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Fast LV Motion Estimation Using Subspace
Approximation Techniques
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Abstract—Cardiac motion estimation is very important in un-  within a deforming body such as the heart muscle. The resulting
derstanding cardiac dynamics and in noninvasive diagnosis of heart pattern defines a time-varying curvilinear coordinate system on
disease. Magnetic resonance (MR) imaging tagging is a techniquethe tissye. During tissue contractions, the grid patterns move,
for measuring heart deformations. In cardiac tagged MR images, allowing for visual tracking of the grid intersections over time.

a set of dark lines are noninvasively encoded within myocardial L2 . .
tissue providing the means for measurement of deformations of the 1N€ intrinsic high spatial and temporal resolutions of such

heart. The points along tag lines measured in different frames and Myocardial analysis schemes provide unsurpassed information
in different directions carry importantinformation for determining about local contraction and deformation in the heart wall, which
the three-dimensional nonrigid movement of left ventricle. How- can be used to derive local strain and deformation indices from
ever, these measurements are sparse and, therefore, multidimen- jiffarent myocardial regions.

sional interpolation techniques are needed to reconstruct a dense Several techniques for acquiring tagged images for the anal-

displacement field. In this paper, a novel subspace approximation . . . -
technique is used to accomplish this task. We formulate the dis- YSiS Of time-varying motion of the LV have been reported in re-

placement estimation as a variational problem and then projectthe cent years. Spatial modulation of magnetization (SPAMM) [6]
solution into spline subspaces. Efficient numerical methods are de- is a technique for producing a regular grid pattern in the imaging
rived by taking advantages of B-spline properties. The proposed plane, introduced by Axel and Dougherty. This method uses a
ngt‘vri‘t'ﬁl:s:'gg'ft'gi'g% 'Eg;?o"r?; gr‘:]rep'ﬁ‘]’éor‘:]setrﬁgg'it: ;epﬁgg?o'g binomial pulse to produce spatial modulation of spins in the
temporal sepquence of t\F/)vo-dimensionaI images and is vaﬁ)igated with t!ssue which results in a grid pattern on the |ma_ge of the moving
simulated andin vivo heart data. tissue. Hence, we only have a sparse set of displacement mea-

surements at discrete points in space and time. This leads to the
' requirement for the computation of a dense displacement field

from these sparse measurements.

Index Terms—Deformable models, motion analysis, splines
variational methods, vector field reconstruction.

|. INTRODUCTION B. Tagged MR: Imagé&nalysis

A. Tagged Mgnetic Resonance (MR): Imaging Analysis of tagged MR images requires several image pro-
essing steps, such as automatic detection of tag line locations,
. A . picardial and endocardial contour extraction, and finally car-
Ieft-ventpcula_r (LV) wall !’“0“0” Is tagged magnetlc r'€Siac motion estimation. In [24], an analysis system based on
onance (M.R) Imaging. It prowdes a tool for assessing th_e qgﬁakes was adopted. The stripe displacements were fitted by a
hamic m9t|on or_deformauon of the_ human heart, which is Nhree-dimensional (3-D) finite-element model (FEM). Although
vaIuabIe_ in the d"’?‘gnos.'s OT hea_rt d|sease._ ., the FEM model provides good local strain analysis, it results in
MRI is a noninvasive imaging technique that prov'd.eglarge number of model parameters. The work described in [16]
superb ar_1atom|c information W'th excellent spa}nal resomtlc’(f‘bnsiders geometric primitives which are generalization of vol-
and _soft-tlssue contrast. Conventional MR stud|e§ of the h_eﬁﬁ'netric ellipsoids. Use of parameter functions in this context
provide accurate measu.res'of globgl myocardlal. functio flows for spatial variations of aspect ratios of the model to fit
Chamber VO'U”?eS a_md ejection f_ractlons, and r_eglt_)nal w Ie LV. The models are also further generalized to parameterize
motions and thickening. The principle of MR tagging is bas isting motion about the long axis of the LV as a function of
on alte'ring the magngtizat.ion property of selective materiastance along the long axis as well as the radial direction.
points in the myocardium in order to create tagged patternsMethods based on optical flow have also been applied to the
analysis of tagged MR images. An approach called variable
Manuscript received April 3, 2000; revised March 20, 2001. This work wadrightness optical flow (VBOF) accounts for temporal variation
Z“pp‘t?ﬁdé’zﬂ‘? :ggob”air';s;\i‘t;tti%i g}‘ ggf‘e';hcg\"':g&gggﬁgsf&ggﬁzg?% ?’Uf signal intensities. The algorithm described in [11] relaxes the
Iera-‘S796207. The Asso{:iate Editor responsible for coordinating the reviewiﬁEensny constancy constraintand allows Tor intensity Va”at_lons
this paper and recommending its publication was M. Unsterisk indicates t0 be modeled by a more accurate local linear transformation.
corresponding author. In[15], the authors perform least squares fitting of a truncated
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to estimate displacement vectors in points on the lattice. Tt
advantage of this framework is an error covariance which dete
mines the number of tag lines needed to achieve a given estin
tion accuracy.

