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ABSTRACT 

An adaptive two step paradigm for the superresolution of optical images is developed in this paper.  The 
procedure locally projects image samples onto a family of kernels that are learned from image data.  First, 
an unsupervised feature extraction is performed on local neighborhood information from a training image.  
These features are then used to cluster the neighborhoods into disjoint sets for which an optimal mapping 
relating homologous neighborhoods across scales can be learned in a supervised manner.  A 
superresolved image is obtained through the convolution of a low-resolution test image with the 
established family of kernels.  Results demonstrate the effectiveness of the approach. 
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I.  INTRODUCTION 

Superresolution is the process of obtaining an image at a resolution higher than that afforded by 

the physical sensor.  Superresolution has been used in obtaining high quality image prints and has found 

applications in areas such as surveillance and automatic target recognition [1,2].  This paper addresses the 

issue of image magnification (in optical images the process is also referred to as interpolation, zooming, 

enlargement, etc.) from a finite set of collected data sampled below the Nyquist rate or which had to be 

antialiased prior to sampling.  

Commonly, magnification is accomplished through convolution of the image samples with a 

single kernel - typically the bilinear, bicubic [3] or cubic B-spline kernel [4].  The mitigation of aliasing 

by this type of linear filtering is very limited.  Magnification techniques based on a priori assumed 

knowledge are the subject of current research.  Directional methods [5,6] examine an image’s local edge 

content and interpolate in the low frequency direction (along the edge) rather than in the high frequency 

direction (across the edge).  Multiple kernel methods typically select between a few ad hoc interpolation 

kernels [7].  Orthogonal transform methods focus on the use of the discrete cosine transform (DCT) [8,9] 

and the wavelet transform [10].  Variational methods formulate the interpolation problem as the 

constrained minimization of a functional [11,12].  An extended literature survey discussing these methods 

at great length has been provided by Candocia [13].  It should be noted that these techniques make 

explicit assumptions regarding the character of the analog image. 

The superresolution problem is known to be ill-posed [2].  Thus, obtaining a desirable solution 

requires making reasonable assumptions about the nature of the true image (the most conventional 

assumption is smoothness).  The approach presented herein is novel, and addresses the ill-posed nature of 

superresolution by assuming that similar (correlated) neighborhoods remain similar across scales, and that 

this a priori structure can be learned locally from available image samples across scales.  Such local 

information extraction has been prominent in image compression schemes for quite some time as 

evidenced by JPEG [14] and PCA-based [15] approaches which typically compress the set of 
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nonoverlapping subblocks of an image.  Recent compression approaches also exploit the interblock 

correlation between subblocks [16,17].  The goal is to divide the set of subblocks into a finite number of 

disjoint sets that can individually be represented more efficiently than was the original set.  Our approach 

is similar in spirit in that we exploit interblock correlation for mapping similar overlapping 

neighborhoods to their high-resolution counterparts.  However, no one proposed the use of this 

information to create constraints that can be used to superresolve images.  We further show that a very 

simple connectionist architecture can learn this structure effectively.  Moreover, our approach is shown to 

be equivalent to convolution with a family of kernels established from an available image and “tuned” to 

its local characteristics, which represents an extension to conventional sampling theory concepts. 

In section II of this paper we relate single and multiple kernel approaches and formulate the 

superresolution process as a filtering (convolution) of the image samples.  Section III describes the 

architecture implemented that performs the filtering described in section II.  The feature extraction and 

association of homologous neighborhoods for superresolution is discussed here.  Section IV describes the 

results presented in this paper.  Section V discusses issues pertaining to the superresolution approach 

presented and section VI concludes the paper. 

