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Abstract

More on induction and recursion. Creating infinite datastructures with corecursion.



module RAC8

where

import STAL (display)



A Question about map and filter

The two operations map and filter can be combined:

Prelude> filter (>4) (map (+1) [1..10])

[5,6,7,8,9,10,11]

Prelude> map (+1) (filter (>4) [1..10])

[6,7,8,9,10,11]

These outcomes are different. This is because the test (>4) yields a

different result after all numbers are increased by 1.



When we make sure that the test used in the filter takes this change

into account, we get the same answers:

Prelude> filter (>4) (map (+1) [1..10])

[5,6,7,8,9,10,11]

Prelude> map (+1) (filter ((>4).(+1)) [1..10])

[5,6,7,8,9,10,11]

Here (f . g) denotes the result of first applying g and next f. Note

that ((>4).(+1)) defines the same property as (>3).



Exercise

Show that for every finite list xs :: [a], every function f :: a -> b,

every total predicate p :: b -> Bool the following holds:

filter p (map f xs) = map f (filter (p.f ) xs).

Note: a predicate p :: b -> Bool is total if for every object x :: b,

the application p x gives either true or false. In particular, for no

x :: b does p x give rise to an error message.



Solution

Proof by induction on xs that

filter p (map f xs) = map f (filter (p.f ) xs).

Basis:

filter p (map f []) = [] = map f (filter (p.f ) []).

Induction step: Assume

filter p (map f xs) = map f (filter (p.f ) xs).

Consider (x:xs). There are two cases:

1. p (f x) = True

2. p (f x) = False.



In case (1) we have:

filter p (map f (x:xs))
map
= filter p (f x) : (map f (x:xs))

filter
= (f x) : (filter p (map f (x:xs)))
ih
= (f x) : (map f (filter (p.f ) xs))

map
= map f (x : (filter (p.f ) xs))

filter
= map f (filter (p.f ) (x:xs)).

In case (2) we have:

filter p (map f (x:xs))
map
= filter p (f x) : (map f (x:xs))

filter
= filter p (map f (x:xs))
ih
= map f (filter (p.f ) xs)

map
= map f (filter (p.f ) xs)

filter
= map f (filter (p.f ) (x:xs)).



The Tower of Hanoi

The Tower of Hanoi is a tower of 8 disks of different sizes, stacked in

order of decreasing size on a peg. Next to the tower, there are two

more pegs. The task is to transfer the whole stack of disks to one of

the other pegs (using the third peg as an auxiliary) while keeping to

the following rules: (i) move only one disk at a time, (ii) never place a

larger disk on top of a smaller one.

1. How many moves does it take to completely transfer a tower con-

sisting of n disks?

2. Prove by mathematical induction that your answer to the previous

question is correct.

3. How many moves does it take to completely transfer the tower of

Hanoi?



Exercise

Can you also find a formula for the number of moves of the disk of

size k during the transfer of a tower with disks of sizes 1, . . . , n, and

1 ≤ k ≤ n? Again, you should prove by mathematical induction that

your formula is correct.

Solution

Disk k makes exactly 2n−k moves. To prove this with induction, we

prove by induction on m that the disk of size n−m makes 2m moves.

From this the result follows, since k = n−m implies m = n− k.



Proof by induction on m that the disk of size n−m makes 2m moves.

Basis: For m = 0 we get that the disk of size n = n− 0 makes 20 = 1

move. This is correct, for the largest disk moves exactly once, from

source to destination.

Induction step: Assume that disk n − m makes 2n−m moves. Now

there are two kinds of moves for disk n− (m + 1): (i) move it on top

of disk n − m, or (ii) remove it from disk n − m. This makes clear

that to every single move of disk n − m there are two moves of disk

n− (m + 1), giving 2× 2n−m = 2n−(m+1) moves altogether.

Note that this outcome squares with the formula for the number of

moves to shift a complete tower. If disk k makes 2n−k moves the total

number of moves is
∑n

k=1 2n−k. Since 1+
∑n

k=1 2n−k = 2n (use binary

representation to see this) we get
∑n

k=1 2n−k = 2n − 1.



