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ABSTRACT

Although reaction time measures have been used extensively in many types of between-group comparisons,
the assumptions and limitations of reaction time measurement are not always recognized. In this article we
discuss three issues that should be considered when designing and interpreting comparisons involving
reaction time. These concern speed-accuracy tradeofts, methods of analyzing measures postulated to reflect
specific processes, and methods for distinguishing group-related influences that are shared with other vari-

ables from those that are unique to a single variable.

INTRODUCTION

This article is concerned with issues relevant to
the use and interpretation of reaction time (RT)
measures in comparisons of different groups. The
discussion is fairly abstract because it is intended
to apply to many possible groups — those defined
by individual difference classifications such as age,
gender, and culture, as well as by criteria such as
psychopathological or neuropsychological status.

Why would researchers be interested in using
RT procedures in comparing people from different
groups? One major reason is that RT appears to
be simple and easy to measure. The researcher
merely presents a stimulus and registers a res-
ponse to it, with the interval between the two
events representing the RT. Furthermore, RT
appears to be precise and quantitative, with
properties of the highest scale of measurement
(i.e., ratio scale with a true zero).

Pachella (1974) has noted that another reason
for the popularity of RT measurements is that the
only property of mental events that can be studied

while they are occurring is their duration. This is
no longer true with the development of on-line
eye movement recordings, evoked potential tech-
niques, and functional neuroimaging, but RT
procedures are certainly among the simplest and
least expensive methods available for on-line
assessment.

However, RT measures are deceptively com-
plex, and they may reflect much more, or much
less, than what the researcher assumes. Even what
appear to be simple variables have multiple deter-
minants, and it is not always easy to identify
which of the potential determinants of the observed
group differences is of greatest importance.
Furthermore, what might seem to be intuitively
obvious methods of comparison may, upon closer
examination, reveal surprisingly serious limita-
tions. In this article we focus on three issues that
we believe should be considered in the design,
analysis, and interpretation of RTs in between-
group comparisons. These are: speed-accuracy
tradeoffs, methods of within-task comparisons,
and analytical procedures for between-group
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comparisons. Other important issues concerned
with the use of RT measures could obviously be
identified, but we have concentrated on these
because they pose special problems in connection
with the interpretation of group differences in RT
measures.

SPEED-ACCURACY TRADEOFFS

The typical instructions in RT tasks are to respond
as rapidly and as accurately as possible. However,
these are often incompatible requirements because
if the responses are very fast then there are
frequently many errors, and if precautions are
taken to avoid any errors then the responses are
often relatively slow. One way of representing
these interrelations is in terms of a tradeoff func-
tion relating speed, along the abscissa, to accu-
racy, along the ordinate.

Consider the two different speed-accuracy
tradeoff functions portrayed in Figure 1, which
could be based on data from different people or
groups, or from different experimental conditions
within a single person or group. The function on
the left, represented by points Al, A2, A3, and A4,
is faster at every level of accuracy than the
function on the right, represented by points B1,
B2, B3, and B4. However, inspection of the figure
reveals that the interpretations can become quite

complicated if people can operate at different
positions on their respective functions. For exam-
ple, even though the points on the left function
generally represent faster performance than the
corresponding points on the right function, the
locations of individual points vary, and compar-
isons would be misleading if both dimensions of
performance were not considered. Even compar-
isons at 100% accuracy would not necessarily be
meaningful because the 100% points may not be
at the same distance from the hypothetical
optimum RT corresponding to the fastest time at
100% accuracy. To illustrate, points A4 and B4
are both at 100% accuracy, but A4 is much closer
to the optimum for the A function than B4 is to the
optimum for the B function.

Unfortunately, there is no simple solution to
what has come to be known as the speed-accuracy
tradeoff problem. In the following paragraphs we
will briefly review several strategies that have
been proposed for dealing with the problem, and
describe some advantages and disadvantages of
each.

First, deletion of error trials ensures that
detected errors are not included in the reported
results, but it does not necessarily solve the speed-
accuracy tradeoff problem. That is, people could
still differ in the number of errors committed, and
therefore the meaning of the RTs in the remaining
correct trials (some of which were probably
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Fig. 1. Hypothetical speed-accuracy tradeoff functions comprised of 4 points (1 through 4) in each of two groups or

conditions (A and B).
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correct by chance) is ambiguous. Merely because
the overt errors are eliminated from the analyses
does not mean that the remaining RTs reflect the
true duration of the relevant processing because
the guesses that were correct by chance are still
represented in the data.

A second possible strategy is to analyze RT and
errors in separate analyses, or possibly even
neglect errors completely. The primary problem
with this approach is that the researcher is
essentially treating intrinsically bivariate data as
univariate, because one dimension of performance
is ignored when considering the other dimension.
An illustration of how this can lead to erroneous
conclusions is evident in Figure 1. Note that if the
focus is only on RT then B2 is faster than A4,
whereas if the focus is exclusively on accuracy
then A4 is higher than B2. Quite different
conclusions about the relation between A and B
could therefore be reached depending on which
dimension is considered, and which neglected.
Treating the dimensions separately may also
have the consequence of converting a ratio scale
measurement into a weaker interval or ordinal
scale because only crude comparisons are possible
for either variable when the variables are on
different relative positions on the tradeoff func-
tions. Moreover, dismissing the possibility of a
tradeoff on the grounds that the error rates were
low can be misleading because the variation in RT
may actually be greatest when the error rates are
low, as is the case in the nonlinear functions
portrayed in Figure 1. It is worth noting, however,
that if the patterns are similar in analyses of RT
and errors, the researcher is probably justified in
concluding that the differences are not attributable
to a speed-accuracy tradeoff even though precise
quantitative comparisons of the magnitude of the
differences still may not be meaningful.

