingmethodfor each public field of theobject, andthen monitor
object-field accesses in the test code. If Orstra detects at runtime the execution of the
object’sfield-writeinstructionin thetest code, it can insert a correspondingfield-writing
methodinvocation in themethod-sequencerepresentation.

Concrete-State Representation A program is executed uponthe program state that
includes a program heap. The concrete-state representation of an object [43] considers
only partsof theheap that arereachablefrom theobject. We also call each part a “heap”
and view it as a graph: nodes represent objects and edges represent fields. Let P be the
set consisting of all primitive values, including null, integers, etc. Let O be aset of
objects whose fields form a set F . (Each object has a field that represents its class, and
array elements are considered index-labelled object fields.)

Definition 1. A heap is an edge-labelled graph 〈O,E〉, where E = {〈o, f, o′〉|o ∈
O, f ∈ F, o′ ∈ O ∪ P}.

Heap isomorphism isdefined as graph isomorphism based on node bijection [8].

Definition 2. Two heaps 〈O1, E1〉 and〈O2, E2〉 are isomorphic iff there is a bijection
ρ : O1 → O2 such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ O1} ∪

{〈ρ(o), f, o′〉|〈o, f, o′〉 ∈ E1, o
′ ∈ P}.

Thedefinitionallowsonly object identitiesto vary: two isomorphic heapshavethesame
fields for all objects and thesamevalues for all primitivefields.

The state of an object is represented with a rooted heap, instead of the whole pro-
gram heap.

Definition 3. A rooted heap is a pair 〈r, h〉 of a root object r and a heap h whose all
nodes are reachable from r.

Orstra linearizes rooted heaps into strings such that checking heap isomorphism
corresponds to checking string equality. Figure 4 shows the pseudo-code of the lin-
earizationalgorithm. The linearizationalgorithm traverses the entire rooted heap in the
depth-first order, starting from the root. When the algorithm visits a node for the first
time, it assigns a unique identifier to the node, and keeps this mapping in ids so that
already assigned identifiers can be reused by nodes that appear in cycles. We can show
that the linearization normalizesrooted heaps into strings. Thestatesof two objectsare
equivalent if their strings resulted from linearizationare thesame.

Observer-Abstraction Representation The observer abstraction technique [46] rep-
resents the state of an object by using abstraction functions that are constructed based
on observers. We first define an observer following Henkel and Diwan’s work [22] on
specifyingalgebraic specifications for a class:
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Map ids; // maps nodes into their unique ids
String linearize(Node root, Heap <O,E>) {

ids = new Map();
return lin("root", root, <O,E>);

}

String lin(String fieldName, Node root, Heap <O,E>) {
if (ids.containsKey(root))

return fieldName+":"+String.valueOf(ids.get(root))+";";
int id = ids.size() + 1;
ids.put(root, id);
StringBuffer rep = new StringBuffer();
rep.append(fieldName+":"+String.valueOf(id)+";");
Edge[] fields = sortByField({ <root, f, o> in E });
foreach (<root, f, o> in fields) {

if (isPrimitive(o))
rep.append(f+":"+String.valueOf(o)+";");

else
rep.append(lin(f, o, <O,E>));

}
return rep.toString();

}

Fig.4. Pseudo-codeof the linearization algorithm

Definition 4. An observer of a classc isa methodob in c’s interfacesuch that thereturn
typeof ob is not void.

An observer invocation isamethodinvocationwhosemethodisan observer. Given
an object o of class c and a set of observer calls OB = {ob1, ob2, ..., obn}

1 of c,
the observer abstraction technique represents the state of o with n values OBR =
{obr1, obr2, ..., obrn}, where each value obri represents the return value of observer
call obi invoked ono.

When behavior of an object is to be asserted, Orstra can assert the observer-
abstraction representation of the object: asserting the return values of observer invo-
cations on theobject.

Among different user-defined observersfor a class, toString() [41] deserves spe-
cial attention. This observer returns a string representation of the object, often being
concise and human-readable. java.lang.Object [41] defines a default toString,
which returns the name of the object’s class followed by the unsigned hexadecimal
representation of thehash codeof theobject. TheJavaAPI documentation [41] recom-
mends developers to override thistoString methodin their own classes.

Compar ison In this section, we compare different state representations in terms of
their relationships and the extent of revealing implementation details, as well as their
effects onassertingmethodinvocation behavior.

We first define subsumption relationships among state representations as follows.
State representation S1 subsumes state representation S2 if and only if any two objects
that have the same S1 representations also have the same S2 representations. State rep-
resentationS1 strictly subsumesstate representationS2 if S1 subsumesS2 andfor some
objects O and O’, the S1 representations differ but the S2 representations do not. State

1 Orstradoes not use an observer defined in java.lang.Object [41].
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representationsS1 andS2 are incomparable if neither S1 subsumesS2 nor S2 subsumes
S1. State representations S1 and S2 are equivalent if S1 subsumes S2 and S2 subsumes
S1.