II. KERNEL-BASED APPROACHES 

II-A. SINGLE KERNEL 

An interpolated image can be obtained by expanding the samples of a low-resolution image 

],[ 21 nnxl  and convolving with a sampled interpolation kernel [18].  For an expansion rate of G1 × G2, 

where G1, G2 are whole numbers greater than 1, our expanded image is given by 
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and the corresponding interpolation kernel, obtained by sampling a continuous kernel, is denoted 

],[ 21 nnk .  The interpolated image ],[ˆ 21 nnxh , which estimates the true image ],[ 21 nnxh , is 

 ],[],[],[ˆ 212121 nnknnxnnx eh ∗∗=  (2) 

where ∗∗  denotes 2D convolution.  This form of interpolation is a linear filtering that processes the image 

similarly throughout, i.e. it uses the same linear combination of image samples in determining 

interpolated points. 

II-B. FAMILY OF KERNELS 

The kernel family approach is a scheme where the interpolation kernel used depends on the local 

characteristics of the image [19].  This is formulated as 

 ],[],[],[ˆ 21,2121 nnknnxnnx lceh ∗∗=  (3) 

The subscripts c and l, which are functions of image location, select a kernel based on the local image 

characteristics about the point of interest.  The family of kernels is given by { :],[ 21, nnk lc   

} ,...,1;,...,1 LlCc == .  C represents the number of established local image characteristics (features) from 

which to compare local neighborhood information and L is the number of kernels created per feature.  In 

summary, eqn. (3) describes a convolution with a shift-varying kernel.  It is a generalization of eqn. (2) 

and defaults to the standard convolution of eqn. (2) when  C,L = 1. 

In the family of kernels approach, two main issues must be addressed: how to design the kernel 

family and how to select between kernels once they have been established.  These issues are now 

addressed. 

II-C. A PROPOSED METHODOLOGY FOR SUPERRESOLUTION OF IMAGES 

As mentioned earlier, the problem of superresolution is ill-posed.  As such, additional information 

apart from the collected samples is needed to obtain a solution.  Rather than assume smoothness or rely 

on other typical constraints, we choose to assume that a given class of images contains similar 
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information locally and that this similarity holds across scales.  So the fundamental problem is to devise 

a superresolution scheme that will be able to decide similarity of local information and capture 

similarities across scales in an automated fashion.  The family of kernels approach (eqn. (3)) does this 

naturally.  When the image space is divided into regions that cluster similar local information, a countable 

set of possibilities is created which associates each pixel with a member of the family.  For each local 

region an interpolating kernel kc,l is created to preserve the information across scales.  We choose an 

adaptive scheme to design the kernels kc,l since we can design optimal mappers given a representative set 

of training images.  We further expect that, if the local regions are small enough, the information will 

generalize across images.  When a new image is presented, the kernel that best reconstructs each local 

region is selected automatically and the reconstruction will appear at the output.  

The division of the signal space in local regions will be implemented via a vector quantization 

(VQ) algorithm as proposed by [20].  Each Voronoi cell resulting from the VQ will be linked to a linear 

associative memory (LAM) trained to find the best mapping between the low-resolution image and the 

high-resolution image, hence capturing the information across scales.  In other words, the assumption we 

make is that the information embodied in the codebook vectors and LAMs describes the relation 

(mapping) between a low-resolution neighborhood and its high-resolution counterpart, hence 

implementing eqn. (3).  As such, our approach does not require the assumptions typically needed to 

obtain a reasonable solution to the ill-posed superresolution problem. 

III. AN ARCHITECTURE FOR KERNEL FAMILY SUPERRESOLUTION 

Fig. (1) illustrates the proposed architecture for superresolving images using a family of kernels.  

As we proceed, the relation between the architecture and eqn. (3) will be elucidated.  The purpose of data 

clustering is to partition the low-resolution image neighborhoods into a finite number of clusters where 

the neighborhoods within each cluster are similar in some sense.  Once the clusters are established, a set 

of kernels can be developed which optimally transform each clustered neighborhood into its 

corresponding high-resolution neighborhood.  The subsections that follow discuss how the kernel family, 
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implemented here as linear associative memories (LAMs) in fig. (1), is established and then used for 

optical image superresolution. 
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Figure 1.  Superresolution architecture based on local correlations.  This paradigm performs the 
equivalent operation of convolution with a family of kernels. 

