Chapter 15

Computing Points and Tangents on Bézier Surface Patches

This chapter presents an algorithm for computing points and tangents on a tensor-product rational Bézier surface patch that has $O\left(n^{2}\right)$ time complexity.

A rational Bézier curve in \mathbf{R}^{3} is defined

$$
\begin{equation*}
\mathbf{p}(t)=\Pi(\mathbf{P}(t)) \tag{15.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{P}(t)=\left(\mathbf{P}_{x}(t), \mathbf{P}_{y}(t), \mathbf{P}_{z}(t), \mathbf{P}_{w}(t)\right)=\sum_{i=0}^{n} \mathbf{P}_{i} B_{i}^{n}(t) \tag{15.2}
\end{equation*}
$$

where $\mathbf{P}_{i}=w_{i}\left(x_{i}, y_{i}, z_{i}, 1\right)$ and the projection operator Π is defined $\Pi(x, y, z, w)=(x / w, y / w, z / w)$. We will use upper case bold-face variables to denote four-tuples (homogeneous points) and lower case bold-face for triples (points in R^{3}).

The point and tangent of this curve can be found using the familiar construction

$$
\begin{equation*}
\mathbf{P}(t)=(1-t) \mathbf{Q}(t)+t \mathbf{R}(t) \tag{15.3}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{Q}(t)=\sum_{i=0}^{n-1} \mathbf{P}_{i} B_{i}^{n-1}(t) \tag{15.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{R}(t)=\sum_{i=1}^{n} \mathbf{P}_{i} B_{i-1}^{n-1}(t) \tag{15.5}
\end{equation*}
$$

where line $\mathbf{q}(t)-\mathbf{r}(t) \equiv \Pi(\mathbf{Q}(t))-\Pi(\mathbf{R}(t))$ is tangent to the curve, as seen in Figure 15.1. As a sidenote, the correct magnitude of the derivative of $\mathbf{p}(t)$ is given by

$$
\begin{equation*}
\frac{d \mathbf{p}(t)}{d t}=n \frac{\mathbf{R}_{w}(t) \mathbf{Q}_{w}(t)}{\left((1-t) \mathbf{Q}_{w}(t)+t \mathbf{R}_{w}(t)\right)^{2}}[\mathbf{r}(t)-\mathbf{q}(t)] \tag{15.6}
\end{equation*}
$$

Figure 15.1: Curve example

The values $\mathbf{Q}(t)$ and $\mathbf{R}(t)$ can be found using the modified Horner's algorithm for Bernstein polynomials, involving a pseudo-basis conversion

$$
\begin{equation*}
\frac{\mathbf{Q}(t)}{(1-t)^{n-1}}=\hat{\mathbf{Q}}(u)=\sum_{i=0}^{n-1} \hat{\mathbf{Q}}_{i} u^{i} \tag{15.7}
\end{equation*}
$$

where $u=\frac{t}{1-t}$ and $\hat{\mathbf{Q}}_{i}=\binom{n-1}{i} \mathbf{P}_{i}, i=0,1, \ldots, n-1$. Assuming the curve is to be evaluated several times, we can ignore the expense of precomputing the $\hat{\mathbf{Q}}_{i}$, and the nested multiplication

$$
\begin{equation*}
\hat{\mathbf{Q}}(u)=\left[\cdots\left[\left[\hat{\mathbf{Q}}_{n-1} u+\hat{\mathbf{Q}}_{n-2}\right] u+\hat{\mathbf{Q}}_{n-3}\right] u+\ldots \hat{\mathbf{Q}}_{1}\right] u+\hat{\mathbf{Q}}_{0} \tag{15.8}
\end{equation*}
$$

can be performed with $n-1$ multiplies and adds for each of the four x, y, z, w coordinates. It is not necessary to post-multiply by $(1-t)^{n-1}$, since

$$
\begin{equation*}
\Pi(\mathbf{Q}(t))=\Pi\left((1-t)^{n-1} \hat{\mathbf{Q}}(u)\right)=\Pi(\hat{\mathbf{Q}}(t)) . \tag{15.9}
\end{equation*}
$$

Therefore, the point $\mathbf{P}(t)$ and its tangent direction can be computed with roughly $2 n$ multiplies and adds for each of the four x, y, z, w coordinates.

