
On the Need for a Process for Making Reliable Quality
Comparisons with Industrial Data

Laurie Williams

North Carolina State University, Department of Computer Science
williams@csc.ncsu.edu

Abstract

Many factors influence quality data obtained from

industrial case studies making comparisons difficult. In
this paper, two longitudinal industrial case study
experiences are shared which illustrate the complications
that can arise. The first is a case study of an IBM team that
transitioned to the use of test-driven development. The
primary quality measure was functional verification test
defects normalized by lines of code. The second case study
was performed with an Extreme Programming team at
Sabre Airline Solutions. Both test defects and field defects
were compared. In both case studies, differences existed
which made the comparisons indicative but not absolute.

1. Introduction

 Making cost-effectiveness comparisons of testing and

other software development processes in industrial case
studies present a number of methodological and technical
challenges. The challenge that will be addressed in this
paper is that of determining if the methodological and
technical changes resulted in the production of a higher
quality product. One means of making this comparison is
through a measure of defect density (defects/lines of code)
of the resulting products. The defect density metric can be
analyzed (1) prior to releasing the product to the customer
by measuring defects by the testing team(s) or (2) after a
product has been in the field for a specified number of
months. However, important questions must be answered
before comparing defect density products, such as:

Is the internally-visible (found in test) defect density
better because less testing took place?

Is the externally-visible (customer) defect density better
because fewer customers are using the product?
Answering these questions requires that additional data is
collected in the case study. The community could benefit
from having a process for performing case study

comparisons of software process techniques assessing the
impact of the technique on product quality. The proposed
process would outline the data that should be collected, the
analysis that should be performed, and the details on how
the results should be presented.

This paper describes two longitudinal industrial cases
studies that were performed by the author and her research
team. The first is a case study of an IBM team that
transitioned to the use of test-driven development. The
primary quality measure was functional verification test
defects normalized by lines of code. The second is a
longitudinal case study that was performed with an
Extreme Programming (XP) [1] team at Sabre Airlines.
Both test defects and field defects were compared. In both
case studies, differences existed which made the
comparisons indicative but not absolute. Both case studies
would have benefited from having the proposed process.

Section 2 and 3 provide background on the IBM case
and Sabre Airlines case studies, respectively. Section 4
suggests a possible approach that can be worked on as a
research community. Section 5 presents a summary.

2. IBM Test-Driven Development

In this section, information is provided on the details of

the IBM test-driven development case study and the
complications that arose in making a quality comparison.

2.1 Case Study Overview

We conducted a year-long case study with an IBM
software development group [7, 10] to examine the efficacy
of the test-driven development (TDD) [2] practice as a
means for reducing defects in a software-intensive system.
With TDD, before implementing production code, the
developer writes automated unit test cases for the new
functionality they are about to implement. After writing
test cases, the developers produce code to pass these test
cases. The process is essentially “opportunistic” in nature
[4]. A developer writes a few test cases, implements the
code, writes a few test cases, implements the code, and so
on. The work is kept within the developer’s intellectual
bounds because he or she is continuously making small
design and implementation decisions and increasing the
functionality at a manageable rate. New functionality is not
considered properly implemented unless these new (unit)

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2

test cases, and every other unit test case written for the code
base, successfully pass.

The IBM group develops mission-critical software for
its customers in a domain that demands high availability,
correctness, and reliability. “Essential” money [3] and
customer relations are at risk for IBM’s customers if the
software is not available, correct, and reliable.
“Discretionary” money [3] and convenience are at risk for
the recipients of the computer-dependant service provided
by the IBM product. In our case study, we quantitatively
examined the efficacy of TDD as it relates to defect density
reduction before a black-box, functional verification test
(FVT) run by an external testing group after completion of
production code.