Another strategy that has been pursued in
attempting to deal with the speed-accuracy trade-
off problem involves determining the overall
correlation between RT and accuracy, and then
dismissing the problem if the correlation is not
statistically significant, or if it is negative rather
than positive. A limitation of this approach is that
even small relations between RT and accuracy, in
either direction, could distort the performance
comparisons. Once again referring to Figure 1, if

only points A2 and B3 are considered then the
relation between time and accuracy is positive
(i.e., B3 is slower and more accurate than A2),
whereas if only points A3 and B2 are considered
the relation between time and accuracy is negative
(i.e., B2 is slower but less accurate than A3).
However, quantitative comparisons in both cases
are ambiguous because it is not obvious how
much the differences in the RT axis should be
adjusted to account for the differences in the
accuracy axis, and vice versa. The researcher
could be confident that overall performance in A3
is superior to that in B2 because it is both faster
and more accurate, but the precise amount by
which it is superior cannot be determined without
more detailed information about the relations
between RT and accuracy in each group.

Analysis of covariance is another possible
solution that has been proposed for the speed-
accuracy tradeoff problem, typically by using
accuracy as a covariate when analyzing group
differences in RT. This approach examines speed
and accuracy simultaneously, thus allowing the
variation in one variable to be controlled when
examining effects on the other variable. However,
this approach has two potentially serious limita-
tions. First, the relation of accuracy to RT may not
be linear (possibly because, as in the functions
portrayed in Fig. 1, small accuracy differences
may have greater impact on RT at the extremes of
the function than in the middle). And second, the
nature of the adjustment equation for one group
may not be the same as that for the other group.
Only if the complete functions are available from
every individual can the equivalence of the
functions be examined, and if the entire functions
are available then more powerful comparisons can
be employed.

Another possibility is to create a composite
index by treating RT and accuracy as two indi-
cators of a latent performance construct. For
example, both variables could be converted to z
scores, and then analyses conducted on the aver-
age, or the sum, of the z scores for the RT and
accuracy variables. (Before computing the com-
posite it is important to ensure that both variables
are scaled in the same direction such that high
scores correspond to worse, or better, perform-
ance in each variable.) This method has the
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advantage of taking both speed and accuracy into
consideration with a single variable, but it is based
on the questionable assumption that the two
aspects are equal in importance. Furthermore,
because of the conversion to z-score units, the
scale of measurement is no longer ratio, or possi-
bly even interval, and thus one of the primary
reasons for the appeal of RT measures is lost.

Still another method of dealing with the two
dimensions of performance within the same task
involves determining the ratio of accuracy over
time as a measure of throughput rate. This method,
which is used in sorne psychometric tests, has the
intuitive appeal of yielding a single variable that
might be postulated to reflect processing effi-
ciency in the sense of the level of accuracy
achieved per unit time. Unfortunately, this proced-
ure is not easily adapted to traditional RT mea-
sures. Not only would some adjustment be needed
for chance responding in multiple-choice situa-
tions, but information about the entire tradeoff
function would be necessary to allow meaningful
comparisons. For example, assume that accuracy
was 80% and RT was 400 msec in one condition,
and that accuracy was 96% and RT was 600 msec
in another condition. The corresponding ratios
would be 0.20%/msec and 0.16%/msec, respec-
tively, implying that the former condition was
superior to the latter condition. However, this
conclusion and its apparent precision could be
misleading because comparisons with respect to
which condition has the greater overall efficiency
depend on the relations between speed and accu-
racy in each condition. To illustrate, it is possible
that these points actually fall along the same
speed-accuracy function, in which case they
would reflect equivalent capabilities.

What is almost certainly the most informative
solution to the speed-accuracy tradeoff problem
involves generating functions representing the
relation between RT and accuracy across a wide
range of accuracy values for each individual. If
the complete functions are available, then the
tradeoff problem can be eliminated by making
comparisons of time at a fixed (nonchance and
nonperfect) level of accuracy, or by making
comparisons of accuracy at a fixed level of time.

Three basic methods have been used to gene-
rate these types of tradeoff functions (but see

Meyer, Osman, Irwin, & Yantis, 1988; Wickelgren,
1977, for additional variants on these methods).
One method involves the use of instructions or
payoffs to induce varying emphases across diffe-
rent blocks of trials. For example, there could be a
high reward for fast responses and a low cost for
errors in one block of trials (speed emphasis), a
low reward for fast responses and a high cost for
errors in another set of trials (accuracy emphasis),
and one or more trial blocks with intermediate
(mixed emphasis) rewards and costs.