If staterepresentationS1 subsumes staterepresentationS2, andS1 hasbeen asserted
(by checkingwhether the actual state representation is thesame as the expected one), it
isnot necessary to assert S2: assertingS2 is redundant after wehave asserted S1.

The method-sequence representation strictly subsumes the concrete-state repre-
sentation. The concrete-state representation strictly subsumes the observer-abstraction
representation. Among different observers, the representation resulting from the
toString() observer oftensubsumestherepresentationresultingfromother observers
and isoften equivalent to the concrete-state representation.

Different staterepresentationsexposedifferent levelsof implementation details. If a
state representationexposesmore implementation detailsof aprogram, it isoften more
difficult for developers to determine whether the program behaves as expected once an
assertion for the state representation is violated. In addition, If a state representation
exposes more implementation details, developers can be overwhelmed by assertion vi-
olations that arenot symptoms of regression faultsbut due to expected implementation
changes (such as during program refactoring [18]). Althoughthese assertion violations
can be useful during software impact analysis [6], we prefer to put assertions on state
representations that reveals fewer implementation details.

Among the three representations, the concrete-state representation exposes more
implementation details than the other two representations: the concrete-state represen-
tation of an object is sensitive to changes on the object’s field structure or the semantic
of itsfields, even if these changesdo not cause any behavioral differencein theobject’s
interface. To addressthis issueof the concrete-state representation, when Orstra creates
an assertion for an object’s concrete-state representation, instead of directly asserting
the concrete-state representation string, Orstra asserts that the object is equivalent to
another object produced with a different method sequence if such an object can be
found(note that state equivalenceis still determined based onthe comparison of repre-
sentation strings). This strategy is inspired by state-equivalence checking in algebraic-
specifications-based testing [16,22]. Onesuch example is in Line24 of Figure3.

3.2 Method-Execution-Behavior Assertions

The execution of a test caseproduces asequenceof methodexecutions.

Definition 5. A method execution is a sextuple e = (m, Sargs, Sentry, Sexit, Sargs′ ,
r) where m, Sargs, Sentry, Sexit, Sargs′ , and r are the method name (including the
signature), the argument-object states at the methodentry, the receiver-object state at
themethodentry, thereceiver-object stateat themethodexit, theargument-object states
at themethodexit, andthemethodreturn value, respectively.

Note that when m’s return isvoid, r isvoid; when m isastatic method, Sentry and
Sexit are empty; when m is a constructor method, Sentry is empty.

When amethodexecutione isapublic method of the classunder test C and noneof
e’s indirect or direct callers is a method of C, we call that e is invoked onthe interface
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of C. For each such methodexecution e invoked on the interfaceof C, if Sexit is not
empty, Sexit can be asserted by using the followingways:

– If another methodsequence can be foundto produce an object state S′ that is ex-
pected to be equivalent to Sexit, an assertion is created to compare the state repre-
sentations of S′ andSexit.

– If an observer methodob isdefined bythe classunder test, an assertion iscreated to
compare the return of an ob invocation onSexit with the expected value (the ways
of comparing return values aredescribed below).

As is discussed in Section 3.1, we do not create an assertion that directly compares
the concrete-state representation string of the receiver object with the expected string,
becausesuch an assertion is toosensitive to some internal implementationchanges that
may not affect the interfacebehavior.

If amethodinvocation isastate-preservingmethod, then assertingSexit isnot nec-
essary; instead, the existing purity analysis techniques [37,39] can be exploited to stat-
ically check itspurity if itspurity is to be asserted.

Similarly, we can assert Sargs′ in thesameway asassertingSexit. If amethodinvo-
cation does not modify argument objects’ states, then assertingSargs′ is not necessary.

For each methodexecutione that is invoked onthe interfaceof the classunder test,
if r is not void, its return value r can be asserted by using the followingways:

– If r is of a primitive type (including primitive-type objects such as String and
Integer), an assertion iscreated to compare r with the expected primitivevalue.

– If r is of the class-under-test type (which is a non-primitive type), an assertion is
created by using the above ways of assertinga receiver-object stateSexit.

– If r is of anon-primitive typeR but not the class-under-test type,
— if the observer method toString is defined by R, an assertion is created to
comparethereturn of thetoString invocation onr with the expected string value;
— otherwise, an assertion is created to compare r’s concrete-state representation
stringwith the expected representationstring value2.

When a methodexecution throws an uncaught exception, we can add an assertion
for asserting that the exception is to be thrown and it is not necessary to add other
assertions for Sexit, Sargs′ , or r.

