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Abstract. We present new approximation schemes for various classical prob-
lems of finding the minimum-weight spanning subgraph in edge-weighted undi-
rected planar graphs that are resistant to edge or vertex removal. We first give
a PTAS for the problem of finding minimum-weight 2-edge-connected spanning
subgraphs where duplicate edges are allowed. Then we present a new greedy
spanner construction for edge-weighted planar graphs, which augments any con-
nected subgraph A of a weighted planar graph G to a (1 + ε)-spanner of G with
total weight bounded by weight(A)/ε. From this we derive quasi-polynomial
time approximation schemes for the problems of finding the minimum-weight
2-edge-connected or biconnected spanning subgraph in planar graphs. We also
design approximation schemes for the minimum-weight 1-2-connectivity prob-
lem, which is the variant of the survivable network design problem where ver-
tices have non-uniform (1 or 2) connectivity constraints. Prior to our work, for all
these problems no polynomial or quasi-polynomial time algorithms were known
to achieve an approximation ratio better than 2.

1 Introduction

The survivable network design problem is to design graphs that resist edge and/or vertex
removal. This is a fundamental problem in algorithmic graph theory with numerous
applications in computer science and operations research (see, e.g., [13,16,23]). The
classical k-connectivity problems are perhaps the most extensively studied problems
in network design. We are given a graph G with n vertices and a nonnegative weight
w(e) on each edge e, and we want to find a k-edge or k-vertex connected spanning
subgraph S, such that its total edge weight w(S) equals OPT, the minimum possible.
It is well-known that all non-trivial variants of the survivable network design problem
are NP-hard and therefore the main research interest lies in the design of efficient
approximation algorithms (see, e.g., [16] for a survey).

In this paper we consider approximation algorithms for the most basic case of the
survivable network design problem in which the resulting subgraphs should be resistant
to the removal of a single edge or vertex. The two classical problems here are to find a
minimum-weight 2-edge-connected (2-EC) spanning subgraph (a 2-ECSS) of G, or a 2-
vertex-connected (2-VC or biconnected) spanning subgraph (a 2-VCSS) of G. We also
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consider a standard relaxation of the 2-ECSS problem of finding a minimum weight
2-EC spanning sub-multigraph (2-ECSSM) H of G, meaning that an edge of G can
be used multiple times in H (consequently its weight is also counted multiple times
in H). Another classical extension is the 1-2-connectivity problem: each vertex v is
assigned a connectivity type rv ∈ {1, 2}. The problem is to find a minimum weight
spanning subgraph such that for any pair of vertices v, u ∈ V , there are at least ruv =
min{ru, rv} edge-disjoint or vertex-disjoint paths between v and u. We denote the 1-
2-edge-connectivity by {1,2}-EC, and 1-2-vertex-connectivity by {1,2}-VC. We also
consider the relaxed 1-2-edge-connectivity problem where each edge may be used more
than once.

All the problems mentioned above have been extensively studied in the literature.
Since all these problems are NP-hard, the main research has been devoted to de-
sign efficient approximation algorithms, see the survey [16] and more recent advances
[5,11,12,15,18]. In general, we would prefer to design a polynomial-time approximation
scheme (PTAS), which is a c-approximation algorithm taking both G and c as inputs,
and running in polynomial time for each fixed c > 1. However, all the problems we
consider in this paper are max-SNP-hard [7], even for unweighted graphs or when du-
plicate edges are allowed; therefore they do not have a PTAS unless P = NP . But this
does not preclude a PTAS for restricted classes of graphs: indeed, there exist PTAS’s
for all these problems in geometric graphs in low dimensions [7,9], and also for the
2-ECSS and 2-VCSS problems in unweighted planar graphs [6]. In fact, the approxi-
mation schemes of [6] allow weighted planar graphs, but then the algorithms will either

run in time nO(
w(G)
ε·OPT ) to ensure an (1 + ε)-approximate solution or they run in polyno-

mial time with an approximation guarantee of 1+O( w(G)
ε·OPT ). Since the ratio w(G)/OPT

could be arbitrarily large, these algorithms are in general not PTAS’s for weighted pla-
nar graphs.

