
Chapter 15

Computing Points and Tangents on
Bézier Surface Patches

This chapter presents an algorithm for computing points and tangents on a tensor-product rational
Bézier surface patch that has O(n2) time complexity.

A rational Bézier curve in R3 is defined

p(t) = Π (P(t)) (15.1)

with

P(t) = (Px(t),Py(t),Pz(t),Pw(t)) =
n∑

i=0

PiB
n
i (t) (15.2)

where Pi = wi(xi, yi, zi, 1) and the projection operator Π is defined Π(x, y, z, w) = (x/w, y/w, z/w).
We will use upper case bold-face variables to denote four-tuples (homogeneous points) and lower
case bold-face for triples (points in R3).

The point and tangent of this curve can be found using the familiar construction

P(t) = (1− t)Q(t) + tR(t) (15.3)

with

Q(t) =
n−1∑
i=0

PiB
n−1
i (t) (15.4)

and

R(t) =
n∑

i=1

PiB
n−1
i−1 (t) (15.5)

where line q(t)—r(t) ≡ Π (Q(t))—Π (R(t)) is tangent to the curve, as seen in Figure 15.1. As a
sidenote, the correct magnitude of the derivative of p(t) is given by

dp(t)
dt

= n
Rw(t)Qw(t)

((1 − t)Qw(t) + tRw(t))2
[r(t)− q(t)] (15.6)

177



178CHAPTER 15. COMPUTING POINTS AND TANGENTS ON BÉZIER SURFACE PATCHES

p0

p1

p2 pn-2

pn-1

pn

p(t)

q(t)
r(t)

Figure 15.1: Curve example

The values Q(t) and R(t) can be found using the modified Horner’s algorithm for Bernstein
polynomials, involving a pseudo–basis conversion

Q(t)
(1 − t)n−1

= Q̂(u) =
n−1∑
i=0

Q̂iu
i (15.7)

where u = t
1−t and Q̂i =

(n−1
i

)
Pi, i = 0, 1, . . . , n− 1. Assuming the curve is to be evaluated several

times, we can ignore the expense of precomputing the Q̂i, and the nested multiplication

Q̂(u) = [· · · [[Q̂n−1u + Q̂n−2]u + Q̂n−3]u + . . . Q̂1]u + Q̂0 (15.8)

can be performed with n− 1 multiplies and adds for each of the four x, y, z, w coordinates. It is not
necessary to post-multiply by (1 − t)n−1, since

Π (Q(t)) = Π
(
(1− t)n−1Q̂(u)

)
= Π

(
Q̂(t)

)
. (15.9)

Therefore, the point P(t) and its tangent direction can be computed with roughly 2n multiplies and
adds for each of the four x, y, z, w coordinates.

This method has problems near t = 1, so it is best for .5 ≤ t ≤ 1 to use the form

Q(t)
tn−1

=
n−1∑
i=0

Q̂n−i−1u
i (15.10)

with u = 1−t
t .

A tensor product rational Bézier surface patch is defined

p(s, t) = Π (P(s, t)) (15.11)

where

P(s, t) =
m∑

i=0

n∑
j=0

PijB
m
i (s)Bn

j (t). (15.12)



179

We can represent the surface p(s, t) using the following construction:

P(s, t) = (1 − s)(1− t)P00(s, t) + s(1− t)P10(s, t) + (1− s)tP01(s, t) + stP11(s, t) (15.13)

where

P00(s, t) =
m−1∑
i=0

n−1∑
j=0

PijB
m−1
i (s)Bn−1

j (t), (15.14)

P10(s, t) =
m∑

i=1

n−1∑
j=0

PijB
m−1
i−1 (s)Bn−1

j (t), (15.15)

P01(s, t) =
m−1∑
i=0

n∑
j=1

PijB
m−1
i (s)Bn−1

j−1 (t), (15.16)

P11(s, t) =
m∑

i=1

n∑
j=1

PijB
m−1
i−1 (s)Bn−1

j−1 (t). (15.17)

The tangent vector ps(s, t) is parallel with the line

Π
(
(1− t)P00(s, t) + tP01(s, t)

)
—Π

(
(1− t)P10(s, t) + tP11(s, t)

)
(15.18)

and the tangent vector pt(s, t) is parallel with

Π
(
(1 − s)P00(s, t) + sP10(s, t)

)
—Π

(
(1− s)P01(s, t) + sP11(s, t)

)
. (15.19)

The Horner algorithm for a tensor product surface emerges by defining

Pkl(s, t)
(1− s)m−1(1− t)n−1

= P̂kl(u, v) =
m+k−1∑

i=k

n+l−1∑
j=l

P̂kl
ij uivj ; k, l = 0, 1 (15.20)

where u = s
1−s , v = t

1−t , and P̂kl
ij =

(
m−1
i−k

)(
n−1
j−l

)
Pij . The n rows of these four bivariate polynomials

can each be evaluated using m − 1 multiplies and adds per x, y, z, w component, and the final
evaluation in t costs n− 1 multiplies and adds per x, y, z, w component.

Thus, if m = n, the four surfaces P00(s, t), P01(s, t), P10(s, t), and P11(s, t) can each be evaluated
using n2−1 multiplies and n2−1 adds for each of the four x, y, z, w components, a total of 16n2−16
multiplies and 16n2 − 16 adds.

If one wishes to compute a grid of points on this surface which are evenly spaced in parameter
space, the four surfaces P00(s, t), P01(s, t), P10(s, t), and P11(s, t) can each be evaluated even more
quickly using forward differencing.



180CHAPTER 15. COMPUTING POINTS AND TANGENTS ON BÉZIER SURFACE PATCHES