4 Automatic Test-OracleAugmentation

The preceding section presents a framework for asserting the behavior exhibited by a
method execution in a test suite. Although developers can manually write assertions
based on the framework, it is tedious to write comprehensive assertions as specified

2 Notethat wedo not intendto createanother methodsequencethat producesan object statethat
is expected to be equivalent to r but directly assert r’s concrete-staterepresentation string, be-
causer is not of the class-under-test type andits implementation details often remain relatively
stable.

12

by the framework. Some automatic test-generation tools such as JCrasher [11] do not
generate any assertions and some tools such as Jtest [31] generate a limited number
of assertions. In practice, the assertions in an automatically generated test suite are
often insufficient to provide strong oracle checking. This section presents our Orstra
tool that automatically adds new assertions into an automatically generated test suite
based ontheproposed framework. The automatic augmentationconsistsof two phases:
state-capturing phase and assertion-building phase. In the state-capturing phase, Orstra
dynamically collects object states exercised by the test suite and the methodsequences
that are needed to reproducethese object states. In the assertion-building phase, Orstra
builds assertions that assert behavior of the collected object states and the returns of
observer methods.

4.1 State-Captur ing Phase

In thestate-capturing phase, Orstra runsagiven test suiteT (in the form of aJUnit test
class[19]) for the classunder test C and dynamically rewrites the bytecodes of each
classat classloading time(based ontheByteCodeEngineeringLibrary (BCEL) [13]).

Orstra rewrites the T classbytecodes to collect receiver object references, method
names, method signatures, arguments, and returns at call sites of those method se-
quences that lead to C-object states or argument-object states for C ’s methods. Then
Orstra can use the collected method call i nformation to reconstruct the method se-
quence that leads to a particular C-object state or argument-object state. The recon-
structed methodsequence can be used in constructing assertions for C-object states in
the assertion-building phase.

Orstra also rewrites theC classbytecodes in order to collect aC-object’s concrete-
state representations at the entry and exit of each methodcall i nvoked throughthe C-
object’s interface. Orstra uses Java reflection mechanisms [5] to recursively collect all
thefieldsthat arereachablefrom aC-object and usesthelinearizationalgorithm (shown
in Figure4) to producetheobject’s state-representationstring.

Additionally Orstra collects the set OM of observer-method invocations exercised
by T . These observer-methodinvocations are used to inspect and assert behavior of an
C-object state in the assertion-building phase.

4.2 Assertion-Building Phase

In the assertion-building phase, Orstra iterates througheach C-object state o exercised
by the initial test suite T . If o is equivalent to a nonempty set O of some other object
statesexercised byT , Orstrapicks theobject stateo′ in O that isproduced bytheshort-
est methodsequencem′. Then Orstra createsan assertionfor assertingstate equivalence
by using the techniques described in Section 3.2.

In particular, if an equals method is defined in C ’s interface, Orstra creates the
following JUnit assertion method(assertTrue) [19] to check state equivalence after
invoking themethodsequencem′ to produceo′:

C o’ = m’;
assertTrue(o.equals(o’))
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Note that m′ needs to be replaced with the actual method sequence in the exported
assertioncode.

If noequalsmethodisdefined inC ’s interface, Orstra createsan assertion by using
anequals-assertion-builder method(EqualsBuilder.reflectionEquals), which is
from the Apache Jakarta Commons subproject [4]. This method uses Java reflection
mechanisms [5] to determine if two objects are equal by comparing their transitively
reachablefields. We can show that if two objectso ando′ have thesamestate represen-
tation strings, the return value of EqualsBuilder.reflectionEquals(o, o’) is
true. Orstra creates the following assertion to check state equivalence after invoking
themethodsequencem′ to produceo′:

C o’ = m’;
EqualsBuilder.reflectionEquals(o, o’)

If o is not equivalent to any other object state exercised by T , Orstra invokes on o

each observer methodom in OM collected in thestate-capturing phase. Orstra collects
the return value r of theom invocation andmakes an assertion by using the techniques
described in Section 3.2.

In particular, if r is of a primitive type, Orstra creates the following assertion to
check the return of om:

assertEquals(o.om, r_str);

where r str is thestring representation of r’s value.
If r is of theC type, Orstra uses the above-described technique for constructing an

assertion for aC object if there exist any other object states that are equivalent to r.
If r is of a non-primitive type R but not the C type, Orstra creates the following

assertion if atoString methodis defined in R’s interface:

assertEquals((o.om).toString(), t_str);

where t str is the return value of the toString method invocation. If no toString
methodisdefined in R’s interface, Orstra creates the followingassertion:

assertEquals(Runtime.genStateStr(o.om), s_str);

where Runtime.genStateStr is Orstra’s own runtime helper method for returning
the concrete-representationstring of an object state, ands str is the concrete-state rep-
resentationstring of r.

