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Abstract
This paper describes a new O(n log3(n)) solver for the positive definite Toeplitz system Tx = b.

Instead of computing generators for the inverse of T , the new algorithm adjoins b to T and applies a
superfast Schur algorithm to the resulting augmented matrix. The generators of this augmented matrix
and its Schur complements are used by a divide-and-conquer block back-substitution routine to complete
the solution of the system. The goal is to avoid the well-known numerical instability inherent in explicit
inversion. Experiments suggest that the algorithm is backward stable in most cases.

1 Background

We start with the positive definite Toeplitz matrix

T =



t0 t1 · · · · · · tm−1

t1 t0 t1
...

... t1
. . . . . .

...
...

. . . . . . t1
tm−1 · · · · · · t1 t0


∈ Cm×m

and the system of equations Tx = b. There are several classes of algorithms for solving such systems:
slow algorithms requiring O(n3) unstructured matrix computations, fast O(n2) algorithms that exploit the
Toeplitz structure and superfast algorithms that achieve a complexity strictly less than O(n2). Examples
of fast algorithms include the Schur and Levinson algorithms. Superfast algorithms have been developed in
[4, 6, 11, 1, 8, 2].

One way to view the related approaches of [11, 1, 8, 2] is as a divide-and-conquer variant of the O(n2)
Schur algorithm with fast polynomial multiplication via the FFT used to extend computations from sub-
matrices and Schur complements to the full matrix T . The underlying Schur algorithm, along with several
generalizations, is numerically stable, [5, 16, 7], but it has not been shown that this stability extends to
the superfast Schur algorithm. In fact, the proposed application of the algorithm to linear systems involves
computing generators of T−1 and then forming T−1b using the FFT. Numerical methods based on explicit
inversion are usually unstable, [10]. Experiments presented in §5 show that the superfast Schur algorithm is
no exception; it is not a backward stable algorithm.

We will propose an alternative method that parallels the conventional and stable method of triangular
factorization and back-substitution. Instead of inverting T we will transform the system Tx = b to[

T11 T12

0 T22 − TH
12T

−1
11 T12

] [
x1

x2

]
=
[

b1

b2 − TH
12T

−1
11 b1

]
(1)

∗Department of Mathematics and Statistics, Georgia State University, Atlanta Georgia 30303 (mstewart@mathstat.gsu.edu)

1



and successively solve the two smaller systems

(T22 − TH
12T

−1
11 T12)x2 = b2 − TH

12T
−1
11 b1, T11x1 = b1 − T12x2. (2)

When dividing the system Tx = b into two systems, it will simplify the presentation to assume that we have
divided them in half. Thus T11 is m/2×m/2. We will assume that T so partitioned.

A superfast Schur algorithm applied to the augmented matrix formed from T and b can be used to
compute the triangular system (1). The block back-substitution (2) is nothing more than the solution of
two smaller Toeplitz-like systems that can be combined to solve the full system using a divide-and-conquer
procedure. The multiplication T12x2 can be performed using the FFT.

The resulting algorithm avoids the suspect step of multiplication by T−1 but at the cost of increasing the
complexity from O(n log2(n)) to O(n log3(n)) floating point operations. The increase in complexity occurs
because the second system of (2) involves a modified right-hand-side b1−T12x2 and consequently a modified
augmented matrix. The new augmented matrix requires its own O(n log2(n)) superfast Schur factorization
so that the overall procedure is O(n log3(n)).

The algorithm of [2] is the model for the derivation of the new algorithm as well as the benchmark for
evaluating stability and efficiency. In the remainder of this section we will describe both the algorithm
of [2] and the generalized Schur algorithm for a matrix with arbitrary displacement rank. In §2 we show
how the same divide-and-conquer idea can be applied to an augmented system that incorporates the right
hand side vector b. In §3 we show how the information computed by a superfast block triangularization
of the augmented matrix can be used to solve the system Tx = b without the need for explicit matrix
inversion. In §4 we evaluate the computational complexity of the algorithm. In §5 we present the result of
numerical experiments that demonstrate the improved stability of the algorithm. Finally, in §6 we make
some observations on the possibility of a proof of numerical stability and compare the new method to another
stabilized superfast algorithm.

1.1 The Generalized Schur Algorithm

A Toeplitz matrix T has an indefinite rank 2 displacement

T − ZTZH = Y ΣY H (3)

where Z is the downshift matrix, [Z]ij = 1 if i− j = 1 and [Z]ij = 0 otherwise, Σ = 1⊕−1 and

Y H =
[√

t0 t1/
√

t0 t2/
√

t0 · · · tn−1/
√

t0
0 t1/

√
t0 t2/

√
t0 · · · tn−1/

√
t0

]
.

The equation (3) is called a displacement equation. The matrix Σ is the signature matrix and Y is the
generator matrix for T . Any matrix for which the displacement has rank significantly lower than n is
Toeplitz-like.

The generators of a Toeplitz-like matrix are not unique. Given a generator matrix Y and a matrix H
satisfying HΣHH = Σ we have

(Y H)Σ(Y H)H = Y (HΣHH)Y H = Y ΣY H

so that Y H is also a generator matrix for T . For general Σ = Ip ⊕−Iq, matrices H satisfying HΣHH = Σ
are known as Σ-unitary. In the particular case Σ = 1⊕−1, all Σ-unitary matrices have the form

H =
1√

1− |ρ|2

[
a 0
0 b

] [
1 ρ
ρ 1

]
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where |a| = |b| = 1, i.e. the Σ-unitary matrices are just the product of hyperbolic rotations and unitary
diagonal matrices.

In §2 we will need to consider rank p + q displacements (3) with Σ = Ip ⊕−Iq. Among the more useful
general Σ-unitary transformations are the block diagonal unitary matrices U ⊕ V and hyperbolic rotations

I
1√

1−|ρ|2
ρ√

1−|ρ|2

I
ρ√

1−|ρ|2
1√

1−|ρ|2

I


in which the rotation acts on one index in the positive part of the signature and one in the negative. There
is also a hyperbolic version of a Householder transformation, [12, 15].

The product of Σ-unitary matrices can be shown to be Σ-unitary. Thus in applying general Σ-unitary
transformations it is natural to decompose them into a product of hyperbolic rotations and block unitary
transformations. In this paper we will make use of products of hyperbolic rotations and block diagonal plane
rotations. However we will use a somewhat nonstandard signature matrix Σ = 1⊕−1⊕ 1⊕−1 so that the
block diagonal unitary rotation matrices become

c1 0 −s1 0
0 c2 0 −s2

s1 0 c1 0
0 s2 0 c2


where c1 and c2 are real and nonnegative and c2

1 + |s1|2 = c2
2 + |s2|2 = 1. The hyperbolic rotations have the

form 
1√

1−|ρ1|2
0 ρ1√

1−|ρ1|2
0

0 1√
1−|ρ2|2

0 ρ2√
1−|ρ2|2

ρ1√
1−|ρ1|2

0 1√
1−|ρ1|2

0

0 ρ2√
1−|ρ2|2

0 1√
1−|ρ2|2

 .