In [12], a four-dimensional time-varying B-spline model is
fitted to generate a B-solid which varies continuously over tim
t. One important advantage of the model is that 3-D materi:
point localization and 3-D displacement reconstruction ar
achieved simultaneously at any time instant in a single ste (; 7)
The displacements are obtained by taking the difference
fitted B-solids between two frames. In [17], a volumetric
B-solid model was proposed to concurrently track tag lines i
different image slices by implicitly defined B-surfaces which
align themselves with tagged points. The solidisa3-Dtensc (7} — ~/— — — — — = =\~ <
product B-spline whose isoparametric curves deform undi
image forces from tag lines in different image slices.

In [1] and [2], tag lines are tracked with dynamic program-
ming B-snakes and B-snake grids. In [1], a constrained thihg- 1 A deforme_d tag line (in solid I_ine) and its correspo_nding undeformed
g line (in dotted line). The intersections or landmark points are denoted as

plate spllne reconstruction of the dlsplacement field was prﬁfcles. From these intersections we know both:thendy components of the

posed from points and lines based on a variational formulatiafisplacements. But for other tag poiptsalong the horizontal anB along the
In [3], an optimization method was proposed which improvertical lines, asindicated by the squares, we only know gradx components
on the reconstruction technique in [1]. One advantage of A he displacementg(u, v) andh(u, v), respectively. We want to make use
. . . ' . of all these available information to estimate the dense displacement field.
approach proposed in [3] is that it allows for reconstruction o

dense deformations between two arbitrary frames in a sequence . .
of tagged images, as motion reconstruction methods generé!ﬁﬂ' the accuracy for reconstructing a dense displacement vector

produce displacement vector fields relative to undeformed taljd using localized coordinates of tag positions. In this devel-
in the initial frame. In the present paper, we develop an efficieRPment, we assume only 2-D motion (as is roughly the case to-
numerical method which results in about a 1-min computatighrd the apical end of the heart [18]). The extension to 3-D case
time on a Sun Workstation for reconstructing the motion fielyill be developed in another paper.
between two frames. Moreover, high accuracy is achieved at thd e intersections of two grids are “pulled” toward one an-
same time. The displacement vector field at any time frameQ&1er by minimizing
reconstructed with respect to frame zero, and the displacement . int\2 int\2
field between two arbitrary frames is obtained by simply taking . = Z(u —u) T (=)
the difference between them.
The organization of the paper is as follows. Section Il preser¥éiere« and v are thex andy components of displacement
a continuous model formu|ating the estimation of heart Wdrﬁctor field at a (_:el’tain t|me frame relative to the initial un-
deformation. Section Il presents definitions and properties 8gformed framew'** and '™ are thex andy components of
B-splines, which are useful in the derivation of the numerical dilisplacement at tag intersections as well as intersections of my-
gorithm. Following this section, we derive efficient algorithm®cardial contours with tag lines. The summation in (1) is over
for reconstruction of dense displacement fields. The technigqu@lthe IV tag intersection points. This form of the intersection
adopt spline approximations in finite-dimensional subspaces.3afing constraint has also been used in a similar spirit in [24].
particular, the computation of the values of B-splines at inte- Assuming 2-D tissue motion, a further physical constraint
gers will be given in detail. The validations of the reconstructio§ hecessary: any point on a deformed tag in frammaust be

methods both with the simulated data andivo data are given Warped to lie onits corresponding undeformed tag in frame 0 of
in Section V. the sequence. As described in [4], for a vector field to perform

such a warph(u,v) andg(w, ) of Fig. 1 must be minimized.
Let P, = (z,y) be any point on the deformed tag line, and
Py (u,v) = (x,y) + (u, v) be the corresponding point in the un-
deformed frame as in Fig. 1. The following term is then summed

Tracking tissue deformations with SPAMM using coupledver all deformed horizontal and vertical grid points:
B-snake grids provides two-dimensional (2-D) displacement in-

horizontal tag line

horizontal tag line

vertical tag line vertical tag line

)

N

Il. CONTINUOUS FORMULATION OF THE MODEL FOR TAGGED
MRI M OTION ESTIMATION

formation at tag intersections and one-dimensional (1-D) dis- 2 IZ h(u,v)* + ZQ(U’U)Q
placement information along other 1-D snake points [1], [3]. Ny N
The displacement measurement from tag lines, however, are IZ((H(U,U) ~Py) )

sparse; interpolation is required to reconstruct a dense displace- 5
ment field from which strain, torsion, and other mechanical in- ’
i i ial poi i + > (Pi(u,v) = Po) - my )
dices of function can be computed at all myocardial points. This 1\, 2) Ny
is illustrated as in Fig. 1. In this section, we describe an effi- N
cient solution to the formulation in [1] and [3]. The algorithm = Z(w +u—z)% + Z(y +v—7)? 2)
improves on previous methods in both the computation time N, N
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wheren,, andn,, are the normal direction alongandy, respec- linear combinations of these shifted B-spline bases constitute a
tively. In the above equatiofy, y) are the coordinates of a pointcomplete and stable approximationicf( ) [23], the represen-
onthe tag line in the current frame, afatl 77) is the closest point tation in (5) is reasonable. In the next section we will describe
to (x+u, y+wv) on the corresponding tag line in the undeformelow to get an efficient numerical solution by using this subspace
frame. The quantities(u, v) andg(u, v) are the horizontal and approximation approach.