The preceding assertion building techniques are generally exhaustive, enumerating
possible mechanisms that developers may use to write assertions manually for these
different cases.

In the end of the assertion-building phase, Orstraproducesan augmented test suite,
which is an exported JUnit test suite, including generated assertions together with the
original tests in T .

Note that an automatically generated test suite can include a high percentage of
redundant tests [43], which generally do not add value to the test suite. It is not neces-
sary to run theseredundant testsor addassertions for theseredundant tests. To produce
a compact test suite with necessary assertions, the implementation of Orstra actually
first collects all nonequivalent methodexecutions and creates assertions only for these
methodexecutions; therefore, the tests in the actually exported JUnit test suitemay not
correspond one-on-one to the tests in theoriginal JUnit test suite.
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Table 1. Experimental subjects

class meths public ncnb Jtest JCrasher faults
meths loc tests tests

IntStack 5 5 44 94 6 83
UBStack 11 11 106 1423 14 305
ShoppingCart 9 8 70 470 31 120
BankAccount 7 7 34 519 135 42
BinSearchTree 13 8 246 277 56 309
BinomialHeap 22 17 535 6205 438 310
DisjSet 10 7 166 779 64 307
FibonacciHeap 24 14 468 3743 150 311
HashMap 27 19 597 5186 47 305
LinkedList 38 32 398 3028 86 298
TreeMap 61 25 949 931 1000 311

5 Experiment

This section presentsour experiment conducted to addressthefollowingresearch ques-
tion:

– RQ: Can our Orstra test-oracle-augmentation tool improve the fault-detection ca-
pabilit y (which approximates the regression-fault-detection capabilit y) of an auto-
matically generated test suite?

5.1 Experimental Subjects

Table 1 lists eleven Java classes that we use in the experiment. These classes were
previously used in evaluating our previous work [43] on detecting redundant tests.
UBStack istheill ustratingexampletaken from the experimental subjectsused byStotts
et al. [40]. IntStack wasused byHenkel andDiwan [22] in ill ustratingtheir approach
of discovering algebraic specifications. ShoppingCart is an example for JUnit [10].
BankAccount is an example distributed with Jtest [31]. The remaining seven classes
are data structures previously used to evaluate Korat [8]. The first four columns show
the classname, thenumber of methods, thenumber of public methods, and thenumber
of non-comment, non-blank linesof code for each subject.

To addressthe research question, our experiment requires automatically generated
test suites for these subjects so that Orstra can augment these test suites. We then use
two third-party test-generation tools, Jtest [31] andJCrasher [11], to automatically gen-
erate test inputs for these eleven Java classes. Jtest allows users to set the length of
calli ng sequences between one and three; we set it to three, and Jtest first generates all
calli ng sequences of length one, then those of length two, and finally those of length
three. JCrasher automatically constructs method sequences to generate non-primitive
arguments and uses default data values for primitive arguments. JCrasher generates
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testsascalli ngsequenceswith the length of one. Thefifth andsixth columnsof Table1
show thenumber of testsgenerated byJtest andJCrasher.

Although our ultimate research question is to investigate how much better an aug-
mented test suite guards against regression faults, we cannot collect sufficient real re-
gression faults for the experimental subjects. Instead, in the experiment, weusegeneral
fault-detection capabilit y of a test suite to approximate regression-fault-detection ca-
pabilit y. In particular, we measure the fault-detection capabilit y of a test suite before
and after Orstra’s augmentation. Then our experiment requires faults for these eleven
Java classes. TheseJava classeswerenot equipped with such faults; therefore, weused
Ferastrau [24], a Java mutation testing tool, to seed faults in these classes. Ferastrau
modifiesasingle lineof code in an original version in order to produce afaulty version.
We configured Ferastrau to produce around 300faulty versionsfor each class. For three
relatively small classes, Ferastrau generates a much smaller number of faulty versions
than 300. The last column of Table1 shows thenumber of faulty versionsgenerated by
Ferastrau.

5.2 Measures

To measure the fault-detectioncapabilit y of a test suite, weuse ametric, fault-exposure
ratio (FE): the number of faults detected by the test suite divided by the number of to-
tal faults. A higher fault-exposure ratio indicatesabetter fault-detectioncapabilit y. The
JUnit testing framework [19] reports that a test failswhen an assertion in the test isvio-
lated or an uncaught exception is thrown from thetest. An initial test suitegenerated by
JCrasher or Jtest may includesomefaili ngtestswhen beingrun ontheoriginal versions
of someJava classes shown in Table1, becausesome automatically generated testsmay
be ill egal, violating (undocumented) preconditionsof someJava classes. Therefore, we
determine that a test suite exposes the seeded fault in a faulty version if the number
of faili ng tests reported on the faulty version is larger than the number of faili ng tests
on the original version. We measure the fault-exposure ratio FEorig of an initial test
suite and the fault-exposure ratio FEaug of its augmented test suite. We then measure
the improvement factor, given by the equation: FEaug−FEorig

FEorig
. A higher improvement

factor indicates amoresubstantial improvement of the fault-detectioncapabilit y.