The Schur algorithm is a fast (O(n2)) algorithm for the Cholesky factorization of T . It achieves the
reduction in computation by working with the generator matrix instead of on the entire matrix T . Since
we will need the generality in §2 we will describe the generalized Schur algorithm for factorization of a
displacement rank p + q Toeplitz-like matrix.1

We start with a matrix

T =
[

t0 tH21
t21 T22

]
satisfying (3) where Σ = Ip ⊕ −Iq. The first step of the generalized Schur algorithm is to transform the
matrix Y . We partition Y as

Y =
[
y11 yH

12 yH
13

y21 Y22 Y23

]
1In reference to Schur algorithms, the term “generalized” has been used with two distinct meanings. In the sense we are

using it here, it refers to a fast algorithm that factors any matrix, not necessarily Toeplitz, satisfying a displacement equation
with Σ = Ip ⊕−Iq . In [2], however, it refers to a superfast algorithm for solving ordinary Toeplitz systems—what we refer to
here as the superfast Schur algorithm.

3



where y11 is a scalar and the vertical line marks the boundary between the first p columns and the last q.
We then compute a Σ-unitary H as a product of plane rotations and hyperbolic rotations so that

Ŷ = Y H =
[
ŷ11 0 0
ŷ21 Ŷ22 Ŷ23

]
.

Thus Ŷ is a generator matrix in which only the leading element of the first row is nonzero. Such generators
are said to be in proper form. The displacement equation (3) implies that[

t0 tH21
]

= ŷ11

[
ŷ11 ŷH

21

]
so that the first row of Ŷ H is the first row of the Cholesky factor of T . Further if we define

TS =
[
0 0
0 T22 − t21t

−1
0 tH21

]
, YS =

[
ZŶ (:, 1) Ŷ (:, 2 : p + q)

]
then

TS − ZTSZH = YSΣY H
S .

Thus the zero-bordered Schur complement of T inherits the displacement structure of T and its generators
are easily determined by the proper form generators for T . The generalized Schur algorithm repeats this
process recursively on TS with generator matrix YS to compute successively the rows of the Cholesky factor.

1.2 The Superfast Schur Algorithm

We will now give a description of the superfast Schur algorithm. The presentation here summarizes material
from [1, 2]. The main idea behind speeding up the Schur algorithm is to represent the generators as polyno-
mials and then to use fast polynomial multiplication via the FFT to implement the generator transformations
of the Schur algorithm. Suppose T is a Toeplitz-like matrix of displacement rank 2 with generators

Y =


v0 w0

v1 w1

...
...

vn−1 wn−1

 .

We define the polynomial generators
Y0(z) =

[
v0(z) w0(z)

]
where

v0(z) = v0 + v1z + v2z
2 + · · ·+ vn−1z

n−1

and
w0(z) = w0 + w1z + w2z

2 + · · ·+ wn−1z
n−1.

Multiplication by z replaces the shift of the first column of Y so that the first step of the Schur algorithm
becomes [

v1(z) w1(z)
]

=
1√

1− |ρ1|2
[
v0(z) w0(z)

] [ 1 ρ1

ρ1 1

] [
z 0
0 1

]
.

At step k of the Schur algorithm we have[
vk(z) wk(z)

]
=

1√
1− |ρk|2

[
vk−1(z) wk−1(z)

] [ 1 ρk

ρk 1

] [
z 0
0 1

]
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so that [
vk(z) wk(z)

]
=
[
v0(z) w0(z)

] [a(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

]
where [

a
(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

]
=

 k∏
j=1

1√
1− |ρj |2

[ z ρ1

zρ1 1

] [
z ρ2

zρ2 1

]
· · ·
[

z ρk

zρk 1

]
.

It can be shown inductively that

ã
(0)
k (z) = zka

(0)
k (1/z), b̃

(0)
k (z) = zkb

(0)

k (1/z).

Hence the product resulting from k steps of the Schur algorithm can be represented by just the Schur
polynomials a

(0)
k (z) and b

(0)
k (z).

To represent an arbitrary sequence of k consecutive steps of the Schur algorithm we define[
a
(l)
k (z) b

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z)

]
=

 l+k∏
j=l+1

1√
1− |ρj |2

[ z ρl+1

zρl+1 1

] [
z ρl+2

zρ2 1

]
· · ·

[
z ρl+k

zρl+k 1

]
so that [

vl+k(z) wl+k(z)
]

=
[
vl(z) wl(z)

] [a(l)
k (z) b

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z)

]
. (4)

Thus a
(l)
k (z) and b

(l)
k (z) are Schur polynomials that apply k steps of the Schur algorithm, transforming the

generator polynomials vl(z) and wl(z) into vl+k(z) and wl+k(z). Since they are formed from products of
elementary hyperbolic rotations in exactly the same way as ak(z) and bk(z) they also satisfy

ã
(l)
k (z) = zka

(l)
k (1/z), b̃

(l)
k (z) = zkb

(l)

k (1/z).

Given the Schur polynomials we can perform k steps of the Schur algorithm via the polynomial multipli-
cation (4). If we use the FFT the computational cost of the multiplication will be O(n log(n)). The Schur
polynomials can be computed using a divide-and-conquer procedure based on the doubling step[

a
(0)
2k (z) b

(0)
2k (z)

b̃
(0)
2k (z) ã

(0)
2k (z)

]
=

[
a
(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

][
a
(k)
k (z) b

(k)
k (z)

b̃
(k)
k (z) ã

(k)
k (z)

]
. (5)

This equation represents the multiplication of the polynomials for the first k steps of the Schur algorithm
with those for the next k to get the polynomials for carrying out 2k steps. Again, (5) is just polynomial
multiplication which can be carried out with the FFT in O(n log(n)) operations.

Multiplication by the Schur polynomials in (4) increases the degree of the generator polynomials. Since
the length of the generator vectors does not increase in the course of applying the Schur algorithm, the
higher powers of z are not necessary for computing a factorization. Thus to save memory and computation
we should truncate the generator polynomials. For

v(z) = v0 + v1z + · · ·+ vn−1z
n−1
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we let a superscript (k) for k < n denote the truncation

v(k)(z) = v0 + v1z + · · ·+ vk−1z
(k−1).

Note that this meaning for a superscript applies only to generator polynomials v(z) and w(z), not to the
Schur polynomials a(z) and b(z) for which the superscript has a completely different meaning.

Combining (5) with (4) we get a divide-and-conquer algorithm for computing the Schur polynomials
a
(0)
k (z) and b

(0)
k (z).

function [a(z), b(z)]=sfschur(v(z), w(z),n)
if n > 1 then

[a(0)
n/2(z), b

(0)
n/2(z)] = sfschur(v(n/2)(z), w(n/2)(z),n/2)

vn/2(z) = v(z)a(0)
n/2(z) + w(z)b̃(0)

n/2(z)

wn/2(z) = v(z)b(0)
n/2(z) + w(z)ã(0)

n/2(z)

[a(n/2)
n/2 (z), b

(n/2)
n/2 (z) ] = sfschur(v(n/2)

n/2 (z), w
(n/2)
n/2 (z),n/2)

a(z) = a
(0)
n/2(z)a(n/2)

n/2 (z) + b
(0)
n/2(z)b̃(n/2)

n/2 (z)

b(z) = a
(0)
n/2(z)b(n/2)

n/2 (z) + b
(0)
n/2(z)ã(n/2)

n/2 (z)
else

ρ = −w(z)/v(z)
a(z) = z/

√
1− |ρ|2

b(z) = ρ/
√

1− |ρ|2
endif

The function sfschur() takes two generator polynomials of degree n − 1 representing two generator
vectors of length n. The length is passed as a separate parameter. The output polynomials a(z) and b(z)
are the Schur polynomials a

(0)
n (z) and b

(0)
n (z) for applying n steps of the Schur algorithm. The computation

is O(n log2(n)).
Since the the recursive calls to sfschur() use the truncated generators v(n/2)(z) and w(n/2)(z), the

problem size is halved with each level of depth in the recursion. In the termination case n = 1 only one
easily computed hyperbolic rotation needs to be applied: if n = 1, v(z) and w(z) are constants and the Schur
algorithm reduces to the proper form transformation[

ṽ(z) 0
]

=
1√

1− |ρ|2
[
v(z) w(z)

] [1 ρ
ρ 1

]
with ρ = −w(z)/v(z) and [

a(z) b(z)
b̃(z) ã(z)

]
=

1√
1− |ρ|2

[
z ρ
zρ 1

]
.

