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Based on the semantic equivalence degree the formal definitions of fuzzy functional dependencies
(FFDs) and fuzzy multivalued dependencies (FMVDs) are first introduced to the fuzzy relational
databases, where fuzziness of data appears in attribute values in the form of possibility attributions,
as well as resemblance relations in attribute domain elements, called extended possibility-based
fuzzy relational databases. A set of inference rules for FFDs and FMVDs is then proposed. It is
shown that FFDs and FMVDs are consistent and the inference rules are sound and complete, just
as Armstrong’s axioms for classic cases. © 2002 Wiley Periodicals, Inc.

1. INTRODUCTION

In real-world applications, information is often vague or ambiguous. Therefore
different kinds of incomplete information have been extensively introduced into rela-
tional databases. Incomplete information can be classified into two aspects, namely,
imprecise information and uncertain information.11,16 Intuitively, the imprecision is
relevant to the content of an attribute value, and it means that a choice must be made
from a given range (interval or set) of values, but we do not know exactly which one
to choose at present. The uncertainty is relevant to the degree of truth of its attribute
value, and it means that we can apportion some, but not all, of our belief to a given
value or group of values.

*Correspondence address: Department of Computer Science and Engineering, Oakland Uni-
versity, Rochester, MI 48309; e-mail: zongmin ma@yahoo.com.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 17, 321–332 (2002)
© 2002 Wiley Periodicals, Inc. • DOI: 10.1002/int.1088



322 MA, ZHANG, MA, AND MILI

Fuzzy values have been employed to model imprecise information in data-
bases5,23 since Zadeh29 proposed the concept of fuzzy sets, and the classic relational
databases have been thereby extended. Three types of fuzziness can be distin-
guished in fuzzy relational databases, namely, possibility distributions on attribute
values,23 similarity relations on attribute domains5 (or proximity relations26 and
resemblances25), and grades of membership on tuples.24 Corresponding to these
fuzzy data representations, there exist three basic types of fuzzy relational data
models,9 namely, similarity-based relational models,5 possibility-based relational
models,23 and fuzzy relation-based relational models.24 Based on these three types
of basic fuzzy data models, there exist some types of hybrid data models9,21,22,25

where possibility distribution and similarity (or proximity, resemblance, and close-
ness) relations occur in a relation simultaneously.

Data dependencies play a crucial role in logical database design, as well
as database manipulation. Some attempts have been made to represent data de-
pendencies in fuzzy relational databases, such as fuzzy functional dependencies
(FFDs)6−8,10,17−22,24,27 and fuzzy multivalued dependencies (FMVDs).3,20,26−28
Among these data dependencies, functional dependencies are of more interest. Be-
ing the same as classic relational databases, fuzzy functional dependencies can be
used as guidelines for the design of a fuzzy relational schema that is conceptually
meaningful and free of certain update anomalies. Moreover, fuzzy functional de-
pendencies and their inferences have been applied in database security, knowledge
discovery (data mining), and reasoning.12,14 Fuzzy functional dependencies have
received a lot of attention. It is necessary for the definition of fuzzy functional de-
pendencies to compare the fuzzy values of the same attributes. Therefore, several
definitions of fuzzy functional dependencies have been proposed on the basis of
different semantic measures. In Ref. 24 a fuzzy relation EQUAL overU ×U (U is a
universe of discourse) is defined as a fuzzy measure. A fuzzy functional dependency
X ↪→ Y holds in a fuzzy relation if for any pair of tuples, the resemblance on Y
values is greater than that on X values. The proposals in Refs. 17, 18, and 19 use
the same definitions of fuzzy functional dependencies, with semantic distance and
semantic proximity, respectively, instead of the fuzzy relation EQUAL. Based on
the possibility distribution theory, the closeness degree of fuzzy data on a domain
D is introduced by Chen, et al. in Refs. 6, 7, and 8. A fuzzy functional dependency
X ↪→� Y holds in a fuzzy relation if for any pair of tuples, the closeness degree
for Y values is at least that of X values, or over �. In Ref. 10, a fuzzy functional
dependency X ↪→α,β Y holds in a fuzzy relation if for any pair of tuples, the resem-
blance on X values is greater than the threshold α implies that the resemblance on
Y values is greater than the threshold β. Regarding the issue of fuzzy functional
dependencies, an overview is made by Bosc, Dubois, and Prade in Ref. 4, in which
different proposals for fuzzy functional dependencies are analyzed, the connection
between fuzzy functional dependencies and database design is addressed, and some
semantics and use of fuzzy functional dependencies are suggested. Tripathy and
Sakena express fuzzy multivalued dependencies in terms of particularization and
Hamming.28 Sozat and Yazici 27 study fuzzy functional and multivalued dependen-
cies in similarity-based fuzzy relational database models. With semantic proximity,
fuzzy functional, multivalued, and join dependencies are given in Ref. 20. Based on
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the fuzzy relation EQUAL24 and its extension, fuzzy multivalued dependencies are
also defined in Refs. 3 and 15, respectively.