For both the 2-ECSS and 2-VCSS problems in weighted planar graphs, the best
known polynomial-time or even quasi-polynomial-time approximation guarantee is still
2 [17,21], which is achieved by polynomial-time algorithms working for general weigh-
ted graphs. On the other hand, besides the PTAS for unweighted planar graphs [6], there
are better constant approximation guarantees known for general unweighted graphs. For
example, there exists a 5

4 -approximation algorithm for the unweighted 2-ECSS prob-
lem [15], and a 4

3 -approximation algorithm for the unweighted 2-VCSS problem [24].
A similar phenomenon can be seen for the 1-2-connectivity problems. For both, the

unweighted {1,2}-ECSS and the unweighted {1,2}-VCSS problem, Krysta [19] gives
3
2 -approximation algorithms. If the graph is weighted, the best known result for {1,2}-
ECSS is a 2-approximation algorithm, due to Jain [14], which in fact solves the more
general problem where rv ≤ k for any k. For the weighted {1,2}-VCSS problem,
Fleischer [10] gives a 2-approximation algorithm, which actually solves the {0,1,2}-
VCSS problem. A PTAS for the geometric version of these problems is presented in [9].

The discrepancy between approximation guarantees of the unweighted and weighted
versions of these problems is a phenomenon that is known also for general graphs. A
striking discrepancy is known for the k-VCSS problem (k À 2), which admits a (1 +
1/k)-approximation for the unweighted case [4], while for the weighted version of the
problem the best known approximation guarantee is O(ln k ·min{

√
k, n

n−k ln k}) [18]



for any k, and is O(ln k) when n ≥ 6 k2 [5]. In general, a PTAS for unweighted graphs
in some family does not seem to imply a PTAS for weighted graphs in the same family.
In particular, the existence of polynomial-time or even quasi-polynomial-time approxi-
mation schemes for these problems in weighted planar graphs has remained as a major
open question in the area.

1.1 New Contributions and Techniques

We present efficient approximation schemes for all the above mentioned problems in
weighted planar graphs. Our approximation algorithms depend in a crucial way on our
new construction of light spanners for planar graphs.

Let G be a weighted graph. We use dG(u, v) to denote the weighted shortest path
distance between the vertices u and v in G. An s-spanner of G is a spanning subgraph H
of G such that dH(u, v) ≤ s · dG(u, v) for all u, v. A spanner provides an approximate
representation of the shortest path metric (1-connectivity) in G, but it may be much
lighter than G.

Althöfer et al. [1] designed a simple greedy algorithm that for an arbitrary graph G
computes an s-spanner H of G for any s > 1. In the case of planar graphs, it is
shown in [1] that this spanner has weight w(H) ≤ (1 + 2/(s − 1))MST(G), where
MST(G) is the weight of a minimum spanning tree in G. Since MST(G) ≤ OPT for
all the problems we consider, this bounds the ratio w(H)/OPT in terms of just s. If
all weighted graphs in a graph family have spanners with such a bound on w(H)/OPT
(depending only on s), then we say the family has light spanners for this problem.
Light spanners are known to be very useful for solving various optimization problems
on graphs. For example, planar graphs have light spanners for metric-TSP: the first step
in the metric-TSP PTAS for weighted planar graphs [2] is to replace the input graph
with an accurate enough s-spanner (using [1]), thus effectively bounding w(G)/OPT
for the remainder of the algorithm. Spanners are also used in complete geometric graphs
to design efficient PTAS’s for geometric TSP and related problems [22], and to design
PTAS’s for the 2-edge and 2-vertex-connectivity problems [8,9].