vertical distance from the poiritz, %) to the undeformed ver-

tical and horizontal tag line, respectively. Therefore, points on lll. B-SPLINE BASICS

a deformed vertical tag line can be warped back to lie its Ok Definitions and Notations

responding undeformed vertical tag line, following minimiza-"

tion of >"(h(u,v))?. Similarly, minimization of}_(g(w,v))? We follow the convention of [22], [23] and define the con-
will result in warping points on deformed horizontal tag line§nuous or analytic B-spline of orderby 3" (), which can be

to horizontal tag lines in frame 0. The summation is over all trgenerated by repeatedt- 1 convolution of a B-spline of order
vertical tag numberV,, and horizontal tag numbey,,, respec- zero

tively. Notice the difference between above formulation (which n+1

was proposed in [4]) and that of [3]. In [3], it is assumed that nrN a0 el D

(z,7) is dependent on the vector fie{d, v) and is computed Ay =7x @) = Fa s ) (6)
from a nonlinear distance function with local minima, but here/here the zeroth-order B-spli¥ (=) is the pulse function with
we only consider thatz, %) which lies on an undeformed tagsupport0, 1]. The definition is a little different from that of [19]
line. Therefore, the above energy functional is quadratic in nathere the center of symmetry is at the origin. An alternative

ture, having a unique global minimum. definition of these normalized B-spline functions is given by
The vector field continuity constraint is the bending energy ntl | 1V
of a thin-plate which is applied to theandy component of the B (z) = Z <” + ) ) (x— )" wz—35) @)
displacement fieldu(z, y), v(x, y)) par AN n!
s ://U’im 22, dudy wherey(z) is the step function
1, forz >0
2 2 2 w(x) = f
+ Vi + 205, + vy, dady 3 0, forz <O

Where(";’l) are the binomial coefficients.
e discrete sampled B-split&(k) of ordern is obtained
py directly sampling the:th-order continuous B-spline

which serves as the smoothness constraint on the reconstru
vector field, characterizing approximating thin-plate splines.
An optimization function can be obtained by a linear comb

nation of the three terms in (1)—(3). The objective function is b (k) =p"(k) VkeZ. (8)

D = A1P; + A2 P2 + A3Ps. (4) The continuous convolution of functiorfsandg is defined as

The characterization of the solution to this variational Frglz) = /f(a: —t)g(t)dt, = €R. 9)
problem is described in [20], which is treated as optimization ’

problem in a reproducing kernel Hilbert space. The interpola- The discrete convolution between two sequeregsand{b}
tion given specified landmarks is characterized by the thin-platethe sequencéa = b}

splines as investigated by Bookstein [8]. However, it is hard to oo

get the explicit form of the solution to this general problem. b a(k) = Z bi_iay. (10)
It should be noted that essentially the same accuracy can be
obtained in a computationally simpler way by minimizing (4) - . .
in a certain finite-dimensional approximating subspace. eThe above definition of 1-D B-splines can be easily extended
chose such a subspace as that spanned by the shifted B-s ﬁntge 2-D case through the tensor product.

bases. In other words, the vector field is represented as a "ng‘f"rSome Properties

combination of shifted B-spline bases

l=—o0

B-spline bases enjoy many useful properties, which make

M, U, . . . . them widely used in computer graphics and computer aided
U= Z Z Ciifij(w,y),  Fij(w.y) =B @)6; (W) () geometric design. For example, its local compact support and
==t smoothness make them very suitable for surface and solid rep-
where resentation [3], [12], [13], [17]. In this section, we only present
U = (u,v)"  vector field; the properties used in the paper. Some additional details on prop-
C = (¢,d)" control points or coefficients; erties of B-splines could be found in [14], [19], [22], and [23].
M., M, size of the grid set by the user.

< The shifted B-spline bases constitute a stable and complete
approximation of a square integrable function [22].

e The local support and symmetry of B-splines. The
B-spline basig?*(z) has compact suppojd, » + 1] and
is symmetric with respect to the midpoifit +1)/2, i.e.,

Larger values fotM,, and M, will result in higher computa-
tional costs. In the experiments, we set the size to 25856.
Since we assume knowing locations of the epicardial and en-
docardial contour, only the displacement vectors in the region
between them will be compute@;(x) = B(z —4), (i € Z)

is the shifted B-splines, as will be defined below. Because the B (n+1—2)=p5"(2). (12)
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» The derivative of B-splines. If a curve is represented as For simplicity, if we denotet’ = kM, + [ and
B-spline segments, one can increase the smoothnessiby = mM, + n, k¥ to order the matrix lexicographi-
increasing the order of B-splines. The derivative of theally, andb?, (i) = 83,(z;, v;) andb? , (i) = (3, (@}, yyert),
nth order of B-splines is the difference of lower ordethen the above equations can be simplified as
B-splines. For example, the first and second-order deriva-

tives of B-splines are Ay Z Z b (D)2, (1) ews
(B"Y (@) =" (@) = 8"z — 1), B y
(3" (@) =8" @) = 28" (e — 1) + "2 — 2). Y SRR (e S s
(12) i=1 k’ 1 k=1
» The convolutions of two B-spline bases are still B-splines — Z umtbQ
iz —0)*pB"(x—k)=p"T""Ha - k+1). (13)
IV. NUMERICAL SOLUTIONS USING SPLINE SUBSPACE +A2 Z: bl (), m'=12....M (17)

APPROXIMATIONS . .
whereM = M, x M,. Alternatively, we can write these equa-
tions in matrix form as

For ttrr]\e se:jke o; ;impll.icity irtlhderi\(intgh.the altgorithm, we as- (M BBT 4+ \BYet(BYeT 4 \,5)C
sume the order of B-spline is three in this section _ int vert

Through (1)—(3), we know that (4) is a quadratic minimiza- = MBU™ + 3 (B™HAX . (18)
tion problem. Notice thabs is different from that of [3], and as Where the matrix3 = (b7, (n)) s xn, BY"" = (b7,(n)mxn,
discussed in [4] is quadratic. Therefore, a necessary and su#id s« v are given by

A. Derivation of the Spline Approximation

cient condition on the solution is that the gradient of (4) should bi(1) (2 - b3(N)
be zero. Equivalently, we have the following normal equations: b3(1)  b3(2) - BE(N)
B= ) ) ) and

)\1 + )\2 + )\3 =0 . . ) .