In this article, we concentrate on the most general fuzzy relational database
model, where fuzziness of data appears in attribute values in forms of possibility
attributions, as well as resemblance relations in attribute domain elements, called
extended possibility-based fuzzy relational databases.4,17 Based on the semantic
equivalence degree, the formal definitions of fuzzy functional dependencies (FFDs)
and fuzzy multivalued dependencies (FMVDs) are first introduced to extended
possibility-based fuzzy relational databases. A set of inference rules for FFDs and
FMVDs is then proposed. It is shown that FFDs and FMVDs are consistent and the
inference rules are sound and complete just as Armstrong’s axioms for classic cases.

The remainder of this article is organized as follows. Section 2 provides back-
ground on fuzzy data, semantic measure, and fuzzy relational models. Section 3 de-
fines fuzzy functional and multivalued dependencies. The inference rules for fuzzy
data dependencies are introduced in Section 4. Section 5 concludes this article.

2. BACKGROUND

2.1. Fuzzy Set and Possibility Distribution

Fuzzy data is originally described as a fuzzy set by Zadeh.29 LetU be a universe
of discourse. Then a fuzzy value on U is characterized by a fuzzy set F in U . A
membership function µF : U → [0, 1] is defined for the fuzzy set F , where µF(u),
for each u ∈U , denotes the degree of membership of u in the fuzzy set F . Thus the
fuzzy set F is described as follows:

F =
{

µ(u1)

u1
,
µ(u2)

u2
, . . . ,

µ(un)

un

}

When µF(u) is viewed to be a measure of the possibility that a variable X has
the value u in this approach, where X takes values in U , a fuzzy value is described
by a possibility distribution πX :31

πX =
{

πX (u1)

u1
,
πX (u2)

u2
, . . . ,

πX (un)

un

}

Here, πX (ui ), for ui ∈U , denotes the possibility that ui is true. Let πX and F be the
possibility distribution representation and the fuzzy set representation for a fuzzy
value, respectively. It is apparent that πX = F is true.24

In addition, fuzzy data is represented by similarity relations in domain
elements,30 in which the fuzziness comes from the similarity relations between two
values in a universe of discourse, not from the status of an object itself. Similarity
relations are thus used to describe the degree similarity of two values from the same
universe of discourse. A similarity relation, Sim, on the universe of discourse, U , is
a mapping, U ×U → [0, 1], such that:

(a) For ∀x ∈U , Sim(x, x) = 1 (reflexivity)
(b) For ∀x,y ∈U , Sim(x, y) = Simi (y, x) (symmetry)
(c) For ∀x,y,z ∈U,Sim(x, z) ≥ maxy(min(Sim(x, y), Sim(y, z))) (transitivity)
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2.2. Fuzzy Relational Data Models