By combining the spanner constructed in [1] with the planar separator decomposi-
tion approach tuned to analyze 2-connected graphs [6], we show that one can design a
PTAS for the 2-ECSSM problem and a PTAS for the {1,2}-ECSSM problem. However,
this approach of replacing the input graph with an s-spanner fails for the 2-ECSS and
2-VCSS problems. The reason is that a spanner does not have to be 2-connected, thus
may not contain the optimal or a near optimal solution in most cases. Naturally, one
may think to use light fault-tolerant spanners (see, e.g., in [20]), which are subgraphs
that persist as s-spanners even after deleting a constant number of vertices or edges.
Unfortunately, this concept is not useful in our setting, since simple examples show that
light fault-tolerant spanners do not exist in weighted planar graphs, not even for a single
edge deletion.

To solve the problem mentioned above, we present our main contribution: a new
greedy spanner construction which produces a light planar spanner with certain desir-
able properties. Specifically, given a weighted planar graph G, a connected spanning
subgraph A of G and s > 1, it computes an s-spanner H of G. H contains A as a sub-
graph and has total weight w(H) = O(1/(s−1) ·w(A)). Thus if we feed the algorithm



with α-approximate solutions H to the various connectivity problems in a weighted
planar graph G, then we obtain an O(α/(s − 1))-approximation H∗ for that problem,
which at the same time is an s-spanner for G. Furthermore, we can show that while H∗

need not contain an (1 + ε)-approximate solution S, we do put a bound on the number
of edges of S “crossing” each face of H∗ (Lemma 3).

Using our new spanner construction technique and the planar separator decompo-
sition, we design approximation schemes for the 2-ECSS and 2-VCSS, {1,2}-ECSS
and {1,2}-VCSS problems, which find solutions with weight at most (1 + ε) · OPT in
nO(log n log(1/ε)/ε) time; these are quasi-polynomial time approximation schemes (QP-
TAS’s).

Organization. We first present a PTAS for the 2-ECSSM problem in Section 2. This
section contains also a description of the main algorithmic approach used in our approx-
imation schemes, which is a combination of the use of spanners, a recursive approach
driven by a variant of the planar separator theorem, and dynamic programming. Next, in
Sections 3 and 4, we describe our new construction of spanners and discuss the special
properties of the spanners. In Section 5, we present quasi-polynomial approximation
schemes for the 2-ECSS and the 2-VCSS problems. Finally in Section 6, we consider
{1,2}-ECSS and {1,2}-VCSS problems: we show a PTAS for the {1,2}-ECSSM prob-
lem, and a QPTAS for each of the {1,2}-ECSS and {1,2}-VCSS problems.

2 PTAS for the 2-ECSSM Problem

Let G be a connected weighted graph. A 2-ECSSM H of G is a spanning sub-multigraph
of G in which edges can have some multiplicity and in which every pair of vertices is
connected by at least two edge-disjoint paths. Note that G may not have any multiple
edges at all. If an edge is used multiple times in H , its weight also contributes multiple
times to the weight of H . Since it never helps to use an edge more than twice, we may
cap all edge multiplicities at two. We now present a PTAS for this problem, running in
nO(1/ε2) time.

Given G and ε > 0, we choose s so that s2 ≤ 1 + ε. We first compute an s-spanner
H in G by the greedy spanner algorithm [1], with weight w(H) = O((1/ε) · OPT).
Now we show that there is a (1 + ε)-approximate 2-ECSSM that uses only edges from
H . Suppose S∗ is an optimal 2-ECSSM in G with w(S∗) = OPT. Now we modify S∗

such that it uses only edges from H . For each edge e of S∗ not in H , we remove e and
add a shortest path from H of total weight at most s · w(e). When we add the path, we
add the edges with multiplicity, but capped at two. The result of all these modifications
is another 2-ECSSM S, using only edges from H , each edge used at most twice, with
w(S) ≤ s · OPT.