This IBM group has been developing device drivers for
over a decade. They have one legacy product which has
undergone seven releases since late 1998. This legacy
product was used as the baseline in our case study. In
2002, the group developed device drivers on a new
platform. In our case study, we compare the seventh
release on the legacy platform with the first release on the
new platform. Because of its longevity, the legacy system
handles more classes of devices on more platforms with
more vendors than the new system. Hence, while not a true
control group, the legacy software still can provide a
valuable relative insight into the performance of the TDD
methodology.

All participating IBM software engineers on both
projects had a minimum of a bachelor’s degree in computer
science, electrical or computer engineering. A few had
master’s degrees. The seventh release legacy team
consisted of five, co-located full-time employees with
significant experience in the programming language of
choice (Java and C++) and the domain. The new product
team was made up of nine full-time engineers, five in a US
location and four in Mexico. Additionally, some part-time
resources for project management and for system
performance analysis were allocated to the team. No one
on the new team knew TDD beforehand, and three were
somewhat unfamiliar with Java. All but two of the nine
full-time developers were novices to the targeted devices.
The domain knowledge of the developers had to be built
during the design and development phases.

2.2 Quality Comparison

 One of the most interesting findings of the case study

was that the defect density of the code entering
FVT/regression test appeared to be significantly better for
the “new” system when compared with the legacy system.
The new product appears to exhibit approximately a 40%
lower defect density. The severity distribution of the defects
(faults) was essentially equal in the two cases.

However, some differences between the two projects
necessitate a more in-depth comparison. To help
understand the defect or fault density differences, we turn

to some testing issues – specifically to the number of test-
cases run. One thing to note is that if a device was
supported by both the legacy and the “new product” code,
the FVT test cases for that device were identical. A
“substitutability” requirement for the new system was to
“pass all the legacy system FVT tests.” An identical
FVT/regression exit criterion was used for both projects.
This criterion identifies the percentage of FVT and
regression test cases that must be attempted/passed and the
percentage of defects that may remain unresolved based on
the severity level.

However, it must be noted that in absolute terms, the
legacy product was tested using about twice as many test-
runs when compared with the “new product”. The reason
is device diversity. Specifically:

• The devices on the legacy product had to run on
two platforms (Windows and Linux). The “new
system” devices needed to work only on Linux.
(numberOfOS)

• The legacy product worked on more hardware
platforms than the “new product.” Test cases
needed to be re-run for each platform.
(numberOfSystemFamily)

• For each class of device (e.g. the printer class of
device), the legacy product supported more
brands/models of devices. As a result the same set
of tests was often run multiple times on various but
perhaps similar devices. (deviceClass,
numberModels,TCforDevice)

Also for each class of device there is a percentage of the

test cases that are only run once because they were
common for all devices. Hence, the number of test cases
needed for a class of device could be reduced by this factor.
(commonTCFactor is used to account for this effect)

The total number of test cases (TC) run on each product
were approximated by the following formula:

TC =

 stemFamilynumberOfSynumberOfOS

 *)**(

 ∗

∑
sdeviceClas

ctorcommonTCFaeTCforDeviclsnumberMode

Table 1 illustrates the results. For the legacy system,

both the factor numberOfOS and the factor
numberOfSystemFamily were 2 or more. In the new
product both of these factors were 1. Also more
brands/models were supported by the legacy. This means
that significantly more test cases needed to be run on the
legacy code (requiring more FVT effort) than on the “new
project” code to meet the same FVT/regression criteria.
When test cases are repeated for multiple
hardware/software platforms, these test cases often execute
the same lines of code. This drives up the ratio of test cases
per LOC for the legacy product. Similarly, these multiple

3

executions drive down the ratio of defects to number of test
cases. Since most of the test cases ran without incident.
Re-running of these incident-free test cases on multiple
platforms decreases the legacy Test Cases per LOC ratio.

Table 1: Legacy vs. New Project Comparison

 Legacy
7th Iteration

New
1st Iteration

FVT Effort E 0.49 E
Test Cases Run TC 0.48 TC
Test Cases/Total LOC TCL 0.36 TCL
Defects/Test Case DTC 1.8 DTC
Defects/LOC DFL 0.61 DFL

Because the “new product” was less expansive, only

half of the effort was needed for FVT, and only about half
as many test-cases were run. Yet, the testing uncovered
about twice as many defects per test case. Was the “new
code” more defective or were the TDD based test-cases
more efficient?