In connection with the three types of fuzzy data representations, there exist two
basic extended data models for fuzzy relational databases. One of the data models
is based on similarity relations,5 or proximity relations,26 or resemblances.25 The
other one is based on possibility distributions.23,24 The latter can further be classified
into two categories, that is, tuples associated with possibilities, and attribute values
representing possibility distributions. The form of an n-tuple in each of the above-
mentioned fuzzy relational models can be expressed, respectively, as:

t = 〈p1, p2, . . . , pi , . . . , pn〉, t = 〈a1, a2, . . . , ai , . . . , an, d〉, and

t = 〈πA1, πA2, . . . , πAi , . . . , πAn〉
where pi ⊆ Di , with Di being the domain of attribute Ai , for ai ∈ Di and d ∈ (0, 1],
πAi the possibility distribution of attribute Ai on its domain Di , and πAi (x), for
x ∈ Di , the possibility that x is true.

It is clear that, based on the above-mentioned basic fuzzy relational models,
there should be one type of extended fuzzy relationalmodel9,21,22,25 where possibility
distributions and resemblance relations arise in relational databases simultaneously.
In this article, we focus on such fuzzy relational databases and assume the possibility
that each tuple in a fuzzy relation is 1. The resemblance relation is defined as follows.

DEFINITION 1. A fuzzy relation r on a relational schema R(A1, A2, . . . , An) is a
subset of the Cartesian product of Dom(A1) ×Dom(A2) × · · · ×Dom(An), where
Dom(Ai) may be a fuzzy subset, or even a set of fuzzy subsets, and there is a
resemblance relation on the Dom(Ai). A resemblance relation Res on Dom(Ai) is
a mapping, Dom(Ai) ×Dom(Ai) → [0, 1], such that:

(a) For all x in Dom(Ai), Res(x, x) = 1 (reflexivity)
(b) For all x, y in Dom(Ai), Res(x, y) = Res(y, x) (symmetry)

2.3. Semantic Measure of Fuzzy Data

The semantics of fuzzy data represented by a possibility distribution corre-
sponds to the semantic space and the semantic relationship between two fuzzy data,
and can be described by the relationship between their semantic spaces.22 The se-
mantic inclusion degree is then employed to measure semantic inclusion, and thus
measure the semantic equivalence of the fuzzy data.

DEFINITION 2. Let πA and πB be two fuzzy data, and their semantic spaces be
SS(πA) and SS(πB), respectively. Let SID(πA, πB) denote the degree that πA

semantically includes πB. Then:

SID(πA, πB) = SS(πB) ∩SS(πA)

SS(πB)

For two fuzzy data πA and πB, the meaning of SID(πA, πB) is the percentage
of the semantic space of πB that is wholly included in the semantic space of πA.
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Following Definition 2, the concept of equivalence degree can be easily drawn as
follows.

DEFINITION 3. Let πA and πB be two fuzzy data and SID(πA, πB) be the degree
that πA semantically includes πB. Let SE(πA, πB) denote the degree that πA and πB

are equivalent to each other. Then:

SE(πA, πB) =min(SID(πA, πB),SID(πB, πA))

In Ref. 22, for two fuzzy data represented by possibility distributions, the
definition for calculating the semantic inclusion degree of two fuzzy data is given
based on possibility distributions and resemblance relations.

DEFINITION 4. Let U = {u1, u2, . . . , un} be the universe of discourse. Let πA and
πB be two fuzzy data onUbased on a possibility distribution, andπA(ui ), for ui ∈U,

denote the possibility that ui is true. Let Res be a resemblance relation on domain
U, and α for 0≤ α ≤ 1 be a threshold corresponding to Res. SID(πA, πB) is then
defined by

SID(πA, πB) =
∑n

i, j=1 minui ,u j∈D and Res(ui ,u j )≥α(πB(ui ), πA(u j ))∑n
i=1 πB(ui )

