Chapter 15

Computing Points and Tangents on
Bézier Surface Patches

This chapter presents an algorithm for computing points and tangents on a tensor-product rational
Bézier surface patch that has O(n?) time complexity.
A rational Bézier curve in R? is defined

p(t) =I1(P(t)) (15.1)
with
P(t) = (Po (1), Py(t), Po(t), Pu(t)) = > _PiB(t) (15.2)
i=0
where P; = w;(x;, yi, zi, 1) and the projection operator II is defined II(z, y, 2z, w) = (z/w, y/w, z/w).
We will use upper case bold-face variables to denote four-tuples (homogeneous points) and lower

case bold-face for triples (points in R?).
The point and tangent of this curve can be found using the familiar construction

P(t) = (1 -1t)Q(t) + tR(¢) (15.3)
with -
Q(t) =Y P;B}\(t) (15.4)
1=0
and
R(t) =Y P;B! (1) (15.5)

where line q(t)—r(t) = I (Q(¢))—II (R(¢)) is tangent to the curve, as seen in Figure 15.1. As a
sidenote, the correct magnitude of the derivative of p(¢) is given by

dp(t) _ R, (1)Qu(t)
i T 0Qul) + Ry F) Al (15.6)

177

178 CHAPTER 15. COMPUTING POINTS AND TANGENTS ON BEZIER SURFACE PATCHES

Pn-1

Figure 15.1: Curve example

The values Q(¢) and R(t) can be found using the modified Horner’s algorithm for Bernstein
polynomials, involving a pseudo—basis conversion

n—1
Q) - A
m =Q(u) = Z Qiu (15.7)
i=0
where u = % and QZ = ("Zl)PZ—, 1=0,1,...,n— 1. Assuming the curve is to be evaluated several

times, we can ignore the expense of precomputing the Qi, and the nested multiplication

Qu) = [+ [[Qu-ru + QuaJu+ Quoslu+ ... Qulu+ Qo (15.8)

can be performed with n — 1 multiplies and adds for each of the four x,y, z, w coordinates. It is not
necessary to post-multiply by (1 —¢)"~1, since

QM) =1 ((1- 1" Q) =1 (Q). (15.9)

Therefore, the point P(¢) and its tangent direction can be computed with roughly 2n multiplies and
adds for each of the four x,y, z, w coordinates.
This method has problems near ¢t = 1, so it is best for .5 < ¢ < 1 to use the form

Sﬁf = Z Qn_i1tf (15.10)

with v = %

A tensor product rational Bézier surface patch is defined
p(s,t) = I (P(s, 1) (15.11)

where

P(s,t) = i P, B™(s)B"(t). (15.12)

179

We can represent the surface p(s,t) using the following construction:

P(s,t) = (1 —s)(1 —)PP (s,¢) + s(1 —)P O(s,t) + (1 — s)tP" (s,t) + stP (s, 1) (15.13)

where _
PO(s,t) = > Y PiB" (s)B (1), (15.14)
=0 j=0
m n—1
PO(s,t) =Y Y PyB"N(s)B} (1), (15.15)
i=1 j=0
m—1 n
PO (s,t) = > Y PyBI" '(s)BI (1), (15.16)
i=0 j=1
Pll(s,t) = > PyB ()BT (b). (15.17)

1

s
Il
-

<
Il

The tangent vector ps(s,t) is parallel with the line
IT((1 = t)P%(s,t) + tP%(s,¢)) —IL ((1 —)P'O(s,t) + tP (s, 1)) (15.18)
and the tangent vector p;(s,t) is parallel with
IL((1 = s)PY(s,t) + sP'%(s,t)) L ((1 — s)P (s,t) + sP'!(s,1)) . (15.19)

The Horner algorithm for a tensor product surface emerges by defining

Pkl (S t) . m+k—1n+l—1 o
. =P P u'v k,l=0,1 15.20
(1 _ S)m—l(l _ t)n—l (u ’U ; ; ’ ’ ()
where u = %=, v = ﬁ, and Pkl (T kl) (" 1)P” The n rows of these four bivariate polynomials

can each be evaluated using m -1 multlphes and adds per z,y,z,w component, and the final
evaluation in t costs n — 1 multiplies and adds per x, ¥y, z, w component.

Thus, if m = n, the four surfaces P% (s,), PY(s,t), P1%(s,t), and P! (s,t) can each be evaluated
using n? — 1 multiplies and n? — 1 adds for each of the four z, y, z, w components, a total of 16n2 — 16
multiplies and 16n? — 16 adds.

If one wishes to compute a grid of points on this surface which are evenly spaced in parameter
space, the four surfaces P%(s,t), P%(s,t), P10(s,t), and P*!(s,t) can each be evaluated even more
quickly using forward differencing.

180CHAPTER 15. COMPUTING POINTS AND TANGENTS ON BEZIER SURFACE PATCHES