Next we apply the 2-ECSS s-approximation algorithm from [6] to the graph H ′,
which is H with each edge duplicated. Since this algorithm forms also a core of our
algorithm for other problems discussed later in Sections 5 and 6, we briefly describe
it here. The algorithms in [6] use a recursive approach driven by the following planar
separator theorem from [3] (see also [6]):



Lemma 1. Let G be a connected planar graph on n ≥ 3 vertices embedded in the
plane. Suppose G has non-negative weights on its vertices, edges and faces, and non-
negative costs on its edges. Let W be the total weight of the graph and let M be its total
cost and assume that no edge has weight more than (3/4) · W . Then for any positive
integer k, we can find a subgraph F of G and a closed Jordan curve J in O(n) time
such that:

1. F is the union of at most two vertex-disjoint simple cycles (maybe none). The total
cost of the edges on each cycle is at most M/k. If F contains two cycles A and C,
then interior(C) ⊂ interior(A). The interior of C and the exterior of A (if they
exist) both have weight at most W/2.

2. Denote by G′ the embedded graph that results after deleting the interior of C and
the exterior of A (if they exist) and contracting each cycle in F to a vertex of
weight 0. Then J is a Jordan curve which intersects edges of G′ only at their end-
points and passes through O(k) vertices (“portals”) including the new contracted
vertices. The interior and exterior of J both have weight at most (3/4) ·W .

First, we decompose H ′ according to Lemma 1 (with k = Θ((log n/ε) · w(H′)
OPT ) =

Θ(log n/ε2)) into at most four pieces: the interior of the cycle C, the exterior of the
cycle A, and the interior and the exterior of the Jordan curve J . By assigning weight to
the new portals and faces properly, we can make sure that each piece has weight at most
a constant fraction of the H ′. We continue to decompose the small pieces recursively. It
is easy to see that the depth of the recursion is logarithmic, and the number of pieces is
O(n log n). By the weighting scheme of the new portals ([2,6]), one can show that each
piece has a portal set P with size O(k).

We would like to find a low cost spanning subgraph in each piece and then combine
them together to form an almost minimum wight 2-ECSS of H ′. Of course we do not
know the remaining subgraph outside this piece. Thus, for each piece, we enumerate
all the different ways that some subgraph of H ′ (outside this piece) may influence the
connectivity constraints within this piece. We call these the external types of the piece,
and one can show that the number of such types is 2O(|P |) = nO(1/ε2) [6, Lemma 2.4],
where P is the set of portals of this piece.

For each piece and each external type, we must find a near minimum cost subgraph
of the piece, so that this subgraph together with the external type can meet the global
connectivity constraints. We use dynamic programming to solve the subproblems in
each of the pieces.

During the course of the algorithm, we always commit the cycle edges found in the
separator to the solution, which is the only source of the error in our algorithm. Since
the cycle edges has total cost at most w(H ′)/k at each level of the recursion and there
are at most O(log n) levels, by setting appropriately the leading constant in k, we can
show that the total error introduced in the algorithm is ε · OPT. For each piece, the
number of types is bounded by nO(w(H′)/(ε·OPT)) = nO(1/ε2). There are O(n log n)
pieces. Therefore the algorithm solves nO(1/ε2) subproblems, each in time nO(1/ε2).

In summary, we have the following theorem.



Theorem 1. Let ε > 0 and let G be a connected weighted planar graph with n vertices.
There is an algorithm running in time nO(1/ε2) that outputs a 2-ECSSM of G whose
weight is at most (1 + ε) times the minimum.

Why this technique fails for other problems: The above technique does not work for
other problems considered in this paper, because there we are not allowed to duplicate
edges from G in the output graph. Instead, our approximation schemes must consider
the possibility that the near-optimal S needs some “extra” edges from outside the span-
ner. In Sections 3 and 4 we develop a new type of light planar spanners and we limit the
number and arrangement of those extra edges outside the spanner.

