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We consider a follow-up study in which an outcome variable is to be measured
at fixed time points and covariate values are measured prior to start of follow-up.
We assume that the conditional mean of the outcome given the covariates is a
linear function of the covariates and is indexed by occasion-specific regression
parameters. In this paper we study the asymptotic properties of several frequently
used estimators of the regression parameters, namely the ordinary least squares
(OLS), the generalized least squares (GLS), and the generalized estimating equation
(GEE) estimators when the complete vector of outcomes is not always observed,
the missing data patterns are monotone and the data are missing completely at random
(MCAR) in the sense defined by Rubin [11]. We show that when the covariance
of the outcome given the covariates is constant, as opposed to the nonmissing data
case: (a) the GLS estimator is more efficient than the OLS estimator, (b) the GLS
estimator is inefficient, and (c) the semiparametric efficient estimator in a model
that imposes linear restrictions only on the conditional mean of the last occasion
regression can be less efficient than the efficient estimator in a model that imposes
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linear restrictions on the conditional means of all the outcomes. We provide formulae
and calculations of the asymptotic relative efficiencies of the considered estimators
in three important cases: (1) for the estimators of the occasion-specific means,
(2) for estimators of occasion-specific mean differences, and (3) for estimators of
occasion-specific dose-response model parameters. � 1997 Academic Press

1. INTRODUCTION

Many randomized and nonrandomized follow-up studies are designed so
that outcomes Yit , t=1, ..., T, corresponding to the i th subject are to be
measured at T prespecified time points and a vector of covariates Xi is to be
measured at baseline. In randomized studies, Xi may record a treatment arm
indicator as well as pretreatment variables such as age, sex, and race. Often
the conditional mean of the outcome Yit given Xi is assumed to be linear
in Xi , that is E(Yit | Xi)=;t Xi , and the goal of the study is to make inferences
about the unknown regression parameters ;t . For example, if Xi represents
dose levels of a drug administered at baseline, investigators are often inter-
ested in estimating the parameter ;t indexing an occasion-specific linear
dose-response model. Often a subset of the outcome vector Yi=(Yi1 , ..., YiT)T

is missing for some subjects. In this paper we assume that the outcomes are
missing completely at random (MCAR) in the sense defined by Rubin [11]
and that the nonresponse patterns are monotone, that is once a subject mis-
ses a cycle of the study he or she misses also all subsequent cycles. Monotone
patterns of MCAR data arise, for example, in randomized studies with
staggered entry and a fixed termination calendar time. Monotone MCAR
data also arises if subjects drop out of the study for reasons unrelated to Yi .

Extensive literature exists on the estimation of parameters ;=(;T
1 , ..., ;T

T)T

in the absence of missing data. When the covariance of Yi given Xi , 7(Xi),
is known, then the generalized least squares (GLS) estimator ;� G of ; is best
linear unbiased [7, p. 301]. Chamberlain [3] showed that the asymptotic
variance of ;� G attains the semiparametric variance bound for regular
estimators of ; in the semiparametric model defined solely by the linear
model restrictions on the marginal means. When 7(Xi) is unknown, ;� G is
unfeasible because it depends on the unknown covariance function. Carroll
and Ruppert [2] showed that when 7(Xi) is a smooth function of Xi , then
the two-stage generalized least squares estimator ;� G that uses a non-
parametric estimator of 7(Xi), has the same asymptotic distribution as ;� G .
The generalized estimating equations (GEE) estimator ;� GEE proposed by
Liang and Zeger [5] is a generalized least squares estimator of ; that uses an
estimate of 7(Xi) from a, possibly misspecified, parametric model for the
covariance function. When the parametric model for the covariance function
is correctly specified then ;� GEE is asymptotically equivalent to ;� G and ;� G .
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When the true covariance function does not depend on Xi , i.e.,
7(Xi)=7 for all i, then ;� G is exactly equal to ;� OLS=(;� T

1, OLS , ..., ;� T
T, OLS)T,

where ;� t, OLS is the ordinary least squares (OLS) estimator of the coef-
ficient in the linear regression for the t th outcome Yit on the covariates Xi

[4, pp. 300�307; 12, pp. 395�401]. Thus, when the covariance function is
constant, the ordinary least squares estimator of ;t is semiparametric
efficient in a model that imposes solely linear restrictions on the condi-
tional means of the outcomes Yit given Xi , t=1, ..., T. The estimator ;� t, OLS

is also semiparametric efficient in the model defined by the linear restriction
on the t th mean only, i.e., E(Yit | Xi)=;tXi , but without restrictions
imposed on the conditional means of the remaining outcomes, i.e.,
E(Yij | Xi), j{t, is unspecified [9]. Thus, with full data, when 7(Xi) is not
a function of Xi , knowledge that the means of the remaining outcomes are
linear in Xi does not asymptotically add information about the regression
parameter ;t corresponding to the tth outcome. Furthermore, since ;� t, OLS

is also the semiparametric efficient estimator of ;t when the outcomes Yij ,
j{t, are not recorded, then we conclude that only the outcome Yit conveys
information about ;t when no Yit are missing and 7(Xi) in constant.

With monotone MCAR outcomes the estimators ;� G , ;� G , ;� GEE and ;� OLS

are consistent for estimating ; but they may be less efficient than the semi-
parametric efficient estimator ;� EFF of ; in the model defined by the linear
restrictions on the conditional means of the vector Yi given Xi and the
MCAR condition [9]. The goal of this paper is to compare and explain the
asymptotic relative efficiencies of the estimators ;� G , ;� GEE , and ;� OLS

relative to ;� EFF . In Section 2 we describe the model assumptions. In
Section 3 we review well-known results about the estimation of ; when the
complete vector Yi is observed for all subjects. In Section 4 we review a
class of estimators introduced by Robins and Rotnitzky [9] that includes
estimators that are asymptotically equivalent to ;� G , ;� GEE , ;� OLS , and ;� EFF .
In Section 5 we use a representation of the asymptotic variance of the
estimators in this class that helps interpreting the source of differences
among the asymptotic variances of the various considered estimators.
Asymptotic relative efficiencies are explicitly calculated for the various
estimators of ; in three important special cases, namely, (1) when Xi=1,
(2) when Xi=(1, Xi*) and Xi* is binary, and (3) when Xi=(1, Xi*) and X i*
is an arbitrary explanatory variable. Section 6 contains some final remarks.