III-A. THE TRAINING DATA 

Ideally, the low and high-resolution data sets used to train the LAMs of fig. (1) would each 

encompass the same scene and have been physically obtained by hardware with different but known 

resolution settings.  Such data collection is not common.  Instead, the low-resolution counterparts of the 

given images are simulated via decimation − which is represented by the 21 GG ×↓  block.  Here, the 

simulated low-resolution images will be obtained following the image acquisition model discussed in [12] 

which is given by 
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Notice that 1,...,1,0 −= ii Mm  and 1,...,1,0 −= ii Nn  such that iii NGM =  for 2,1=i .  From eqn. (4), it is 

apparent that the decimation model used employs the averaging of nonoverlapping image neighborhoods 

as discussed in [12].  After the low-resolution image is synthesized the training of the superresolution 

architecture proceeds as depicted in fig. (2). 
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Figure 2.  Training approach for the superresolution architecture. 

III-B. CLUSTERING OF DATA 

The neighborhoods considered consist of all the overlapping H1 × H2 neighborhoods of the low-

resolution image ],[ 21 nnxl .  The set of these )1)(1( 2211 +−+−= HNHNN  neighborhoods in the low-

resolution image are given by  

 { }
222111 ,...,0,,...,0222111  ]1:,1:[ 

HNmHNml HmmHmmxX
−=−=

−+−+=  (5) 

and can be represented by the matrix NHH ×ℜ∈ 21X  whose columns are the set of vectors { } N
rr 1  =x  where 

rx  is a “vectorized” 2D neighborhood.  Each low-resolution neighborhood is paired with its 

)12()12( 21 −×− GG  homologous high-resolution neighborhood.  Specifically, these high-resolution 

neighborhoods are described by  
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where 2
)3( −= ii HG

iφ  and )2,1( =i .  The neighborhoods in S can be represented by a matrix 

NGG ×−−ℜ∈ )12)(12( 21S  similarly to the representation used in X.  These low and high-resolution 
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neighborhoods are depicted in fig. (3) where the shaded circles represent a low-resolution neighborhood.  

For the case of G1 = G2 = 2 in fig. (3a), the shaded circles are used to construct the crossed circles about 

the center of the low-resolution neighborhood.  Note that if we elect not to construct the center pixel, we 

are interpolating locally about the observed image samples.  If we elect to construct the center pixel 

(along with the other crossed circles), we are allowing for the ability to change a “noisy” observed 

sample.  Fig. (3b) similarly illustrates this for the case of G1 = G2 = 3. 

 

1 2 3

4 5 6

7 8 9

    

(a)      (b) 

Figure 3.  Local image neighborhoods and the pixels they superresolve.  Each circle represents a 2D high-
resolution image pixel.  The shaded circles are the low-resolution image pixels obtained via decimation of 
the high-resolution image.  The gray pixel is the center of the low-resolution neighborhood.  Each H1 × H2 
low-resolution neighborhood constructs a )12()12( 21 −×− GG  high-resolution neighborhood about the 
low-resolution neighborhood’s center - these are depicted by the crossed circles.  The numbers are a 
convention used to distinguish between constructed pixels in this neighborhood. (a) Decimation factor G1 
= G2 = 2. (b) Decimation factor G1 = G2 = 3. 