This method has problems near $t=1$, so it is best for $.5 \leq t \leq 1$ to use the form

$$
\begin{equation*}
\frac{\mathbf{Q}(t)}{t^{n-1}}=\sum_{i=0}^{n-1} \hat{\mathbf{Q}}_{n-i-1} u^{i} \tag{15.10}
\end{equation*}
$$

with $u=\frac{1-t}{t}$.
A tensor product rational Bézier surface patch is defined

$$
\begin{equation*}
\mathbf{p}(s, t)=\Pi(\mathbf{P}(s, t)) \tag{15.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{P}(s, t)=\sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{P}_{i j} B_{i}^{m}(s) B_{j}^{n}(t) \tag{15.12}
\end{equation*}
$$

We can represent the surface $\mathbf{p}(s, t)$ using the following construction:

$$
\begin{equation*}
\mathbf{P}(s, t)=(1-s)(1-t) \mathbf{P}^{00}(s, t)+s(1-t) \mathbf{P}^{10}(s, t)+(1-s) t \mathbf{P}^{01}(s, t)+s t \mathbf{P}^{11}(s, t) \tag{15.13}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{P}^{00}(s, t)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \mathbf{P}_{i j} B_{i}^{m-1}(s) B_{j}^{n-1}(t), \tag{15.14}\\
& \mathbf{P}^{10}(s, t)=\sum_{i=1}^{m} \sum_{j=0}^{n-1} \mathbf{P}_{i j} B_{i-1}^{m-1}(s) B_{j}^{n-1}(t), \tag{15.15}\\
& \mathbf{P}^{01}(s, t)=\sum_{i=0}^{m-1} \sum_{j=1}^{n} \mathbf{P}_{i j} B_{i}^{m-1}(s) B_{j-1}^{n-1}(t), \tag{15.16}\\
& \mathbf{P}^{11}(s, t)=\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{P}_{i j} B_{i-1}^{m-1}(s) B_{j-1}^{n-1}(t) \tag{15.17}
\end{align*}
$$

The tangent vector $\mathbf{p}_{s}(s, t)$ is parallel with the line

$$
\begin{equation*}
\Pi\left((1-t) \mathbf{P}^{00}(s, t)+t \mathbf{P}^{01}(s, t)\right)-\Pi\left((1-t) \mathbf{P}^{10}(s, t)+t \mathbf{P}^{11}(s, t)\right) \tag{15.18}
\end{equation*}
$$

and the tangent vector $\mathbf{p}_{t}(s, t)$ is parallel with

$$
\begin{equation*}
\Pi\left((1-s) \mathbf{P}^{00}(s, t)+s \mathbf{P}^{10}(s, t)\right)-\Pi\left((1-s) \mathbf{P}^{01}(s, t)+s \mathbf{P}^{11}(s, t)\right) \tag{15.19}
\end{equation*}
$$

The Horner algorithm for a tensor product surface emerges by defining

$$
\begin{equation*}
\frac{\mathbf{P}^{k l}(s, t)}{(1-s)^{m-1}(1-t)^{n-1}}=\hat{\mathbf{P}}^{k l}(u, v)=\sum_{i=k}^{m+k-1} \sum_{j=l}^{n+l-1} \hat{\mathbf{P}}_{i j}^{k l} u^{i} v^{j} ; \quad k, l=0,1 \tag{15.20}
\end{equation*}
$$

where $u=\frac{s}{1-s}, v=\frac{t}{1-t}$, and $\hat{\mathbf{P}}_{i j}^{k l}=\binom{m-1}{i-k}\binom{n-1}{j-l} \mathbf{P}_{i j}$. The n rows of these four bivariate polynomials can each be evaluated using $m-1$ multiplies and adds per x, y, z, w component, and the final evaluation in t costs $n-1$ multiplies and adds per x, y, z, w component.

Thus, if $m=n$, the four surfaces $\mathbf{P}^{00}(s, t), \mathbf{P}^{01}(s, t), \mathbf{P}^{10}(s, t)$, and $\mathbf{P}^{11}(s, t)$ can each be evaluated using $n^{2}-1$ multiplies and $n^{2}-1$ adds for each of the four x, y, z, w components, a total of $16 n^{2}-16$ multiplies and $16 n^{2}-16$ adds.

If one wishes to compute a grid of points on this surface which are evenly spaced in parameter space, the four surfaces $\mathbf{P}^{00}(s, t), \mathbf{P}^{01}(s, t), \mathbf{P}^{10}(s, t)$, and $\mathbf{P}^{11}(s, t)$ can each be evaluated even more quickly using forward differencing.

180CHAPTER 15. COMPUTING POINTS AND TANGENTS ON BÉZIER SURFACE PATCHES