2. MODEL

With i=1, ..., n indexing subject, let Yit be the outcome of the i th subject
at the tth follow-up cycle of the study, t=1, ..., T. Let Xi denote a p_1
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vector of explanatory variables for the i th subject measured just prior to
start of follow-up. We assume that the first element of the vector Xi is the
constant 1. Define Rit=1 if Yit is observed and Rit=0 otherwise. We
assume that the missing data patterns are monotone, that is Rit=0 implies
Ri(t+1)=0. We also assume that Xi is completely observed for all subjects
and that the vectors (X T

i , Y T
i , RT

i ), i=1, ..., n, are independent and
identically distributed, where Yi=(Yi1 , ..., YiT)T and Ri=(Ri1 , ..., RiT)T.
We further assume that the missing data process satisfies

P(Rit=1 | Ri(t&1)=1, Yi , Xi)=P(Rit=1 | Ri(t&1)=1, Xi). (1)

and that

P(Rit=1 | Ri(t&1)=1, Xi)>_>0, (2)

for some _>0. Condition (1) is equivalent to the condition that the data
are missing completely at random [11]. Condition (2) says that all subjects
have a probability of having the full vector Yi completely observed that is
bounded away from zero. We suppose that the conditional mean of Yit

given Xi follows the linear regression model

E(Yit | Xi)=;T
0t Xi , (3)

where ;0t is a p_1 vector of unknown parameters, t=1, ..., T. Throughout
we refer to the semiparametric model defined by restriction (3) as the ``all-
linear-means'' model. The goal of this article is to compare the asymptotic
relative efficiencies of several commonly used estimators of ;0t when the
outcomes Yit are not always observed, the missingness patterns are
monotone, and the data are missing competely at random, i.e., Eq. (1) is
true.

3. ESTIMATION WITHOUT MISSING DATA

In this section we briefly review well-known results about the estimation
of ;0t when Yi is observed for all subjects. Let =it(;t)=Yit&;T

t Xi , =i (;)=
(=i1(;1), ..., =iT (;T))T with ;=(;T

1 , ..., ;T
T)T, and let d(Xi) be a p_T fixed

matrix of functions of Xi . When Yi is observed for all subjects, then under
mild regularity conditions, the estimating equation

:
n

i=1

d(Xi) =i (;)=0, (4)
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has a root that is consistent and asymptotically normal for estimating ;0 .
Several commonly used estimators of ;0 are solutions to Eq. (4) for some
specific choice of d(Xi).

When 7(Xi), the covariance of Yi given Xi , is known, the generalized
least squares estimator ;� G solves (4) that uses d*GLS(Xi)=(I�Xi) 7(Xi)

&1,
where I is the T_T identity matrix and � denotes the Kronecker product.
The Kronecker product of an a_b matrix T and a c_d matrix S is the
ac_bd matrix with block elements [Tij S] (Seber, 1984, p. 7). When 7(Xi)
is unknown and satisfies certain smoothness conditions, Carroll and
Ruppert [2] showed that the two-stage generalized least squares estimator
;� G that solves (4) with dGLS(Xi)=(I�Xi) 7� (Xi)

&1, where 7� (Xi)
&1 is a

preliminary consistent nonparametric estimator of 7(Xi), has the same
asymptotic distribution as ;� G .

The GEE estimator [5], ;� GEE , solves (4) with dGEE(Xi)=(I�Xi)_
C� (Xi)

&1, where C� (Xi)=C(Xi ; :̂) and :̂ is a consistent estimator of :0 in
the model

7(Xi)=C(Xi ; :0), (5)

where :0 is a q_1 unknown parameter vector and C(Xi ; :) is, for each :,
a T_T symmetric and positive definite matrix function of Xi . Liang and
Zeger [5] showed that the solution to (4) that uses dGEE(Xi) will be a
consistent and asymptotically normal estimator of ;0 even when (5) is mis-
specified. In fact, it is standard to show that ;� GEE will have the same
asymptotic distribution as ;� GEE solving Eq. (4) that uses d*GEE(Xi)=
(I�Xi) C(Xi ; :*)&1, where :* is the probability limit of :̂ (see, for example,
[8]). Thus, when (5) is correctly specified, d*GEE(Xi)=d*GLS(Xi), and hence
;� GEE and ;� G have the same asymptotic distribution.

The estimator ;� OLS=(;� T
1, OLS , ..., ;� T

T, OLS)T in which each ;� 0t is the
ordinary least squares estimator of ;0t from the regression of Yit on Xi is
also obtained as a solution to Eq. (4). In fact, ;� OLS solves (4) that uses
dOLS(Xi)=I�Xi .

Robins and Rotnitzky [9] showed that the solutions to the estimating
Eq. (4) essentially constitute all regular and asymptotically linear (RAL)
estimators of ;0 . That is, any RAL estimator of ;0 is asymptotically equiv-
alent to a solution of Eq. (4) for some choice of function d(Xi). Two
estimators +̂1 and +̂2 of +0 are said to be asymptotically equivalent if
- n(+̂1&+̂2) converges to 0 in probability. If +̂1 and +̂2 are asymptotically
equivalent then - n(+̂1&+0) and - n(+̂2&+0) have the same asymptotic
distribution. An estimator ;� is said to be asymptotically linear if (;� &;0)
is asymptotically equivalent to a sample average of n i.i.d. mean zero, finite
variance random variables. For example, the solution to an estimating
equation �n

i=1 m(Yi , Xi ; ;)=0 is, under smoothness conditions for m(Yi ,
Xi ; ;), asymptotically linear because using a standard Taylor series expansion,

106 ROTNITZKY, HOLCROFT, AND ROBINS



File: 683J 166006 . By:CV . Date:04:04:97 . Time:07:14 LOP8M. V8.0. Page 01:01
Codes: 3428 Signs: 2791 . Length: 45 pic 0 pts, 190 mm

(;� &;0) can be shown to be asymptotically equivalent to the sample
average of E(�m(Yi , Xi ; ;)��;| ;=;0

]&1 m(Yi , Xi ; ;0). Regularity is a
technical condition that prohibits super-efficient estimators by specifying
that the convergence of the estimator to its limiting distribution is locally
uniform.

Chamberlain [3] showed that the asymptotic variance of ;� G achieves the
semiparametric variance bound for regular estimators of ;0 in the sense
defined by Begun, Hall, Huang, and Wellner [1]. The semiparametric
variance bound for ;0 in a semiparametric model is the supremum of the
Cramer�Rao variance bounds for ;0 over all regular parametric submodels
nested within the semiparametric model and it is therefore a lower bound
for the asymptotic variance of all regular estimators of ;0 .

When 7(Xi) is not a function of Xi , it can easily be shown that ;� GLS and
;� OLS are algebraically identical (see, for example, [4, p. 307]). Thus, ;� OLS

coincides with the semiparametric efficient estimator ;� G and it is therefore
locally semiparametric efficient in the ``all-linear-means'' model at the
additional restriction that 7(Xi) is constant. A locally semiparametric
efficient estimator of a parameter ;0 in model A at an additional restriction
B is an estimator that attains the semiparametric variance bound for ;0 in
model A when both A and B are true and remains consistent when A is
true but B is false.