3 Augmented Planar Spanners

In this section we present a new greedy algorithm constructing s-spanners in weighted
planar graphs, resembling the standard greedy algorithm [1] for general graphs. Just
as in the standard algorithm, we take a connected weighted graph G and a parameter
s ≥ 1, and produce an s-spanner H . Unlike the general algorithm, our G must be planar,
and for each edge e of G not in H we guarantee that s · w(e) is at least the length of
some path in the face of H containing e. We also provide our algorithm with a third
argument: a “seed” spanning subgraph A, containing edges that must appear in H . In
Section 4 we will use A to enforce some 2-connectivity properties in the spanner.
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Fig. 1. A non-simple face f in H , a chord e, and walks P1 and P2.

Suppose G is a weighted plane graph (that is, an embedded planar graph) and H
is a subgraph. A chord e of H is an edge of G not in H . Note that H and e inherit
embeddings from G. For each chord e we define wH(e) as the length of the shortest
walk connecting the endpoints of e, along the boundary of the face of H containing e.

More precisely, if the endpoints of e are disconnected in H , then we define wH(e) =
+∞. Otherwise e connects two vertices in a component of H , and e is embedded in
some face f of this component. The boundary of f is a cyclic walk of (oriented) edges,
with total weight w(f); note that a cut-edge may appear twice in the boundary (once
per orientation), and its weight would then count twice in w(f). Similarly a cut-vertex



may appear multiple times. The edge e splits the boundary sequence into two walks P1

and P2, both connecting the endpoints of e, with w(P1) + w(P2) = w(f). Now we
define wH(e) = min(w(P1), w(P2)) (see Figure 1).

Given G, s, and A as above, we compute H = Augment(G, s, A) as follows:

Augment(G, s, A):
H ← A
for all edges e of G in non-decreasing w(e) order do

if e is not in H and s · w(e) < wH(e) then
add e to H

return H

Note A ⊆ H ⊆ G. If A is empty (has all vertices of G but no edges), then this is
like the general greedy spanner algorithm [1], except that we have wH in place of dH .

Theorem 2. Let G be a weighted plane graph, s > 1, and A a spanning subgraph
of G. Then H = Augment(G, s, A) is an s-spanner of G. If A is connected, then
w(H) ≤ (1 + 2/(s− 1)) · w(A).

Proof. To show that H is an s-spanner it suffices to show that each edge of G is s-
approximated in H . For e not in H , at the moment it was rejected we had wH(e) ≤
s · w(e). Note that wH(e) may only decrease after that, so dH(e) ≤ wH(e) ≤ s · w(e)
at the end of the algorithm.

For the second part we need to show that the weight of all edges in H but not A is at
most (2/(s− 1)) ·w(A). Suppose e is such an edge; then e is not a cut edge in H since
A is a connected spanning subgraph. Therefore e is bounded by two distinct faces. Let
f be either face bounding e. We first claim that w(f) > (1 + s) · w(e). To see this,
consider the last edge e′ added to f whose boundary consists of a path P plus e′. Since
e′ is added to H , we must have that s · w(e′) < wH(e′) and wH(e′) ≤ w(P ). Adding
w(e′) to both sides of s · w(e′) < w(P ), and noting w(e) ≤ w(e′), we get the claim.

For each face f of A, let Ef be the set of edges in H crossing the interior of f .
Since the sum of w(f) over all faces of A is 2 ·w(A), it suffices to show that w(Ef ) ≤
(1/(s − 1)) · w(f). Note that the edges dual to Ef define a tree on the faces of H
inside f . Orient this dual tree away from some arbitrarily chosen root: now for each
e ∈ Ef , we have chosen an adjacent face fe of H (only the root was not picked). For
each e ∈ Ef we know w(fe)− 2 ·w(e) > (s− 1) ·w(e), from the previous paragraph.
Summing these inequalities over all e ∈ Ef , we get at most w(f) on the left hand side,
and exactly (s− 1) · w(Ef ) on the right.

4 Spanners and 2-EC Subgraphs

Suppose we are given a weighted plane 2-EC graph G, where we want to find an (1+ε)-
approximate 2-ECSS. We first construct an auxiliary subgraph H∗, as follows:

1. Compute a 2-approximate 2-ECSS A, in polynomial time.
2. Compute H∗ = Augment(G,

√
2, A).