A Tower of Hanoi Program

For an implementation of the disk transfer procedure, an obvious way

to represent the starting configuration of the tower of Hanoi is:

([1,2,3,4,5,6,7,8],[],[])

For clarity, we give the three pegs names A, B and C. and we declare a

type Tower:

data Peg = A | B | C

type Tower = ([Int], [Int], [Int])



There are six possible single moves from one peg to another:

move :: Peg -> Peg -> Tower -> Tower

move A B (x:xs,ys,zs) = (xs,x:ys,zs)

move B A (xs,y:ys,zs) = (y:xs,ys,zs)

move A C (x:xs,ys,zs) = (xs,ys,x:zs)

move C A (xs,ys,z:zs) = (z:xs,ys,zs)

move B C (xs,y:ys,zs) = (xs,ys,y:zs)

move C B (xs,ys,z:zs) = (xs,z:ys,zs)



The procedure transfer takes three arguments for the pegs, an argu-

ment for the number of disks to move, and an argument for the tower

configuration to move. The output is a list of tower configurations.

transfer :: Peg -> Peg -> Peg -> Int -> Tower

-> [Tower]

transfer _ _ _ 0 tower = [tower]

transfer p q r n tower = transfer p r q (n-1) tower

++

transfer r q p (n-1)

(move p q tower’)

where tower’ = last (transfer p r q (n-1) tower)

hanoi :: Int -> [Tower]

hanoi n = transfer A C B n ([1..n],[],[])



Here is the output for hanoi 4:

IAR> hanoi 4

[([1,2,3,4],[],[]),([2,3,4],[1],[]),([3,4],[1],[2]),

([3,4],[],[1,2]),([4],[3],[1,2]),([1,4],[3],[2]),

([1,4],[2,3],[]),([4],[1,2,3],[]),([],[1,2,3],[4]),

([],[2,3],[1,4]),([2],[3],[1,4]),([1,2],[3],[4]),

([1,2],[],[3,4]),([2],[1],[3,4]),([],[1],[2,3,4]),

([],[],[1,2,3,4])]



Induction and Recursion over Other Data Structures

A standard way to prove properties of logical formulas is by induction

on their syntactic structure. Consider e.g. the following Haskell data

type for propositional formulas.



data Form = P Int | Conj Form Form | Disj Form Form

| Neg Form

instance Show Form where

show (P i) = ’P’:show i

show (Conj f1 f2) =

"(" ++ show f1 ++ " & " ++ show f2 ++ ")"

show (Disj f1 f2) =

"(" ++ show f1 ++ " v " ++ show f2 ++ ")"

show (Neg f) = "~" ++ show f

It is assumed that all proposition letters are from a list P0, P1, . . .. Then

¬(P1 ∨ ¬P2) is represented as Neg (Disj (P 1) (Neg (P 2))),

and shown on the screen as ~(P1 v ~P2), and so on.



We define the list of subformulas of a formula as follows:

sforms :: Form -> [Form]

sforms (P n) = [(P n)]

sforms (Conj f1 f2) =

(Conj f1 f2): (sforms f1 ++ sforms f2)

sforms (Disj f1 f2) =

(Disj f1 f2): (sforms f1 ++ sforms f2)

sforms (Neg f) = (Neg f):(sforms f)

This gives, e.g.:

Main> sforms (Neg (Disj (P 1) (Neg (P 2))))

[~(P1 v ~P2),(P1 v ~P2),P1,~P2,P2]



ccount :: Form -> Int

ccount (P n) = 0

ccount (Conj f1 f2) =

1 + (ccount f1) + (ccount f2)

ccount (Disj f1 f2) =

1 + (ccount f1) + (ccount f2)

ccount (Neg f) = 1 + (ccount f)

acount :: Form -> Int

acount (P n) = 1

acount (Conj f1 f2) = (acount f1) + (acount f2)

acount (Disj f1 f2) = (acount f1) + (acount f2)

acount (Neg f) = acount f



Now we can prove that the number of subformulas of a formula equals

the sum of its connectives and its atoms:

Proposition 1 For every member f of Form:

length (sforms f) = (ccount f) + (acount f).

Proof.

Basis If f is an atom, then sforms f = [f], so this list has length

1. Also, ccount f = 0 and acount f = 1.



Induction step If f is a conjunction or a disjunction, we have:

• length (sforms f) = 1 + (sforms f1) + (sforms f2),

• ccount f = 1 + (ccount f1) + (ccount f2),

• acount f = (acount f1) + (acount f2),

where f1 and f2 are the two conjuncts or disjuncts. By induction

hypothesis:

length (sforms f1) = (ccount f1) + (acount f1).

length (sforms f2) = (ccount f2) + (acount f2).