To solve a Toeplitz system we pass the generator polynomials v(z) and w(z) to sfschur() to compute
the Schur polynomials [

a
(0)
n (z) b

(0)
n (z)

]
= sfschur(v(z), w(z), n).

The inverse matrix T−1 is known to be Toeplitz-like. If

φ(z) = ã(0)
n (z) + b(0)

n (z), φ̃(z) = a(0)
n (z) + b̃(0)

n (z)
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then the pair of polynomials φ(z) and φ̃(z) are polynomial generators for T−1. This fact is expressed by
the well-known Gohberg-Semencul formula. Since sfschur() gives generators for T−1 we can use the FFT
to apply T−1 to the right-hand-side vector b to solve the system Tx = b using O(n log2(n)) operations.
Since the multiplication by T−1 is O(n log(n)), the additional cost of solving the system with a different
right-hand-side is O(n log(n)). More details on the use of this algorithm for solving systems can be found in
[1, 2].

2 The Augmented System

Instead of factoring just T we will generalize the superfast Schur algorithm to the augmented system

M =
[

T b
bH 1

]
.

Suppose T is positive definite of displacement rank 2 and satisfies the displacement equation (3). We extend
the displacement equation to

M −
[
Z 0
0 0

]
M

[
ZH 0
0 0

]
=
[
Y ΣY H b

bH 1

]
.

This displacement has a factorization

M −
[
Z 0
0 0

]
M

[
ZH 0
0 0

]
= Ŷ

[
Σ 0
0 Σ

]
Ŷ H

where

Ŷ =
[
Y b b
0 1 0

]
. (6)

The generalized Schur algorithm can use any Σ-unitary transformation to put Ŷ into proper form.
However in generalizing the superfast Schur algorithm it is convenient to use a special transformation that
preserves the structure within the generator matrix. In particular, we will use transformations that keep
the generator matrices of T and its Schur complements as submatrices of the generator matrices of M and
its Schur complements. The resulting algorithm extends but does not otherwise alter the superfast Schur
algorithm; it computes every polynomial computed by the superfast Schur algorithm in exactly the same
manner in which they are computed by the superfast Schur algorithm. The right-hand-side part of the
augmented matrix is handled through the addition of two new Schur polynomials and one new generator
polynomial. These additional polynomials depend on the factorization of T , but the computations relating
to T , its Schur complements and their generators do not in any way depend on the new polynomials. The
use of structured generator transformations reduces the total amount of computation while also making
available generators of both T and M .

We assume that at some point in the application of the generalized Schur algorithm to M we have
generators of the form 

0 0 0 0
v1 w1 b1 b1

v2 w2 b2 b2

0 0 δ δ − 1/δ


where v1, w1, b1 and δ are scalars and v1 is real and positive. Note that the initial generators (6) are of this
form but with no leading zero rows and with δ = 1. Note also that the matrix[

v1 w1

v2 w2

]
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is a generator matrix for the Toeplitz-like leading block of M . Thus positive definiteness of T guarantees
that v1 6= 0 and if ρ = −w1/v1 then |ρ| < 1.

We propose a structured transformation to proper form
0 0 0 0
v1 w1 b1 b1

v2 w2 b2 b2

0 0 δ δ − 1/δ




1√
1−|ρ|2

ρ√
1−|ρ|2

0 0
ρ√

1−|ρ|2
1√

1−|ρ|2
0 0

0 0 1 0
0 0 0 1




c 0 −s 0
0 1 0 0
s 0 c 0
0 0 0 1

 ·


1
c 0 0 −s

c
0 1 0 0
0 0 1 0
−s
c 0 0 1

c

 =


0 0 0 0
ṽ1 0 0 0
ṽ2 w̃2 b̃2 b̃2

δ̃1 0 δ̃ δ̃ − 1/δ̃

 .

Clearly if c =
√

1− |s|2 then each of these transformations is Σ-unitary. Multiplying them together gives


0 0 0 0
v1 w1 b1 b1

v2 w2 b2 b2

0 0 δ δ − 1/δ




1√
1−|ρ|2

ρ√
1−|ρ|2

−s√
1−|ρ|2

−s√
1−|ρ|2

ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

s
c 0 c −|s|2

c−s
c 0 0 1

c

 =


0 0 0 0
ṽ1 0 0 0
ṽ2 w̃2 b̃2 b̃2

δ̃1 0 δ̃ δ̃ − 1/δ̃

 . (7)

We will show that s and ρ can be chosen so that the transformed generators have the form shown in (7).
Let

ρ = −w1

v1

where |ρ| < 1 and

s =
b1√

v2
1(1− |ρ|2) + |b1|2

, c =
√

1− |s|2.

Since |ρ| 6= 1 and v1 6= 0, |s| < 1 so that 0 < c ≤ 1.
The value of ρ has been chosen to zero the w1 element. In addition to this

ṽ1 = v1
1√

1− |ρ|2
+ w1

ρ√
1− |ρ|2

= v1

√
1− |ρ|2 > 0.

The cosine c is

c =
√

1− |s|2 =

√
v2
1(1− |ρ|2)

v2
1(1− |ρ|2) + |b1|2

=
ṽ1√

v2
1(1− |ρ|2) + |b1|2

.

The first b1 transforms to

cb1 − s

(
v1

1√
1− |ρ|2

+ w1
ρ√

1− |ρ|2

)
= cb1 − sṽ1 = 0
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and the second transforms to

1
c
b1 −

|s|2

c
b1 − s

(
v1

1√
1− |ρ|2

+ w1
ρ√

1− |ρ|2

)
= cb1 − sṽ1 = 0.

Similarly the first and second b2 element are transformed to the same vector

b̃2 = cb2 − s

(
v2

1√
1− |ρ|2

+ w2
ρ√

1− |ρ|2

)
.

The presence of the zero element on the bottom row is obvious. The element corresponding to δ is

δ̃ = cδ. (8)

Finally the element corrsponding to δ − 1/δ is

−|s|
2

c
δ + (δ − 1/δ)

1
c

=
1− c2

c
δ +− 1

δc
= δc− 1

δc
= δ̃ − 1

δ̃
.

This verifies that all elements of the transformed generator matrix are as shown. In particular we have
shown that if the generators are [

v w b b
0 0 δ δ − 1/δ

]
. (9)

then (7) puts the transformed generators in the form[
ṽ w̃ b̃ b̃

δ̃1 0 δ̃ δ̃ − 1/δ̃

]
. (10)

To show that at every stage of the Schur algorithm the generators have the form (9) we first note that the
initial generators (6) are of this form. As shown in (7) the generator transformations preserve the structure
except for the addition of a nonzero δ1. However in computing the generators of a Schur complement the
first column of the transformed generator matrix (10) is multiplied by[

Z 0
0 0

]
,

which zeros the element δ1.
In addition to the preservation of the pattern of repeated vectors in the generators, (7) implies that for

the first two columns of the transformed generator matrix 0 0
ṽ1 0
ṽ2 w̃2

 =

 0 0
v1 w1

v2 w2

[1 ρ
ρ 1

]
/
√

1− |ρ|2.