A second method attempts to obtain different
combinations of speed and accuracy by the use of
RT deadlines or response windows. That is, across
trial blocks the value of a deadline before which
the response is to be emitted, or the temporal
window within which the response is to be
produced, could be varied. By suitable manipula-
tion of the RT deadlines or windows, the respon-
ses can be slow and presumably very accurate in
some trials, in other trials they must be fast even if
they are less accurate, and in still other trials they
can be intermediate in both speed and accuracy.

The third method that has been used to gene-
rate complete speed-accuracy functions is based
on post hoc analyses of RTs within a single block
of trials. In this method a wide range of RTs is
obtained, often by instructing the research
participant to attempt to respond with a moder-
ately high error rate. The RTs are then ordered by
time, and the level of accuracy determined within
each range of RT values to allow functions to be
generated relating RT to accuracy.

With each of these methods the goal is to
obtain functions resembling those in Figure 1 that
would allow comparisons of one variable (e.g.,
RT) to be made at a fixed value of the other
variable (e.g., accuracy). Although the analysis of
complete speed-accuracy functions derived for
each individual appears to be the best available
method of simultaneously considering both RT
and accuracy, it also has some important limita-
tions. Among these are that the generation of
complete speed-accuracy functions is very time-
consuming because a large number of RTs is need-
ed to provide precise estimates at several levels of
accuracy, and if there are multiple conditions in
the study then separate speed-accuracy tradeoff
functions will need to be generated in each
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condition. Furthermore, some individuals may be
reluctant to respond with low levels of accuracy,
with the consequence that their functions would
be incomplete.

To summarize, researchers considering the use
of RT measures need to be aware of the fact that
performance variations can be manifested in RT,
in accuracy, or in both RT and accuracy, and they
should design and carry out analyses that take
potential tradeoffs between these two aspects of
performance into consideration. Ideally, complete
speed-accuracy functions would be determined,
but this is often not feasible in certain situations or
with particular group comparisons. Where this is
not possible, several analytical techniques might
be applied in conjunction to overcome weaknesses
of any single technique. Our recommendation is
to conduct separate analyses of each variable,
analyses on RT with accuracy as a covariate, and
analyses of composite scores. If the results are
consistent across each of these methods then the
researcher can be confident in a conclusion that
there was a real difference in the performance
capabilities between the groups.

METHODS OF WITHIN-TASK
COMPARISONS

Virtually all RT tasks can be assumed to involve a
number of different processes, and when only a
single measure is available it is not clear which
particular processes are contributing to any obser-
ved group differences in RT. One way to be more
specific about the nature of the factors responsible
for overall differences in RT involves the presen-
tation of multiple conditions within a task, fol-
lowed by comparisons of the RTs in the different
conditions. However, even though variants of this
procedure are widely used, it is not as simple as
sometimes assumed.

Techniques for fractionating RT, sometimes
known as mental chronometry, have had a long
history (e.g., Meyer et al., 1988). In fact, the most
common technique, known as the subtraction
method, was originally introduced by Donders in
the 1800s (Donders, 1868/1969). This method
consists of attempting to isolate the duration of a
critical process by comparison of the RTs in

conditions presumed to differ in the presence of a
single stage or process.

The subtraction procedure has been widely
used, and its applications have extended beyond
RTs. To illustrate, most comparisons of the Trail
Making Test (Reitan, 1992) used for neuropsy-
chological assessment are based on the subtrac-
tion method. There are two conditions in this test,
with the examinee instructed to connect targets in
numerical sequence (condition A), or in alternat-
ing numerical and alphabetical sequences (con-
dition B), as rapidly as possible. The difference in
time (or errors) between the two conditions is
often interpreted as a reflection of the influence of
executive processes concerned with task switch-
ing, monitoring, and planning presumed to operate
in the B version but not the A version (e.g.,
Salthouse & Fristoe, 1995).

An example of the subtraction method with RT
tasks is a task introduced by Posner, Boies,
Eichelman, and Taylor (1969) known as the NI-PI
(Name Identity-Physical Identity) task. The
research participant in this situation is instructed
to classify two visually presented letters as same
or different as rapidly as possible, with RT in each
condition serving as the primary dependent
variable. If both letters are the same case then
the decision can be made simply on the basis of
the physical identity of the letters. However, if
one letter is in lower case and the other in upper
case, then the matching decision requires access
to the names of the letters. The additional time for
name identity decisions compared to physical
identity decisions has therefore been interpreted
as an estimate of the duration required to gain
access to the letter name. This is an example of
the subtraction procedure because the name match
decision is assumed to involve all of the processes
involved in the physical match decision with the
addition of name access, and the duration of the
additional process is presumably what is responsi-
ble for the longer RTs in the name identity condi-
tion compared to those in the physical identity
condition.

Although the subtraction method has enjoyed
considerable popularity, it has at least two major
limitations. First, the method requires knowledge
of, or strong assumptions about, the identity and
sequence of processes involved in each of the
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relevant conditions of the task. That is, unless the
researcher has a pretty good idea of the processes
required to perform each of the conditions, and in
particular of the processes that differ between
conditions, then the results of the procedure may
not be interpretable. Second, the method is based
on an assumption that the conditions are identical
except for the addition of a critical process (i.e.,
the assumption of “‘pure insertion’). This implies
that exactly the same strategy is used to perform
the two versions of the task, and that the addition
of the critical process does not alter the identity or
the efficiency of any other processes involved in
the task.