The required equality follows immediately from this.



If f is a negation, we have:

• length (sforms f) = 1 + (sforms f1),

• ccount f = 1 + (ccount f1),

• acount f = (acount f1),

and again the required equality follows immediately from this and

the induction hypothesis.

2

If one proves a property of formulas by induction on the structure of

the formula, then the fact is used that every formula can be mapped

to a natural number that indicates its constructive complexity: 0 for

the atomic formulas, the maximum of rank(Φ) and rank(Ψ) plus 1 for

a conjunction Φ ∧ Ψ, and so on.



Analysing Sequences by Difference Analysis

Suppose {an} is a sequence of natural numbers, i.e., f = λn.an is a

function in N → N. The function f is a polynomial function of degree

k if f can be presented in the form

ckn
k + ck−1n

k−1 + · · · + c1n + c0,

with ci ∈ Q and ck 6= 0.

Example: the sequence

[1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, . . .]

is given by the polynomial function f = λn.(2n2 + n + 1). This is a

function of the second degree.

Here is the Haskell check:

Prelude> take 15 (map (\ n -> 2*n^2 + n + 1) [0..])
[1,4,11,22,37,56,79,106,137,172,211,254,301,352,407]



Consider the difference sequence given by the function

d(f ) = λn.an+1 − an.

Haskell implementation:

difs :: Integral a => [a] -> [a]

difs [] = []

difs [n] = []

difs (n:m:ks) = m-n : difs (m:ks)

RAC8> difs [1,4,11,22,37,56,79,106,137,172,211,254,301]

[3,7,11,15,19,23,27,31,35,39,43,47]



Fact: The difference function d(f ) of a polynomial function f is itself

a polynomial function.

Example: If f = λn.(2n2 + n + 1), then:

d(f ) = λn.(2(n + 1)2 + (n + 1) + 1− (2n2 + n + 1)

= λn.4n + 3.

Here is the Haskell check:

RAC8> take 15 (map (\n -> 4*n + 3) [0..])

[3,7,11,15,19,23,27,31,35,39,43,47,51,55,59]

RAC8> take 15 (difs (map (\ n -> 2*n^2 + n + 1) [0..]))

[3,7,11,15,19,23,27,31,35,39,43,47,51,55,59]



Fact: if f is a polynomial function of degree k then d(f ) is a polynomial

function of degree k − 1.

For suppose f (n) is given by ckn
k + ck−1n

k−1 + · · ·+ c1n + c0. Then

d(f )(n) is given by

ck(n + 1)k+ck−1(n + 1)k−1 + · · · + c1(n + 1) + c0

− (ckn
k + ck−1n

k−1 + · · · + c1n + c0).

It is not hard to see that f (n + 1) has the form ckn
k + g(n), with g a

polynomial of degree k−1. Since f (n) also is of the form ckn
k +h(n),

with h a polynomial of degree k−1, d(f )(n) has the form g(n)−h(n),

so d(f ) is itself a polynomial of degree k − 1.

Thus, if f is a polynomial function of degree k, then dk(f ) will be a

constant function (a polynomial function of degree 0).



Here is a concrete example of computing difference sequences until we

hit at a constant sequence:

-12 -11 6 45 112 213 354 541 780
1 17 39 67 101 141 187 239

16 22 28 34 40 46 52
6 6 6 6 6 6

We find that the sequence of third differences is constant, which means

that the form of the original sequence is a polynomial of degree 3.

To find the next number in the sequence, just take the sum of the last

elements of the rows. This gives 6 + 52 + 239 + 780 = 1077.



Charles Babbage (1791–1871), one of the founding fathers of computer

science, used these observations in the design of his difference engine.

We will give a Haskell version of the machine.

If the input list has a polynomial form of degree k, then after k steps

of taking differences the list is reduced to a constant list:

RAC8> difs [-12,-11,6,45,112,213,354,541,780]

[1,17,39,67,101,141,187,239]

RAC8> difs [1,17,39,67,101,141,187,239]

[16,22,28,34,40,46,52]

RAC8> difs [16,22,28,34,40,46,52]

[6,6,6,6,6,6,6]



The following function keeps generating difference lists until the differ-

ences get constant:

difLists :: Integral a => [[a]] -> [[a]]

difLists [] = []

difLists l@(xs:xss) =

if constant xs then l else difLists ((difs xs):l)

where

constant (n:m:ms) = all (==n) (m:ms)

constant _ = error "lack of data/not a pf"



This gives the lists of all the difference lists that were generated from

the initial sequence, with the constant list upfront.