Consider now the estimation of ;0T , the coefficient of the regression of
the outcome YiT on Xi , in a model that does not impose restrictions on the
conditional means E(Yit | Xi) for t<T. Specifically, under the new model,
which throughout we call the ``last-mean-linear'' model, data on Xi and the
vector Yi are observed, i=1, ..., n, but the model imposes only a linear
restriction on the last conditional mean, i.e.,

E(YiT | Xi)=;T
0TXi . (6)

Robins and Rotnitzky [9] showed that ;� T, OLS is locally semiparametric
efficient for ;0 in the ``last-mean-linear'' model at the additional restriction
that Var(YiT | Xi) is not a function of Xi . Thus, since ;� T, OLS is also a
locally semiparametric efficient estimator of ;0T in the ``all-linear-means''
model at the restriction that 7(Xi) is constant, then it follows that when Yi

is observed for all subjects and 7(Xi) is constant, knowledge that the
conditional means E(Yit | Xi) for the preceding outcomes Y� iT=(Yi1 , ...,
Yi(T&1))

T are linear in Xi does not asymptotically add information about
;0T . Furthermore, since ;� T, OLS is also a locally semiparametric estimator
of ;0T in the model (6) at the restriction that Var(YiT | Xi) is constant
when data on Y� iT are not recorded [3], then it follows that when 7(Xi) is
constant and the ``all-linear-means'' model holds, data on Y� iT does not
provide information about ;0T .
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4. ESTIMATION WITH MONOTONE MCAR DATA

In this section we review results about the estimation of ;0 when Yi is
not fully observed for all subjects and the missing data process satisfies (1)
and (2). Let *it #P(Rit=1 | Ri(t&1)=1, Xi) and ?it #>t

i=1 *it . Suppose first
that

*it are known for all i and t. (7)

Robins and Rotnitzky [9] showed that the estimating equation

:
n

i=1

Ui (d, ,;;)=0, (8)

where

Ui (d, , ; ;)=
RiT

?iT
d(Xi) =i (;)& :

T

t=1

(Rit&*itRi(t&1))
?it

,t(Y� it , Xi)

with ,t(Y� it , Xi), t=1, ..., T, an arbitrary p_1 function of Y� it #(Yi1 , ...,
Yi(t&1))

T and Xi chosen by the investigator, has, under mild regularity
conditions, a solution ;� (d, ,) that is a consistent and asymptotically
normal estimator of ;0 . The asymptotic variance of ;� (d, ,) is given by

1(d)&1 0(d, ,) 1(d )&1, T (9)

where 1(d )=E[d(Xi)[I�Xi]
T] and 0(d, ,)=Var[Ui (d, , ; ;0)]. They

also showed that the solutions of (8) are essentially all RAL estimators of
;0 in the ``all-linear-means'' model with the additional restrictions (1), (2),
and (7). Furthermore the solution of (8), ;� (deff , ,eff), that uses

deff (Xi)=(I�Xi) {Var _\RiT

?iT
=i& :

T

t=1

(Rit&*itRi(t&1))
?it

_E(=i | Y� it , Xi)+ } Xi&=
&1

(10)

and

,eff, t (Y� it , Xi)=deff (Xi) E(=i | Y� it , Xi), (11)

where =i #=i (;0), is semiparametric efficient in this model. In addition, they
showed that knowledge of the nonresponse probabilities *it does not
asymptotically provide information about ;0 since the semiparametric
efficiency bound for ;0 remains unchanged if the restriction (7) is dropped.
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That is, the semiparametric variance bound for ;0 is the same in the
models: (a) defined by (1), (2), (3), and (7); (b) defined by (1), (2), and
(3). They further showed that all RAL estimators of ;0 in model (b) are
asymptotically equivalent to the solution of (8) for some choice of d(Xi)
and ,t(Y� it , Xi).

Consider now Eq. (4) restricted to the available observations, i.e.,

:
n

i=1

d obs(Xi) =obs
i (;)=0, (12)

where =obs
i (;) is the vector of observed residuals for the i th subject and

d obs(Xi) is the corresponding submatrix of d(Xi). Liang and Zeger [5]
showed that (12) has a solution that is consistent and asymptotically
normal for estimating ;0 . Thus, since this solution is a RAL estimator of
;0 , it must have the same asymptotic distribution as a solution of Eq. (8)
for some specific d(Xi) and ,t(Y� it , Xi). The estimators ;� G , ;� G , ;� GEE and
;� OLS calculated from the available observations all solve the Eq. (12) using
the corresponding submatrices of their respective functions d*GLS(Xi),
dGLS(Xi), dGEE(Xi), and dOLS(Xi) defined in Section 3. They are therefore
asymptotically equivalent to the solution of Eq. (8) for specific functions
d(Xi) and ,t(Y� it , Xi). Define

d C
lin(Xi)=(I�Xi) {VarC _RiT

?iT
=i& :

T

t=1

(Rit&*it Ri(t&1))
?it

_Elin, C(=i | Y� it , Xi) } Xi&=
&1

,

,C
lin, t(Y� it , Xi)=d C

lin(Xi) Elin, C(=i | Y� it , Xi),

and

Elin, C(=i | Y� it , Xi)=CovC[(Yi , Y� it) | Xi)] VarC(Y� it | Xi)
&1 =� it ,

where =� it is the (t&1)_1 vector with j th element equal to Yij&;T
0jXi , and

C, when used as a subscript of Var and Cov, indicates that the conditional
variances and covariances are calculated assuming Cov(Yi | Xi)=C(Xi),
where C(Xi) is a given T_T symmetric positive definite matrix function of
Xi . In the Appendix we show

Lemma 1. Let ;� lin(C) be the solution of Eq. (8) that uses dC
lin(Xi) and

,C
lin, t(Y� it , Xi) instead of d(Xi) and ,t(Y� it , Xi). Then,

(a) ;� G and ;� G are asymptotically equivalent to ;� lin(7), where
7(Xi)=Cov(Yi | Xi) is the true conditional covariance of Yi given Xi ;
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(b) ;� GEE and ;� GEE are asymptotically equivalent to ;� lin(C:*), where
C:*(Xi)#C(Xi ; :*) is the ``working covariance'' function defined in Eq. (5)
evaluated at :*. Here, :* is the probability limit of :̂ estimated from model
(5); and

(c) ;� OLS is asymptotically equivalent to ;� lin(I ), where I is the T_T
identity matrix.

