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Fast LV Motion Estimation Using Subspace
Approximation Techniques
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Abstract—Cardiac motion estimation is very important in un-
derstanding cardiac dynamics and in noninvasivediagnosis of heart
disease. Magnetic resonance (MR) imaging tagging is a technique
for measuring heart deformations. In cardiac tagged MR images,
a set of dark lines are noninvasively encoded within myocardial
tissue providing the means for measurement of deformations of the
heart. The points along tag lines measured in different frames and
in different directions carry important information for determining
the three-dimensional nonrigid movement of left ventricle. How-
ever, these measurements are sparse and, therefore, multidimen-
sional interpolation techniques are needed to reconstruct a dense
displacement field. In this paper, a novel subspace approximation
technique is used to accomplish this task. We formulate the dis-
placement estimation as a variational problem and then project the
solution into spline subspaces. Efficient numerical methods are de-
rived by taking advantages of B-spline properties. The proposed
technique significantly improves our previous results reported in
[3] with respect to computational time. The method is applied to a
temporal sequence of two-dimensional images and is validated with
simulated andin vivo heart data.

Index Terms—Deformable models, motion analysis, splines,
variational methods, vector field reconstruction.

I. INTRODUCTION

A. Tagged Magnetic Resonance (MR): Imaging

ONE of the promising techniques for noninvasive study of
left-ventricular (LV) wall motion is tagged magnetic res-

onance (MR) imaging. It provides a tool for assessing the dy-
namic motion or deformation of the human heart, which is in-
valuable in the diagnosis of heart disease.

MRI is a noninvasive imaging technique that provides
superb anatomic information with excellent spatial resolution
and soft-tissue contrast. Conventional MR studies of the heart
provide accurate measures of global myocardial function,
chamber volumes and ejection fractions, and regional wall
motions and thickening. The principle of MR tagging is based
on altering the magnetization property of selective material
points in the myocardium in order to create tagged patterns
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within a deforming body such as the heart muscle. The resulting
pattern defines a time-varying curvilinear coordinate system on
the tissue. During tissue contractions, the grid patterns move,
allowing for visual tracking of the grid intersections over time.
The intrinsic high spatial and temporal resolutions of such
myocardial analysis schemes provide unsurpassed information
about local contraction and deformation in the heart wall, which
can be used to derive local strain and deformation indices from
different myocardial regions.

Several techniques for acquiring tagged images for the anal-
ysis of time-varying motion of the LV have been reported in re-
cent years. Spatial modulation of magnetization (SPAMM) [6]
is a technique for producing a regular grid pattern in the imaging
plane, introduced by Axel and Dougherty. This method uses a
binomial pulse to produce spatial modulation of spins in the
tissue which results in a grid pattern on the image of the moving
tissue. Hence, we only have a sparse set of displacement mea-
surements at discrete points in space and time. This leads to the
requirement for the computation of a dense displacement field
from these sparse measurements.

B. Tagged MR: ImageAnalysis

Analysis of tagged MR images requires several image pro-
cessing steps, such as automatic detection of tag line locations,
epicardial and endocardial contour extraction, and finally car-
diac motion estimation. In [24], an analysis system based on
snakes was adopted. The stripe displacements were fitted by a
three-dimensional (3-D) finite-element model (FEM). Although
the FEM model provides good local strain analysis, it results in
a large number of model parameters. The work described in [16]
considers geometric primitives which are generalization of vol-
umetric ellipsoids. Use of parameter functions in this context
allows for spatial variations of aspect ratios of the model to fit
the LV. The models are also further generalized to parameterize
twisting motion about the long axis of the LV as a function of
distance along the long axis as well as the radial direction.

Methods based on optical flow have also been applied to the
analysis of tagged MR images. An approach called variable
brightness optical flow (VBOF) accounts for temporal variation
of signal intensities. The algorithm described in [11] relaxes the
intensity constancy constraint and allows for intensity variations
to be modeled by a more accurate local linear transformation.