Unfortunately, these assumptions may not
always be valid. Consider the case of the Trail
Making Test described earlier. Because version B
is always performed after version A in the tradi-
tional administration of the test, performance in
version B may be susceptible to practice or fatigue
effects that are not present in version A, creating a
confound of condition and order. Furthermore,
version B involves letters and a less familiar
alphabetic sequence compared to the numbers and
familiar numeric sequence used in version A.
Finally, the two versions differ in the arrangement
of targets on the page, and thus the direction and
magnitude of the movements between successive
targets are not necessarily equivalent. Any or
all of these differences could be contributing to
time and error differences between the two ver-
sions, in which case the poorer performance in
version B may not be simply attributable to
the added requirement of switching between sequ-
ences and monitoring the positions within each
sequence.

Several extensions or modifications of the
subtraction technique have also been proposed for
fractionating RT. One is the parametric variation
method in which the independent variable is
manipulated quantitatively, and then the relation
between RT and the quantitative value of the
manipulated factor is examined. The parametric
variation method is similar to the subtraction
method but with three or more conditions instead
of just two. However, this method is often consi-
dered superior to the simple subtraction method
because it may be more plausible to interpret the
differences among the conditions in terms of the

operation of a single variable if there is an orderly
relation among the RTs in the multiple conditions.
When the relations are linear this method yields
intercept and slope values, which are roughly
analogous to the initial value and the difference
score in the subtraction method. However, because
the slope and intercept parameters are only mean-
ingful for a given individual if the linear regres-
sion equation used to compute them provides a
good fit to the data, an index of the degree to
which the equations fit each individual’s data
should also be examined whenever the parametric
variation method is used.

Two very well-known RT tasks based on the
parametric variation method have inspired a
considerable amount of research. One extremely
influential paradigm is Sternberg’s (1966) mem-
ory scanning task. In this procedure the experi-
menter varies the number of items in a memory
set and then presents a single probe item, with the
research participant instructed to determine as
rapidly as possible whether the probe item was a
member of the previously presented memory set.
Under these circumstances RT typically increases
linearly with the number of items in the memory
set. The slope parameter of the linear regression
equation has been interpreted as reflecting the rate
of memory search or comparison, and the inter-
cept parameter as representing the duration of all
other processes.

A second example of parametric variation is
the mental rotation task of Shepard and Metzler
(1971). In this procedure the experimenter
visually presents a pair of items at different
angular orientations relative to one another, with
the research participant instructed to determine as
rapidly as possible whether the two items are the
same object or are mirror images of one another.
RT has usually been found to increase linearly
with the angular discrepancy between the items,
with the slope parameter interpreted as an estimate
of the rate of mental rotation, and the intercept
parameter as a reflection of the duration of all
other processes.

Another variant of the subtraction method is
the additive factors procedure introduced by
Sternberg (1969). This procedure is based on the
assumption that overall RT reflects the processing
of a linear sequence of independent stages. It is
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further assumed that manipulations (or factors)
that affect separate stages should have indepen-
dent or additive effects on RT, but manipulations
or factors that affect the same stage should have
interactive effects. The additive-factors method
has been used in between-group comparisons to
attempt to localize group-related effects to parti-
cular stages by determining whether the group
variable interacts with manipulations postulated
to influence a particular stage.

Two of the critical assumptions of the additive
factors method are that there is a linear sequence
of discrete processing stages, and that there are
no partial products carried from one stage to the
next. These assumptions have been challenged by
cascade models in which processing can occur in
parallel, with partial products available before all
processing from the prior stage has been com-
pleted (McClelland, 1979). It is also important to
note that unlike the subtraction and parametric
variation methods, the additive factors method
does not yield estimates of the durations of the
component processes which would be informative
about the relative contribution each component
makes to the overall RT differences.

The preceding review indicates that a number
of techniques are available to fractionate RT and
yield measures presumed to be informative about
the efficiency of particular stages or processes. If
the relevant conditions are administered to mem-
bers of different groups, then more specific and
precise inferences about the nature of the diffe-
rences between groups should be possible. How-
ever, the researcher must still determine which
analytical methods to employ in making within-
task comparisons.

In order to make the following discussion a
little more concrete, we will assume that the com-
parison of primary interest is a contrast between
two conditions, A and B. Condition A is postulat-
ed to involve processes 1 and 2 (e.g., encoding
and response), and condition B is postulated to
involve processes 1, 2, and 3 (e.g., encoding,
response, and transformation). (The same logic
will apply if there are three or more conditions,
and analyses based on a slope parameter instead
of a difference score, because the slope and
difference score are conceptually similar and
identical when there are only two conditions.) The

important question in choosing between analy-
tical procedures is: what is the best method of
estimating the duration of process 3?