Part (a) of Lemma 1 was shown by Robins and Rotnitzky [9] and is
included here for completeness. Robins and Rotnitzky [9] also showed
that the asymptotic variance of ;� lin(7) is equal to 0(d7

lin , ,7
lin)&1. Part (b)

of Lemma 1 implies that when model (5) is correctly specified, ;� GEE has the
same asymptotic distribution as ;� G .

Robins and Rotnitzky [9] showed that ;� G has the smallest asymptotic
variance in the class of estimators that are solutions to Eq. (12). They also
showed that ;� G and the semiparametric efficient estimator ;� (deff , ,eff) have
the same asymptotic variance if and only if Elin, 7 (=i | Y� it , Xi)=E(=i | Y� it , Xi),
i.e., when the conditional expectation of =i is linear in Y� it .

In this section we have shown that the estimators ;� G , ;� G , ;� GEE , ;� GEE ,
and ;� OLS calculated from all available observations are asymptotically
equivalent to solutions of Eq. (8) for specific choices of functions d(Xi) and
,t(Y� it , Xi) when the MCAR condition (1) holds and the missing data patterns
are monotone. In Section 3 we noted that, in the absence of missing data,
;� G and ;� G were semiparametric efficient. As argued previously with
monotone MCAR data, ;� G is no longer efficient if the conditional means
E(=i | Y� it , Xi) are nonlinear functions of Y� it . In Section 3 we further noted
that when 7(Xi) is constant, ;� G and ;� OLS are algebraically identical. This
is no longer true with monotone MCAR data. In fact, in the next section
we show that large efficiency gains can be obtained by using ;� G instead of
;� OLS .

Consider now the estimation of ;0T in the ``last-mean-linear'' model
defined by restriction (6) when Yi is not observed for all subjects and the
data are MCAR and monotone. Rotnitzky and Robins [10] showed that
all RAL estimators of ;0T in the model defined by (1), (2), and (6) are
asymptotically equivalent to a solution ;� T (d*, ,*) of

:
n

i=1

Si (d*, ,* ; ;T)=0,

for some specific p_1 functions d*(Xi) and ,*(Y� it , Xi), t=1, ..., T. The
estimating function Si is defined as

Si (d*, ,* ; ;T)=
RiT

?iT
d*(Xi) =iT (;T)& :

T

t=1

(Rit&*itRi(t&1))
?it

,i*(Y� it , Xi).
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Robins and Rotnitzky [9] also showed that the solution ;� T (d*eff , ,*eff) that
uses

d*eff=Xi {Var _RiT

?iT
=iT& :

T

t=1

(Rit&*itRi(t&1))
?it

E(=iT | Y� it , Xi) } Xi&=
&1

and ,*eff (Y� it , Xi)=d*eff (Xi) E(=iT | Y� it , Xi) has asymptotic variance equal to
0&1

last=Var[Si (d*eff , ,*eff ; ;0T)]&1 that attains the semiparametric variance
bound for estimating ;0T in the model defined by restrictions (1), (2),
and (6).

Since ;� T (deff , ,eff) has asymptotic variance that attains the semiparametric
bound in the model that additionally assumes the linearity of the conditional
means of Yit given Xi , t<T, then if we let the inverse of the variance
bound of ;0 represent the amount of information about ;0 in a given
model, we have that

AVar[;� T (deff , ,eff)]&1&AVar[;� T (d*eff , ,*eff)]&1

AVar[;� T (deff , ,eff)]&1

represents the fraction of the information about ;0T associated with the
knowledge that E(Yit | Xi) is a linear function of Xi for all t<T, where for
any estimator +̂ of a parameter +0 , AVar(+̂) denotes the variance of the
asymptotic distribution of - n(+̂&+0). In Section 5 we examine this fraction
for the special case in which Xi=(1, Xi*)T for an arbitrary explanatory
variable Xi*.

5. EFFICIENCY COMPARISONS

In this section we compare the asymptotic relative efficiency (ARE) of
the various estimators of ;0t discussed in Section 4 in the model

E(Yit | Xi)=;0, 0, t+;0, 1, tX i* ,

where Xi* is a scalar random variable. We start with the case Xi*=0 which
corresponds to the problem of estimating the mean ;0, 0, t of Yit , t=1, ..., T.
We then consider the case in which Xi* is a binary variable and finally the
case of an arbitrary covariate Xi*. Without loss of generality, we focus on
the efficiency comparisons of the estimators of the coefficients ;0, 0, T

and ;0, 1, T of the model for the conditional mean of the last outcome YiT

given Xi .
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5.1. Estimation of Occasion-Specific Means

Suppose that Xi consists solely of the constant 1. In this case we are
interested in estimating ;0, 0, T , the mean of the outcome YiT measured at
the last occasion. To illustrate the asymptotic behavior of the estimators of
;0, 0, T we consider first the simple but pedagogical case in which T=2 and
Yi1 is observed for all subjects. The semiparametric efficient estimator
;� 2(deff , ,eff) of ;0, 0, 2 has asymptotic variance equal to the lower rightmost
element of 0&1

eff #0(deff , ,eff)
&1 which can be easily calculated to be

Var(=i2)+
1&*2

*2

E[Var(=i2 | Yi1)]. (13)

Since ;� 2(deff , ,eff) is semiparametric efficient, IMIS=AVar[;� 2(deff , ,eff)]&1

represents the information available for estimating ;0, 0, 2 when asymptoti-
cally, a fraction 1&*2 of the outcomes Yi2 are missing. Since IFULL=
Var(=i2)&1 is the information for estimating ;0, 0, 2 when all Yi2 's are observed
then with 8eff=*&1

2 (1&*2) E[Var(=i2 | Yi1)],

IFULL&IMIS

IFULL

=
8eff

Var(=i2)+8eff

represents the fraction of information lost due to missing Yi2 's. This
fraction is equal to 0 when 8eff=0, which occurs when *2=1, i.e., when
Yi2 is observed for all subjects, or when Var(=i2 | Yi1)=0, i.e., when Yi1 is
a perfect predictor of Yi2 .

The asymptotic variance of ;� lin(C) is given by the lower rightmost
element of 1(dC

lin)&1 0(dC
lin , ,C

lin) 1(dC
lin)&1, T. It is easy to show that this

element is equal to

Var(=i2)+
1&*2

*2

E[[=i2&Elin, C(=i2 | =i1)]2]. (14)

Formula (14) with C(Xi)=C(Xi ; :*) is, in view of Lemma 1, the asymptotic
variance of ;� GEE, 2 , the GEE estimator of ;0, 0, 2 , that uses the ``working
covariance'' model (5). In particular, taking C(Xi)=I, the asymptotic
variance of ;� OLS, 2 is given by

Var(=i2)+
1&*2

*2

[Var(=i2)]. (15)

Notice that (15) coincides with Var(=i2)�*2 , which is equal to Var(=i2), the
asymptotic variance of the normalized estimator of the sample mean of Yi2

had no Yi2 been missing, divided by *2 , the fraction of subjects with Yi2

observed for large n.
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Formula (14) says that the asymptotic variance of ;� GEE, 2 depends on the
probability limit of the estimated working covariance only through
E[[=i2&Elin, C(=i2 | =i1)]2]. In particular,

AVar(;� GEE)&AVar(;� OLS)=
1&*2

*2

[E[[=i2&Elin, C(=i2 | =i1)]2]&E(=2
i2)].