5.3 Experimental Results

Table 2 shows the experimental results. The results for JCrasher-generated test suites
are shown in Columns 2-4 and the results for Jtest-generated test suites are shown in
Columns5-7. Columns2 and 5show the fault-exposure ratiosof theoriginal test suites
(before test-oracle augmentation). Columns 3 and 6 show the fault-exposure ratios of
the test suites augmented by Orstra. Columns 4 and 7 show the improvement factors
of the augmented test suites over the original test suites. The last two rows show the
average and median data for Columns 2-7.

Without containingany assertion, aJCrasher-generated test exposesafault i f an un-
caught exception is thrown during the execution of the test. Weobserved that JCrasher-
generated tests has 0% fault-exposure ratios for two classes (ShoppingCart and
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Table 2. Fault-exposure ratiosof Jtest-generated, JCrasher-generated, andaugmented test suites,
and improvement factors of test augmentation.

class JCrasher-gen tests Jtest-gen tests
orig aug improve orig aug improve

IntStack 9% 40% 3.36 47% 47% 0.00
UBStack 39% 53% 0.36 60% 60% 0.00
ShoppingCart 0% 48% ∞ 56% 56% 0.00
BankAccount 0% 98% ∞ 98% 98% 0.00
BinSearchTree 8% 20% 1.58 20% 27% 0.34
BinomialHeap 18% 95% 4.19 85% 95% 0.12
DisjSet 23% 31% 0.36 26% 43% 0.65
FibonacciHeap 9% 96% 9.28 55% 96% 0.74
HashMap 14% 76% 4.30 22% 76% 2.43
LinkedList 7% 35% 3.73 45% 45% 0.01
TreeMap 2% 89% 54.40 12% 89% 6.29

Average 12% 62% 9.06 48% 67% 0.96
Median 9% 53% 3.55 47% 60% 0.12

BankAccount), because no seeded faults for these two classes cause uncaught excep-
tions. Jtest equips its generated tests with some assertions: these assertions typically
assert those method invocations whose return values are of primitive types. (Section 7
discusses main differences between Orstra and Jtest’s assertion creation.) Generally,
Jtest-generated test suiteshavehigher fault-exposureratiosthan JCrasher-generated test
suites. The phenomenon is due to two factors: Jtest generates more test inputs (with
longer methodsequences) than JCrasher, and Jtest has stronger oracle checking (with
additional assertions) than JCrasher.

After Orstra augments theJCrasher-generated test suiteswith additional assertions,
we observed that the augmented test suites achieve substantial improvements of fault-
exposureratios. After augmentingtheJCrasher-generated test suitefor TreeMap, Orstra
achievesan improvement factor of even beyond 50. The augmented Jtest-generated test
suites also gain improvements of fault-exposure ratios (although not substantially as
JCrasher-generated test suites), except for the first four classes. These four classes are
relatively simple and seeded faults for these classes can be exposed with a lesscom-
prehensive set of assertions; Jtest-generated assertions are already sufficient to expose
those exposable seeded faults.

5.4 Threats to Validity

The threats to external validity primarily include the degreeto which the subject pro-
grams and their existing test suites are representative of true practice. Our subjects are
from various sources and the Korat data structures have nontrivial sizefor unit testing.
Our experiment had used initial test suites automatically generated by two third-party
tools, one of which (Jtest) is popular and used in industry. These threats could be fur-
ther reduced by experiments on more subjects and third-party tools. The main threats
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to internal validity include instrumentation effects that can bias our results. Faults in
our tool implementation, Jtest, or JCrasher might cause such effects. To reduce these
threats, we have manually inspected the source code of augmented tests and execution
traces for several program subjects. The main threats to construct validity include the
uses of those measurements in our experiment to assessour tool. To assessthe effec-
tivenessof our test-oracle-augmentation tool, we measure the exposure ratios of faults
seeded by a mutation testing tool to approximate the exposure ratios of real regression
faults introduced as an effect of changes made in the maintenance process. Although
empirical studies showed that faults seeded by mutation testing tools yield trustwor-
thy results [3], these threats can be reduced by conducting more experiments on real
regression faults.