The procedure implied by the subtraction
method simply involves the computation of a
difference score by subtracting the RT in condi-
tion A from the RT in condition B, that is, B—A.
Although this is clearly an intuitively plausible
method of estimating the duration of the process
or processes presumed to differ between condi-
tions, it has two important limitations. First, the
difference score will often be positively correlated
with the initial (or average) value for purely
statistical reasons (see Chapman & Chapman,
1988; Cohen & Cohen, 1983, for mathematical
proofs). In the context of the current example, this
means that the estimate of the duration of process
3 derived from the difference score is not inde-
pendent of the duration of processes 1 and 2. This
is clearly undesirable because the difference score
is typically postulated to reflect only what differs
between conditions.

The second limitation of difference scores is
that they often have low levels of reliability, and
hence may not exhibit relations to other variables,
such as group classification, because of inadequate
proportions of systematic variance. The reasons
for the potentially low reliability are evident when
considering the formula for estimating the reli-
ability of a difference score:

Est. reliability (B — A) =
{[(raa + r8B)/2] — rap}/1 — rag.

Examination of this formula reveals that the
estimated reliability of the difference score de-
creases as the rag correlation increases. This
occurs because the correlation (rag) reflects how
much of the variance in one variable (e.g., A) is
accounted for by the other variable (e.g., B).
Therefore, as the correlation between the two vari-
ables increases, there is a decrease in the residual
or unexplained variance in either variable, and it
is this residual variance that is reflected in the
difference between the two scores.

Salthouse and Coon (1994) also noted that if
the correlation between the two variables is very
high, then there is little evidence that the two
variables actually represent distinct constructs.
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That is, only if the correlation between the two
variables is substantially lower than the respective
reliabilities would there be evidence that the vari-
ables, and the difference between them, reflect
separate constructs (i.e., exhibit discriminant
validity). It is important to emphasize that the
relevant information in this context is not the
mean values of the variables, but instead the
correlation between them. That is, the variables
may differ in absolute magnitude because of the
addition of one or more processes, and yet they
could still share all of their reliable variance if
there is little or no individual difference varia-
bility in the added processes.

Cohen and Cohen (1983, pp. 414-421) recom-
mended an alternative to difference scores based
on analyses of residuals. Their recommended
procedure involves two steps. First, the contribu-
tion of processes 1 and 2 to variable B is estimated
by predicting B from A, that is, B = a + b(A).
And second, the residual (B — B’) is derived by
subtracting the predicted B value (B’, reflecting
processes 1 and 2) from the observed B value (B,
reflecting processes 1, 2, and 3). Because all of the
linearly related effects of A are removed by the
regression equation, the residual method elim-
inates the problem of the dependence of the
derived score on the initial value.

Unfortunately, the residual method does not
necessarily solve the problem of potentially low
reliability of the derived score, or the concern that
the constructs represented by the observed vari-
ables may not be distinct. Consider the conse-
quences of increasing the rap correlation, which
in the case of a difference score serves to reduce
its effective variance, and to reduce the expected
reliability. Increases in the correlation between
variables A and B means that they share a greater
proportion of variance, and thus the residual
variance in B that can be attributed to process 3
(along with measurement error) will tend to
decrease. This decreased variance could in turn
reduce the estimated reliability because of a
restriction-of-range phenomenon, and also lead to
questions about the distinctiveness of the con-
struct represented by the residual score if it has a
small amount of unique variance.

To summarize, a variety of methods have been
used to attempt to fractionate RT, but there are

still questions about the best methods of obtaining
measures of the durations of the isolated pro-
cesses. The use of difference scores is intuitively
appealing, but it is problematic because of the
relation of the difference score to the baseline
score, and potentially low reliability. The method
based on estimating residuals has certain advan-
tages, but it may also suffer from low reliability if
the correlation between the initial values is high.
Fortunately, some of the concerns about relia-
bility of derived scores might be resolved if direct
estimates of reliability (see below) are found to be
acceptably high.

ANALYTICAL PROCEDURES FOR
BETWEEN-GROUP COMPARISONS

A very important, but all too frequently neglected,
requirement for meaningful between-group com-
parisons is that the scores being compared are
reliable. Reliability corresponds to the proportion
of variance in the variable that is systematic, and
thus when this proportion is low the magnitude of
the relation the variable can have with other
variables, such as group membership, is severely
restricted. More precisely, because reliability cor-
responds to the proportion of systematic variance
in a variable, the square root of the reliability
coefficient represents the largest correlation that
can be expected with another variable if all of the
reliable variance in the target variable is shared
with the other variable. These considerations
imply that, whenever possible, direct estimates
of the reliability should be obtained for all vari-
ables in which comparisons are to be made.
Perhaps the simplest way of assessing reliability
of RT measures consists of dividing the set of
trials into two, and basing the estimate of relia-
bility on the correlation between the corres-
ponding variables in the two sets. (Because the
researcher is typically interested in estimating the
reliability of the variables based on all trials, the
correlation between the two sets of trials, which is
equivalent to a test-retest reliability coefficient for
only one set of trials, should be boosted by the
Spearman—Brown formula.)