(16)

It follows from (16) that ;� OLS, 2 is not necessarily less efficient than ;� GEE, 2

since for certain choices of working covariance C, the right-hand side of
(16) will be positive. For example, if the working covariance model
specifies that the covariance of Yi is constant and equal to

Cov(Yi)=\ 1
&1�2

&1�2
1 + (17)

but the true covariance of Yi is ( 1
\0

\0

1 ) for some \0 {&1�2, then (16) is
equal to (1&*2) *&1

2 which is positive if \0>&(0.5)2. This result says that
;� GEE is not necessarily a more efficient estimator than the (``working-
independence'') OLS estimator ;� OLS . Of course in our example, since
Xi=1, the GEE estimator that uses an unrestricted model for Cov(Yi | Xi),
that is,

Cov(Yi | Xi)=\:01

:02

:02

:03+ ,

for some unknown parameters :01 , :02 , and :03 is semiparametric efficient
and feasible, and it will be preferred to GEE estimators using, possibly
incorrect, constant-valued working covariances, such as (17). The point of
our example was to show that ;� GEE can be less efficient that ;� OLS and
the working covariance models should be chosen carefully if efficiency
improvements over ;� OLS are desired.

The asymptotic variance of the generalized least squares estimator ;� G, 2

is by Lemma 1, equal to part (a)(14) with C(Xi)=Cov(Yi | Xi) and thus
can be written as

Var(=i2)+
1&*2

*2

E[Varlin(=i2 | Yi1)], (18)

where Varlin(=i2 | Yi2)=Var(Yi2)&[Cov(Yi1 , Yi2)2�Var(Yi1)] is the residual
variance from the population linear regression of Yi2 on Yi1 . In the
Appendix we show that E[Varlin(=i2 | Yi1)] is equal to E[Var(=i2 | Yi1] if
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and only if E(=i2 | Yi1) is a linear function of Yi1 . Thus ;� G is semi-
parametric efficient only when E(=i2 | Yi1) is linear in Yi1 . As noted in
Section 4, this has been previously observed by Robins and Rotnitzky [9].
The following argument helps to understand why ;� G, 2 may fail to be semi-
parametric efficient. For the i th subject with observed outcome Yi1 , let Y� i2

be the predicted value of Yi2 from the linear regression of Yi2 on Yi1 based
on subjects with observed outcomes at both occasions. That is, letting $� 1

and $� 2 be the solution of

:
n

i=1

Ri2 \ 1
Yi1+ (Yi2&$1&$2Yi1)=0,

we define Y� i2=$� 1+$� 2Yi1 , i=1, ..., n. In the Appendix we show that ;� G, 2

has the same asymptotic distribution as the solution ;� IMP, 2 of

:
n

i=1

Ri2(Yi2&;2)+(1&Ri2)(Y� i2&;2)=0.

The solution ;� IMP, 2 coincides with the regression imputation estimator of
;0, 0, 2 described by Little and Rubin [6, pp. 45�47]. This estimator is
calculated by first imputing the missing Yi2 's with their predicted values
from the linear regression of Yi2 on Yi1 based on the complete data, and
then averaging the observed and imputed values of Yi2 . The loss of
efficiency of ;� IMP, 2 and therefore of ;� G, 2 , arises because the missing Yi2 are
imputed from a model that assumes that E(Yi2 | Yi1) is linear in Yi1 .
Rotnitzky and Robins [10] showed that, when Y1 is discrete, ;� IMP can be
made semiparametric efficient by replacing Y� i2 by E� (Yi2 | Yi1), the non-
parametric maximum likelihood estimator of E(Yi2 | Yi1).

A comparison of formulas (13), (15), and (18) helps to understand the
efficiency differences among ;� EFF, 2 , ;� G, 2 , and ;� OLS, 2 . Since E[Var(=i2 | Yi1)]�
E[Varlin(=i2 | Yi1)]�E[Var(=i2)], ;� OLS, 2 can never be more efficient that
;� G, 2 , which, in turn, can never be more efficient than ;� EFF, 2 . In the
Appendix we show that E[Var(=i2)]=E[Varlin(=i2 | Yi1)] only when
Cov(Yi1 , Yi2)=0 and therefore ;� G, 2 and ;� OLS, 2 will have the same
asymptotic variance only when Yi1 and Yi2 are uncorrelated. The greater
efficiency of ;� G, 2 relative to ;� OLS, 2 is therefore explained because ;� G, 2 , as
opposed to ;� OLS, 2 , exploits the correlation between Yi1 and Yi2 for estimation
of ;02 via the linear regression imputation of the missing Yi2 's. However,
as noted earlier, the linear regression imputation of Yi2 will only lead to
efficient estimators of ;02 when E(Yi2 | Yi1) is linear in Yi1 , and except for
this case, ;� G, 2 will fail to extract all the information available in Yi1 and
Yi2 about ;0, 0, 2 .
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Given two estimators +~ and +̂ of a scalar parameter +, the asymptotic
relative efficiency of +~ compared to +̂ is denoted by ARE(+~ , +̂) and is
defined by ARE(+~ , +̂)=AVar(+̂)�AVar(+~ ). With ;� EFF #;� (deff , ,eff), (13)
and (18) imply that

ARE(;� OLS, 2 , ;� EFF, 2)=1&(1&*2) {Var(=i2)&E[Var(=i2 | Yi1)]
Var(=i2) =

and

ARE(;� G, 2 , ;� EFF, 2)

=1&
(1&*2)

1&(1&*2) \2 {Var(=i2)&E[Var(=i2 | Yi1)]
Var(=i2)

&\2= ,

where \=Corr(Yi1 , Yi2). The efficiency loss of ;� G, 2 relative to ;� EFF, 2 is
summarized in the term

(1&*2)
1&(1&*2) \2 {Var(=i2)&E[Var(=i2 | Yi1)]

Var(=i2)
&\2= .