In [15], the authors perform least squares fitting of a truncated
power series in the prolate spheroidal coordinate system on the
whole of the myocardium in order to measure dense displace-
ments. One difficulty with this approach is that the interpolation
is not local. An alternate approach to motion reconstruction de-
veloped in [9] utilizes a multidimensional stochastic model for
the true displacement field and the Fisher estimation framework
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to estimate displacement vectors in points on the lattice. The
advantage of this framework is an error covariance which deter-
mines the number of tag lines needed to achieve a given estima-
tion accuracy.

In [12], a four-dimensional time-varying B-spline model is
fitted to generate a B-solid which varies continuously over time
. One important advantage of the model is that 3-D material

point localization and 3-D displacement reconstruction are
achieved simultaneously at any time instant in a single step.
The displacements are obtained by taking the difference of
fitted B-solids between two frames. In [17], a volumetric
B-solid model was proposed to concurrently track tag lines in
different image slices by implicitly defined B-surfaces which
align themselves with tagged points. The solid is a 3-D tensor
product B-spline whose isoparametric curves deform under
image forces from tag lines in different image slices.

In [1] and [2], tag lines are tracked with dynamic program-
ming B-snakes and B-snake grids. In [1], a constrained thin-
plate spline reconstruction of the displacement field was pro-
posed from points and lines based on a variational formulation.
In [3], an optimization method was proposed which improved
on the reconstruction technique in [1]. One advantage of the
approach proposed in [3] is that it allows for reconstruction of
dense deformations between two arbitrary frames in a sequence
of tagged images, as motion reconstruction methods generally
produce displacement vector fields relative to undeformed tags
in the initial frame. In the present paper, we develop an efficient
numerical method which results in about a 1-min computation
time on a Sun Workstation for reconstructing the motion field
between two frames. Moreover, high accuracy is achieved at the
same time. The displacement vector field at any time frame is
reconstructed with respect to frame zero, and the displacement
field between two arbitrary frames is obtained by simply taking
the difference between them.

The organization of the paper is as follows. Section II presents
a continuous model formulating the estimation of heart wall
deformation. Section III presents definitions and properties of
B-splines, which are useful in the derivation of the numerical al-
gorithm. Following this section, we derive efficient algorithms
for reconstruction of dense displacement fields. The techniques
adopt spline approximations in finite-dimensional subspaces. In
particular, the computation of the values of B-splines at inte-
gers will be given in detail. The validations of the reconstruction
methods both with the simulated data andin vivodata are given
in Section V.

II. CONTINUOUS FORMULATION OF THE MODEL FORTAGGED

MRI MOTION ESTIMATION

Tracking tissue deformations with SPAMM using coupled
B-snake grids provides two-dimensional (2-D) displacement in-
formation at tag intersections and one-dimensional (1-D) dis-
placement information along other 1-D snake points [1], [3].
The displacement measurement from tag lines, however, are
sparse; interpolation is required to reconstruct a dense displace-
ment field from which strain, torsion, and other mechanical in-
dices of function can be computed at all myocardial points. This
is illustrated as in Fig. 1. In this section, we describe an effi-
cient solution to the formulation in [1] and [3]. The algorithm
improves on previous methods in both the computation time

Fig. 1. A deformed tag line (in solid line) and its corresponding undeformed
tag line (in dotted line). The intersections or landmark points are denoted as
circles. From these intersections we know both thex andy components of the
displacements. But for other tag pointsp along the horizontal andP along the
vertical lines, as indicated by the squares, weonly know theiry andx components
of the displacements,g(u; v) andh(u; v), respectively. We want to make use
of all these available information to estimate the dense displacement field.

and the accuracy for reconstructing a dense displacement vector
field using localized coordinates of tag positions. In this devel-
opment, we assume only 2-D motion (as is roughly the case to-
ward the apical end of the heart [18]). The extension to 3-D case
will be developed in another paper.

The intersections of two grids are “pulled” toward one an-
other by minimizing

(1)

where and are the and components of displacement
vector field at a certain time frame relative to the initial un-
deformed frame. and are the and components of
displacement at tag intersections as well as intersections of my-
ocardial contours with tag lines. The summation in (1) is over
all the tag intersection points. This form of the intersection
spring constraint has also been used in a similar spirit in [24].