T T Bal) B4(2) o BR(N)

m=12,....M;, n=12,...,M,. (14)

The gradients of these three energy functional is derived in Ap- 52(1) 52(2) EQ(N )
pendix A, as in (29), (30), and (36). Substituting them into these 5; ) 5; 5 5; Ny
equations, they are equivalent to Brett — () 22(2) 2(NVy)

N [ M, M, I RO
iy 2 2 o b2
2)\1 Z Z Z cklﬁ,%l(a:i, yz) —U; t /mn (.’IZZ‘, yz) b]\l(]‘) b]\l(2) b]\l(Ny)
i=1 k=11=1
Ny M, M,

. . o11 J12 T O1M
+2A2 Z Z Z cnaf (27, 47 ) — A O O22 - O2M
i=1 \ k=11l=1 Y= . } . )
L o : o
M1 M2 Tt MM
% / vert yvert + 2)\3 cklo—kl; =0 : )
o (277, 9; kz::l ; " The column vectot/™™* and A X are given by
(15) (Uint)T :(uint u12nt’ u}{}t) and
or equivalently (AX)T =(621,622,...,6zN,).
N M, M, The element oBBT is given by
A1 Z Z Z B, i) Bon (i, yi)ent ;
i=1 k=1 =1 Ck/m/ = Z b?,(i)bfn, (L)
N, M, M, —

vert vert

+ A2 Z Z Zﬁzl (xz‘vertv Yi )/mn ( AN ) Crl Due to the local property of B-spline bases, we can conclude
=l k=11=1 that the if the locations of two spline bases are far apart, i.e.,
M. My if |k —m/| > p (for cubic splinep = 4M,), theneyr,, =

+ )‘3zzgklmnckl 0. In other words, the matriBB" is sparse and block-band

diagonal since only a few elements are nonzeros. This also holds
for Bvert (Bvert)T

=\ Z U B (i, i) + A2 Z Aify, (@7, ™) Through (35), we knowvE is also diagonal and band limited
=1 matrix. Therefore, we can see that the matrix on the left of (18) is
(16) sparse, symmetric and positive-definite and we can, therefore,
wherem = 1,2,..., M, andn = 1,2,...,M,. use a fast solver for this linear system of equations. We have

k=1 1=1
N,
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adopted the spargeholesky Factorization technique [10] to TABLE |
solve this equation. Refer to Appendix B for the description of THE 13 k-PARAMETERS OF THEKINEMATIC MODEL
this algorithm.

In the above derivation we only discuss the solution of the k1| Radially dependent compression
coefficient{c;; }. Using a similar discussion, we can also show ko | Left ventricular torsion

that the solution ofd;;} satisfies similar equations as follows: T -
S ks | Ellipticalization in long-axis (LA) planes

()\1BBT + AQBllori(Bhori)T + AgE)D :)\leint s
+ )\Q(Bhori)AY
(19)

Ellipticalization in short-axis (SA) planes

ks | Shear in x direction

k¢ | Shear in y direction

where B s the matrix of splines defined on the horizontal

. k7 | Shear in z direction
tag lines and

ks | Rotation about x-axis

(Vim)T (vim,vém,.. v}{?t) and
(AY)" =(6y1,6y2, ..., 6un, )

Once we get the solution gk} and{d}, we could estimate
the deformation of LV at any dense points using formula (5).

kg | Rotation about y-axis

k10 | Rotation about z-axis

k11 | Translation in x direction

kip | Translation in y direction

B. Computation of Smoothness Terms

k13 | Translation in z direction

For illustration, we only give the details on how to compute
the smoothness terms (32) by taking advantage of spline prop-
erties.

Through properties (11)—(13) it is easy to show that

/ BB () dy = / By +n — D y)dy
— [P n- D8y

/ Bn—1—t)33(t +4)dt
=(p® */33)(71 —14+4)=b"(n—1+4)

and

/ (83" (2) (P2)" (¢)da

:/(@@»—mﬁ@—lywﬁw—ZD
5L (x) — 2/31(x—1)+/1( ))dw

/ﬁk dr — 2/ﬁk rn+1 .’L’
+ / BH@)B, po(x)de — 2 / By (2)Bh (2)da

4 [ BLa@Pha@)de =2 [ By @k alado
+ [ Bheal@iuort —2 / Blan(@)hpa (w)de

+ //3i+2($)/3}71+2($)d$ Fig. 2. Deformed models of the LV resulting from changeteffrom 0.2 to
0.8 in increments of 0.2.
=0(m—-k+2)-20*(m+3—k)
+ 0 (m+4—k)—23(m —k+1)

+ 43 (m+2— k) — 23 (m + 3 — k) + b*(m — k)
—20¥(m+1—-k)+b¥*(m+2—k) o,(j)mn =b"(n — 1+ 4)(6b*(m — k 4+ 2) — 4b*(m — k + 3)
=6b*(m —k+2) —4b*(m — k + 3) +03m—k4+4) —4P(m —k+1) +03(m — k).