The factor [Var(=i2)&E[Var(=i2 | Yi1]] Var(=i2)&1&\2 can be interpreted
as a measure of the degree of non-linearity in E(Yi2 | Yi1). This factor is
equal to 0 when E(Yi2 | Yi1) is linear in Yi1 , and it can be as large as 1.
The upper bound 1 is achieved when Yi1 and Yi2 are uncorrelated but Yi1

is a perfect predictor of Yi2 , for example if Yi1 is normally distributed with
zero mean and Yi2=Y 2

i1 . The factor (1&*2)�[1&(1&*2) \2] quantifies
the efficiency loss as a function of the fraction of missing Yi2 .

Example. To illustrate the relative efficiencies of ;� OLS, 2 and ;� G, 2

compared to the semiparametric efficient estimator ;� EFF, 2 , consider Yi1=
Z7�3

i1 with

\Zi1

=i2 + t
iid

Normal \\0
0+ , _2 \1

'
'
1++ . (19)

Since Yi1 is a one-to-one transformation of Zi1 , E(=i2 | Yi1)=E(=i2 | Zi1)
and since, by normality, E(=i2 | Zi1) is linear in Zi1 , then E(=i2 | Yi1)=
a+bY 3�7

i1 for some constants a and b. Thus, the conditional mean of Yi2

given Yi1 is a nonlinear function of Yi1 . In the Appendix we show that

Corr(Yi1 , Yi2)=% Corr(Zi1 , Zi2), (20)
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where %=E(Z10�3
i ) E(Z14�3

i )&1�2. Using the average of 10,000 simulated
values of Z14�3

i1 and Z10�3
i1 we calculated %r0.88. Furthermore,

Var(Yi2 | Yi1) is, by Yi1 a one-to-one transformation of Zi1 , equal to
Var(Yi2 | Zi1)=_2(1&'2) and in view of (20), Var(Yi2 | Yi1)=_2[1&
(0.88)2 \2]. Setting *2=0.5, the ARE's of ;� OLS, 2 and ;� G, 2 compared to
;� EFF, 2 reduce to

ARE(;� OLS, 2 , ;� EFF, 2)=1&(0.5)(0.88)2 \2

and

ARE(;� G, 2 , ;� EFF, 2)=1&
0.5[1&(0.88)2] \2

[1&0.5\2]
,

where \=Corr(Yi1 , Yi2). Figure 1 plots ARE(;� OLS, 2 , ;� EFF, 2) and ARE(;� G, 2 ,
;� EFF, 2) as a function of \ for *2=0.5. The plots indicate that the efficiency
of both ;� OLS, 2 and ;� G, 2 decreases as a function of |\|. The relatively small
efficiency loss of ;� G, 2 is due to the relatively small fraction of missing data,
i.e., 1&*2=0.5, and the fact that E(Yi2 | Yi1) is well-approximated by a
linear function of Yi1 , for values of Yi1 lying in a region of high probability.
We have also calculated ARE(;� G, 2 , ;� EFF, 2) for *2=0.2 (results not presented)
and obtained that the ARE reached a minimum of 0.52.

Consider now the estimation of ;0T for T�2. The asymptotic variances
of ;� EFF, T and ;� lin(C) are the lower rightmost elements of 0(deff , ,eff)

&1 and
1(dC

lin)&1 0(dC
lin , ,C

lin) 1(dC
lin)&1, T, respectively. A straightforward calcula-

tion gives

AVar(;� eff, T)=Var(=iT)+ :
T

t=1

1&*t

?t
E[Var(=iT | Y� it)] (21)

and

AVar[;� lin, T(C)]=Var(=iT)+ :
T

t=1

1&*t

?t
E[[=iT&Elin, C(=iT | Y� it)]2]. (22)

Thus, by Lemma 1, the asymptotic variances of ;� G, T and ;� OLS, T are

AVar(;� G, T)=Var(=iT)+ :
T

t=1

1&*t

?t
E[Varlin(=iT | Y� it)] (23)

and

AVar(;� OLS, T)=Var(=iT)+ :
T

t=1

1&*t

?t
E[Var(=iT)], (24)

116 ROTNITZKY, HOLCROFT, AND ROBINS



File: 683J 166016 . By:XX . Date:28:03:97 . Time:08:48 LOP8M. V8.0. Page 01:01
Codes: 1745 Signs: 1083 . Length: 45 pic 0 pts, 190 mm

Fig. 1. ARE's for estimating the mean of Yi2 when Yi1 is always observed and P(Yi2

missing)=0.5.

where Varlin(=iT | Y� it)=Cov(YiT , Y� it) Var(Y� it)
&1 Cov(Y� it , YiT). Thus, dif-

ferences in the asymptotic variances of ;� EFF, T , ;� G, T , and ;� OLS, T are
driven by differences among E[Var(=iT | Y� it)], E[Varlin(=iT | Y� it)] and
E[Var(=iT)]. Analogously to the case T=2, E[Var(=iT | Y� it)]=
E[Varlin(=iT | Y� it)] if and only if E[=iT | Y� it] is a linear function of Y� it ,
t=1, ..., T, which is then the necessary and sufficient condition for ;� G, T to
be fully efficient. When Y� iT and =iT are independent, then Var(=iT | Y� it)
=Var(=iT) and ;� OLS, T is efficient. Analogously to the case T=2, it can be
shown that ;� G, T is asymptotically equivalent to a regression imputation
estimator of the Tth mean in which a missing YiT from a subject with data
observed up to time t&1, is imputed with its predicted value from the
linear regression of YiT on Y� it based on subjects with complete data. Thus,
the efficiency loss of ;� G, T relative to ;� EFF, T is due to the imputation of the
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missing YiT from, possibly misspecified, linear models for E(YiT | Y� it). Since
E[Varlin(=iT | Y� it)]=Var(=iT) holds for all t=1, ..., T if and only if Cov(=iT ,
Y� iT)=0, it follows that ;� OLS, T and ;� G, T will have the same asymptotic
distribution only when =iT and Y� iT are uncorrelated. Also, ;� OLS, T will be
fully efficient only when Var(=iT | Y� iT)=Var(=iT).

Finally, as in the case T=2, it can be shown from formula (22) and
Lemma 1 that the asymptotic variance of ;� GEE, T can be larger than the
asymptotic variance of ;� OLS, T for some misspecified working covariance
models (5).

5.2. Estimation of Occasion-Specific Mean Differences

Suppose that Xi* is a binary indicator variable and consider the model

E(Yit | Xi)=;0, 0, t+;0, 1, tX i*.

In a randomized placebo-controlled follow-up trial for comparing treat-
ment A versus placebo, for example, Xi*=0 if subject i is assigned to the
placebo arm and Xi*=1 if subject i is assigned to the treatment A arm.
Thus, ;0, 0, t=E(Yit | Xi*=0) is the occasion-specific mean in the placebo
arm and ;0, 1, t=E(Yit | Xi*=1)&E(Yit | Xi*=0) is the occasion-specific
difference between the treatment A and placebo means.