These two columns are no different than if we had simply applied the 2 × 2 hyperbolic rotation from the
ordinary Schur algorithm to the first two columns the generator matrix. The result is that, in applying this
form of the generalized Schur algorithm, the first two columns of the generator matrix will be generators of
T and its Schur complements.

As in the superfast Schur algorithm, the generators and generator transformations can be represented by
polynomials. We represent all but the last row of the generator matrix by three polynomials[

vk(z) wk(z) βk(z) βk(z)
]

=
[
1 z · · · zn−1

] [
v w b b

]
9



so that [
vk(z) wk(z) βk(z) βk(z)

]
=
[
vk−1(z) wk−1(z) βk−1(z) βk−1(z)

]
·

z 1√
1−|ρ|2

ρ√
1−|ρ|2

−s√
1−|ρ|2

−s√
1−|ρ|2

z ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

z s
c 0 c −|s|2

c
z−s

c 0 0 1
c

 .

The scalar δ will not be incorporated into any polynomial; it will be stored and kept track of separately from
v(z), w(z) and β(z).

As in the displacement rank 2 case, accumulating the product of such transformations results in a special
structure. We will show that k steps of the polynomial version of the generalized Schur algorithm have the
form [

vl+k(z) wl+k(z) βl+k(z) βl+k(z)
]

=
[
vl(z) wl(z) βl(z) βl(z)

]
·

a
(l)
k (z) b

(l)
k (z) c

(l)
k (z) c

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z) d

(l)
k (z) d

(l)
k (z)

e
(l)
k (z) f

(l)
k (z) g

(l)
k (z) g

(l)
k (z)− 1/g

(l)
k (0)

−e
(l)
k (z) −f

(l)
k (z) −g

(l)
k (z) + g

(l)
k (0) −g

(l)
k (z) + 1/g

(l)
k (0) + g

(l)
k (0)

 (11)

This is verified inductively in the following theorem.

Theorem 1 The product of k matrices of the form
z 1√

1−|ρ|2
ρ√

1−|ρ|2
−s√
1−|ρ|2

−s√
1−|ρ|2

z ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

z s
c 0 c −|s|2

c
z−s

c 0 0 1
c

 (12)

has the form 
ak(z) bk(z) ck(z) ck(z)
b̃k(z) ãk(z) dk(z) dk(z)
ek(z) fk(z) gk(z) gk(z)− 1/gk(0)
−ek(z) −fk(z) −gk(z) + gk(0) −gk(z) + 1/gk(0) + gk(0)


where e(0) = f(0) = 0 and where ã(z) = zka(1/z) and b̃(z) = zkb(1/z).

Proof: We note that the single transformation (12) has the specified form. We assume that the theorem

10



holds for a product of k − 1 transformations and write
ak(z) bk(z) ck(z) ck(z)
b̃k(z) ãk(z) dk(z) dk(z)
ek(z) fk(z) gk(z) gk(z)− 1/gk(0)
−ek(z) −fk(z) −gk(z) + gk(0) −gk(z) + 1/gk(0) + gk(0)

 =


ak−1(z) bk−1(z) ck−1(z) ck−1(z)
b̃k−1(z) ãk−1(z) dk−1(z) dk−1(z)
ek−1(z) fk−1(z) gk−1(z) gk−1(z)− 1/gk−1(0)
−ek−1(z) −fk−1(z) −gk−1(z) + gk−1(0) −gk−1(z) + 1/gk−1(0) + gk−1(0)

 ·


z 1√
1−|ρ|2

ρ√
1−|ρ|2

−s√
1−|ρ|2

−s√
1−|ρ|2

z ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

z s
c 0 c −|s|2

c
z−s

c 0 0 1
c

 .

This gives two relations for each of the polynomials ek(z), fk(z), ck(z) and dk(z). The relations for ek(z)
and −ek(z) (obtained by computing the (3, 1) and (4, 1) elements of the left-hand-side) are

ek(z) =
z√

1− |ρ|2
ek−1(z) +

zρ√
1− |ρ|2

fk−1(z) +
zs

c
gk−1(z)− zs

c
gk−1(z) +

zs

c

1
gk−1(0)

and

−ek(z) = − z√
1− |ρ|2

ek−1(z)− zρ√
1− |ρ|2

fk−1(z)− zs

c
gk−1(z) +

zs

c
gk−1(0) +

zs

c
gk−1(z)− zs

c

1
gk−1(0)

− zs

c
gk−1(0).

These two relations clearly define the same polynomial ek(z). Verification that the two relations for fk(z)
give the same polynomial is similar, as is the verification for ck(z) and dk(z).

Every term in the expression for ek(z) has z as a factor. Thus ek(0) = 0. Since

fk(z) = ek−1(z)
ρ√

1− |ρ|2
+ fk−1(z)

1√
1− |ρ|2

we see that fk(0) = 0 follows from ek−1(0) = 0 and fk−1(0) = 0.
The relations ãk(z) = zkak(1/z) and b̃k(z) = zkak(1/z) follow from[

ak(z) bk(z)
b̃k(z) ãk(z)

]
=
[
ak−1(z) bk−1(z)
b̃k−1(z) ãk−1(z)

] [
z ρ
zρ 1

]
/
√

1− |ρ|2

in exactly the same way as this result follows for the displacement rank 2 case.
To verify the identities for the polynomial gk(z) we note that if we define

hk(z) = ek−1(z)
−s√

1− |ρ|2
+ fk−1(z)

−sρ√
1− |ρ|2

then hk(0) = 0 since ek−1(0) = fk−1(0) = 0. In terms of hk(z) the lower right 2× 2 block is[
gk(z) gk(z)− 1/gk(0)

−gk(z) + gk(0) −gk(z) + 1/gk(0) + gk(0)

]
=[

hk(z) + cgk−1(z) hk(z) + cgk−1(z)− 1/(cgk−1(0))
−hk(z)− cgk−1(z) + cgk−1(0) −hk(z)− cgk−1(z) + cgk−1(0) + 1/(cgk−1(0))

]
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where
gk(z) = hk(z) + cgk−1(z)

and
gk(0) = cgk−1(0) (13)

since hk(0) = 0.
Having established the form of the generator transformations we construct a superfast version of the

Schur algorithm for the augmented matrix using a doubling relation analogous to (5)
a
(0)
2k (z) b

(0)
2k (z) c

(0)
2k (z) c

(0)
2k (z)

b̃
(0)
2k (z) ã

(0)
2k (z) d

(0)
2k (z) d

(0)
2k (z)

e
(0)
2k (z) f

(0)
2k (z) g

(0)
2k (z) g

(0)
2k (z)− 1/g

(0)
2k (0)

−e
(0)
2k (z) −f

(0)
2k (z) −g

(0)
2k (z) + g

(0)
2k (0) −g

(0)
2k (z) + 1/g

(0)
2k (0) + g

(0)
2k (0)

 =


a
(0)
k (z) b

(0)
k (z) c

(0)
k (z) c

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z) d

(0)
k (z) d

(0)
k (z)

e
(0)
k (z) f

(0)
k (z) g

(0)
k (z) g

(0)
k (z)− 1/g

(0)
k (0)

−e
(0)
k (z) −f

(0)
k (z) −g

(0)
k (z) + g

(0)
k (0) −g

(0)
k (z) + 1/g

(0)
k (0) + g

(0)
k (0)

