Common approximations for the minimum description lengtP (

Abstract

Key Phrases: BIC, hypothesis test, modeT selection, twW-part code, universaT code.
for aTt in a compact subset of \mathbf{R}^{k}, with the exception of a smalT set of vanishing measure. In the onedimensional case, we show that tPe cost of coding a nonzero parameter from tPe exceptional set near zero is considerabTy less than (12) IWg. Thus, adding such a parameter is "easier" than the approximation (3) would suggest. The disagreement folT ows from a Tack of uniform convergence in the asymptotics which produce (3).

The example in tPe next section gives the explicit correspondence between tPe de-

Figure 1: TPe estimator which UiniUizes tPe description lengtP (1) is shown as a function Wf tPe Uean Wf tPe input data, on a standardQzed scale. This estiUator Wffers no shrinSage attPe origin.

For this univariate probleU, tPe leadQng terU in the criterion siUpTifies since (1) $=1$ and by using (4) we have

$$
Y, \mu)=\log
$$

The MDL estimator $\hat{\mu}$ defined iV equatQoV (15) o§3 below is shrunkeV to zero for ${ }^{\vee} \nabla|\bar{Y}|<2.4$. IV coVtrast, theBIC criterQoV produces an estimate of zero for data with mean satQsfying $\bar{V}|\bar{Y}|<\sqrt{ } \overline{I V} V$. Our argumeVts require a very cT ose accounting ofthe message length obtained iV a two-part code for the data, and we Vow turV to these issues.

Although (4) implies that coding the data using $\mu=$

Thus, one can obtain a sTightTy shorter message by rounding to a more coarse grid. Such details have been dQscussed elsewhere (e.g., Wallace and Freman 1987), and for our purposes any such ggrB33(with)-333(spacing)-332(to)-332(order) JTJ fl/ F 111 Tffl21.814 0TD vides the shortest code length. The need to encode the parameter does not impTy simpTy roundiVg
adding one for tPe sign bit)

Table 1: Examples Wf thre optimaT universaT codes for nonnega ve integersSpaces are for the acader and are not needed in the actuaT codes. A sign bit wWuld be appended for j G 0. TPe doubly compWund and penultimate codes are from EIQas (1975); the thQrd is an arithmetic coder fWr the probabilQtie*($|j|)=Q^{*}(j)+Q^{*}(-j)$

LWcaT mptotics and MDL

3 ModeT seTection via

LWcaT sfamptotics and MDL

LWcaT zfomptotics and MDL

$$
\begin{aligned}
& L \\
& r R / R \rightarrow R \quad r R
\end{aligned}
$$

L
$Y, \mu \times \Downarrow 4 \Theta+\quad n \quad-\quad Y$

LWcaT mptotics and MDL

LWcaT mptotics and MDL

MDL

MDL

Annals of Statistics 11

Figure 2: The penultimate codebook. Quadratics indicate the excess Uessage length above $\log 1 / P R$
n when the paraUeter is encoded using the penultimate code