Consider now the estimation of ;0=(;0, 0, 1 , ;0, 1, 1 , ..., ;0, 0, T , ;0, 1, T)T.
Let ;� 0, G be the generalized least squares estimator of the vector of
occasion-specific means in the placebo arm, ;0, 0=(;0, 0, 1 , ..., ;0, 0, T)T

computed from placebo-arm data only. Similarly, let ;� 0, GEE , ;� 0, OLS , and
;� 0, EFF be the GEE, OLS, and semiparametric efficient estimators of ;0, 0

computed from placebo-arm data only. Define analogously the estimators
;� 1, G , ;� 1, GEE , ;� 1, OLS , and ;� 1, EFF of ;0, 1=(;0, 1, 1 , ..., ;0, 1, T)T computed
from treatment A-arm data only. In the Appendix we show that the
estimators ;� G , ;� GEE , ;� OLS , and ;� EFF of ;0 can be expressed respectively in
terms of ;� j, G , ;� j, GEE , ;� j, OLS , and ;� j, EFF , j=0, 1. Specifically, ;� G, 0, t , the
generalized least squares estimator of the intercept of the t th-regression,
t=1, ..., T, based on data on both treatment arms coincides with the
generalized least squares of the t th mean in the placebo arm, i.e.,

;� G, 0, t=;� 0, G, t . (25)

The generalized least squares estimator ;� G, 1, t of the slope in the t th
regression, t=1, ..., T, based on data from both treatment arms is equal to
the difference between the arm-specific generalized least squares estimators
of the t th occasion means, i.e.,

;� G, 1, t=;� 1, G, t&;� 0, G, t . (26)
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Relationships (25) and (26) hold also for the GEE, OLS, and semiparametric
efficient estimators of ;0 .

Equation (25) implies that the ARE of the GLS and OLS estimators of
the occasion-specific intercepts ;0, 0, t compared to the semiparametric
efficient estimator of ;0, 0, t are equal to the ratios of the asymptotic variances
given in (23) and (24) to the asymptotic variance given in (22).

It follows from (26) that

AVar(;� G, 1, t)=AVar(;� 1, G, t)+AVar(;� 0, G, t),

and the same relationship holds for the GEE, OLS, and semiparametric
efficient estimator. Furthermore, it follows from (21), (22), (23), and (24)
that for j=0, 1,

AVar(;� j, EFF, t)=P(Xi= j)&1 {Var(=it | Xi= j)+ :
t

l=1

1&*lj

?lj

_E[Var(=it | Y� il , Xi= j)]= ,

AVar[;� j, lin, t(C)]=P(Xi= j)&1 {Var(=it | Xi= j)+ :
t

l=1

1&*lj

?lj

_E[[=it&Elin, C(=it | Y� il , Xi= j)]2]= ,

AVar(;� j, G, t)=P(Xi= j)&1 {Var(=it | Xi= j)+ :
t

l=1

1&*lj

?lj

_E[Varlin(=it | Y� il , Xi= j)]= , (27)

and

AVar(;� j, OLS, t)

=P(Xi= j)&1 {Var(=it | Xi= j)+ :
t

l=1

1&*lj

?lj
E[Var(=it | Xi= j)]= ,

where *lj=P(Ril=1 | Ri(l&1)=1, Xi= j) and Varlin(=it | Y� il , Xi= j)=
Cov(Yit , Y� il | Xi= j) Var(Y� il | Xi= j)&1 =� il . Thus when (a) the nonresponse
probabilities *lj do not depend on the treatment arm, i.e., *lj=*l ; (b) the
covariance of Yi is the same for both treatment arms, i.e., Cov(Yi | Xi*)=
Cov(Yi); and (c) Var(=it | Y� il , Xi*) is not a function of X i*, l=1, ..., t,
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t=1, ..., T, then the ARE of the GLS and OLS estimators of the occasion-
specific slopes compared to the semiparametric efficient estimator remain
the same as the ARE's of the respective estimators of the occasion-specific
intercepts discussed earlier. Finally, as in Section 5.1, it can be shown that
the GEE estimator of ;0, 1, T can be less efficient than the OLS estimator for
some misspecified working covariance models.

Example. To illustrate the dependence of the ARE's on the difference
between the correlation matrices in the two treatment groups, we consider
a randomized placebo-controlled study with data measured at baseline
and at one follow-up point. We assume that data at baseline are always
observed, i.e., *1j=1, j=0, 1, and that the probability that Yi2 is missing
is the same in both treatment arms. We assume that Yi1=Z7�3

i1 and that
given Xi*,

\Zi1

=i2 + t
indep

Normal \\0
0+ , _2 \ 1

'(Xi*)
'(X i*)

1 ++ . (28)

Under (28), E(Yi1 | X i*)=0 so in this example we assume that there are no
differences in the treatment means at baseline. Thus, within each treatment
arm, the data follows the model (19) of Example 1. However, since '(Xi*)
is a function of Xi*, the covariance between Yi1 and Yi2 changes with
treatment arm. A straightforward calculation shows that

AVar(;� EFF, 1, 2)=_2 { 1
*2P0 P1

&
1&*2

*2

(0.88)&2 (\2
0 P1+\2

1P0)
P0P1 = , (29)

AVar(;� G, 1, 2)=_2 { 1
*2P0 P1

&
1&*2

*2

(\2
0 P1+\2

1P0)
P0P1 = , (30)

and

AVar(;� OLS, 1, 2)=_2 { 1
*2 P0P1= , (31)

where \j=Corr(Yi1 , Yi2 | Xi*= j), Pj=P(X i*= j), j=0, 1. Figure 2 plots
the ARE of the OLS and GLS estimator of ;0, 1, 2 , the slope in the regression
model for the second occasion, compared to the semiparametric efficient
estimator of ;0, 1, 2 against \1 for *2=0.5, \0=- 0.5 and P0=P1=0.5.
Both ARE's attain their maximum at \1=0, but these maximums are
not equal to 1. The OLS estimator is substantially less efficient than the
semiparametric efficient estimator when |\1 | is large. The GLS estimator
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Fig. 2. ARE's for estimating the mean difference of the outcomes Yi2 in 2 groups. Here,
Yi1 is always observed, P(Yi2 missing)=0.5, Corr(Yi1 , Yi2)=- 0.5 in the first group and
Corr2(Y1, Y2)=Corr(Yi1 , Yi2) in the second group.

performs relatively well over the whole range of \1 as indicated by the
theory since E(=i2 | Yi1) is well approximated by a linear function of Yi1

over the range of high probability values of Yi1 .