One of the primary determinants of reliability
is the number of trials in each relevant condition.
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There is no magical number of trials that will
yield high reliability and ensure meaningful
comparisons, but with the proviso that there are
diminishing returns, larger is usually better. As a
general rule, 5 trials is almost certainly too few,
and 500 trials in the same condition will often be
excessive unless speed-accuracy tradeoff func-
tions are to be generated. A reasonable compro-
mise might consist of between 50 and 200 trials in
each condition.

Another important question to consider in
between-groups comparisons is which RT vari-
ables should be analyzed? Group differences can
be manifested in different ways, and it is often
possible to examine several of them with the same
RT data. Virtually all published comparisons
report some type of central tendency measure,
with the arithmetic average or mean the most
common. However, the median is sometimes pre-
ferred because it is less sensitive to occasional
very slow RTs that can result in severe distortions
of the mean. Properties of the distribution of RTs
such as variability (range), skewness (asymme-
try), and kurtosis (peakedness) can also be exam-
ined to provide additional information about the
nature of the group differences. Recently theory-
based decomposition of RT distributions have
also been explored in between-group comparisons.
As an example, ex-Gaussian analyses are based on
the assumption that the overall RT distribution is
composed of a convolution of exponential and
Gaussian distributions. Researchers willing to
accept these assumptions have used mathematical
algorithms to attempt to separate the distributions,
and obtain parameters reflecting properties of each
distribution that have then been compared across
groups (e.g., Spieler, Balota, & Faust, 1996).

A somewhat related procedure with fewer
theoretical assumptions simply consists of com-
paring the groups across different percentiles of
each individual’s RT distribution. That is, the RT
values at successive percentiles (e.g., 10th, 25th,
50th, 75th, 90th, etc.) of each individual’s RT
distribution are determined, and then the averages
compared across groups. Comparisons of this
type are especially appropriate for investigating
particular hypotheses, such as the proposal that
lapses of attention are a major contributor to
group differences, because this would imply that

the largest group differences would be expected
among each individual’s slowest RTs. Results of
these types of percentile analyses suggest that this
is apparently not the case in comparisons of adults
of varying ages because the group differences
were similar across all percentiles of the RT
distribution (Salthouse, 1993).

Given that the variables to be analyzed have
been identified, what analytical procedures should
be used in between-group comparisons? The most
common analytical method is some version of a
group-by-variable analysis of variance, which in
its simplest form might involve two groups (1 and
2) and two variables (A and B). The interaction in
this analysis is often of greatest interest, because
when it is significant the researcher is likely to
interpret it as evidence of a specific group-related
effect on the processes involved in variable B but
not also involved in variable A.

However, questions arise concerning the inter-
pretation of interactions when the groups being
compared also differ in their average or baseline
RTs. A familiar principle in statistics is that the
presence of an interaction qualifies the interpreta-
tion of main effects, but in some circumstances
the reverse may also be true in that the presence of
main effects could qualify the interpretation of
interactions. That is, because it is frequently the
case that the poorer performing group (either in
terms of RT or accuracy) has a greater absolute
difference between conditions than the better
performing groups, this may not always signify a
specific deficit.

One method that has been proposed to separate
specific effects from effects associated with a dif-
ferent baseline is similar to the residuals method
described above. In the version of this method
described by Chapman, Chapman, Curran, and
Miller (1994), a regression equation is used to
determine the relation of the difference score to
the overall latency in the normal or control group,
that is,

(B—A) =bB+A)+a

Next the parameters of that regression equation
are used to compute the residual difference in
each group, that is,

(B—A)—(B—-A) =(1-b)B—(1+b)A—a.
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Because the regression procedure removes the
relation of the overall RT (i.e., B+ A), the adjusted
difference score indicates the extent to which the
difference score deviates from what would be
expected on the basis of the overall latency.

Effective use of this method requires moder-
ately large samples to obtain stable estimates of
the regression parameters, and a wide range of
baseline RTs in the normal or control group in
order to have sufficient overlap of RTs with the
other group so that the regression parameters can
be applied with minimal extrapolation. The major
limitation of this method is that the adjustment
procedure is based only on the relation between
the difference and the overall RT in one group,
and it ignores any relations that might exist
among sets of RT variables across the two groups.
However, if this is the only relation of interest for
a given hypothesis then this method can provide
interpretable results.

Another analytical procedure that is sometimes
employed in between-group comparisons consists
of converting the observed RTs into ratios or log-
transformed scores prior to carrying out the group
comparisons. (Ratios and log-transformed scores
are very similar because equal ratios in the origi-
nal units correspond to equal absolute differences
in the log; scale.) Transformations such as these
are based on the assumption that the slower group
is slowed by the same relative amount for all

processes, and that all differences between groups
are multiplicative and not additive. These assump-
tions are represented by the following equations,

B2 =xB1 +0,
and
A2 =xAl1+0,

where A and B are different variables, the num-
bers refer to different groups, x is a global slowing
factor, and the O indicates that there are no
additive effects. These equations therefore imply
that the individuals in Group 2 are slower than the
individuals in Group 1 by factor x on each vari-
able. To the extent that these assumptions are
valid, and all group differences are attributable to
a single global influence, then the ratios B2/B1
and A2/A1 should be equal to the same value,
namely x. Given these assumptions, any group-
by-variable interactions evident with log-trans-
formed scores, or significant differences between
variables evident with ratio scores, could presum-
ably be interpreted as reflections of specific, or at
least nongeneral, group-related effects.