The notion of the semantic equivalence degree of attribute values can be ex-
tended to the semantic equivalence degree of tuples. Let ti = 〈ai1, ai2, . . . , ain〉 and
t j = 〈a j1, a j2, . . . , a jn〉 be two tuples in fuzzy relational instance r over schema R
(A1, A2, . . . , An). The semantic equivalence degree of tuples ti and t j is denoted
SE(ti , t j ) =min{SE(ti [A1], t j [A1]), SE(ti [A2], t j [A2]), . . . , SE(ti [An], t j [An])}.
PROPOSITION 1. Let r be a fuzzy relation on schema R,U be the set of attributes
of R, and X, Y ⊆U. Then SE(t[XY ], s[XY ]) ≤ SE(t[X ], s[X ]) and SE(t[XY ],
s[XY ]) ≤SE(t[Y ], s[Y ]) for any t and s in r(R).

The proof follows directly from SE(t[XY ], s[XY ]) =min{SE(t[X ], s[X ]),
SE(t[Y ], s[Y ])}. Generally, if X ⊆ Y , then SE(t[X ], s[X ]) ≥ SE(t[Y ], s[Y ]).

PROPOSITION 2. SE(t[X ], t[X ]) ≥ SE(t[X ], s[X ]) for any t and s in a fuzzy rela-
tion r(R), where X ⊆U.

Since SS(t[X ]) ∩SS(s[X ]) ≤ SS(t[X ]), the proof follows directly from Defi-
nition 2 and Definition 3.

3. FUZZY DATA DEPENDENCIES

Integrity constraints play a critical role in a logical database design inwhich data
dependencies are of more interest. One of the most important data dependencies is
the functional dependency (FD) in relational databases, representing the dependency
relationships among attribute values in a relation. In classic relational databases,
functional dependencies can be defined as follows.
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DEFINITION 5. For a classic relation r(R), in which R denotes the schema, its
attribute set is denoted by U, and X, Y ⊆U, we say r satisfies the functional de-
pendency FD: X → Y, if :

(∀t ∈ r)(∀s ∈ r)(t[X ]= s[X ]⇒ t[Y ]= s[Y ])

Multivalued dependencies (MVDs), originated by Fagin,13 are another impor-
tant type of data dependency that are imposed on the tuples of relational databases,
relating an attribute value or a set of attribute values to a set of attribute values,
independent of the other attributes in the relation. In classic relational databases,
multivalued dependencies can be defined as follows.

DEFINITION 6. For a classic relation r(R), in which R denotes the schema, its
attribute set is denoted by U, X, Y ⊆U, and Z =U − XY, we say r satisfies the
multivalued dependencyMVD: X →→ Y, if :

(∀t ∈ r)(∀s ∈ r)(t[X ] = s[X ]⇒ (∃u ∈ r)(u[X ]= t[X ]∧ u[Y ]

= t[Y ]∧ u[Z ]= s[Z ]))

3.1. Fuzzy Functional Dependencies (FFDs)

Fuzzy functional dependencies can reflexively represent the dependency re-
lationships among attribute values in fuzzy relations, such as “the salary almost
depends on the job position and experience.” Following the notion of semantic equiv-
alence degree and the methodology for the definition of fuzzy functional dependen-
cies introduced in Ref. 22, we give the definition of fuzzy functional dependencies
as follows.

DEFINITION 7. For a relation instance r(R), where R denotes the schema, its
attribute set is denoted by U, and X, Y ⊆U, we say r satisfies the fuzzy functional
dependency FFD: X ↪→ Y, if :

(∀t ∈ r)(∀s ∈ r)(SE(t[X ], s[X ]) ≤ SE(t[Y ], s[Y ]))

Consider the fuzzy relation instance r in Table I. Assume that attribute domains
Dom(X) = {a, b, c, d, e} and Dom(Y ) = { f, g, h, i, j}. There are two resemblance
relations Res(X) and Res(Y ) on X and Y shown in Figure 1 and Figure 2, re-
spectively. Let two thresholds on Res(X) and Res(Y ) be α1 = 0.90 and α2 = 0.95,
respectively.