The constant
√

2 here is not critical, just convenient. By Theorem 2, H∗ is a 12-
approximate 2-ECSS. Below we show that for every ε > 0, this H∗ has nice intersection
properties with some (1 + ε)-approximate 2-ECSS in G.

Given a face f in H∗, the chords of f are the edges of G embedded inside this face,
according to G’s embedding. A face-edge e of f is an abstract edge connecting two
vertices of f ; unlike a chord, a face-edge is not necessarily an edge of G. (If vertices
appear more than once on f , we must specify which appearances we want as the end-
points of e.) We say the face edge e crosses a chord c if: c is a chord of the same face f ,
their endpoints are distinct vertex appearances on f , and they appear in cyclic “ecec”
order around the boundary of f . Note that we may embed e inside f so e intersects only
the crossed chords.

Suppose S is a 2-ECSS in G, and an edge c of S is not in H∗. Then c is a chord
of some face f of H∗. Let Pc be the path in f connecting the endpoints of c, such that
w(Pc) ≤

√
2 ·w(c). Then the chord move at c is the following modification of S: add to

S all the edges of Pc that were not already in S, and remove from S any chords inside
the cycle c ∪ Pc (see Figure 2(a)). Since H∗ is 2-EC, the cycle has no repeated edges,
and therefore S is still a 2-ECSS after the chord move. The chord move is improving if
w(S) decreases; this happens whenever w(Pc) (or

√
2 ·w(c)) is less than the weight of

the discarded chords. Any non-trivial chord move brings S closer to H∗ (in Hamming
distance), thus at most O(n) improving chord moves apply to any given 2-ECSS S.
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Fig. 2. (a) Face f of H∗ (oval) with chord c, path Pc (bold), and chords removed from
S by the chord move at c (dotted). (b) Face f with a face-edge e (dashed) crossed by
five chords from S.

Lemma 2. Let e be a face edge of a face f in H∗ and S be a 2-ECSS of G. Suppose
C is a set of edges of S all of which are chords crossing e,

√
2 · minc∈C w(c) >

maxc∈C w(c), and no chord in C gives an improving chord move. Then |C| ≤ 4.

Proof. If not, S has five chords crossing e as in Figure 2(b). But then we have an
improving chord move at c3, since the discarded chords ({c1, c2} or {c4, c5}) weigh
more than

√
2 · w(c3).

Now we argue that by accepting a small additive error in our 2-ECSS, we may
assume it has only a small number of chords crossing a given face-edge:



Lemma 3. Suppose G and H∗ are as above, ε > 0, S is a 2-ECSS, f is a face in H∗,
and e is a face-edge in f . Then there exists a 2-ECSS S′ such that w(S′) ≤ w(S) +
ε · w(C ′f ), where C ′f is the set of edges of S′ that are chords crossing e, C ′f ⊆ S, and
|C ′f | = O(log(1/ε)).

Proof. First we may suppose that S has no improving chord move at a chord crossing
e, since such a move could only remove some chords crossing e. Let Cf be the set
of chords in S crossing e. Arrange Cf in “left to right” order, according to how they
intersect e. Let c0 ∈ Cf be the chord with maximum weight. Say that a chord c ∈ Cf is
short if w(c) ≤ ε ·w(c0)/(2

√
2). Now if there are short chords to the left of c0, perform

a chord move at the rightmost one, cl. Similarly if there are short chords to the right of
c0, perform a chord move at the leftmost one, cr. S′ is the result of these (at most) two
chord moves; note that C ′f contains no short chords except possibly cl and cr.

Map each non-short chord c ∈ C ′f to the real number log(w(c0)/w(c)), a point in
the real interval I = [0, log(1/ε) + 3/2]. Note that two edges can be mapped to the
same semi-open subinterval of I of length 1/2 only if the heavier edge has weight less
than

√
2 times that of the lighter edge. By Lemma 2, at most four edges can be mapped

into the same subinterval of I of length 1/2. This implies |C ′f | = O(log(1/ε)).
The chord moves in f increased w(S′) by at most

√
2(w(cl) + w(cr)) ≤ ε ·w(c0),

which is at most ε · w(C ′f ).