 

In establishing our family of kernels, we have chosen to associate the structure between the 

neighborhoods in X and S, not the observed samples themselves.  The structure of a neighborhood is 

defined as the neighborhood with its mean subtracted out; each neighborhood thus becomes a vector 

whose component mean is zero.  This kind of preprocessing allows us to categorize neighborhoods 

sharing a particular characteristic, i.e. they could be smooth, edgy at a particular orientation, etc., as 

belonging to the same class regardless of the average intensity of the neighborhood.  The structure rp  of 



 9

neighborhood rx  is obtained through multiplication with the square matrix 2121 HHHH ×ℜ∈Z , i.e. rr Zxp =  

for a single neighborhood or ZXP =  for all the input neighborhoods where  
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The desired exemplars associated with P are contained in matrix D.  Each column in D is obtained by 

subtracting the mean of xr from its corresponding neighborhood sr in S.  This is done to compensate for 

the low-resolution neighborhood mean which has been subtracted from xr and must be added back after 

the high-resolution neighborhood structure is created.  Specifically, AXSD −=  where 

2121 )12)(12( HHGG ×−−ℜ∈A  is a constant matrix with elements 
21

1
HH . 

The clusters are formed by performing a vector quantization (VQ) on the space of structural 

neighborhoods in P.  This clustering is based on the interblock correlation amongst the neighborhoods in 

P [13].  The VQ was accomplished using Kohonen’s self-organizing map [20] for reasons discussed in 

section V.  The VQ operation results in a set of C feature vectors { } C
cc 1  =f  where usually NC << .  The C 

clusters cK , c = 1,2,…,C, formed by our neighborhood and feature vectors are given by 

 { } ,...,2,1 ; ;,...,2,1 ;     : 
22

NrcbCbK brcrrc =≠=−<−= fpfpp  (8) 

III-C. NEIGHBORHOOD ASSOCIATION 

The input-output relationship of a LAM [21] is described by  

 bWpy += rr  (9) 

where W is a weight matrix that specifies the network connectivity of the LAM, b is a bias vector and pr 

is the input vector (neighborhood structure).  Note that yr contains a vector representation of a 

superresolved 2D neighborhood structure.  The neighborhoods in P and D are associated in the least 

square sense to determine the values of the W and b parameters.  These parameters can be obtained 

recursively via the least mean squares (LMS) algorithm update equation [21]  
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 Tnn PYDWW )()()1( −µ+=+  (10) 

where T denotes matrix transposition and µ is the learning rate.  They can also be obtained in closed form 

via the pseudo-inverse [21] 

 ( ) 1−= TT PPDPW . (11) 

We have assumed in eqns. (10) and (11) that W is actually the augmented matrix [W | b] and P is the 

augmented matrix [PT | v]T where v is a column vector of ones of appropriate dimensions. 

Nonlinear associative memories (NLAMs) can be used as a substitute for the LAMs of figs. (1) 

and (2).  The parameterized nonlinear relation between the input and output can be achieved using a 

multilayer perceptron (MLP) [21] and is given by 

 )},{},({ rkkr pbWy α=  (12) 

where, in general, α( ⋅ ) is a nonlinear function of a set of weight matrices, bias vectors and the 

neighborhood structure and k describes a layer in the MLP feedforward configuration.  The NLAM 

parameters are readily obtained with backpropagation learning [21].  

III-D.  SUPERRESOLVING IMAGES 

The construction of a high-resolution image, as depicted in fig. (1), results from transforming the 

neighborhood structure of the low-resolution input image with the parameters obtained in the training 

phase.  The mean of the neighborhood is subsequently added back to the transformation.  When LAMs 

are used, the superresolution of a low-resolution neighborhood xr can be expressed as 

 rcrcr AxbZxWs ++=ˆ   for crr K∈= ) ( Zxp  (13) 

where Wc and bc are the weight matrix and bias vector associated with the cth LAM, respectively.  As 

discussed before, there is a direct relation between eqn. (13) and eqn. (3).  Eqn. (13) constructs a high-

resolution neighborhoods’ structure rŝ .  The subscript r references the neighborhood being constructed.  