 ·


a
(k)
k (z) b

(k)
k (z) c

(k)
k (z) c

(k)
k (z)

b̃
(k)
k (z) ã

(k)
k (z) d

(k)
k (z) d

(k)
k (z)

e
(k)
k (z) f

(k)
k (z) g

(k)
k (z) g

(k)
k (z)− 1/g

(k)
k (0)

−e
(k)
k (z) −f

(k)
k (z) −g

(k)
k (z) + g

(k)
k (0) −g

(k)
k (z) + 1/g

(k)
k (0) + g

(k)
k (0)

 . (14)

It turns out that a complete algorithm for the solution of Tx = b can be formulated without computing
ek(z), fk(z) and gk(z). We will however need ak(z), bk(z), ck(z), dk(z) and the scalar gk(0). The updates
from (14) that we will use include the Schur polynomial computation[

a
(0)
2k (z) b

(0)
2k (z)

b̃
(0)
2k (z) ã

(0)
2k (z)

]
=

[
a
(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

][
a
(k)
k (z) b

(k)
k (z)

b̃
(k)
k (z) ã

(k)
k (z)

]
, (15)

and the updates for c(z) and d(z)

c
(0)
2k (z) = a

(0)
k (z)c(k)

k (z) + b
(0)
k (z)d(k)

k (z) + g
(k)
k (0)c(0)

k (z) (16)

d
(0)
2k (z) = b̃

(0)
k (z)c(k)

k (z) + ã
(0)
k (z)d(k)

k (z) + g
(k)
k (0)d(0)

k (z). (17)

Since e(0) = f(0) = 0

g
(0)
2k (z) = e

(0)
k (z)c(k)

k (z) + f
(0)
k (z)d(k)

k (z) + g
(0)
k (z)g(k)

k (z) +

(g(0)
k (z)− 1/g

(0)
k (0))(−g

(k)
k (z) + g

(k)
k (0))

gives the scalar update
g
(0)
2k (0) = g

(0)
k (0)g(k)

k (0). (18)

From (11) we use the generator transformations

vk/2(z) = v0(z)a(0)
k/2(z) + w0(z)b̃(0)

k/2(z)
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and
wk/2(z) = v0(z)b(0)

k/2(z) + w0(z)ã(0)
k/2(z).

And for β(z) we use
βk/2(z) = v0(z)c(0)

k/2(z) + w0(z)d(0)
k/2(z) + β0(z)g(0)

k/2(0).

We keep track of the quantity δ in the augmented matrix generators by noting that if δ0 = 1 and δk

represents the quantity δ after k steps of the Schur algorithm then by comparing (8) and (13) we see that
both δk and g

(0)
k (0) are products of the cosines c used in the generalized Schur factorization of the augmented

matrix. It follows that
δk = g

(0)
k (0).

In the algorithm we will use the relation

δl+k/2 = g
(l)
k/2(0)δl.

Since we will need only g
(l)
k (0) and not the full polynomial g

(l)
k (z) we set g

(l)
k = g

(l)
k (0). Putting everything

together we get the superfast generalized Schur algorithm for the augmented matrix.

function [a(z), b(z), c(z), d(z), g, S(z), P (z)]= bsfschur(v(z), w(z),β(z), δ, n)
if n > 1 then

[a(0)
n/2(z), b

(0)
n/2(z), c

(0)
n/2(z), d

(0)
n/2(z), g

(0)
n/2, S

(0)
n/2(z), P

(n/2)
n/2 ] =

bsfschur(v(n/2)(z), w(n/2)(z), β(n/2)(z), δ, n/2)
vn/2(z) = v(z)a(0)

n/2(z) + w(z)b̃(0)
n/2(z)

wn/2(z) = v(z)b(0)
n/2(z) + w(z)ã(0)

n/2(z)

βn/2(z) = v(z)c(0)
n/2(z) + w(z)d(0)

n/2(z) + β(z)g(0)
n/2

[a(n/2)
n/2 (z), b

(n/2)
n/2 (z), c

(n/2)
n/2 (z), d

(n/2)
n/2 (z), g

(n/2)
n/2 , S

(n/2)
n/2 (z), P

(n/2)
n/2 (z) ] =

bsfschur(v(n/2)
n/2 (z), w

(n/2)
n/2 (z), β

(n/2)
n/2 (z), δg

(0)
n/2, n/2)

a(z) = a
(0)
n/2(z)a(n/2)

n/2 (z) + b
(0)
n/2(z)b̃(n/2)

n/2 (z)

b(z) = a
(0)
n/2(z)b(n/2)

n/2 (z) + b
(0)
n/2(z)ã(n/2)

n/2 (z)

c(z) = a
(0)
n/2(z)c(n/2)

n/2 (z) + b
(0)
n/2(z)d(n/2)

n/2 (z) + g
(n/2)
n/2 c

(0)
n/2(z)

d(z) = b̃
(0)
n/2(z)c(n/2)

n/2 (z) + ã
(0)
n/2(z)d(n/2)

n/2 (z) + g
(n/2)
n/2 d

(0)
n/2(z)

g = g
(0)
n/2g

(n/2)
n/2

S(z) =
[
v(z) w(z) β(z)/δ

]
S(z) =

 S(z)
S

(0)
n/2(z)

S
(n/2)
n/2 (z)


P (z) =

[
a(z) b(z)

]
P (z) =

 P (z)
P

(0)
n/2(z)

P
(n/2)
n/2 (z)


else

ρ = −w(z)/v(z)
a(z) = z/

√
1− |ρ|2
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b(z) = ρ/
√

1− |ρ|2
s = β(z)/

√
(1− |ρ|2)|v(z)|2 + |β(z)|2

c(z) = −s/
√

1− |ρ|2
d(z) = −sρ/

√
1− |ρ|2

g =
√

1− |s|2
S(z) =

[
v(z) w(z) β(z)/δ

]
P (z) =

[
a(z) b(z)

]
endif

Several features of the algorithm need to be explained. The function bsfschur() takes generator polyno-
mials v(z), w(z) and β(z), the scalar parameter δ and the integer parameter n where n− 1 is the degree of
the polynomials v(z), w(z) and β(z). The parameter n is also the number of Schur steps to be performed.
The algorithm is recursive and uses the doubling recurrence for the polynomials a(z), b(z), c(z) and d(z).
The recursion terminates when n = 1. This corresponds to a 1×1 Toeplitz-like matrix or a 2×2 augmented
matrix. When n = 1 the polynomials are just the elements of the matrix in (7).

The function bsfschur() incorporates code to compute and store generators for the Schur complements
of the augmented matrix and its Schur complements in S(z) and the corresponding Schur polynomials in
P (z). To understand the storage scheme, partition an (n + 1)× (n + 1) augmented matrix as

M =
[

T b
bH 2− 1

δ2

]
=

T11 T12 b1

TH
12 T22 b2

bH
1 b2 2− 1

δ2

 .

Suppose M has generators [
v w bδ bδ
0 0 δ δ − 1/δ

]
with [

v(z) w(z) β(z)
]

=
[
1 z · · · zn−1

] [
v w bδ

]
.

Thus v(z) and w(z) are generators of T and the coefficients of β(z)/δ are the elements of the vector b. If
sfschur() is run on generators for M then the matrix S(z) is constructed recursively as

S(z) = S
(0)
0 (z) =

 v(z) w(z) β(z)/δ

S
(0)
n/2(z)

S
(n/2)
n/2 (z)

 . (19)

The matrices S
(0)
n/2(z) and S

(n/2)
n/2 are defined in the same way but for the submatrix

M1 =
[
T11 b1

bH
1 2− 1

δ2

]
.

and for the Schur complement

MS =
[
T22 − TH

12T
−1
11 T12 b2 − TH

12T
−1
11 b1

bH
2 − bH

1 T−1
11 T12 2− 1

δ2 − bH
1 T−1

11 b1

]
.