Table I. Fuzzy relation instance r

K X Y

t 1001 {0.7/a, 0.4/b, 0.5/d} {0.9/f, 0.6/g, 1.0/h}
s 1002 {0.5/a, 0.4/c, 0.8/d} {0.6/g, 0.9/h, 0.9/i}
u 1003 {0.3/d, 0.8/e} {0.6/h, 0.4/i, 0.1/j}
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Res(X ) a b c d e
a 1.0 0.2 0.3 0.2 0.4
b 1.0 0.92 0.4 0.1
c 1.0 0.1 0.3
d 1.0 0.2
e 1.0

Figure 1. Resemblance relation Res(X) on X .

SinceSE(t[X ], s[X]) =min(SID(t[X], s[X]),SID(s[X], t[X])) =min(0.824,
0.875) = 0.824, and SE(t[Y ], s[Y ]) =min(SID(t[Y ], s[Y ]), SID(s[Y ], t[Y ])) =
min(1.0, 0.96) = 0.96, then SE(t[X ], s[X ]) ≤ SE(t[Y ], s[Y ]) is true. Similarly, we
have SE(t[X ], u[X ]) ≤ SE(t[Y ], u[Y ]), and SE(s[X ], u[X ]) ≤ SE(s[Y ], u[Y ]).
Hence, FFD: X ↪→ Y holds in r .

THEOREM 1. A classic functional dependency FD satisfies the definition of FFD.

Proof. Let FD: X → Y be true. Then for ∀t ∈ r and ∀s ∈ r, t[X ]= s[X ]⇒ t[Y ]=
s[Y ]. It is evident that SE(t[X ], s[X ]) =min(SID(t[X ], s[X ]), SID(s[X ], t[X ])) =
1, and SE(t[Y ], s[Y ]) =min(SID(t[Y ], s[Y ]),SID(s[Y ], t[Y ])) = 1.

3.2. Fuzzy Multivalued Dependencies (FMVDs)

Being similar to the fuzzy functional dependency, we can define the fuzzy
multivalued dependencies based on the notion of the semantic equivalence degree
as follows.

DEFINITION 8. Let r(R) be a fuzzy relation instance on schema R,U be the set of
attributes of R, X, Y ⊆U, and Z =U − XY .We say r satisfies the fuzzymultivalued
dependency FMVD: X ↪→↪→ Y if :

(∀t ∈ r)(∀s ∈ r)(∃u ∈ r)(SE(u[X ], t[X ]) ≥ SE(t[X ], s[X ]) ∧SE(u[Y ], t[Y ])

≥ SE(t[X ], s[X ]) ∧SE(u[Z ], s[Z ]) ≥ SE(t[X ], s[X ]))

Consider the fuzzy relation instance r in Table II. Assume that attribute do-
mains Dom(X) = {a, b, c, d, e}, Dom(Y ) = { f, g, h, i, j}, and Dom(Z) = {a, b, c,
d, e, f }. There are three resemblance relations Res(X),Res(Y ), and Res(Z) on
X, Y , and Z in Figure 1, Figure 2, and Figure 3, respectively. Let three thresholds on
Res(X),Res(Y ), and Res(Z) be α1= 0.90, α2= 0.95, and α3= 0.90, respectively.

Res(Y ) f g h i j
f 1.0 0.3 0.2 0.96 0.2
g 1.0 0.4 0.2 0.3
h 1.0 0.3 0.1
i 1.0 0.4
j 1.0

Figure 2. Resemblance relation Res(Y ) on Y .
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Table II. Fuzzy relation instance r

X Y Z

t {0.4/a, 0.6/b, 0.7/d} {0.6/g, 0.9/h, 0.8/i} {0.5/a, 0.7/c, 0.4/e}
s {0.4/c, 0.5/d, 0.2/e} {0.3/h, 0.6/i, 1.0/j} {0.2/b, 0.5/c, 0.9/e, 0.8/f}
u {0.4/a, 0.5/b, 0.6/d} {0.6/g, 0.7/h, 0.8/f} {0.6/d, 1.0/e, 0.7/f}

Following Definition 3 and Definition 4, we have:

SE(t[X ], s[X ]) = min(SID(t[X ], s[X ]),SID(s[X ], t[X ]))

= min(0.818, 0.529) = 0.529

SE(t[X ], u[X ]) = min(SID(t[X ], u[X ]),SID(u[X ], t[X ]))

= min(1.0, 0.882) = 0.882> SE(t[X ], s[X ])

SE(t[Y ], u[Y ]) = min(SID(t[Y ], u[Y ]),SID(u[Y ], t[Y ]))

= min(1.0, 0.913) = 0.913> SE(t[X ], s[X ])

SE(s[Z ], u[Z ]) = min(SID(s[Z ], u[Z ]),SID(u[Z ], s[Z ]))

= min(0.913, 0.875) = 0.875> SE(t[X ], s[X ])

Hence, FMVD: X ↪→↪→ Y holds in r .

THEOREM 2. A classic multivalued dependency MVD satisfies the definition of
FMVD.

Proof. Let relational instance r(R) satisfy MVD: X →→ Y , where X, Y ⊆ R,
and Z = R − XY . Then∀t ∈ r, ∀s ∈ r , and t[X ]= s[X ]⇒ (∃u ∈ r) (u[X ]= t[X ]∧
u[Y ]= t[Y ]∧ u[Z ]= s[Z ]). Accordingly, SE(u[X ], t[X ]) = SE(u[Y ], t[Y ]) =
SE(u[Z ], s[Z ]) = SE(t[X ], s[X ]) = 1.

4. REFERENCE RULES FOR FUZZY DATA DEPENDENCIES

In classic relational databases, functional andmultivalued dependencies satisfy
the inference rules, namely, the axiom systems.1,2 According to the definitions of the
fuzzy functional and multivalued dependencies based on the semantic equivalence
degree, a set of the inference rules for FFD and FMVD can be derived, which

Res(Z ) a b c d e f
a 1.0 0.1 0.4 0.3 0.1 0.1
b 1.0 0.2 0.3 0.2 0.2
c 1.0 0.95 0.5 0.3
d 1.0 0.3 0.1
e 1.0 0.4
f 1.0

Figure 3. Resemblance relation Res(Z) on Z .
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are similar to that for FD and MVD in classic relational databases. We call them
fuzzy axiom systems. It can be proven that the fuzzy axiom systems are sound and
complete.

4.1. Inference Rules for FFDs

FA1 (Reflexivity): If Y ⊆ X ⊆U , then X ↪→ Y .
FA2 (Augmentation): If X ↪→ Y and Z ⊆U , then XZ ↪→ YZ.
FA3 (Transitivity): If X ↪→ Y and Y ↪→ Z , then X ↪→ Z .
FA9 (Union): If X ↪→ Y and X ↪→ Z , then X ↪→ YZ.
FA10 (Decomposition): If X ↪→ YZ, then X ↪→ Y and X ↪→ Z .
FA11 (Pseudotransitivity): If X ↪→ Y and YW ↪→ Z , then XW ↪→ Z .

THEOREM 3. The inference rules FA1–FA3 and FA9–FA11 are sound.

Proof.

(1) Since Y ⊆ X , we have SE(t[X ], s[X ]) ≤ SE(t[Y ], s[Y ]) for ∀t ∈ r and ∀s ∈ r from the
definition of the semantic equivalence of tuples.

(2) SinceFFD: X ↪→ Y holds in a relation r , SE(t[X ], s[X ]) ≤ SE(t[Y ], s[Y ]) for∀t ∈ r and
∀s ∈ r , we have min(SE(t[X ], s[X ]),SE(t[Z ], s[Z ])) ≤min(SE(t[Y ], s[Y ]),SE(t[Z ],
s[Z ])), i.e., SE(t[XZ], s[XZ]) ≤ SE(t[YZ], s[YZ]).