Remarks: In the 2-VCSS case, the initial A should be a 2-approximate 2-VCSS, so that
H∗ is a 12-approximate 2-VCSS. Then in the chord move the cycle has no repeated
vertices, therefore S remains a 2-VCSS after the move. In Lemmas 2 and 3, the only
properties of H∗ that we needed were that it was 2-EC (or 2-VC), and that wH∗(e) ≤√

2 · w(e) for each chord e.

5 Approximation Schemes for the 2-ECSS and 2-VCSS Problems

In this section we will show how to use our new spanner construction to find quasi-
polynomial time approximation schemes for the 2-ECSS and the 2-VCSS problems in
weighted planar graphs. We start with the QPTAS for 2-ECSS problem.

We use a similar framework as that in the PTAS for 2-ECSSM problem in Section 2.
But instead of using the spanner constructed as in [1], now we use the augmented span-
ner H∗ as constructed in Section 4.

We first apply Lemma 1 to H∗ with k = Θ(log n/ε) to decompose H∗. However,
different from the PTAS for the 2-ECSSM problem, H∗ may not contain a near-optimal
solution of the 2-ECSS problem. Thus we cannot work on the pieces of H∗ directly.
Fortunately, Lemma 3 guarantees that there exists a near-optimal solution with at most
O(k log(1/ε)) edges crossing the Jordan curve J . We guess these crossing edges by
trying all nO(k log(1/ε)) possibilities. We add the guessed edges to the corresponding
pieces, and the vertices of H∗ along J together with the endpoints of the guessed edges
determine the set of portals P for the new pieces. For each possible new piece with the
guessed edges, we assign weights to the new portals such that each new piece has cost
at most constant fraction of H∗ and O(k) portals. Then we recursively decompose the
new pieces.



As in the PTAS for the 2-ECSSM problem, for each piece we define edge-connecti-
vity types which describe how these portals may be connected outside one of the pieces
in a (1 + ε)-approximate solution. The number of types for each piece is 2O(k log(1/ε)),
exponential in the number of portals. Then, we use dynamic programming to solve the
subproblems as before and we commit the cycle edges to the solution.

The approximation scheme for the 2-VCSS problem is similar, and we only mention
the differences: first, we redefine H∗ as remarked at the end of Section 4, and then we
need to define vertex-connectivity types using the same techniques as in [6].

The error of our final solution comes from two sources. First, we committed the
edges of the cycles that arose from the application of the separator theorem to the
solution. Since each piece in the decomposition has weight at most constant frac-
tion of its parent weight, the depth of the recursive calls is O(log n). As before, the
total error per recursive level is O((w(H∗)/k) log n), where k = Θ(log n/ε) and
w(H∗) = O(OPT/ε). By an appropriate choice of the leading constant defining k,
this is at most (ε/2) · OPT.

Moreover, each time a face of H∗ (or its pieces) is cut by a Jordan curve, we guess
O(log(1/ε)) crossing edges. If we guess these edges optimally (they were edges in
some original optimal S∗), then by Lemma 3 we may pay an additive error of at most
ε/2 times the weight of these guessed edges. Summing over the entire assembly of a
possible solution, the total of these errors is at most (ε/2) · OPT.

The dominating factor in the running time comes from trying all nO(k log(1/ε)) pos-
sibilities for the guessed edges. The weights of the subproblems are only a constant
times the weight of their respective parents and therefore a pure recursive approach
(without dynamic programming) leads to a time bound of T (n) ≤ nO(k log(1/ε))T (c ·n)
(0 < c < 1), with solution nO((1/ε)·log(1/ε)·log2 n). We may improve this bound by a
logarithmic factor in the exponent by using dynamic programming and by a more care-
ful count of subproblems. The following lemma proved in [3] bounds the number of
ways how a graph can be decomposed regardless of its weight scheme.