6 Discussion

6.1 Analysis Cost

In general, the number of assertions generated for an initial test suite can be approxi-
mately characterized as

|assertions| = O(|nonEqvStates| × |observers|+
|statesEqvToAnother|)

where |nonEqvStates| × |observers| is the number of nonequivalent object states
exercised by the initial test suite being multiplied by the number of observer calls ex-
ercised by the initial test suite; recall that Orstra generates an assertion for the return
of an observer invoked ona nonequivalent object state. |statesEqvToAnother| is the
number of object states(produced by nonequivalent methodexecutionsin theinitial test
suite) that can be foundto be equivalent to another object state produced by a different
methodsequence; recall that Orstra generates an assertion for asserting that an object
state produced by a methodsequenceis equivalent to another object state produced by
adifferent methodsequenceif any.

Using Orstra in regression testing activities incurs two types of extra cost. The first
type is the cost of augmenting the initial test suite. In our experiment, the elapsed real
time of running our test augmentation is reasonable, being upto several seconds, de-
termined primarily by the classcomplexity, the number of tests in the test suite, the
number of generated assertions. Note that Orstra needs to be run oncewhen the initial
test suite is augmented for the first time, and later to be run when reported assertion
violations are determined not to be caused by regression faults. In future work, follow-
ing the ideaof repairing GUI regression tests [27], we plan to improve Orstra so that it
can fix those violated assertions in the augmented test suite without re-augmenting the
whole initial test suite.

The second type of cost is the cost of running additional assertion checking in the
augmented test suite, determined primarily by the number of generated assertions. Al-
thoughthiscost is incurred every timethe augmented test suite isrun(after theprogram
is changed), running the initial unit-test suite is often fast and running these additional
assertioncheckingslowsdown the execution of the test suitewithin several factors. In-
deed, if an initial test suite exercisesmany non-equivalent object statesandtheprogram

18

under test has many observer methods, the cost of both augmenting the test suite and
running the augmented test suite could be high. Under these situations, developers can
configure Orstra to trade weaker oracle checking for efficiency by invoking a subset
of observer methods during assertion generation. In addition, regression test prioritiza-
tion [15] or test selection [20] for Java programs can be used to order or select tests in
theOrstra-augmented test suite for execution when the execution time is too long.

6.2 Fault-FreeBehavioral Changes

Orstraobservesbehavior of theprogram under test when beingexercised bya test suite
andthen automatically addsassertions to the test suite to assert theprogram behavior is
preserved after futureprogram changes. Indeed, sometimesviolationsof inserted asser-
tions do not necessarily indicate real regression faults. For example, consider that the
program under test containsa fault, which isnot exposed by the initial test suite. Orstra
runs the test suite on the current (faulty) version and create assertions, some of which
assert wrong behavior. Later developers find the fault and fix the program. When run-
ning the Orstra-augmented test suite on the new program version, assertion violations
are reported but there are no regression faults. In addition, althoughOrstra has been
carefully designed to assert as few implementation details in object-staterepresentation
as possible, some program changes may violate inserted assertions but still preserve
program behavior that developers care about. To help developers to determine whether
an assertion violation in an augmented test suite indicates real regression faults, we
can use change impact analysis tools such as Chianti [33] to identify a set of affecting
changes that were responsible for the assertion violation.

Some types of programs (such as multi -threaded programs or programs whose be-
haviors are related to time) may exhibit nondeterministic or different behaviors across
multiple runs: running thesame test suite twicemay producedifferent observer returns
or receiver-object states. For example, agetTime methodreturnsthe current time anda
getRandomNumbermethodreturnsarandom number. After we addassertionsfor these
types of methodreturns in a test suite, running the augmented test suite on the current
or new program versioncan report assertion violations, which do not indicatereal faults
or regression faults. To addressthis issue, we can run a test suite multiple times on the
current program version and remove those assertions that are not consistently satisfied
acrossmultiple runs.

6.3 Availabili ty of Observers

Orstra creates assertions for the returns of observers of the classunder test. These ob-
server calls may already exist in the initial test suite or may be invoked by Orstra to
assert object-state behavior. Although observers are common in a classinterface, there
aresituationswhere a classinterfaceincludesfew or no observers. Even when a classin-
terfaceincludesno observer, we can still apply Orstra to augment a test suitegenerated
for the classby asserting that a receiver-object state produced by a methodsequenceis
equivalent to another receiver-object stateproduced byadifferent methodsequence.



19

6.4 I terations of Augmentation

Orstrarunsanautomatically generated test suite andthenaddsassertionsto thetest suite
to produce an augmented test suite. When some observer methods are state-modifying
methods, running them for preparing assertion checking in the augmented test suite
can produce new receiver-object states that are not exercised by the initial test suite.
Therefore, if we apply Orstra on the augmented test suite again, the second iteration
of augmentation can produce atest suite with more assertion checking and thus often
stronger oracle checking. However, if the augmented test suite after the first iteration
doesnot produce any new receiver-object state, thesecond or later iteration of augmen-
tationadds no new assertions to the test suite.