The plausibility of the preceding assumptions
can be examined by determining if, and how, RTs
for a range of variables in two groups are system-
atically related to one another. Figure 2 portrays a
hypothetical, but plausible, relation among four
variables obtained from each of two groups. Each
point in the figure corresponds to the RT in a

Slow

Group 2

Fast

Fast

Slow

Group 1

Fig. 2. Illustration of possible systematic relation between the RTs in different tasks (A through D) from two

groups (1 and 2).
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particular task, with the abscissa representing the
time scale for Group 1, and the ordinate repre-
senting the time scale for Group 2. The solid line
is the regression line relating the values in the two
groups. Note that an interaction will likely be
detected if a researcher is primarily interested in a
contrast between variables A and B because the
length of the vertical arrow, which represents the
absolute RT difference in the variable between the
groups, is longer for variable B than for variable A.
However, this apparent interaction does not
necessarily represent a specific group-related dif-
ference on the processes involved in variable B
and not in variable A. That is, because there is a
systematic relation between RTs in the two
groups such that the differences between the
RTs increase with increases in average RT, it is
conceivable that almost any manipulation that
increases overall RT will lead to increases in the
differences between the groups, regardless of the
type of processing involved. To the extent that the
RTs from different types of tasks fall along the
same systematic function, therefore, it may be
more plausible to infer that the groups differ in
some type of global respect rather than in terms of
processes specific to particular tasks.

There are now a large number of studies in
which systematic relations such as the one
portrayed in Figure 2 have been examined with
groups consisting of children or adults of different
ages (e.g., Cerella, 1985; Kail, 1991; Salthouse,
1985), normals and patients with Alzheimer’s
Disease (e.g., Nebes & Brady, 1992), normals and
patient with Multiple Sclerosis (Kail, 1998),
individuals under sober and intoxicated condi-
tions (Maylor & Rabbitt, 1993), and so forth.
Most of the studies have found the empirical
functions to be linear, although they are some-
times best described by more complex functions
(e.g., power or exponential), and the intercepts are
frequently negative rather than zero. These pro-
perties are noteworthy because the use of ratios or
log-transformed RTs will not provide the approp-
riate correction for general influences when, as
has often been found to be the case, the intercepts
are not zero and the functions are not linear.

However, if a systematic relation does exist
between the RTs in different groups, there are at
least two additional ways in which general and

specific group-related effects might be distin-
guished. For example, if the regression equation
describing the systematic relation is assumed to
represent the general differences between the two
groups, statistical tests (e.g., standardized resi-
duals, Cook’s D) could be conducted to detect
deviations or outliers from that regression equa-
tion. If the deviations from the predicted values
are statistically significant, the researcher could
then conclude that the relevant variables have
effects that are larger (or smaller) than those exp-
ected on the basis of the overall relation between
the two groups.

A second way in which the parameters of the
systematic relation could be employed is to use
the regression equation parameters to simulate the
performance of one group of participants, and
then rely on statistical significance tests to assess
the accuracy of the resulting predictions (Madden,
Pierce, & Allen, 1992). For example, if the regre-
ssion equation relates the performance of older
adults to that of young adults, the RTs of indivi-
dual young adults could each be transformed by
the regression equation parameters to create RT
values for a simulated sample of older adults. If a
statistically significant discrepancy is detected
between the actual and simulated values for a
variable, the researcher might then conclude that
the variable has effects that are larger (or smaller)
than those expected on the basis of the overall
relation between the two groups. In other words,
the group difference in that variable can be infer-
red to reflect something different than the general
effects that are operating on the other variables.

As with virtually any analytical procedure,
methods based on the existence of systematic
relations have a number of limitations. Perhaps
the most serious limitation is the requirement for
a range of RT tasks (or variables), involving a
variety of different types of processes, that are all
administered to the same individuals. The number
of tasks and the number of trials within each task
are both important because the precision of the
estimate for each individual variable is directly
related to the size of the sample, and the precision
of the estimates of the parameters of the regres-
sion equation is directly related to the number of
different variables included in the analyses. The
combination of the need for many trials, in many



REACTION TIME 869

tasks, with large samples in each group, may
make these procedures impractical in most cases.
Unfortunately, at the current time there do not
appear to be good alternative methods for separat-
ing general and specific group-related influences
on RT variables.

Analytical methods involving the same type of
variable, for example, all RT variables, address
the question of the specificity of the group-related
effects. That is, are the group-related effects on
different RT variables specific, or are they merely
manifestations of a more general slowing phe-
nomenon? Another question that can be asked if a
variety of different types of variables are included
in the analyses concerns the uniqueness of the
group-related influences. That is, to what extent
are the group-related influences on RT variables
independent of, and distinct from, the group-
related influences on other types of variables? The
answer to this question is potentially important

because it has implications for the kinds of
explanations that might eventually be necessary.
That is, if nearly all of the group-related effects on
RT variables were independent of the group-
related effects on other types of variables, then
explanations for the group differences in RT could
be fairly specific. In contrast, much broader
explanatory mechanisms would presumably be
needed if many of the group-related effects on the
RT variables were found to be shared with those
on other types of variables.