IAR> difLists [[-12,-11,6,45,112,213,354,541,780]]

[[6,6,6,6,6,6],

[16,22,28,34,40,46,52],

[1,17,39,67,101,141,187,239],

[-12,-11,6,45,112,213,354,541,780]]



The list of differences can be used to generate the next element of the

original sequence: just add the last elements of all the difference lists

to the last element of the original sequence. In our example case, to

get the next element of the list

[−12,−11, 6, 45, 112, 213, 354, 541, 780]

add the list of last elements of the difference lists (including the original

list): 6 + 52 + 239 + 780 = 1077. To see that this is indeed the next

element, note that 1077 − 780 = 297, 297 − 239 = 58, 58 − 52 = 6,

so the number 1077 ‘fits’ the difference analysis.



The following function gets the list of last elements that we need (in

our example case, the list [6,52,239,780]):

genDifferences :: Integral a => [a] -> [a]

genDifferences xs = map last (difLists [xs])

A new list of last elements of difference lists is computed from the

current one by keeping the constant element d1, and replacing each

di+1 by di + di+1.

nextD :: Integral a => [a] -> [a]

nextD [] = error "no data"

nextD [n] = [n]

nextD (n:m:ks) = n : nextD (n+m : ks)



The next element of the original sequence is given by the last element

of the new list of last elements of difference lists:

next :: Integral a => [a] -> a

next = last . nextD . genDifferences

In our example case, this gives:

IAR> next [-12,-11,6,45,112,213,354,541,780]

1077



All this can now be wrapped up in a function that continues any list

of polynomial form, provided that enough initial elements are given as

data:

continue :: Integral a => [a] -> [a]

continue xs = map last (iterate nextD differences)

where

differences = nextD (genDifferences xs)

This uses the predefined iterate function:

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)



If a given list is generated by a polynomial, then the degree of the

polynomial can be computed by difference analysis, as follows:

degree :: Integral a => [a] -> Int

degree xs = length (difLists [xs]) - 1

The difference engine is smart enough to be able to continue a list of

sums of squares, or a list of sums of cubes:

RAC8> take 10 (continue [1,5,14,30,55])

[91,140,204,285,385,506,650,819,1015,1240]

RAC8> take 10 (continue [1,9,36,100,225,441])

[784,1296,2025,3025,4356,6084,8281,11025,14400,18496]



Gaussian Elimination

Difference analysis yields an algorithm for continuing any finite sequence

with a polynomial form. Is it also possible to give an algorithm for

finding the form? This would solve the problem of how to guess the

closed forms for the functions that calculate sums of squares, sums of

cubes, and so on. The answer is ‘yes’, and the method is Gaussian

elimination.

See the lecture notes for this. We just give a demo . . . .



The Question about map and filter again

Consider the following problem:

Show that for every finite and infinite list xs :: [a], every function

f :: a -> b, every total predicate p :: b -> Bool the following

holds:

filter p (map f xs) = map f (filter (p.f ) xs).

Now induction on the length of the list does not work anymore. How

should we go about this?

We take one step back, and look at the method for defining infinite

lists (and other infinite datastructures).



Corecursion

Generating streams (infinite lists) is done by means of definitions that

look like recursive definitions but that lack a base case:

ones = 1 : ones

Such definitions are called corecursive definitions.

enum_1 n = n : enum_1 (n+1)

naturals = enum_1 0

enum_2 n = n : enum_2 (n+2)

odds = enum_2 1



iterate

From the Haskell prelude:

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

ones2 = iterate id 1

theNats :: [Integer]

theNats = iterate succ 0

theOdds :: [Integer]

theOdds = iterate (\ n -> n+2) 1



zipWith

zipWith :: (a->b->c) -> [a]->[b]->[c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

In a picture:

[(z x0 y0), (z x1 y1), . . . , (z xn yn),

〈
[xn+1, xn+2, . . .