6.5 Quali ty of Automatically Generated Unit-Test Suites

Thetestsgenerated byJCrasher andJtest (thetwo third-party test-generation toolsused
in the experiment) include arelatively high number of redundant tests [43], which do
not contribute to achieving new structural coverage or better fault-detection capabilit y.
Rostra andSymstra (two test-generation toolsdeveloped in our previouswork [43,44])
can generate atest suite of higher quality (e.g., higher structural coverage) than a test
suite generated by JCrasher or Jtest. Augmenting a test suite generated by Rostra or
Symstra can achieve ahigher improvement factor than augmenting a test suite gener-
ated by JCrasher or Jtest. In general, the higher quality a test suite is of, the higher
improvement factor Orstra can achieve when augmenting the test suite.

6.6 Augmentation of Other Types of Test Suites

AlthoughOrstra focuses on augmenting a unit-test suite, it is straightforward to extend
Orstrato augment an integration-test suite, which intendsto test theinteractionsof mul-
tiple classes. When we assert the return valuesof amethodexecution in an integration-
test suite, we can directly apply Orstra without any modification. When we assert the
receiver-object state at a method exit, we can adapt Orstra to invoke on the receiver
object the observer methods of the receiver-object classrather than the observer meth-
ods of all the classes under test because there are multiple classes under test for an
integration-test suite.

So far Orstra has been evaluated on augmenting an automatically generated test
suite. Generally Orstra can also be used to augment a manually generated test suite,
because the input to Orstra is simply aJUnit test classnomatter whether it isgenerated
automatically or manually. Because it is tedious to manually write comprehensive as-
sertionsfor atest suite, amanually written test suiteoften doesnot have comprehensive
assertions. We hypothesize that applying Orstra to augment a manually generated test
suite can also improve the test suite’s fault-detectioncapabilit y. Weplan to validate this
hypothesis in our future experiments.

6.7 Incorporation of OracleAugmentation in Test Generation

Orstrahasbeen developed asan independent component that can augment any test suite
in the form of aJUnit test class. Orstra can also be incorporated into the test-generation

20

processof an existingtest-generationtool asatwo-step process. In thefirst step, thetool
generates test inputs and runs these generated test inputs to collect methodreturns and
object states. This step combines the existing test-generation processand Orstra’s state
capturing phase. The secondstep includes Orstra’s assertion-building phase. Some ex-
istingtest-generationtools such as JCrasher do not run generated test inputsduringtheir
test-generation process. Then thesetoolscan loosely incorporateOrstraby adoptingthis
two-step process. Some existing tools such as Jtest, Rostra [43], andSymstra [44] actu-
ally run generated test inputs during their test-generation process. Then these tools can
tightly incorporate Orstra by including Orstra’s state-capturing and assertion-building
phaseswhen thesetoolsrunthegenerated test inputsduringthetest-generation process.
In fact, Orstrahasbeen incorporated into Rostra andSymstra asan optional component
for adding assertions to their generated tests.

7 Related Work

Richardson [34] developed the TAOS (Testing with Analysis and Oracle Support)
toolkit, which provides different levels of test oracle support. For example, in lower
levels, developers can write down expected outputs for a test input, specify ranges for
variablevalues, or manually inspect actual outputs. Theoraclesupport provided by our
Orstra tool is in TAOS’ lower levels: generating expected outputs for test inputs. In
higher levels, developers can use specification languages (such as Graphical Interval
Logic Langauge and Real-Time Interval Logic Language) to specify temporal proper-
ties. There exist a number of proposed approaches for providing oracle supports based
on different types of specifications [9,14,26,32,35]. In particular, for testing Java pro-
grams, CheonandLeavens[9] developed aruntimeverification tool for JavaModelli ng
Language (JML) [23] and then provided oracle supports for automatically generated
tests. Thisoracle checkingapproach wasalso adopted byautomatic specification-based
test generation tools such as Korat [8]. Different from these specification-based oracle
supports, Orstradoesnot requirespecificationsbut Orstra can enhanceoracle checking
only for exposing regression faults.

When specifications do not exist, automatic test-generation tools such as
JCrasher [11] and CnC [12] use program crashes or uncaught exceptions as symptoms
of the current program version’s faulty behavior. Like Orstra, Jtest [31] can also cre-
ate some assertions for its generated tests. Orstra differs from Jtest in several ways.
Jtest creates assertions for its own generated tests only, whereas Orstra can augment
any third-party test suite. Jtest creates assertions for method invocations whose return
values are of primitive types, whereas Orstra creates more types of assertions, such
as asserting returns with non-primitive types and asserting behavior of receiver-object
states. Unlike Orstra, Jtest does not systematically or exhaustively create assertions to
assert exercised program behavior. Our experimental results (shown in Section 5.3) in-
dicate that Orstra can still effectively augment a Jtest-generated test suite, which has
been equipped with Jtest-generated assertions.