The constructed pixels that overlap are averaged and the high-resolution image is thus constructed.  
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Averaging several estimates improves the reliability of the final high-resolution sample.  Eqn. (13) can be 

equivalently expressed as 

 [ ]∑
=

⋅+∗∗=
L

l
lceh nnbnnannknnxnnx

1
212121,2121 ],[]),[],[(],[],[ˆ  (14) 

where )12)(12( 21 −−= GGL , xe is the expanded low-resolution image, the kernel was created with the 

values of WcZ(l,:) and bc(l), i.e. row l of WcZ and bc, a is a constant kernel with the same extent as kc,l 

that averages a low-resolution neighborhood (its impulse response samples equal 
21

1
HH ) and 

][][],[ 221121 nbnbnnb =  is responsible for averaging multiple estimates of superresolved samples.  

Specifically,  
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for i = 1,2.  Notice that the index l refers to a specific convolution pass that is constructing the 

corresponding enumerated crossed circle associated with each low-resolution neighborhood in that pass.  

Please refer to fig. (3a) for the case of G1 = G2 = 2. 

The NLAM case only differs by the presence of nested nonlinearities.  The construction, for an M 

layer MLP topology, is expressed as  

 ( )( )( ) rMccrcMcr AxbbZxWWs +++ϕϕϕ= ,1,1,,ˆ m   for crr K∈= ) ( Zxp  (16) 

where Wc,k and bc,k are the weight matrix and bias vector at layer k of the cth NLAM, respectively, and ϕ 

denotes the squashing function at each layer of the feedforward structure.  

IV. RESULTS 

The LAM-based results were compared against several kernel-based interpolation results 

including the subpixel edge localization and interpolation (SEL) technique [6], which fits an ideal step 

edge through those image regions where an edge was deemed to exist and otherwise uses a bilinear 

interpolation.  The parameters for the SEL technique were the same as those reported in [6]. 
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 Table I reports on the peak signal-to-noise ratio (PSNR) resulting from kernel-based interpolation 

of the Lena and Peppers 128×128 images by a factor of 2 in each dimension.  The PSNR is defined as 

)(log10PSNR 2
10 rmse−≡  where 

 ∑ ∑
−

=

−

=
−=

1

0

1

0

2
2121

12
1

1

2

2
21

]),[ˆ],[(
M

m

M

m
hhMMrms mmxmmxe  (17) 

and xh and hx̂  are normalized to take values in [0,1].   

 

Table I.  PSNR for magnified images.  The interpolation factor was 2 in each direction from the listed 
128×128 images.  The training and test cases of the kernel family approach utilized 30 features and a 3×3 
ROS.  In the test cases, the parameters obtained in training to reconstruct Lena where used for the Peppers 
and vice versa. 

 Repli-
cation 

Bilinear Bicubic Cubic B 
spline 

SEL Train* Test* Train** Test** 

Lena 27.00 27.26 27.45 27.43 27.48 32.63 31.78 32.23 31.71 
Peppers 27.48 27.51 27.74 27.74 27.79 34.58 32.90 34.03 32.74 

 
* Used 30 LAMs 
** Used 30 NLAMs 
 

The plot in fig. (4) illustrates the PSNR when superresolving the Lena 128×128 image with 

varying number of LAMs by a factor of 2 in each dimension.  The system parameters (feature vectors, 

weights and biases) were trained using the Peppers 256×256 image, i.e. a different image.  This well-

known image has not been included in this paper so unfamiliar readers are referred to [13,19].  The 

solid/dashed lines in fig. (4) denote training/test set reconstruction performance using regions of support 

(ROS) 3×3 and 5×5.  In general, the PSNR of the training set increases as the number of LAMs increased.  