Assuming 2-D tissue motion, a further physical constraint
is necessary: any point on a deformed tag in framemust be
warped to lie on its corresponding undeformed tag in frame 0 of
the sequence. As described in [4], for a vector field to perform
such a warp, and of Fig. 1 must be minimized.
Let be any point on the deformed tag line, and

be the corresponding point in the un-
deformed frame as in Fig. 1. The following term is then summed
over all deformed horizontal and vertical grid points:

(2)
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where and are the normal direction alongand , respec-
tively. In the above equation, are the coordinates of a point
on the tag line in the current frame, and is the closest point
to on the corresponding tag line in the undeformed
frame. The quantities and are the horizontal and
vertical distance from the point to the undeformed ver-
tical and horizontal tag line, respectively. Therefore, points on
a deformed vertical tag line can be warped back to lie its cor-
responding undeformed vertical tag line, following minimiza-
tion of . Similarly, minimization of
will result in warping points on deformed horizontal tag lines
to horizontal tag lines in frame 0. The summation is over all the
vertical tag number and horizontal tag number , respec-
tively. Notice the difference between above formulation (which
was proposed in [4]) and that of [3]. In [3], it is assumed that

is dependent on the vector field and is computed
from a nonlinear distance function with local minima, but here
we only consider that which lies on an undeformed tag
line. Therefore, the above energy functional is quadratic in na-
ture, having a unique global minimum.

The vector field continuity constraint is the bending energy
of a thin-plate which is applied to theand component of the
displacement field

(3)

which serves as the smoothness constraint on the reconstructed
vector field, characterizing approximating thin-plate splines.

An optimization function can be obtained by a linear combi-
nation of the three terms in (1)–(3). The objective function is

(4)

The characterization of the solution to this variational
problem is described in [20], which is treated as optimization
problem in a reproducing kernel Hilbert space. The interpola-
tion given specified landmarks is characterized by the thin-plate
splines as investigated by Bookstein [8]. However, it is hard to
get the explicit form of the solution to this general problem.
It should be noted that essentially the same accuracy can be
obtained in a computationally simpler way by minimizing (4)
in a certain finite-dimensional approximating subspace. We
chose such a subspace as that spanned by the shifted B-spline
bases. In other words, the vector field is represented as a linear
combination of shifted B-spline bases

(5)

where
vector field;
control points or coefficients;

, size of the grid set by the user.
Larger values for and will result in higher computa-
tional costs. In the experiments, we set the size to 256256.
Since we assume knowing locations of the epicardial and en-
docardial contour, only the displacement vectors in the region
between them will be computed.
is the shifted B-splines, as will be defined below. Because the

linear combinations of these shifted B-spline bases constitute a
complete and stable approximation of [23], the represen-
tation in (5) is reasonable. In the next section we will describe
how to get an efficient numerical solution by using this subspace
approximation approach.

III. B-SPLINE BASICS

A. Definitions and Notations

We follow the convention of [22], [23] and define the con-
tinuous or analytic B-spline of orderby , which can be
generated by repeated convolution of a B-spline of order
zero

(6)

where the zeroth-order B-spline is the pulse function with
support . The definition is a little different from that of [19]
where the center of symmetry is at the origin. An alternative
definition of these normalized B-spline functions is given by

(7)

where is the step function

for
for

and where are the binomial coefficients.
The discrete sampled B-spline of order is obtained

by directly sampling the th-order continuous B-spline

(8)

The continuous convolution of functionsand is defined as

(9)

The discrete convolution between two sequencesand
is the sequence

(10)

The above definition of 1-D B-splines can be easily extended
to the 2-D case through the tensor product.

B. Some Properties

B-spline bases enjoy many useful properties, which make
them widely used in computer graphics and computer aided
geometric design. For example, its local compact support and
smoothness make them very suitable for surface and solid rep-
resentation [3], [12], [13], [17]. In this section, we only present
the properties used in the paper. Some additional details on prop-
erties of B-splines could be found in [14], [19], [22], and [23].

• The shifted B-spline bases constitute a stable and complete
approximation of a square integrable function [22].