+03(m —k+4) —4b*(m — k + 1) + b3 (m — k). (20)

Therefore, we have
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Similarly, we can derive that N NSEEE | NS
2 5 5
o) == (m — k+2) + 26°(m — k + 3)
_ b-;)(m —k+ 4))(—b°(n 1+ 2) F_|g. 6. Comparlson_of computed (Igﬂ column)_ and true (middle column)
displacement vector fields corresponding to rotation [fiomm = —0.04 (top)

+20°(n —1+3)=b°(n—1+4)) (21) tokio = —0.2 (bottom)]. Third column is an overlap display.

and

alg?;?nln 07 (m — k 4+ 4)(603(n — 1 +2) — 463 (n — [+ 3) So we _only need to eva_lluate th_e values of B-splines of order
; 5 5 5 three, five, and seven at integers in order to compute these quan-
+0°(n—1+4)—4b°(n—1+1)+b°(n=1)). tities. The algorithm for computation of the values of these dis-
(22) crete B-splines at integres is described in Appendix C.
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Fig. 7. The statistical error plots for length, angle and relative rms errors fBig. 8. A comparison between this method (solid line) and the one in [3] (dotted

ks, andk,,. See text for details. line) for length, angle and relative rms errorsfgr andk, o . See text for details.
V. VALIDATION TABLE I
A COMPARISON OFCOMPUTATIONAL SPEED (IN MINUTES) ON A SUN ULTRA
A. Cardiac Simulator 30/300-MHz WORKSTATION

An environment based on a 13-parameter kinematic model of
Arts et al. [5] has been implemented for simulating a time se-
guence of tagged MR images at arbitrary orientation, as was de- ~ New method 1.09 | 1.09 | 1.10 | 110 | 1.10
scribed in [21]. Through the discretization of the space between p . ious method [3] | 19.44 | 19.30 | 24.46 | 23.25 | 26.19
two concentric shells and by varying the canonical parameters
of the model, both a sequence of tagged MR images as well as
a “ground truth” vector field of actual material point deforma- Frame No. 1 9 3 4
tions are available.

A pair of prolate spheroid represents the endocardial and
epicardial LV surfaces, and provides a geometric model of the Previous method [3] | 36.25 | 17.58 | 24.33 | 25.36 | 23.46
LV myocardium. The motion model involves application of a
cascade of in-compressible linear transformations describing
rigid as well as nonrigid motions. The parameters of the motion
model, referred to a-parameters, and the transformations tonmaging equations are applied for simulating the vivo
which they correspond are stated in Table I. Fig. 2 displaysmaging process. Fig. 3 displays an undeformed 3-D model
sequence of 3-D deformed LV models resulting from changeith all the k-parameters identical to zero) and a simulated
of ke, parameter, which corresponds to torsion of the prolatagged image corresponding roughly to the middle of the LV.
spheroid. Fig. 4 shows the deformed tag image slices, which intersect

In order to simulate MR images, an imaging plane intethe deformed LV models in Fig. 2. Also, this figure shows the
secting the geometric model is selected, and tagged spin-edetected tag lines using the coupled B-spline tracker [3].

Frame No. 1 2 3 4 5

[l

New method 1.11 | 1.10 | 1.10 | 1.09 | 1.10

For ]{310
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Fig. 9. The influence of the order of B-spline bases on the reconstructions of vector field. The errors are plotted as a function of the ordersofHBspline
takeA; = 1,23 = 2,andX; = 1.

For the purposes of validating 2-D displacement field recon- We also employ the relative root mean squared (rms) figure
structions, we have used the paramelersy, k5, andkio for  of merit to measure the accuracy of the computed motion fields
generating 2-D deformations of the geometric model, based on
which images and 2-D displacement vector fieldaciualma- VAN Vi — Vg ?

terial points are produced. The error norms used in comparing Er = (1/N)S |V, x 100% (25)
the ground truth vector fieldi(;) with the vector field measured
by our algorithm ¥;,,) are whereX is the number of vectors in the field.
1 B. Results
L=y Z [1Vin] = V4| (23) Fig. 2 shows an example of the deformed models of the LV

which result from change of tHg parameters, torsion, from 0.2
to 0.8 in increments of 0.2. Fig. 4 shows the corresponding tag

and
tracking results of these simulated image sequences. In Fig. 5

o — 1 Z IV, | - avccos Vg - Vin (24) we compare the computed and ground truth displacement vector
¢ SV g Vol Vil fields that correspond to this image plane. One can visually ap-

preciate the high accuracy of the reconstructions. Fig. 6 shows
wheres, measures the average difference in length betwgen another example of the vector field reconstruction for the case
andV,,,, ande;, measures the deviation in angle betw&grand  of rigid rotation.
V.. As can be seen from (24), we weight individual angle de- |n order to measure the accuracy quantitatively, we plot the
viations by the magnitude of the material point displacemergngth errors, angle errors as well as the relative rms in Fig. 7
vector; normalized by the sum of magnitude of all ground truthy comparingV;,, and V,, as a function of a range of values
vectors. The reason for this is to emphasize angle deviationgdfk, and k., keeping the rest of thé parameters constant.
points which have large displacements, and similarly to de-emelditionally, as part of the validations and in order to test the
phasize the angle deviation of points which have a smaller d&ensitivity of the algorithms to different values of algorithm
placement. coefficientsAy, A2, andAs, we varied each of these coefficients
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Fig. 11. The figure shows the computed radial strains corresponding to the
same time points as in Fig. 10.