3. Sabre Extreme Programming

In this section we provide information on a case study
performed at Sabre Airlines where development teams had
been using XP for approximately two years. In this paper,
we provide information on the aspects of the case study
related to quality comparison.

3.1 Case Study Overview

In a single, longitudinal, holistic [11] case study, we

examined a product created by an XP software
development team at Sabre Airline Solutions in the United
States [6]. We evaluated and compared two releases of the
Sabre team’s product. In this study, we compared the third
and the ninth releases of the Sabre team’s product. From
this point forth, we refer to the third release as the “old
release” and the ninth release as the “new release.” The old
release was completed just prior to the team’s initial
adoption of XP; the new release was completed after two
years of stabilized XP use. The team used a traditional
software process in the old release. Development for the
old release began in early 2001 and lasted 18 months.
Work on the new release commenced in the third quarter of
2003. In the two and half years that passed from the
beginning of the old release to the beginning of the new
release, the team became veterans of XP and customized
their XP process to be compatible with their environment.
This ten-person team develops a scriptable GUI
environment for external customers to develop end user
software.

Detailed data was collected for each release, and much
of this data was gathered from historical resources. The old
release was developed approximately two years prior to this
study. The researchers were not present for the old release,

and the team was not aware that any research would be
done on their product or on their documentation. The
research team was present only for a portion of the new
release development. Many of the necessary metrics were
readily available for the new release by examining source
code, defect tracking systems, build results, and survey
responses.

3.2 Quality Comparison

The case study results demonstrated a quality

improvement for the new release in which XP practices
were stabilized. Table 2 summarizes quality results which
have been normalized to protect proprietary information.

Table 2: Old vs. New Project Comparison

Quality Measures Old New
Internally-Visible Quality
(test defects/KLOEC of code)

1.0

0.35

Externally-Visible Quality
(released defects/KLOEC of code
four months after release)

1.0 0.70

Internally-Visible Quality. Internal (pre-release) defect

density, which concerns defects identified by Sabre testers,
improved by 65%. Testing was done by the dedicated
testers associated with the Sabre team and the developers
performing ad-hoc functional testing and unit testing
throughout development. We temper these results by
noting that these measurements may be skewed because the
old release was subject to 18 months of continuous internal
testing, while the new release was internally tested for only
3.5 months. Similar to the concerns expressed in the IBM
case study in Section 2, the improvement in internally-
visible quality might be wholly or partially attributed to a
less-thorough testing effort on the part of the new team.
Alternately, the fact that the new team wrote extensive
TDD test cases throughout development and run them each
night (consistent with their use of XP practices) may have
made a 3.5 month testing effort equivalent and/or
sufficient. The lack of the process suggested by this
position paper and its associated metrics prevent an
adequate comparison from being made.

Externally-Visible Quality. We observed that the
number of defects found in the customer’s production
system has improved by 30%. The defect numbers
presented reflect a collection period of four months after
each release. The team’s defect rates were below industry
averages [5] in both the old and the new releases.
Furthermore, no Severity 1 defects were reported for the
new release. A Severity 1 defect is classified as a defect
that causes the customer’s system to be unusable, whereas a
Severity 2 defect is a defect where the customer’s system is
working badly and their operations but a work-around
exists for the defect.

4

Post-release defect counts were impacted by several
important factors. One major influencing factor was the
doubling of the number of external customers between the
old and the new releases. The old release was not used
extensively since most customers were awaiting the
completion of a new version of the product in progress at
that time. However, the new release was used significantly
by more customers, some of which had a more complex
problem domain than those customers of the old release.
Evidence of similar customer use of the product the old and
new releases and an assessment of feature complexity
would aid in determining the accuracy of the post-release
defect comparison for this project. Again, a process for
normalizing for these effects would be beneficial.