For purposes of illustration, assume that each
member of two groups is assessed on two RT
variables, A and B, and on three other variables
(V1, V,, and V3) that could represent memory,
reasoning, or virtually any other aspect of per-
formance. The interesting question in the present
context is to what extent are the group-related
effects on all these variables independent? The
top panel of Figure 3 portrays the possibility that

EANES

Fig. 3. Schematic illustration of completely independent group-related effects on a set of variables (top panel) and
of both shared and independent group-related effects on the variables (bottom panel). The dotted lines in the
bottom figure represent group-related effects on individual variables that are independent of the effects

shared with other variables.
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the group-related effects on the five variables are
completely independent of one another because
each variable has a direct arrow from the box
representing group membership. In contrast, the
bottom panel of Figure 3 portrays a situation in
which some of the group-related effects on the
variables are shared, as represented by the effects
mediated through the circle, whereas other group-
related effects are independent, as represented by
the dotted arrows directly from the box signifying
the group classification to the individual variables.

One method of analysis that allows these
possibilities to be distinguished is known as shared
influence analysis. A desirable sequence of steps
with this method is as follows. First, the inter-
relations of the variables are determined both
before and after controlling for group member-
ship, or if the samples are large enough, separately
within each group. If the pattern of interrelations
is similar across these comparisons, then the
researcher will have some confidence that the
inferred structure among the variables is not an
artifact of the relation of each variable to the
group classification. Next the researcher deter-
mines which variables have independent effects
related to group membership after controlling for
the shared or general effects. This is conceptually
analogous to using the first principal component
in a principal components analysis to represent
what all variables have in common, and then
controlling that component with hierarchical
regression before examining any effects related
to group membership on the individual variables.
A more elegant method of obtaining quantitative
estimates of the relative proportions of unique and
shared group-related influences relies on methods
based on structural equation modeling (e.g.,
Salthouse, Hambrick, & McGuthry, 1998) in
which all values are estimated simultaneously.

If the direct relations associated with group
membership are only a small proportion of the
total group-related effects on the RT variables,
then the researcher would likely infer that many
of the group influences on the RT variables are
shared with the influences on other types of
variables. Although this shared-influences method
is not necessarily informative about the nature or
identity of any shared group-related influences
that might exist, it does provide a means of

distinguishing shared and unique effects, and of
estimating the relative contributions of the two
types of influences. This analytical method is still
quite new, but it has been used in comparisons of
adults of different ages (Salthouse et al., 1998),
and in contrasting normals with Alzheimer
patients (Salthouse & Becker, 1998), and normals
with HIV patients (Becker & Salthouse, 1999).

To summarize, many researchers seem to
assume that the group-related differences they
observe on a particular variable are attributable to
effects on processes specific to that variable, but
the plausibility of this assumption cannot be
examined unless other variables are considered at
the same time. A variety of multivariate proce-
dures could be used to distinguish between shared
and unique group-related influences. Regardless
of the particular analytical method used, when-
ever possible, researchers should obtain a variety
of different types of variables from their research
participants to allow the possibility of broader
influences to be investigated.

SUMMARY

Reaction time tasks are well-suited to the study of
cognitive processes that could not be otherwise
behaviorally observed. As with any method, RT
measures do have limitations, and it is important
to be aware of these when using and interpreting
such measures. There are also special difficulties
involved when RT measures are used in between-
group comparisons. Nevertheless, RTs are often
critical to the investigation of particular hypoth-
eses, and RT variables have been used produc-
tively in the study of attention, memory, and
processing efficiency. Although we hope to have
convinced the reader that the use and interpreta-
tion of RT measures is considerably more com-
plicated than is typically assumed, we also hope
that the reader will be able to use this knowledge
to improve the design and analysis of future
studies involving RT measures. The near inevit-
ability of speed-accuracy tradeoffs complicates
most interpretations of RT, and there is no simple
solution to this problem. The best a researcher can
probably do at the present time is rely on a
combination of analytical procedures involving
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different assumptions, and look for a consistent
pattern. If the results of the procedures are not
consistent, then there may be no alternative to
generating complete speed-accuracy tradeoff
functions for every individual in every condition.
Many possible processes are hypothesized to
contribute to RT, and therefore researchers often
attempt to isolate specific processes with differ-
ence scores. However, difference scores are lim-
ited by an expected correlation with the initial or
baseline value, and decreasing reliability as the
correlation between the two scores increases. The
use of regression-based residuals solves some, but
not all, of these problems. Between-person com-
parisons of RT variables are often conducted with
group-by-variable analyses of variance, but they
have the disadvantage of not allowing general and
specific effects to be distinguished. A variety of
methods can be used to attempt to adjust for group
differences in baseline RT, but each requires
careful thought for proper application and inter-
pretation. Finally, it is desirable to examine group
effects on RT in the context of group effects on
other types of variables to determine the unique-
ness of the influences associated with group
membership.
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