Fig. 10. Six displacement vector fields framvivo tagged slices of a patient 53 ;tomated determination of control points of B-spline grids [3])
with antero-septal Ml at 29, 58, 87, 116, 145, and 174 ms after the ECG R wa

(The slices in this and following figures are ordered from left to right and toéﬁthouqh th_e magnitude of errors are bqund to .be smalle_r if ac-
to bottom). Segmental motion of all myocardial points can be easily quantitatedrate location of contour and tag lines in the simulated images

and visualized from the location, direction, and length of the displayed vectoj§ere to be used. our complete system for tracking and recon-
struction of tag lines would not be tested, and furthermore since

individually in the rang€{0, 1, . .., 10}, and kept the other two the exact location qf tags and contours are not known in real im-
coefficients at the constant value of one (excluding= 0). 29€s, _pha_ntor_n validation results would not be a good model of
The experiment is performed on 32 parameters, and the mégglistic situations.

and variance of each error measure is computed to test thé order to test the influence of the order of B-spline bases
influence of these parameters. The error bars in these plfsthe reconstruction, we plot in Fig. 9 the errors as a function
show the3o range on either side of the error mean for particuldf order of B-splines in the case bf andk1. As can be seen,
values of eactk parameter. As can be seen from the figure$he orders of the B-splines do not have much influence on the
to a large degree the displacement reconstruction algorithnrégonstruction accuracy.

insensitive to the exact values bfs. An additional remarkable To compare the performance of the proposed method with
point regarding the error plots is the fact that for smallghat of [3], we list the computational time in Table II. As seen,
motions, the value of, is larger than that for bigger motions.significant savings in time is achieved. In the meantime, we ob-
The reason for this nonintuitive result can only be attributedin similar accuracy as before, as shown in Fig. 8.

to the larger percent inaccuracies in reconstruction of smaller

displacements by the warping algorithm. Also, it should be —

noted that error plots in Fig. 7 subsume the errors incurred§n I Vivo Validations

localization of tags and myocardial contours (for these valida- A segmented:-space SPAMM pulse sequence with breath-
tions, tag and contour localization is performed through sentiold was used to collect images from a porcine model of
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Fig. 12. The figure shows the circumferential strains corresponding to t
same time points as in Fig. 10.

myocardial infraction. For MR imaging, multiple images ir
short-axis (SA) views of the heart were collected to cover the

e.ntlre volume WlthOUt gaps._ Immedlately after the _eIeCtrocafEi_g. 13. Six displacement vector fields fon vivo tagged slices for a
diogram (ECG) trigger, radio-frequency (RF) tagging pulsgfy immediately after induction of a postero-lateral myocardial infarction.
were applied in two orthogonal directions. The repetition tim%egmental motion of all myocardial points can be easily quantitated and

(TR) of the imaging sequence was approximately 71 ms. t |§ualized from the location, direction, and length of the displayed vectors.

ecifically, notice the consistently small magnitude of the vector field in the

echo time (TE) was 2.9 ms, and the RF pulse flip angle wés 1farct area (between 3 and 7 o'clock positions).

Echo sharing was used in collecting each time-varying image

sequence for given slice position. Five data lines were collected

for any time frame during each heart cycle, but two data linéegmental motion of all myocardial points can be easily quanti-

were overlapped between two consecutive cardiac framéaigd and visualized from the location, direction, and length of

resulting in an effective temporal resolution of approximateffne displayed vectors.

22 ms. Other imaging parameters were: field of vie@00 mm,

data acquisition matrix size 250 x 256 (phase encoding by D- Myocardial Strains

readout), in-plane resolution in-plane resolutiot.2 x 1.17 Starting at any time point during the cardiac cycle, as in [4],

mm?, slice thickness 7 mm, and tag spacing 7 mm. The tag the heart’s motion is viewed in the Eulerian reference frame;

and contour lines are traced in a semi-automatic envorimentibg., a mapping which warps tlideformedag configuration into

determining location of B-spline control points [3]. the undeformedconfigurationX = I'(x). Equivalently, with
Figs. 10-15 show examples of the computation of motiak = V(x) + x, the deformation gradient tensor can be written

fields and corresponding strains in a patient with an old Ml, arms F = VI'(x) = VV(x) + Vx whereV is the computed

a pig immediately after induction of a postero-lateral MI. Thdisplacement vector field. Note that the out-of-plane motion of
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15. The figure shows the circumferential strains corresponding to the
Fig. 14. The figure shows the computed radial strains corresponding to g@me time points as in Fig. 13. The area between 3 and 7 o’clock positions
same time points as in Fig. 13. exhibit small strain values indicative of akinesis.

the heart near the apex is small and the method could be directlyigs. 11, 12, 14, and 15 are the radial and circumferential
applicable to the case of looking at motion fields in short axigrains corresponding to the same time points as those in Figs. 10
slices near the apex without any loss of accuracy. Therefoggd 13.