This recursive definition of S(z) terminates when the relevant augmented matrix is 2× 2 in which case

S(z) =
[
v(z) w(z) β(z)/δ

]
.
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The structure of P (z) is defined in a similar manner

P (z) = P
(0)
0 (z) =

 a
(0)
0 (z) b

(0)
0 (z)

P
(0)
n/2(z)

P
(n/2)
n/2 (z)

 . (20)

The information contained in S(z) and P (z) will be used by a function that solves the system Tx = b or by
a function to recompute the polynomials associated with a different right-hand-side.

Given the Schur polynomials in P (z) and the generators in S(z), it is possible to recompute c(z), d(z), g
and β(z) for a different right hand side without repeating the computation of v(z), w(z), a(z) and b(z). In
the following we assume that the inputs S

(0)
0 (z) and P

(0)
0 (z) are partitioned as in (19) and (20). The elements

of the new right-hand-side vector are the coefficients of the input polynomial β(z)/δ. The outputs are the
new polynomials c

(0)
n (z) and d

(0)
n (z), the scalar g

(0)
n and S

(0)
n (z) updated with the new right-hand-side.

function [c(z), d(z), g, S(z)]= rhs(S(0)
0 (z), P

(0)
0 (z), β(z), δ, n)

if n > 1 then

[c(0)
n/2(z) , d

(0)
n/2(z), g

(0)
n/2, S

(0)
n/2(z) ] =

rhs(S(0)
n/2, P

(0)
n/2, β(n/2)(z), δ, n/2)

βn/2(z) = v0(z)c(0)
n/2(z) + w0(z)d(0)

n/2(z) + β(z)g(0)
n/2

[c(n/2)
n/2 (z), d

(n/2)
n/2 (z), g

(n/2)
n/2 , S

(n/2)
n/2 (z) ] =

rhs(S(n/2)
n/2 , P

(n/2)
n/2 , β

(n/2)
n/2 (z), δg

(0)
n/2, n/2)

c(z) = a
(0)
n/2(z)c(n/2)

n/2 (z) + b
(0)
n/2(z)d(n/2)

n/2 (z) + g
(n/2)
n/2 c

(0)
n/2(z)

d(z) = b̃
(0)
n/2(z)c(n/2)

n/2 (z) + ã
(0)
n/2(z)d(n/2)

n/2 (z) + g
(n/2)
n/2 d

(0)
n/2(z)

g = g
(0)
n/2g

(n/2)
n/2

S(z) =
[
v(z) w(z) β(z)/δ

]
S(z) =

 S(z)
S

(0)
n/2(z)

S
(n/2)
n/2 (z)


else

ρ = −w0(z)/v0(z)
s = β(z)/

√
(1− |ρ|2)|v(z)|2 + |β(z)|2

c(z) = −s/
√

1− |ρ|2
d(z) = −sρ/

√
1− |ρ|2

g =
√

1− |s|2
S(z) =

[
v(z) w(z) β(z)/δ

]
endif

Note that there is no P (z) as output for rhs(). This is because P (z) does not depend on the right-hand-
side. The use of function rhs() substantially reduces the computation for problems that involve multiple
right-hand-sides. More significantly, as we will see in the next section, it allows us to efficiently deal with
transformations of the right-hand-side when solving the system Tx = b.
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3 Divide-and-Conquer Back-Substitution

The function bsfschur() is a divide-and-conquer procedure for factoring the (n + 1) × (n + 1) augmented
matrix

M =
[

T b
bH 1

]
=

T11 T12 b1

TH
12 T22 b2

bH
1 bH

2 1

 . (21)

After n/2 steps of elimination on this matrix we have the factorization

M =

 I 0 0
TH

12T
−1
11 I 0

bH
1 T−1

11 0 1

T11 0 0
0 T22 − TH

12T
−1
11 T12 b2 − TH

12T
−1
11 b1

0 bH
2 − bH

1 T−1
11 T12 1− bH

1 T−1
11 b1

 ·
I T−1

11 T12 T−1
11 b1

0 I 0
0 0 1

 .

Both the vector
bS = b2 − TH

12T
−1
11 b1

and the Schur complement
TS = T22 − TH

12T
−1
11 T12

can be found from the matrix S(z) returned by bsfschur(). In fact, the generators of the matrix[
TS bS

bH
S 2− 1

δn/2

]
are available in polynomial form as the first row of S

(n/2)
n/2 (z). The Schur complements of the augmented

matrix, stored in S(z), are the data that will be used to solve Tx = b.
Given a linear system partitioned as [

T11 T12

TH
12 T22

] [
x1

x2

]
=
[
b1

b2

]
elimination gives [

T11 T12

0 TS

] [
x1

x2

]
=
[
b1

bS

]
.

Block back-substitution gives two smaller linear systems

TSx2 = bS , T11x1 = b1 − T12x2. (22)

Using bsfschur() the computation of generators for the Schur complement system and its right-hand-side
is O(n log2(n)).

To form the right-hand-side for T11x1 = b1 − T12x2 we note that T12 is a block of the Toeplitz-like
matrix T , so that it is also Toeplitz-like. More precisely, if we partition the displacement equation for T ,
T − ZTZH = vvH − wwH, as[

T11 T12

TH
12 T12

]
−
[

Z11 0
e1e

H
n/2 Z22

] [
T11 T12

TH
12 T12

] [
ZH

11 en/2e
H
1

0 ZH
22

]
=
[
v1

v2

] [
vH
1 vH

2

]
−[

w1

w2

] [
wH

1 wH
2

]
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then
T12 − Z11T12Z

H
22 = v1v

H
2 − w1w

H
2 + Z11T11en/2e

H
1 . (23)

Thus T12 is in general a displacement rank 3 Toeplitz-like matrix. Multiplication by T12 is O(n log(n)) using
the FFT. Thus both half-size systems (22) can be computed efficiently.

This motivates the following divide-and-conquer algorithm. We assume that the inputs S(z) and P (z)
are partitioned as in (19) and (20).

function x=solve(S(z),P (z),n)
if n > 1 then

x2=solve (S(n/2)
n/2 (z),P (n/2)

n/2 (z),n/2)
b1 = vec(β(z)/δ)
b1 = b1(1 : n/2)
T = toeplitz(v(z), w(z))
T12 = T (1 : n/2, n/2 + 1 : n)
b1 = b1 − T12x2

β(z) =
[
1 z · · · zn/2−1

]
b1

[c(z), d(z), g, S
(0)
n/2(z)]=

rhs(S(0)
n/2(z), P

(0)
n/2(z),β(n/2)(z), 1, n/2)

x1=solve (S(0)
n/2(z),P (0)

n/2(z),n/2)

x =
[
x1

x2

]
else

x = (v(z)v(z)− w(z)w(z))−1β(z)/δ
endif

The function toeplitz() constructs a Toeplitz-like matrix from the generators v0(z) and w0(z). The
function vec() forms a vector from the coefficients of a polynomial. These functions make possible the
matrix notation

b1 − T12x2.

In practice, this would not be done explicitly; instead the multiplication by T12 would be carried out with
the generators and the FFT using only O(n log(n)) operations. Unfortunately the call to rhs() is not so
efficient; it is O(n log2(n)). As we will see, this makes the procedure solve() an O(n log3(n)) algorithm.