• The local support and symmetry of B-splines. The
B-spline basis has compact support and
is symmetric with respect to the midpoint , i.e.,

(11)
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• The derivative of B-splines. If a curve is represented as
B-spline segments, one can increase the smoothness by
increasing the order of B-splines. The derivative of the

th order of B-splines is the difference of lower order
B-splines. For example, the first and second-order deriva-
tives of B-splines are

(12)

• The convolutions of two B-spline bases are still B-splines

(13)

IV. NUMERICAL SOLUTIONS USING SPLINE SUBSPACE

APPROXIMATIONS

A. Derivation of the Spline Approximation

For the sake of simplicity in deriving the algorithm, we as-
sume the order of B-spline is three in this section.

Through (1)–(3), we know that (4) is a quadratic minimiza-
tion problem. Notice that is different from that of [3], and as
discussed in [4] is quadratic. Therefore, a necessary and suffi-
cient condition on the solution is that the gradient of (4) should
be zero. Equivalently, we have the following normal equations:

(14)

The gradients of these three energy functional is derived in Ap-
pendix A, as in (29), (30), and (36). Substituting them into these
equations, they are equivalent to

(15)

or equivalently

(16)

where and .

For simplicity, if we denote and
, to order the matrix lexicographi-

cally, and and ,
then the above equations can be simplified as

(17)

where . Alternatively, we can write these equa-
tions in matrix form as

(18)

where the matrix ,
and are given by

...
...

.. .
...

and

...
...

.. .
...

...
...

. . .
...

The column vector and are given by

and

The element of is given by

Due to the local property of B-spline bases, we can conclude
that the if the locations of two spline bases are far apart, i.e.,
if (for cubic spline, ), then
0. In other words, the matrix is sparse and block-band
diagonal since only a few elements are nonzeros. This also holds
for .

Through (35), we know is also diagonal and band limited
matrix. Therefore, we can see that the matrix on the left of (18) is
sparse, symmetric and positive-definite and we can, therefore,
use a fast solver for this linear system of equations. We have
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adopted the sparseCholesky Factorization technique [10] to
solve this equation. Refer to Appendix B for the description of
this algorithm.

In the above derivation we only discuss the solution of the
coefficient . Using a similar discussion, we can also show
that the solution of satisfies similar equations as follows:

(19)

where is the matrix of splines defined on the horizontal
tag lines and

and

Once we get the solution of and , we could estimate
the deformation of LV at any dense points using formula (5).

B. Computation of Smoothness Terms

For illustration, we only give the details on how to compute
the smoothness terms (32) by taking advantage of spline prop-
erties.

Through properties (11)–(13) it is easy to show that

and

TABLE I
THE 13k-PARAMETERS OF THEKINEMATIC MODEL

Fig. 2. Deformed models of the LV resulting from change ofk from 0.2 to
0.8 in increments of 0.2.

Therefore, we have

(20)
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Fig. 3. The undeformed prolate spheroidal model of the LV in the reference
state. A tagged image corresponding to a selected imaging plane is shown on
the right. The width of the “donut” is about 1.5 cm, and the discretization step
is 0.05 cm.

(a) (b)

(c) (d)

Fig. 4. Results of coupled B-snake tracker on a simulated image sequence
(� = 75, � = 1). From top-left (k = 0.2) to bottom-right (k = 0.8) in
increments of 0.2. Temporal resolution is 20 ms.

Similarly, we can derive that

(21)

and

(22)

Fig. 5. Comparison of computed (left column) and true (middle column)
displacement vector fields corresponding to torsion [fromk = 0.03 (top) to
k = 0.15 (bottom)]. Third column is an overlap display.

Fig. 6. Comparison of computed (left column) and true (middle column)
displacement vector fields corresponding to rotation [fromk = �0.04 (top)
to k = �0.2 (bottom)]. Third column is an overlap display.

So we only need to evaluate the values of B-splines of order
three, five, and seven at integers in order to compute these quan-
tities. The algorithm for computation of the values of these dis-
crete B-splines at integres is described in Appendix C.
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Fig. 7. The statistical error plots for length, angle and relative rms errors for
k , andk . See text for details.

V. VALIDATION

A. Cardiac Simulator

An environment based on a 13-parameter kinematic model of
Arts et al. [5] has been implemented for simulating a time se-
quence of tagged MR images at arbitrary orientation, as was de-
scribed in [21]. Through the discretization of the space between
two concentric shells and by varying the canonical parameters
of the model, both a sequence of tagged MR images as well as
a “ground truth” vector field of actual material point deforma-
tions are available.