assuming little or no through-plane motion

VI. CONCLUSION

F= <“w +1 Uy ) (26) In conclusion, we have described a very efficient compu-
Y vy +1 tational algorithm for analysis of SPAMM tagged data. The
new methods take advantage of B-spline properties, such as the
And, the strain tensor, as shown in (27) at the bottom of thke local support and smoothness. The representations of dis-
page. Once a displacement vector field is available, the straintdicement vector fields using B-spline bases result in a compact
deformation can be computed at all myocardial points withinfarm and the coefficients can be determined uniquely and effi-
SA slice. Furthermore, the quantid™ EM will give the value ciently using fast algorithms. Because of the local and compact
of strain for the directioriVI. support of B-spline bases, the local deformation of LV is well

L iprE
E_2(FF I)

(AR e )
%(“y + vz + Uz ty + Uz Uy) vy + % (“52; + 05)

N

(27)
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represented using such bases. Moreover, one can increasectiedinates of the undeformed tag lingse; = z}*** — z; and
smoothness of vector fields easily by simply changing the ordawy,; = y}‘ori — i

of B-spline bases. The derivation of the algorithms for any or- The derivative ofb, with respect ta:« ;- is given by

ders of B-splines has been presented in the paper. Most impor-

tantly, the proposed algorithm can be implemented in fasttime, 9&, Ny M, M, , e
which is important for clinical use. dcer —22 Z Zcmi gt — Axy
In addition to the developed machinery in this paper, evalua- =1 \k=lli=1
tion of the methods have been tested using both simulateshand X B (270,55
vivodata sets. The algorithmwas tested foraccuracyinlengthand K =1,2,... M, I*=1,2 .. M, (30)

angles well as the relative rms of the reconstructed displacement

vectors fromthe known ground-truth, and the resultsindicate thatl_et us conside®s. For the convenience of derivatioths
the reconstructions of myocardial deformations are sufficienttyn be split into two partsb; = <I>§,1) + <I>§,2), where@él) =
accurate for measurement of in-plane tissue deformations in fais SF(u2, + 2u2, L)dxdy and (1>§)2) = [[(2, + Qvgu +

time and atany time frame in a sequence of tagged images. yy)dazdy. We only need to consider the computation of the first
extension of methods to 3-D is the topic of current research. par@él) sincecbgf) can be treated similarly.

Substituting (5) into, (3) we obtain

APPENDIX A o
DERIVATION OF GRADIENT OF ENERGY FUNCTIONS (1,;1) :/ / (u2, + ZUiy + ugy) dedy
If the vector field is represented as (5), then (1) becomes 5
M, M,
N 1. My 2 // c /3 /33(
o y Sy) | dady
N0 z{(zzcml o) = ) ZZ )
=1 k=11=1 2
M, M, 2 M, M,
(O3 e i) — o * 2/ / S5 e (B3@)) (8(w)' | dedy
k=1 1=1 j=1j=t
(28) M, M, 2
3 1
where(z;,y;), ¢ = 1,2,..., N are the coordinates of deformed // 1 2216“/3 /3 v) dudy
tag intersections. I M’ !
If we take the derivative ofb; with respect to coefficient
e+, We obtain = Z Z Z Z CkiCmn
k=1 l=1 m=1n=1
N [ M, M, (1) (2) (3)
od, - (O’ + 20,5 40 )
=2 ) 33 0 Ui) — int kl;mn kl;mn klymn
Berr. ; kz::l ;Ckl/ (@i, yi) — ug M, M, M.
X B (@i, ), S Z M Crn Ot (31)
k=1 =1 m=1n=1
E'=1,2,....M,, I"=1,2,...,M,. (29)
.. Where we denOteklmm - al(j)rnn + 201(3')77171 + al(j')rnn and
Similarly, for ®, we have ’ ’
@ () o = [ [R5 o)y
- e 2 (B ()L, BB (wdy,  (32)
Vert vert Vert = = Y
:Z +chklﬁk1 L Y, ) — & ! ’
=1 k=1i=1 e 3y/ 3y/ 3/ 3
N M. M 2 kl mn /3 /3 )([3 )rn(x)(ﬁ )n(y)dxdy
- hori ~ - 3 hori _ horiy _ -
F2 (U 2Dl () 3 / PR @dr [ERE )y,
2 (33)

N, [ M, M,

=SS sl () - A o= | / BN ()53, () (B )y

=1 k=1 Il=1
v [, : — [ @@ [ E w6
+ Z Z Z dklﬁkl horl7 ilori) _ Ayz

= \ioi= From the local supporD, 4] of cubic B-splines, it is also not

hard to show that
Where( 110r17y£10ri)7 ¢ = 1727 N and( vert U;/ert)7 ¢ = 0 @ @
1,2,...,N,arethe coordinates of deformed tag lines along the Tklimn =Thtymn = ktzmn = 0>
horizontal and vertical directions, respectively;, 7;) are the if |k —m| >4 or|n—1| >4 (35)
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The derivative ofP3 with respect to coefficienty- - is rithm 4.3.5.] for more details. [/ >> p then this algorithm can
M, M, be implemented in linear time which requires abbitp? + 3p)
03 —9 Z Z R flops andM square roots. In addition, we could simply store the
depr g i Y nonzero lower triangular part, ther{a+ 1)-by-A array would
K =1,2,..., M, " =1,2,...,M,.  (36) suffice.
APPENDIX C
APPENDIX B COMPUTATION OF DISCRETEB-SPLINE VALUES AT INTEGERS
BAND CHOLESKY DECOMPOSITION AND COMPLEXITY , ,