Saff and Ernst [38] as well as Orso and Kennedy [29] developed techniques for
capturingandreplaying interactionsbetween aselected subsystem (such asa class) and
the rest of the application. Their techniques focus on creating fast, focused unit tests
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from slow system-widetests, whereasour Orstratool focusesonaddingmore assertions
to an existing unit-test suite. In addition, Orstra’s techniques go beyondcapturing and
replaying, becauseOrstra createsnew helper-methodinvocationsfor assertionchecking
and thesenew methodinvocations might not be exercised in theoriginal test suite.

Memon et al. [25] model a GUI state in terms of the widgets that the GUI con-
tains, their properties, and thevaluesof theproperties. Their experimental results show
that comparingmore-detailed GUI states (e.g., GUI statesassociated with all or visible
windows) from two versions can detect faults more effectively than comparing less-
detailed GUI states (e.g., GUI statesassociated with the activewindow or widget). Our
experiment shows a similar result: checking more-detailed behavior (with augmented
test suites) can more effectively expose regression faults.

Both Harrold et al’s spectra comparison approach [21] and our previous value-
spectra comparison approach [47] also focus on exposing regression faults. Program
spectra usually capture internal program execution information and these approaches
compare program spectra from two program versions in order to expose regression
faults. Our new Orstra tool compares interface-visiblebehavior of two versionswithout
comparing internal execution information. On one hand, Orstra may not report behav-
ioral differences that are reported by spectra comparison approaches, if these internal
behavioral differencescannot causebehavioral differencesin theinterface. On theother
hand, Orstra may report behavioral differences that are not reported by spectra com-
parison approaches, if these behavioral differences are exhibited only by new Orstra-
invoked observers (spectra comparisonapproachesdo not create any new methodinvo-
cation).

When there areno oraclesfor alargenumber of automatically generated tests, devel-
opers cannot afford to inspect the results of such a large number of tests. Our previous
operational violation approach [45] selects a small subset of automatically generated
tests for inspection; these selected tests violates the operational abstractions [17] in-
ferred from the existing test suite. Pacheco and Ernst [30] extended the approach by
additionally using heuristics to filter out ill egal test inputs. Agitar Agitator [1] automat-
ically generates initial tests, infersoperational-abstraction-likeobservations, letsdevel-
opersconfirm theseobservations to assertions, and generatesmore tests to violate these
inferred and confirmed observations. The operational violation approach primarily in-
tendsto exposefaulty behavior exhibited by new generated testsonthe current program
version, whereas Orstra intends to enhancethe oracle checking of an existing test suite
so that it has an improved capabilit y of exposing faulty behavior exhibited by the same
test suiteon futureprogram versions.

Orstra has been implemented based on our two previous approaches. Our previ-
ous Rostra approach [43] provides state representation and comparison techniques, but
Rostra compares states in order to detect redundant tests out of automatically gener-
ated tests. Our previous Obstra approach [46] also invokes observers on object states
exercised byan existing test suite. Obstrauses thereturn valuesof observers to abstract
concrete states and constructs abstract-object-state machines for inspection. Obstra al-
lows developers to inspect the behavior of the current program version, whereas Orstra
uses the return valuesof observersaswell as receiver object states to assert that behav-
ior of future program versions is the same as behavior of the current program version.
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In contrast to Rostra and Obstra, Orstra makes new contributions in developing an ap-
proach for enhancing the regression oracle checking of an automatically generated test
suite.

8 Conclusion

An automatic test-generation tool can be used to generate alarge number of test inputs
for the class under test, complementing manually generated tests. However, without
specificationsthese automatically generated test inputsdo not havetest oraclesto guard
against faults in the current program version or regression faults in futureprogram ver-
sions. We have developed a new automated approach for augmenting an automatically
generated test suite in guarding against regression faults. In particular, we have pro-
posed a framework for asserting behavior of a methodinvocation in an object-oriented
unit-test suite. Based on the framework, we have developed an automatic test-oracle-
augmentation tool, called Orstra, that systematically adds assertions into an automati-
cally generated test suite in order to improve its capabilit y of guarding against regres-
sionfaults. Wehave conducted an experiment to assessthe effectivenessof augmenting
tests generated by two third-party test-generation tools. The results show that Orstra
can effectively increase the fault-detection capabilit y of automatically generated tests
by augmenting their regression oracle checking.
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