[yn+1, yn+2, . . .

theNats1 = 0 : zipWith (+) ones theNats1



Generating the Fibonacci numbers with zipWith

theFibs = 0 : 1 : zipWith (+) theFibs (tail theFibs)

RAC8> take 15 theFibs

[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]



Eratostenes’ Sieve

The definition of the sieve of Eratosthenes also uses corecursion:

sieve :: [Integer] -> [Integer]

sieve (0 : xs) = sieve xs

sieve (n : xs) = n : sieve (mark (xs, n-1, n-1))

where

mark (x : xs, 0, m) = 0 : mark (xs, m, m)

mark (x : xs, n, m) = x : mark (xs, n-1, m)



Faster:

sieve’ :: [Integer] -> [Integer]

sieve’ (x:xs) = x :

sieve’ (filter (\ n -> (rem n x) /= 0) xs)

primes’ :: [Integer]

primes’ = sieve’ [2..]



Proving Properties of Corecursive Programs

How does one prove things about corecursive programs? E.g., how does

one prove that sieve and sieve’ compute the same stream result for

every stream argument? Proof by induction does not work here, for

there is no base case.



Comparing the observational behaviour of infinite objects

To compare two streams xs and ys, intuitively it is enough to compare

their observational behaviour. The key observation on a stream is to

inspect its head. If two streams have the same head, and their tails

have the same observational behaviour, then they are equal.

The two key observations on an infinite binary tree are to inspect the

labels of its left and right daughters. If two infinite binary trees have

the same left daughter label, the same right daughter label, and the

left and right daughters have the same observational behaviour, then

they are equal. And so on, for other infinite data structures.

The tool for comparing observational behaviour are bisimulations.



Bisimulations

A bisimulation between two sets A and B is a relation R with the

following properties. If aRb then:

1. If a
o−→ a′ then there is a b′ ∈ B with b

o−→ b′ and a′Rb′.

2. If b
o−→ b′ then there is an a′ ∈ A with a

o−→ a′ and a′Rb′.

A bisimulation between A and A is called a bisimulation on A.

Use ∼ for the greatest bisimulation on a given set A.

Call two elements of A bisimilar when they are related by a bisimulation

on A. Being bisimilar then coincides with being related by the greatest

bisimulation:

a ∼ b ⇔ ∃R(R is a bisimulation, and aRb).



Proof by Coinduction

To show that two infinite objects x and y are equal, we show that they

exhibit the same behaviour, i.e. we show that x ∼ y. Such a proof is

called a proof by coinduction.

The general pattern of a proof by coinduction of x ∼ y, where x, y :: a,

is as follows. Define a relation R on objects of some set A with a ⊂ A.

Next, show that R is a bisimulation, with xRy.

Proof Recipe for a Proof by Coinduction

Showing that x ∼ y is done as follows:



Given: . . .

To be proved: x ∼ y

Proof:

Let R be given by . . . and suppose xRy.

To be proved: R is a bisimulation.

Proof:

Suppose x
o−→ x′.

To be proved: There is a y′ with y
o−→ y′ and x′Ry′.

Proof: . . .

Suppose y
o−→ y′.

To be proved: There is an x′ with x
o−→ x′ and x′Ry′.

Proof: . . .

Thus R is a bisimulation with xRy.

Thus x ∼ y.



Example Proof by Coinduction

map f (iterate f x) ∼ iterate f (f x).

Let S be the following relation on [a].

{( map f (iterate f x), iterate f (f x)) | f :: a → a, x :: a}.

Let R be the relation S ∪ ∆a on [a] ∪ a (note that ∆a is the identity

on a).

Suppose:

(map f (iterate f x)) R (iterate f (f x)).

We show that R is a bisimulation.



map f (iterate f x)
iterate
= map f x : (iterate f (f x))

map
= (f x) : map f (iterate f (f x))

iterate f (f x)
iterate
= (f x) : iterate f (f (f x)).

This shows:

map f (iterate f x)
head−→ (f x) (1)

map f (iterate f x)
tail−→ map f x : (iterate f (f x)) (2)

iterate f (f x)
head−→ (f x) (3)

iterate f (f x)
tail−→ iterate f (f (f x)) (4)



The two observations we can perform on streams are head and tail.

Now (f x)∆a(f x), so (f x)R(f x). Thus, the bisimilarity require-

ments hold for head observations.

Also,

(map f x : (iterate f (f x))) S (iterate f (f (f x))),

by definition of S, so

(map f x : (iterate f (f x))) R (iterate f (f (f x))),

by the definition of R. Hence, the bisimilarity requirements hold for tail

observations.

This shows that R is a bisimimulation that connects map f (iterate f x)

and iterate f (f x).

Hence

(map f (iterate f x)) ∼ (iterate f (f x)).