ANALYSIS We derive the exact formula for the computatiorb®fk) =

_ ) ] ) 4™ (k) of different orders. We consider thetransform of these
In this Appendix, we give an overview of the Choleskey Desgquences. By the definition (7), we have

composition method or square root method. For details, refer to

[10]. n
A symmetric and positive definite matrix can be efficiently B"(z) =Y " (k)z™*
decomposed into a lower and upper triangular matrix. For a ma- k=1
trix of any type, this is achieved by the LU decomposition which ntl (—1)7 (n+1 N
factorizesA = LU. In addition, if A is symmetric and positive => - < ; ) (k—=3)" k= 5)z~
definite, it can be decomposed more efficiently into= UtU i=0 ) kez
, whereU_ (which can l:_)e seen as Fhe “square root” A is _"+1 (=1)7 [n+1 P
a lower triangular matrix with positive diagonal elements. To = Z l i Z( )z
solve Az = b, one solves first/y = b for y, and thed/ Tz = ¢ i=0 ’ k=2j
H n+1 e n+1
for z. i.e., _ Z (—1)7 <n + 1) -
a1 a2 - Gy wup 0 .- 0 = i)
a1 G2 - oM u21 w22 -0 gy . -
. . = . — n + n —1
SR
ap1 ayz2 0 aMM UM1 UM2 UMM J=0 =0
U1 U2 v UML . —I\n+1 = " —1
0 w2 - um2 =(1-27) ;l z o
0 0 e UMM Since
(37)
i : o~ ot (D202 )" 2" 1 ™
We then can obtain the elementidfas follows: Z [yt = = (42)
— (=1)rz—" (=D \1—271
U1 =/ a1 (38)
1 /2 where(n) denotenth-order derivative, we have
_ 2 C
Uiy = aii_zuki , t=2,....M—1,
kJ\=40 Lyl 2" 1 w
= Uk B'(x)=1—-z )"t [ —— . 43
iy = T e R (39) ()= 0= <1 - z*) *3)

Ui
BecauseA is symmetric and positive definite, the expressioprom this formula, we can also get the relationzdfansforms

under the square root is always positive, and.gllare real (see of discrete sampling B-splines between different orders
[10]). Then the solution o X = B is given by

bi — i—l i Yk n _ —1pn-—1 z—=10 n—1
o E;fo UniY (40) BYz)=21B"2) ~ —— 5 B"N(z)  (44)
q—1
. _Yi~ Ek:i—l—l UkiLk (41) or, alternatively in the space domain, we have the recursive re-
! Ui ' lation shown in (45) at the bottom of the page.

Moreover, since the matrix is also banded with bandwidthie Then through this recursive relation we could computezthe
can further reduce the computation and storage. See [10, Alg@ansforms of discrete B-splines of any orders and hence their

(1) = Ll

k)= (1-28 e k-1 + 27N (k), 2<k<n—1 (45)
b*(n) = 10" Hn —1)
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1 57 302
V() =, 52)= -, ¥°3)=2
D =g VY@= VO =5
302 57 1
6 4) =222 6/ — 6 - =
) =55 U0 =55 0°(6) = b,
bo(k) =0, k#1,2,3,4,5,6 (59)
B(») :z_l + 120272 4 1191272 + 24162~% + 1191275 4+ 120276 + »~7 (60)
5040
corresponding spatial responses starting from zeroth-orderd
B-splines. 1 % 66
By the definition of B-splines (8), it is obvious that V) =—, »P2)=-—, VB =—,
120 120 120
5 26 S5 1 5 =
BO(Z)I]. (46) b (4) _mv b (O)_mv b (k):07k7'£172737470
(57)
or in the spatial domain, we have e 271 4 57272 41302273 + 30224 4+ 57275 4 26
(2) = 720
Wk)=1, keZz (47) (58)

then, through (44) and (45) we know

(1 — 2_1)2 1 >(/) _ Z_l (48)

Bl(z) = ——* <

1—21
and in the spatial domain, we obtain that

)y=1, bk)=0, E#1. (49)

We write downB™(z) for higher orders and corresponding
discrete filters, which are used for cubic spline approximations

in this section

2zt + 772

BQ(Z):T (50)
and
2 1 2 1 2
-1
>4+ 244
B3(z) =~ 52
(2) =" (52)
and
1 4 1
Bl ==, v¥2)=-, 3B ==
V=g P@=Z POE)=q,
b(k) =0, k#1,2,3 (53)
14241127t 272
Bz = 4
(2) T (54)
and
1 11 11 1
1) = 4oy — = 4 _ 4y = —
) = P =55 PO =5 V=5
br(k) =0, k #1,2,3,4 (55)
2 -1 —2
Bs(z) :z + 262 4+ 66 + 2627 + = (56)

12023

and as in (59) and (60) (shown at the top of the page) and

1 120 1191
V() =—v, b (2)=—\, b'(3)="1

(1) 5040’ @) 5040’ (3) 5040’

_ 2416 . 1191 . 120
V) ==—"—, 07(5)=——, b(6)=—v

@ =510 "= 5000 5040

1
b7(7):r040, bV (k)=0, k#1,2,3,4,5,6,7 (61)
o)
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