Lemma 4. Let G be a planar graph on n vertices with non-negative edge costs, embed-
ded in the plane, and a parameter k ≥ 1. Then we can find a list of O(n2) separations
of G, such that for any valid weight scheme of the vertices, edges and faces of G, some
separation in this list satisfies the properties of Lemma 1.

Lemma 4 shows that a piece is partitioned in only O(n2) different ways, no matter
how many arrangements of the vertices along the Jordan curve and incident with the
“guessed” edges we try. This implies:

Lemma 5. The total number of distinct pieces (contracted subgraphs) of the origi-
nal H∗ that occur during our recursive decomposition is nO(log n). Therefore the num-
ber of distinct subproblems (a piece, |P | = O(k log(1/ε)) portals selected in the
piece, and an external connectivity type on those portals) is nO(log n)nO(|P |)2O(|P |) =
nO(k log(1/ε)).

Theorem 3. Let ε > 0 and let G be a 2-EC (2-VC) weighted planar graph with n
vertices. There is an algorithm running in time nO(log n·log(1/ε)/ε) that outputs a 2-
ECSS (2-VCSS) H of G such that w(H) ≤ (1 + ε) · OPT.



6 Extensions to the {1, 2}-Connectivity Problem

In this section, we extend our results to the {1, 2}-connectivity problems in weighted
planar graphs. We focus on the algorithm for the {1, 2}-ECSS problem only. The algo-
rithm for the {1, 2}-VCSS problem can be obtained similarly. The algorithms presented
are modifications of the respective algorithms in Sections 2 and 5.

First, consider the {1, 2}-ECSSM problem, which is a relaxed version of the {1, 2}-
ECSS problem where duplicate edges are allowed. As in Section 2, we can show that
there is a (1+ ε)-approximate {1, 2}-ECSSM that uses only edges from a light (1+ ε)-
spanner H . So instead of G, we can work on H with duplicated edges.

The main difference from Section 2 is the dynamic programming part. We need
to redefine the connectivity types to reflect the non-uniform connectivity requirement.
For this, we can use the connectivity type construction in [9]. Informally, the main
difference is that each time we contract a 2-connected component or path, we assign
the highest connectivity requirement among all contracted vertices to the new vertex.
This increases the number of types from 2O(|P |) to 2O(2|P |), where P is the set of
portals in the given graph. We again obtain a PTAS with running time nO(1/ε2).

Now consider the {1, 2}-ECSS problem. We first find a 2-approximate solution A
using algorithms from [14] (or [10] for {1, 2}-VCSS). Then we augment A into a light
spanner H∗ as in Section 4. Using similar arguments as in the proof of Lemma 3, we
can show that there is a (1 + ε)-approximate {1, 2}-ECSS S so that for each picked
face-edge e, only O(log(1/ε)) edges of S cross e. Now redefine the connectivity types
as above. Finally, we use dynamic programming to solve the problem. The running time
is still dominated by the number of subproblems nO(log n·log(1/ε)/ε). Hence, we get a
QPTAS in this case.

Our results in this section are summarized as follows.

Theorem 4. Let ε > 0 and let G be a weighted planar graph with n vertices. There is
an algorithm running in time nO(1/ε2) that outputs a {1,2}-ECSSM of G whose weight
is at most (1 + ε) · OPT.

Theorem 5. Let ε > 0 and let G be a weighted planar graph with n vertices. There
is an algorithm running in time nO(log n·log(1/ε)/ε) that outputs a {1,2}-ECSS H of G
such that w(H) ≤ (1 + ε) · OPT.

Theorem 6. Let ε > 0, and let G be a weighted planar graph with n vertices. There
is an algorithm running in time nO(log n·log(1/ε)/ε) that outputs a {1,2}-VCSS H of G
such that w(H) ≤ (1 + ε) · OPT.
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