This is intuitively expected as an increase in the number of LAMs yields a greater specialization to 

particular image features, hence a more accurate image reconstruction.  The feature set extracted using a 

5×5 ROS yields more macroscopic image characteristics than does a 3×3 ROS.  This results in greater 

specialization of the characteristics particular to the image of interest and generally to a more faithful 

image reconstruction on the training set.  In the test set, however, the larger ROS tended to show a drop in 
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PSNR performance as the degree of specialization to image features increased.  This general trend was 

encountered in all the tests we have run.  It suggests that the similarity between features, as the system 

specializes more (use more LAMs), tends to occur at a more microscopic level.  It can also be observed 

that the kernel family approach yielded higher PSNR than those methods listed in table I. 
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Figure 4.  Training and testing superresolution results for the Lena image considering two different 
regions of support (ROS).  The solid lines correspond to training set results and the dashed lines are test 
set results.  The curves related to the training data result from superresolving the Lena 128×128 image 
with the systems (features and LAMs) trained to reconstruct the Lena 256×256 image from the Lena 
128×128 image.  The curves related to testing result from superresolving the Lena 128×128 image with 
the systems trained to reconstruct the Peppers 256×256 image from the Peppers 128×128 image. 
Superresolved images corresponding to the two circled points ‘o’ are shown in fig. (5). 

A visual comparison of the results utilizing the common approaches and the kernel family 

approach for the Lena image can be observed in fig. (5).  The training and testing images shown in each 

of these figures were created using 30 LAMs and a ROS of 3×3.  They correspond to those points in fig. 

(4) marked by a circled point ‘o’.  The superresolved training and testing images were of similar quality.  

The kernel family superresolved images appear crisper than those obtained with the other approaches 

presented here.  Edges also seemed to be preserved well with this approach.  
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BicubicBilinearReplicationOriginal

LAM (Testing)LAM (Training) Cubic B-spline SEL

 

Figure 5.  Visual comparison of the superresolution results for the Lena image.  The 128×128 image was superresolved to 256×256.  A zoomed 
section (using nearest neighbor replication) of the superresolved results is displayed.  The ‘training’ parameters utilized were the 30 features and 
corresponding LAMs obtained in training to superresolve the Lena 256×256 image from the Lena 128×128 image with ROS of 3×3.  The ‘testing’ 
parameters utilized were the 30 features and corresponding LAMs obtained in training to superresolve the Peppers 256×256 image from the 
Peppers 128×128 image with ROS 3×3. 
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Fig. (6) shows results when NLAMs are used in place of the LAMs.  The NLAMs used a single 

hidden layer and had approximately the same number of free parameters as did the LAMs.  The LAM and 

NLAM results are very similar (both visually and in PSNR).  In this and several other tests we have run 

with superresolution factors of 2 and 3, the added complexity and flexibility afforded by the NLAMs 

seems unwarranted.  This makes sense since many nonlinear mappings are reasonably well approximated 

locally by linear models. 

LAM (Testing)     NLAM (Testing) 

 

Figure 6.  Comparing the superresolution of Lena using LAMs and NLAMs.  The overall PSNR 
performance of the LAM and NLAM based results were very similar.  Here the Lena 128×128 image is 
superresolved by a factor of two in each image axis.  The 30 features and LAMs (NLAMs respectively) 
used were those obtained in training to superresolve the Peppers 256×256 image from the Peppers 
128×128 image with an ROS of 3×3. 

 

As a final result to test our hypothesis that the system captures well redundancy across scales, in 

fig. (7) we illustrate the superresolution of the Lena 128×128 image using two successive 221 == GG  

reconstruction stages using the same codebook and LAMs.  In other words, the resulting “test” image of 

fig. (5) is fed through the system of fig. (1) twice with the same parameters used in the first 

superresolution stage for a total superresolution factor of 4 in each dimension.  Notice that the LAM 

reconstructed image is crisper than the other expanded images.  This also supports our claim regarding the 

similarity of image neighborhoods across scales − which we exploit for superresolution.  
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Figure 7.  Example of superresolving the Lena 128×128 image by a factor of 16 (a factor of 4 along each image axis).  The superresolution was 
accomplished using two successive reconstruction stages, each by a factor of 4.  The same features and LAMs were used in each stage. The 
training image was superresolved using the features and LAMs obtained in superresolving the Lena 256×256 image from the Lena 128×128 image 
with a ROS of 3×3.  The test image was superresolved using the features and LAMs obtained to superresolve the Peppers 256×256 image from the 
Peppers 128×128 image with a ROS of 3×3. 
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V.  ISSUES AND NOTES 