A pair of prolate spheroid represents the endocardial and
epicardial LV surfaces, and provides a geometric model of the
LV myocardium. The motion model involves application of a
cascade of in-compressible linear transformations describing
rigid as well as nonrigid motions. The parameters of the motion
model, referred to as-parameters, and the transformations to
which they correspond are stated in Table I. Fig. 2 displays a
sequence of 3-D deformed LV models resulting from change
of parameter, which corresponds to torsion of the prolate
spheroid.

In order to simulate MR images, an imaging plane inter-
secting the geometric model is selected, and tagged spin-echo

Fig. 8. A comparison between this method (solid line) and the one in [3] (dotted
line) for length, angle and relative rms errors fork , andk . See text for details.

TABLE II
A COMPARISON OFCOMPUTATIONAL SPEED(IN MINUTES) ON A SUN ULTRA

30/300-MHZ WORKSTATION

imaging equations are applied for simulating thein vivo
imaging process. Fig. 3 displays an undeformed 3-D model
(with all the -parameters identical to zero) and a simulated
tagged image corresponding roughly to the middle of the LV.
Fig. 4 shows the deformed tag image slices, which intersect
the deformed LV models in Fig. 2. Also, this figure shows the
detected tag lines using the coupled B-spline tracker [3].
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Fig. 9. The influence of the order of B-spline bases on the reconstructions of vector field. The errors are plotted as a function of the order of B-splines. Here, we
take� = 1, � = 2, and� = 1.

For the purposes of validating 2-D displacement field recon-
structions, we have used the parameters, , , and for
generating 2-D deformations of the geometric model, based on
which images and 2-D displacement vector fields ofactualma-
terial points are produced. The error norms used in comparing
the ground truth vector field ( ) with the vector field measured
by our algorithm ( ) are

(23)

and

(24)

where measures the average difference in length between
and , and measures the deviation in angle betweenand

. As can be seen from (24), we weight individual angle de-
viations by the magnitude of the material point displacement
vector; normalized by the sum of magnitude of all ground truth
vectors. The reason for this is to emphasize angle deviation of
points which have large displacements, and similarly to de-em-
phasize the angle deviation of points which have a smaller dis-
placement.

We also employ the relative root mean squared (rms) figure
of merit to measure the accuracy of the computed motion fields

(25)

where is the number of vectors in the field.

B. Results

Fig. 2 shows an example of the deformed models of the LV
which result from change of the parameters, torsion, from 0.2
to 0.8 in increments of 0.2. Fig. 4 shows the corresponding tag
tracking results of these simulated image sequences. In Fig. 5
we compare the computed and ground truth displacement vector
fields that correspond to this image plane. One can visually ap-
preciate the high accuracy of the reconstructions. Fig. 6 shows
another example of the vector field reconstruction for the case
of rigid rotation.

In order to measure the accuracy quantitatively, we plot the
length errors, angle errors as well as the relative rms in Fig. 7
by comparing and as a function of a range of values
of and , keeping the rest of the parameters constant.
Additionally, as part of the validations and in order to test the
sensitivity of the algorithms to different values of algorithm
coefficients , , and , we varied each of these coefficients
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Fig. 10. Six displacement vector fields fromin vivo tagged slices of a patient
with antero-septal MI at 29, 58, 87, 116, 145, and 174 ms after the ECG R wave.
(The slices in this and following figures are ordered from left to right and top
to bottom). Segmental motion of all myocardial points can be easily quantitated
and visualized from the location, direction, and length of the displayed vectors.

individually in the range , and kept the other two
coefficients at the constant value of one (excluding 0).
The experiment is performed on 32 parameters, and the mean
and variance of each error measure is computed to test the
influence of these parameters. The error bars in these plots
show the range on either side of the error mean for particular
values of each parameter. As can be seen from the figures,
to a large degree the displacement reconstruction algorithm is
insensitive to the exact values ofs. An additional remarkable
point regarding the error plots is the fact that for smaller
motions, the value of is larger than that for bigger motions.
The reason for this nonintuitive result can only be attributed
to the larger percent inaccuracies in reconstruction of smaller
displacements by the warping algorithm. Also, it should be
noted that error plots in Fig. 7 subsume the errors incurred in
localization of tags and myocardial contours (for these valida-
tions, tag and contour localization is performed through semi-

Fig. 11. The figure shows the computed radial strains corresponding to the
same time points as in Fig. 10.

automated determination of control points of B-spline grids [3]).
Although the magnitude of errors are bound to be smaller if ac-
curate location of contour and tag lines in the simulated images
were to be used, our complete system for tracking and recon-
struction of tag lines would not be tested, and furthermore since
the exact location of tags and contours are not known in real im-
ages, phantom validation results would not be a good model of
realistic situations.