(3) If X ↪→ Y and Y ↪→ Z , then SE(t[X ], s[X ]) ≤ SE(t[Y ], s[Y ]) and SE(t[Y ], s[Y ]) ≤
SE(t[Z ], s[Z ]) for ∀t ∈ r and ∀s ∈ r , thus SE(t[X ], s[X ]) ≤ SE(t[Z ], s[Z ]), that is,
X ↪→ Z .

(4) The decomposition rule and the pseudotransitivity rule follow easily from FA1–FA3.
(5) Now we prove the union rule. Since X ↪→ Y , we may augment X to X ↪→XY by FA2.

Also for X ↪→ Z , we may augment Y to XY ↪→ YZ by FA2. By transitivity, X ↪→ XY
and XY ↪→ YZ imply X ↪→ YZ.

4.2. Inference Rules for FMVDs

FA4 (Complementation): If X ↪→↪→ Y , then X ↪→↪→ (U − XY).
FA5 (Augmentation): If X ↪→↪→ Y and V ⊆ W , then WX ↪→↪→ VY.
FA6 (Transitivity): If X ↪→↪→ Y and Y ↪→↪→ Z , then X ↪→↪→ (Z − Y ).
FA12 (Union): If X ↪→↪→ Y and X ↪→↪→ Z , then X ↪→↪→ YZ.
FA13 (Decomposition): If X ↪→↪→ Y and X ↪→↪→ Z , then X ↪→↪→ Y ∩ Z and X ↪→↪→
(Y − Z).

FA14 (Pseudotransitivity): If X ↪→↪→ Y and YW ↪→↪→ Z , then XW ↪→↪→ (Z − YW).

THEOREM 4. The inference rules FA4–FA6 and FA12–FA14 are sound.

Proof. Proofs of FA4, FA6, and FA12 follow directly from the proofs in Refs. 2,
3, and 28. The decomposition rule follows easily from FA4 and FA12, and the
pseudotransitivity rule follows easily from FA5 and FA6.

We prove FA5 in the following. Since FMVD: X ↪→↪→ Y holds in a
relation r , SE(u[X ], t[X ]) ≥ SE(t[X ], s[X ]),SE(u[Y ], t[Y ]) ≥ SE(t[X ], s[X ]),
and SE(u[U − XY], s[U − XY]) ≥ SE(t[X ], s[X ]) for t, s, and u ∈ r . We have
min(SE(u[X ], t[X ]),SE(u[W ], t[W ])) ≥min(SE(t[X ], s[X ]), (t[W ], s[W ])) and
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min(SE(u[Y ], t[Y ]), SE(u[V ], t[V ])) ≥min(SE(t[X ], s[X ]), SE(u[V ], t[V ])) ≥
min(SE(t[X ], s[X ]), (t[W ], s[W ]))becauseofV ⊆W . Besides, SE(u[U − XYWV],
s[U − XYWV]) ≥ SE(u[U − XY], s[U−XY ]) ≥ SE(t[X ], s[X ]) ≥ SE(t[WX],
s[WX]). Thus, WX ↪→↪→ VY holds in r .

4.3. Mixed Inference Rules for FFDs and FMVDs

FA7: If X ↪→ Y , then X ↪→↪→ Y .
FA8: If X ↪→↪→ Y , Z ⊆ Y , W∩ Y = �, and W ↪→ Z , then X ↪→ Z .

THEOREM 5. The inference rules FA7–FA8 are sound.

Proof.

(1) Suppose X ↪→↪→ Y does not hold in r . Then SE(u[Y ], t[Y ]) < SE(t[X ], s[X ]) or
SE(u[Z ], s[Z ]) < SE(t[X ], s[X ])whenSE(u[X ], t[X ]) ≥ SE(t[X ], s[X ]). Since X ↪→
Y holds in r , we have SE(t[X ], s[X ]) ≤ SE(t[Y ], s[Y ]),SE(u[X ], t[X ]) ≤ SE(u[Y ],
t[Y ]), and SE(u[X ], s[X ]) ≤ SE(u[Y ], s[Y ]). If SE(u[Y ], t[Y ]) < SE(t[X ], s[X ]), then
we have SE(t[X ], s[X ]) ≤ (u[X ], t[X ]) ≤ SE(u[Y ], t[Y ]) < SE(t[X ], s[X ]). There is a
contradiction. Similarly, using FA2 (Augmentation) and Proposition 1, we can draw the
conclusion that there exists a contradiction if SE(u[Z ], s[Z ]) < SE(t[X ], s[X ]).