In the case that the recursion terminates with n = 1 the matrix T is 1 × 1, v(z), w(z) and β(z) are
constants and

T = v(z)v(z)− w(z)w(z), b = β(z)/δ

so that the solution to Tx = b is

x = (v(z)v(z)− w(z)w(z))−1β(z)/δ.

The function assumes that S(z) and P (z) are available. Thus solve() would be used as follows:

[a(z), b(z), c(z), d(z), g, S(z), P (z)]= bsfschur(v(z), w(z),β(z), 1, k)
x=solve(S(z),P (z),n)

17



This naturally assumes that the function rhs() is also available.

4 Computational Complexity

The complexity of solving a Toeplitz system using solve() is O(n log3(n)). In this section we will provide
a more detailed count of arithmetic operations. We will assume that T and b are real and we will use the
assumptions from [2] on the complexity of convolutions, in particular that convolutions are implemented
using a split-radix FFT so that a real cyclic convolution of two length n vectors takes

6n log2(n)− 9n + 14

real floating point operations.
The cyclic convolution is

wj =
n−1∑
k=0

xkyj−k

where yk and xk are defined for k = 0, 1, . . . , n − 1, y−k = yn−k and j = 0, 1, . . . , n − 1. Multiplication
of polynomials is a linear rather than a cyclic convolution: It is assumed that yk = 0 for k < 0 and
j = 0, 1, · · · , 2n − 2. Thus to multiply two length n polynomials with coefficients given as elements of the
vectors x = [xk] and y = [yk] we can pad the vectors with n zeros and compute the cyclic convolution

w =
[
x
0

]
∗
[
y
0

]
.

In analyzing the complexity of bsfschur() it is important to take note of the length of each of the
convolutions. The equations

vn/2(z) = v(z)a(0)
n/2(z) + w(z)b̃(0)

n/2(z) wn/2(z) = v(z)b(0)
n/2(z) + w(z)ã(0)

n/2(z)

involve four convolutions, each with one length n vector and one length n/2 vector. This can be implemented
using a length 3n/2 cyclic convolution. However, because vn/2(z) and wn/2(z) will be truncated and will
have leading zeros, only the middle n/2 elements of the convolutions will be needed. It follows that these
can be done using four length n convolutions, [2]. This also applies to the convolutions in

βn/2(z) = v(z)c(0)
n/2(z) + w(z)d(0)

n/2(z) + β(z)g(0)
n/2.

The convolutions in the equations for a(z), b(z), c(z) and d(z) can also be implemented using length n cyclic
convolutions.

Let B(n) be the complexity of bsfschur(). The function calls itself twice on half-size problems and
performs 14 length n cyclic convolutions. The complexity satisfies

B(n) = 2B(n/2) + 14 (6n log2(n)− 9n + 14) +
19
2

n + 2

or
B(n) = 2B(n/2) + 84n log2(n)− 233

2
n + 198. (24)

The term 19n/2 + 2 in the first expression is the cost of the vector adds, scalar-vector multiplies and two
scalar-scalar multiplies. The scalar multiplies are the products g

(0)
n/2g

(n/2)
n/2 and δg

(0)
n/2. In assessing the cost of

the vector additions, we have assumed that elements of vectors that are to be truncated are not computed.
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The general solution to (24) is

B(n) = 42n log2
2(n)− 149

2
n log2(n) + Cn− 198.

To determine the constant C we note that if n = 1 then bsfschur() performs 18 real operations. Thus

B(1) = C − 198 = 18

so that
B(n) = 42n log2

2(n)− 149
2

n log2(n) + 216n− 198.

Now let the complexity of rhs() be R(n). Only six convolutions are required so

R(n) = 2R(n/2) + 6 (6n log2(n)− 9n + 14) +
13
2

n + 2.

or
R(n) = 2R(n/2) + 36n log2(n)− 95

2
n + 86.

The general solution to this is

R(n) = 18n log2
2(n)− 59

2
n log2(n) + Cn− 86.

Since R(1) = C − 86 = 16

R(n) = 18n log2
2(n)− 59

2
n log2(n) + 102n− 86.

For solve() we assume that the multiplication by the n/2× n/2 Toeplitz-like matrix T12 involves

4 (6(2n) log2(2n)− 9(2n) + 14) + n/2 = 48n log2(n)− 47
2

n + 56

operations. The justification is as follows. We note that[
T11 T12

TH
12 T22

] [
0
x2

]
=
[
T12x2

T22x2

]
so that to multiply a vector by T12 efficiently it suffices to have an efficient means of multiplying a vector by
T . Since T is Toeplitz-like it can be represented through the Gohberg-Semencul formula

T = L+LH
+ − L−LH

−

where L± are lower triangular and Toeplitz. Each matrix L± can then be embedded in a circulant matrix
of size 2n× 2n. Multiplication by these circulants is simply a cyclic convolution. Thus multiplication by T
can be reduced to 4 convolutions of size 2n with cost

4 (6(2n) log2(2n)− 9(2n) + 14) .

The additional n/2 is the complexity of the length n/2 add that finally computes T12x2. Alternately it is
possible to use (23) directly and in so doing avoid expanding the size of the convolutions by a factor of 4.
However, this would involve a greater number of convolutions and the additional computation of T11en.

19



Under the above assumption, if S(n) is the cost of solve() then

S(n) = 2S(n/2) + R(n/2) + (48n log2(n)− 47
2

n + 56) + n/2

or
S(n) = 2S(n/2) + 9n log2

2(n) +
61
4

n log2(n) +
207
4

n− 30.

The general solution is

S(n) = 3n log3
2(n) +

97
8

n log2
2(n) +

487
8

n log2(n) + Cn + 30.

For the case n = 1, S(1) = C + 30 = 4 so that

S(n) = 3n log3
2(n) +

97
8

n log2
2(n) +

487
8

n log2(n)− 26n + 30.

real floating point operations.
To fully solve a Toeplitz system requires an initial call to bsfschur() so that the complexity of solving

Tx = b is
T (n) = S(n) + B(n) = 3n log3

2(n) +
433
8

n log2
2(n)− 109

8
n log2(n) + 190n− 168. (25)

To compare this superfast algorithm to the most comparable fast methods, we note that Schur’s algorithm
requires 3n2 operations to compute the Cholesky factor of T . Another 2n2 is required for back-substitution,
so that the solution of Tx = b requires roughly 5n2 operations. The smallest value of n for which T (n) is
smaller than 5n2 is n = 2148. Of course solve() assumes that n is a power of two and the smallest power of
2 for which solve() has a smaller operation count than the Schur algorithm is n = 4096. Nevertheless the
algorithm is very close to breaking even at n = 2048.

In contrast, since the superfast Schur algorithm of [2] computes generators of T−1, it is perhaps most
naturally compared to the Levinson algorithm, which also computes these generators. In [2] it was shown
that the superfast Schur algorithm breaks even in comparison to the Levinson algorithm for n = 256.

Finally, we note that the overall storage required by the recursive algorithm is O(n log(n)). Instead of
making assumptions about how computer memory is used, we will analyze the storage required by S(z). All
the other polynomials computed by the algorithm could be stored in a similar array so that is sufficient to
show that S(z) requires O(n log(n)) storage. Note that this analysis assumes the recursive formulation given
here; there is redundancy in S(z) and it might be possible to develop a non-recursive algorithm that uses
only O(n) storage.

Given an n× n Toeplitz system, let M(n) be the storage required for S
(0)
0 (z). Then

M(n) = 2M(n/2) + 3n

which has solution
M(n) = 3n log2(n) + Cn.