4. Suggesting a Composite Measure

To adjust for differences in the size and duration of the

old release versus the new release, the Putnam productivity
parameter (PPP) [8, 9] can be computed. This parameter is
a macro measure of the total development environment
such that lower parameter values are associated with a
lesser degree of tools, skills, method and higher degrees of
product complexity. The opposite holds true for higher
parameter values [8]. The PPP is calculated via the
following equation:

PPP = (SLOC)/[(Effort/B)1/3 * (Time)4/3]
Putnam based this equation on production data from a

dozen large software projects [9]. Effort is the staff years
of work done on the project. B is a factor that is a function
of system size, chosen from a table constructed by Putnam
based on the industrial data. SLOC is source lines of code,
and Time is number elapsed years of the project.

Perhaps as a community, we can pool results and
develop a comparable macro quality parameter which can
be used to normalize for effects of testing differences. the
number of customers which utilize a product, and defect-
removal efficiency (pre-release defects found/total defects
found).

5. Summary

In this paper, two industrial case studies were described

to demonstrate the complications that can arise when trying
to develop theories about whether a certain software
development or testing process improves product quality.
In both case studies, differences existed which made
comparisons indicative but not absolute. This paper
suggests that a process be developed for comparing quality
data from industrial case studies. Additionally, the
community could pool data to create composite measures
for comparisons.

Acknowledgements
Many thanks to my research partners on both case

studies. On the IBM case study, I worked closely with
Michael Maximillien and Mladen Vouk. Lucas Layman
and Lynn Cunningham conducted the detailed data
collection and analysis for the Sabre Airlines case study.

Biography

Laurie Williams is an Assistant Professor of Computer

Science at the North Carolina State University. She
received her Bachelor of Science in Industrial Engineering
at Lehigh University, her Masters of Business at Duke
University, and her Ph.D. in Computer Science from the
University of Utah. Dr. Williams worked at IBM for nine
years in the Research Triangle Park, NC. During this time,
she held various technical and managerial positions in
engineering and software development, including three
years in a software testing department. She has performed
several industrial case studies on software process
improvements. Her research interests include software
testing and reliability.

References

[1] K. Beck, Extreme Programming Explained: Embrace

Change. Reading, Massachusetts: Addison-Wesley, 2000.
[2] K. Beck, Test Driven Development: By Example: Addison

Wesley, 2002.
[3] A. Cockburn, Agile Software Development. Reading,

Massachusetts: Addison Wesley Longman, 2001.
[4] B. Curtis, "Three Problems Overcome with Behavioral

Models of the Software Development Process (Panel),"
International Conference on Software Engineering,
Pittsburgh, PA, pp.398-399, 1989.

[5] C. Jones, Software Assessments, Benchmarks, and Best
Practices. Boston, MA: Addison Wesley, 2000.

[6] L. Layman, L. Williams, and L. Cunningham, "Exploring
Extreme Programming in Context: An Industrial Case
Study," to appear Agile Development Conference, Salt Lake
City, UT, 2004.

[7] E. M. Maximilien and L. Williams, "Assessing Test-driven
Development at IBM," International Conference of Software
Engineering, Portland, OR, 2003.

[8] L. H. Putnam and W. Myers, Measures for Excellence:
Reliable Software on Time, Within Budget. Englewood
Cliffs, NJ: Yourdon Press, 1992.

[9] L. H. Putnam, "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem," IEEE
Transactions on Software Engineering, vol. SE-4, no. 4, pp.
345-361, June 1978.

[10] L. Williams, E. M. Maximilien, and M. Vouk, "Test-Driven
Development as a Defect-Reduction Practice," IEEE
International Symposium on Software Reliability
Engineering, Denver, CO, 2003.

[11] R. K. Yin, Case Study Research: Design and Methods, vol.
5, Third ed. Thousand Oaks, CA: Sage Publications, 2003.