In order to test the influence of the order of B-spline bases
on the reconstruction, we plot in Fig. 9 the errors as a function
of order of B-splines in the case of and . As can be seen,
the orders of the B-splines do not have much influence on the
reconstruction accuracy.

To compare the performance of the proposed method with
that of [3], we list the computational time in Table II. As seen,
significant savings in time is achieved. In the meantime, we ob-
tain similar accuracy as before, as shown in Fig. 8.

C. In Vivo Validations

A segmented -space SPAMM pulse sequence with breath-
hold was used to collect images from a porcine model of



508 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 6, JUNE 2001

Fig. 12. The figure shows the circumferential strains corresponding to the
same time points as in Fig. 10.

myocardial infraction. For MR imaging, multiple images in
short-axis (SA) views of the heart were collected to cover the
entire volume without gaps. Immediately after the electrocar-
diogram (ECG) trigger, radio-frequency (RF) tagging pulses
were applied in two orthogonal directions. The repetition time
(TR) of the imaging sequence was approximately 7.1 ms, the
echo time (TE) was 2.9 ms, and the RF pulse flip angle was 15.
Echo sharing was used in collecting each time-varying image
sequence for given slice position. Five data lines were collected
for any time frame during each heart cycle, but two data lines
were overlapped between two consecutive cardiac frames,
resulting in an effective temporal resolution of approximately
22 ms. Other imaging parameters were: field of view300 mm,
data acquisition matrix size 250 256 (phase encoding by
readout), in-plane resolution in-plane resolution1.2 1.17
mm , slice thickness 7 mm, and tag spacing 7 mm. The tag
and contour lines are traced in a semi-automatic envoriment by
determining location of B-spline control points [3].

Figs. 10–15 show examples of the computation of motion
fields and corresponding strains in a patient with an old MI, and
a pig immediately after induction of a postero-lateral MI. The

Fig. 13. Six displacement vector fields forin vivo tagged slices for a
pig immediately after induction of a postero-lateral myocardial infarction.
Segmental motion of all myocardial points can be easily quantitated and
visualized from the location, direction, and length of the displayed vectors.
Specifically, notice the consistently small magnitude of the vector field in the
infarct area (between 3 and 7 o’clock positions).

segmental motion of all myocardial points can be easily quanti-
tated and visualized from the location, direction, and length of
the displayed vectors.

D. Myocardial Strains

Starting at any time point during the cardiac cycle, as in [4],
the heart’s motion is viewed in the Eulerian reference frame;
i.e., a mapping which warps thedeformedtag configuration into
the undeformedconfiguration . Equivalently, with

, the deformation gradient tensor can be written
as where is the computed
displacement vector field. Note that the out-of-plane motion of
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Fig. 14. The figure shows the computed radial strains corresponding to the
same time points as in Fig. 13.

the heart near the apex is small and the method could be directly
applicable to the case of looking at motion fields in short axis
slices near the apex without any loss of accuracy. Therefore,
assuming little or no through-plane motion

(26)

And, the strain tensor, as shown in (27) at the bottom of the
page. Once a displacement vector field is available, the strain of
deformation can be computed at all myocardial points within a
SA slice. Furthermore, the quantity will give the value
of strain for the direction .

Fig. 15. The figure shows the circumferential strains corresponding to the
same time points as in Fig. 13. The area between 3 and 7 o’clock positions
exhibit small strain values indicative of akinesis.

Figs. 11, 12, 14, and 15 are the radial and circumferential
strains corresponding to the same time points as those in Figs. 10
and 13.