If n = 1 then S(z) only stores 3 constants so that

M(1) = C = 3

so that
M(n) = 3n log2(n) + 3n.
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Experiment κ(T ) ‖T−1
11 T12‖ solve() Inversion

1 5.14× 108 25.3 1.2× 10−14 6.6× 10−10

3.5× 108 12.0 6.7× 10−16 2.2× 10−10

2.4× 109 25.7 9.1× 10−15 1.02× 10−8

2 1.1× 1014 37.8 9.4× 10−15 1× 10−4

2.3× 1013 11.6 5.0× 10−15 7.5× 10−4

1.5× 1014 83.6 6.42× 10−15 8.7× 10−5

3 7.8× 1011 1.1× 104 2.0× 10−10 2.5× 10−7

3.15× 1013 1.7× 103 2.7× 10−13 3.6× 10−6

Table 1: Relative residuals

5 Numerical Experiments

The reason for formulating a superfast algorithm in terms of factorization and divide-and-conquer back-
substitution was in the hope of achieving some of the stability inherent in unstructured triangularization
and back-substitution. Unfortunately the algorithm is quite complicated; a rigorous error analysis has not
been performed and might well be extremely difficult. Instead we will attempt to assess stability through
numerical experiments. All experiments were conducted using code written in Matlab and run on a Pentium
III PC with machine precision approximately ε = 1 × 10−16. The FFT routines used were those built into
Matlab.

For the first experiment we generated a 128 × 128 positive definite Toeplitz matrix from random Schur
parameters ρk distributed uniformly over the interval [−.5, .5]. These parameters resulted in ill-conditioned
but numerically nonsingular matrices. For the right hand side vector b we randomly generated a vector x̂
and then formed the product T x̂ = b. For solutions x obtained by solve() and by the superfast inversion
algorithm of [2] combined with the Gohberg-Semencul formula for multiplication by T−1 the relative residuals

r(T, b, x) =
‖Tx− b‖

‖T‖‖x‖+ ‖b‖

are shown in the first three lines of Table 1. (Note: each line in the table corresponds to a different matrix).
As expected for a method based on inversion, the residuals for the Gohberg-Semencul approach are large.
The residuals for solve() are what might be expected for a backward stable algorithm. These results were
typical for random problems generated in this way.

Next we generated ill-conditioned Toeplitz matrices for which |ρk| was close to 1 for some k. In particular,
we generated random 128 × 128 Toeplitz matrices with ρk uniformly distributed over [−.3, .3] with two of
the ρk changed to

ρ10 = .9999999, ρ15 = −.99.

The right hand side vectors were generated in the same manner as before. The results are shown in lines
4–6 of Table 1. Note that these matrices are almost numerically singular. The errors for solve() remain
on the order of the machine precision while those for the other algorithm have increased with the increasing
condition number.

Finally, we devise an experiment to highlight a notable weakness of the new algorithm: solve() can lose
accuracy when the quantity ‖T−1

11 T12‖ (or the equivalent quantity for any of the Schur complements of T )
becomes large. It was shown in [14] that for a positive definite Toeplitz matrix, or for the Schur complement
of a positive definite Toeplitz matrix, the quantity ‖T−1

11 T12‖2 can be bounded by an expression that depends
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only on the sizes of the matrices and not on ‖T−1
11 ‖. The reason is that if[

T11 T12

TH
12 T22

]
=
[
L11 0
L21 L22

] [
D1 0
0 D2

] [
LH

11 LH
21

0 LH
22

]
is an LDLH factorization of T then

T−1
11 T12 = (L11D1L

H
11)

−1L11D1L
H
21 = L−1

11 L12.

However it can be shown that the rows of L−1 are the coefficients of optimal filters solving a linear prediction
problem, [9]. Consequently they have the well-known minimum phase property: the polynomials with
coefficients taken from the rows of L−1 have zeros only in the unit circle. This implies that

|L−1| <



1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

. . .


.

Equivalently

|Lij | ≤
(

i− 1
j − 1

)
.

It is shown in [14] that the same bounds hold for |L| although this fact follows for different reasons; the
polynomials formed from the rows of L do not have the minimum phase property and can have zeros outside
the unit circle. The result of the two inequalities is that L−1

11 L12, and hence T−1
11 T12, must be bounded by a

function of n independent of the size of ‖T−1
11 ‖. Unfortunately the bounds are not completely satisfcatory:

binomial coefficients grow quickly with increasing n. Further, there is an example of a sequence of positive
definite Toeplitz matrices for which both L and L−1 approach these bounds in the limit. (In this limit the
Toeplitz matrix also becomes singular.)

Nevertheless, the bounds are in practice very pessimistic. It is extremely difficult to generate Toeplitz
matrices of any reasonable size that come close to achieving these bounds and are still numerically positive
definite. For the next experiment we will apply solve() to positive definite Toeplitz matrices for which
‖T−1

11 T12‖ is as large as we were able to make it. The examples are small because larger examples that are
numerically nonsingular could not be generated.

We started with a Toeplitz matrix for which

ρ1 = ρ2 = · · · = ρ7 = .99

and
ρ8 = ρ9 = · · · = ρ32 = .2.

The right hand side was generated in the same way as before. The results are on the seventh line of Table 1.
Clearly ‖T−1

11 T12‖ is larger than before and there has been a proportional increase in the errors.
Nevertheless, it seems that the algorithm is stable in most circumstances. This example is very extreme

and even seemingly minor changes in the parameters considerably reduce ‖T−1
11 T12‖. Suppose we keep the

previous set of Schur parameters, only changing ρ4 = .1 and ρ7 = −.8. The results are on the final line of
Table 1. The quantity ‖T−1

11 T12‖ has dropped an order of magnitude and the error has improved for solve()
but not for the inversion. Note that the condition number has become worse; growth in errors is apparently
not linked to ill-conditioning in a simple or direct way.
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6 Observations

The algorithm proposed in this paper is a divide-and-conquer O(n log3(n)) method for the solution of positive
definite Toeplitz systems. It achieves a crossover point at which it beats the Schur algorithm for n =
4096. Its strength over previous superfast methods is that it is observed to be relatively numerically stable.
Experiments suggest that this stability is connected with the tendency of the block eliminators[

I 0
−TH

12T
−1
11 I

]
.

to be of modest size when T is positive definite and Toeplitz. It was shown in [14] that the Schur complements
of a Toeplitz matrix are insensitive to perturbations when T−1

11 T12 is not large. This might make possible an
error analysis based on forward accuracy in computed Schur complements. This is a possible direction for
further research.

A stabilized superfast algorithm for nonsymmetric Toeplitz systems was published in [3]. However that
algorithm depended in part on iterative refinement for its stability. Iterative refinement is well known to
stabilize algorithms that are not too unstable applied to problems that are not too ill-conditioned, [13, 10].
The algorithm of [3] appeared to be stable in most cases, but displayed growth in relative residuals, despite
iterative refinement, when tested on some very large problems. In contrast, the algorithm presented here is
stable on at least some extremely ill-conditioned problems. Further, the mild degree of instability exhibited
by the algorithm is not so extreme as to prevent iterative refinement from restoring backward stability.
Unfortunately it is not clear how the new algorithm might be extended to the nonsymmetric Toeplitz
matrices considered in [3] or to any broader class of structured matrices. Further it seems likely that the
stability of the algorithm depends on ‖T−1

11 T12‖ not being too large. Bounds of this sort have been established
only for positive definite Toeplitz matrices.
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