This paper reports on a novel technique for image superresolution which exploits local 

redundancies among and across scales.  Although the preliminary results are very promising, there are 

many issues requiring further analysis.  Noteworthy issues pertaining to the superresolution process 

herein are: 

•  The feature vectors and LAMs are established in a manner that is not driven directly by the error rate 

of superresolution.  This is potentially suboptimal.  However, because the function defining our input 

space partition (the clustering stage) is not differentiable this issue is not easily addressed.  We have 

tested our approach using the hierarchical mixture of experts [22] which trains to minimize the error 

rate (affine experts (LAMs) and affine transformations for the gating structure were used) and our 

method trained faster and consistently produced higher PSNR in the reconstructed images [13].  

•  The topological mapping property of Kohonen’s SOM was not used for the results presented here.  

We used the SOM because of its efficient training approach and its tendency for full codebook 

utilization.  We have performed the clustering with the Neural Gas algorithm [23] and have not 

noticed performance differences [13].  The incorporation of the topological information of the SOM 

to improve the superresolution is the subject of current research. 

•  Nonlinear associative memories showed no improvement with respect to LAM performance for the 

parameters utilized in these experiments.  Since the neighborhood sizes and the superresolution 

factors were small, a linear mapper seems to capture well the redundancy across scales.  However, for 

larger superresolution factors the mapping will tend to be more and more nonlinear, so NLAMs may 

yield a performance advantage. 

•  The superresolution approach herein also allows for noninteger (rational) magnification factors.  The 

size of the images associated (as well as what local samples are to be constructed) determines this 

factor for the feature vectors and LAMs established.  Thus different feature and LAM sets must be 

established for different magnification factors. 
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•  The low-resolution neighborhood size used is a trade-off between the amount of local support 

considered and how much information is to be constructed.  As a rule of thumb, we suggest setting 

 12 −≥ ii GH but keeping Hi, )2,1( =i , reasonably small.  The number of free parameters is 

determined by the low-resolution support specified by Hi.  Note that as Gi increases, there is more 

missing information to construct, hence more low-resolution sample support is needed. 

•  The results presented here use a single image - the Peppers - for training.  However, multiple images 

can easily be (and have been [19]) used for training the system parameters in fig. (1).  Our 

experiments have revealed that there is much similar local structure among images, which might not 

be apparent when images are casually viewed [13]. 

•  The number of input vectors should be much larger than the dimensionality of the input space for 

proper LAM training.  This results in the solution of an overdetermined problem rather than an 

underdetermined one. 

•  The system in fig. (1) lends itself to the incorporation of new or additional features (and LAMs) and 

does not require retraining of the existing parameters.  This allows for quick amending of the bases 

used for reconstruction [13]. 

VI.  CONCLUSIONS 

A novel paradigm has been presented for the superresolution of optical images.  The procedure 

was shown to be equivalent to convolution of the image with a family of kernels developed from a 

training image.  The ill-posed superresolution problem was addressed by determining locally the optimal 

least squares projections across scales for image neighborhoods of similar character.  The similarity 

among neighborhoods was characterized by their interblock correlation.  The key assumption of our 

approach was that this similarity of neighborhoods in the low-resolution image also held across scales – 

an assumption that we’ve noticed experimentally to be very reasonable. 

 The use of LAMs for the local transformation is interesting in that the relation between correlated 

neighborhoods’ structure across scales seems reasonably modeled by an affine mapping.  This simplifies 
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the training and eases the need for establishing more complicated nonlinear transformations.  Also, the 

need for an analysis that mathematically supports the assumptions we’ve observed to be reasonable is 

warranted and has been left for future research. 
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