(2) Suppose that X ↪→↪→ Y and W ↪→ Z hold in a relation r(R), where W ∩ Y = � and
Z ⊆ Y , but X ↪→ Z does not hold in r . Then there are tuples t and s in r such that
SE(t[X ], s[X ]) > SE(t[Z ], s[Z ]). By X ↪→↪→ Y applied to t and s, there is a tuple u in
r such that SE(u[X ], t[X ]) ≥ α,SE(u[Y ], t[Y ]) ≥ α, and SE(u[R − XY], s[R − XY]) ≥
α, where SE(t[X ], s[X ]) = α. SinceW ∩ Y = � andW ⊆ X (R − XY), hence SE(u[W ],
s[W ]) ≥ SE(u[X (R − XY)], s[X (R − XY)]) =min(SE(u[X ], s[X ]), SE(u[R − XY],
s[R − XY])) ≥ α. As Z ⊆ Y,SE(u[Z ], t[Z ]) ≥ SE(u[Y ], t[Y ]) ≥ α. Hence, SE(u[Z ],
s[Z ]) < SE(t[X ], s[X ]), and then SE(u[W ], s[W ]) > SE(u[Z ], s[Z ]). This contradicts
W ↪→ Z . So we can conclude that X ↪→ Z holds in r .

THEOREM 6. The inference rules FA1–FA14 are complete.

Proof.20 Let F andG be the sets of FFDs and FMVDs on the universe of discourse
U , respectively. The theorem means that any FFD: f = A ↪→ B and FMVD: g =
C ↪→↪→ D, which are logically implied by F and G, can be deduced from F and
G by FA1–FA14.

Let (F , G)+ be the closures of F and G. For a given FFD: f = A ↪→ B or
FMVD: g = C ↪→↪→ D that does not belong to (F,G)+, there exists an instance r
onU such that all dependencies in F andG are valid in r , but A ↪→ B orC ↪→↪→ D
is invalid in r .

Let F ′ and G ′ be two sets of classic dependencies correspond to F and G,
namely, F ′ = {X → Y | X ↪→ Y ∈ F} and G ′ = {X →→ Y | X ↪→↪→ Y ∈ G}. Let
FD: f ′ = A → B andMVD: g′ = C →→ D. We can construct a relational instance
r ′ that satisfies F ′ andG ′ but does not satisfy f ′ and g′. ByTheorem1 andTheorem2,
we know that r ′ satisfies F and G but does not satisfy f and g. This problem
transformed into the classic correspondence problem.2

THEOREM 7. The inference rules FA1–FA14 are sound and complete.

The soundness of the inference rules follows from Theorem 4 and Theorem 5,
and the completeness of inference rules follows from Theorem 6.
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5. CONCLUSION

Fuzzy data may emerge in databases due to information imprecision or un-
certainty. Fuzzy values have been used to represent imprecise data in relational
databases. Data dependencies not only play a critical role in a logical database de-
sign, but also have significant influence on fuzzy data processing such as queries
and updates.

Based on the most general fuzzy relational databases, where fuzziness of data
appears in attribute values in the form of possibility attributions, as well as re-
semblance relations in attribute domain elements, called extended possibility-based
fuzzy relational databases, we introduce the notion of semantic equivalence degree
to evaluate semantic relationships between fuzzy data and give the expressions.With
this proposal, we discuss the issues of fuzzy data dependencies. We give a set of
inference rules for fuzzy functional and multivalued dependencies, and show that
the inference rules for FFDs and FMVDs, which are similar to the classic case of
Armstrong’s axioms, are sound and complete.
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