VI. CONCLUSION

In conclusion, we have described a very efficient compu-
tational algorithm for analysis of SPAMM tagged data. The
new methods take advantage of B-spline properties, such as the
the local support and smoothness. The representations of dis-
placement vector fields using B-spline bases result in a compact
form and the coefficients can be determined uniquely and effi-
ciently using fast algorithms. Because of the local and compact
support of B-spline bases, the local deformation of LV is well

(27)
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represented using such bases. Moreover, one can increase the
smoothness of vector fields easily by simply changing the order
of B-spline bases. The derivation of the algorithms for any or-
ders of B-splines has been presented in the paper. Most impor-
tantly, the proposed algorithm can be implemented in fast time,
which is important for clinical use.

In addition to the developed machinery in this paper, evalua-
tion of the methods have been tested using both simulated andin
vivodatasets.Thealgorithmwastested foraccuracy in lengthand
angles well as the relative rms of the reconstructed displacement
vectors fromtheknownground-truth,and the results indicate that
the reconstructions of myocardial deformations are sufficiently
accurate for measurement of in-plane tissue deformations in fast
time and at any time frame in a sequence of tagged images. The
extension of methods to 3-D is the topic of current research.

APPENDIX A
DERIVATION OF GRADIENT OF ENERGY FUNCTIONS

If the vector field is represented as (5), then (1) becomes

(28)

where are the coordinates of deformed
tag intersections.

If we take the derivative of with respect to coefficient
, we obtain

(29)

Similarly, for we have

where and
are the coordinates of deformed tag lines along the

horizontal and vertical directions, respectively. are the

coordinates of the undeformed tag lines. and
.

The derivative of with respect to is given by

(30)

Let us consider . For the convenience of derivation,
can be split into two parts: , where

and
. We only need to consider the computation of the first

part since can be treated similarly.
Substituting (5) into, (3) we obtain

(31)

where we denote and

(32)

(33)

(34)

From the local support of cubic B-splines, it is also not
hard to show that

(35)
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The derivative of with respect to coefficient is

(36)

APPENDIX B
BAND CHOLESKY DECOMPOSITION ANDCOMPLEXITY

ANALYSIS

In this Appendix, we give an overview of the Choleskey De-
composition method or square root method. For details, refer to
[10].

A symmetric and positive definite matrix can be efficiently
decomposed into a lower and upper triangular matrix. For a ma-
trix of any type, this is achieved by the LU decomposition which
factorizes . In addition, if is symmetric and positive
definite, it can be decomposed more efficiently into
, where (which can be seen as the “square root” of) is
a lower triangular matrix with positive diagonal elements. To
solve , one solves first for , and then
for . i.e.,

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(37)

We then can obtain the element ofas follows:

(38)

(39)

Because is symmetric and positive definite, the expression
under the square root is always positive, and allare real (see
[10]). Then the solution of is given by

(40)

(41)

Moreover, since the matrix is also banded with bandwidth, we
can further reduce the computation and storage. See [10, Algo-

rithm 4.3.5.] for more details. If then this algorithm can
be implemented in linear time which requires about
flops and square roots. In addition, we could simply store the
nonzero lower triangular part, then a -by- array would
suffice.

APPENDIX C
COMPUTATION OFDISCRETEB-SPLINE VALUES AT INTEGERS

We derive the exact formula for the computation of
of different orders. We consider thetransform of these

sequences. By the definition (7), we have

Since

(42)

where denote th-order derivative, we have

(43)

From this formula, we can also get the relation oftransforms
of discrete sampling B-splines between different orders

(44)

or, alternatively in the space domain, we have the recursive re-
lation shown in (45) at the bottom of the page.

Then through this recursive relation we could compute the
transforms of discrete B-splines of any orders and hence their

(45)
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(59)

(60)

corresponding spatial responses starting from zeroth-order
B-splines.

By the definition of B-splines (8), it is obvious that

(46)

or in the spatial domain, we have

(47)

then, through (44) and (45) we know

(48)

and in the spatial domain, we obtain that

(49)

We write down for higher orders and corresponding
discrete filters, which are used for cubic spline approximations
in this section

(50)

and

(51)

(52)

and

(53)

(54)

and

(55)

(56)

and

(57)

(58)

and as in (59) and (60) (shown at the top of the page) and

(61)
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