5.3. Estimation of Occasion-Specific Slopes

We now consider the efficiency of different estimators of ;0 in the model

E(Yit | Xi)=;0, 0, t+;0, 1, tX i* , (32)

for an arbitrary random variable Xi*. In what follows it will be convenient
to define ;0*=(;0, 0, 1 , ;0, 0, 2 , ..., ;0, 0, T , ;0, 1, 1 , ..., ;0, 1, T)T. The vector ;0* is
obtained by permuting the elements of ;0 so that the first T elements of ;0*
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are the time-ordered intercepts and the last T elements of ;0* are the time-
ordered slopes. The semi-parametric variance bound for estimating ;0* in
model (32) is

0*&1
eff =E {\ I

X i*I+ K &1
eff (Xi)(I, Xi*I )=

&1

, (33)

where I is the T_T identity matrix and

Keff (Xi)=Var(=i | Xi*)+ :
T

t=1

1&*it

?it
E[Var(=i | Y� it , Xi*) | Xi].

If, for t=1, ..., T,

Var(=i | Xi*), E[Var(=i | Y� it , Xi*) | Xi*], and *it do not depend on Xi*, (34)

then Keff (Xi) is a constant matrix and

0*eff=\ K &1
eff

+1K &1
eff

+1K &1
eff

+2 K &1
eff + ,

where +1=E(X i*) and +2=E(X*2
i ). The semiparametric variance bound

for estimating the vector of occasion-specific slopes ;0, 1=(;0, 1, 1 , ...,
;0, 1, T)T is the T_T lower rightmost block matrix of 0*&1

eff , which, when
(34) holds is, by the formula of the inverse of a partitioned matrix, equal
to

0&1
1, eff =[+2K &1

eff &+1K &1
eff Keff +1K &1

eff ]&1

=Keff�Var(Xi*).

Thus, when (34) holds the semiparametric variance bound for estimating
the slope at the last occasion is given by the lower rightmost element of
0&1

1, eff and it is equal to

AVar(;� EFF, 1, T)=_Var(=iT)+ :
T

t=1

1&*t

?t
E[Var(=iT | Y� it, Xi*)]&<Var(Xi*).

(35)

Consider now ;� *G , the generalized least squares estimator of ;0* . Its
asymptotic variance is given by

0*&1
lin ={\ I

Xi*I+ K &1
lin (Xi)(I, Xi*I )=

&1

, (36)
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where

Klin(Xi)=Var(=i | Xi*)+ :
T

t=1

1&*it

?it
E[Varlin(=i | Y� it , X i*) | Xi*],

and Varlin(=i | Y� it , Xi*)=Cov(=i , Y� it | Xi) Var(Y� it | Xi)
&1 Cov(Y� it , =i | Xi).

When *it and Var(Yi | Xi*) do not depend on X i*, an identical argument
used to derive (35) now gives

AVar(;� G, 1, T)=_Var(=iT)+ :
T

t=1

1&*t

?t
Varlin(=iT | Y� it)&<Var(Xi*). (37)

Thus, when (34) holds ;� G, 1, T is semiparametric efficient if and only
if E[Varlin(=iT | Y� it , Xi)]=E[Var(=iT | Y� it , Xi)] or equivalently when
E(=iT | Y� it , Xi) is linear in Y� it , as noted also by Robins and Rotnitzky [9].

When *it is not a function of X i*, ;� OLS, 1, T is computed from a fraction
of the outcomes YiT that, as n � �, is equal to ?T . Thus, the asymptotic
variance of the OLS estimator of ;0, 1, T is equal to Var(=iT)�[?T Var(Xi*)].
A straightforward calculation shows that this variance can be rewritten as

AVar(;� OLS, 1, T)=_Var(=iT)+ :
T

t=1

(1&*t)
?t

Var(=iT)&<Var(Xi*). (38)

Comparing Eqs. (37) and (38) to Eqs. (23) and (24), it follows that when
(34) holds the asymptotic variances of the estimators ;� OLS, 1, T and ;� G, 1, T of
the occasion-specific slopes are equal to the asymptotic variances of the
corresponding estimators of the occasion-specific means divided by the
variance of Xi*. We conclude that when (34) holds, the asymptotic relative
efficiencies of ;� OLS, 1, T and ;� G, 1, T compared to ;� EFF, 1, T are less than or
equal to those discussed in Section 5.1 for estimation of the mean of YiT .

Consider now the estimation of ;0, 1, T in the ``last-mean-linear'' model
(6) with the additional restriction (1), where Xi=(1, Xi*). The semipara-
metric variance bound for estimating ;0, T in this model is given by 0&1

last=
Var[Si (d*eff , ,*eff ; ;0T)]&1. It is straightforward to show that

0&1
last=E {\ Keff, T (Xi)

&1

Xi*Keff, T (Xi)
&1

Xi*Keff, T (Xi)
&1

X*2
i Keff, T (Xi)

&1+=
&1

,

where Keff, T (Xi) is the lower rightmost element of the T_T matrix
Keff (Xi). Thus, when (34) holds,

0&1
last=Keff, T \ 1

+1

+1

+2+
&1

,
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and the semiparametric variance bound for estimating ;0, 1, T is equal to
Keff, T�Var(Xi*) which, by (35), coincides with AVar(;� EFF, 1, T). This result
says that when (34) holds, knowledge that the conditional means of Yit

given Xi* are linear functions of X i* for t=1, ..., T&1 does not asymptoti-
cally add information about the parameter ;0, 1, T . It is interesting to note
that since, (a) ;� OLS, 1, T is semiparametric efficient when (34) holds and
data on Y� iT are not available and (b) the asymptotic variance of ;� OLS, 1, T

is larger than the asymptotic variance of ;� EFF, 1, T when, given Xi , Y� iT and
=iT are statistically dependent; then, as opposed to the full-data case, data
on Y� iT provide information about ;0, 1, T when, given Xi , Y� iT is a predictor
of YiT . When (34) is not true, the lower rightmost elements of 0*&1

eff and
0*&1

last may not be equal. In such cases, knowledge of the linearity of the
conditional means of Yit given Xi , does provide additional information
about ;0, 1, T .

Finally, the asymptotic variance of ;� GEE, T is given by (9) with d lin and ,lin

defined in Lemma 1(b). The results of Section 5.1 suggest that ;� GEE, T can be
even less efficient than ;� OLS, T for some misspecified working covariance
models (5). A detailed study of which estimated covariances C� (Xi) lead to
;� GEE, T being less efficient than ;� OLS, T is beyond the scope of this paper.

6. FINAL REMARKS

In this paper we have examined the relative efficiencies of various
estimators of the parameter ;t indexing the occasion-specific linear models
for the conditional means of Yit given Xi , t=1, ..., T, when the outcomes
Yit are MCAR and the missing data patterns are monotone. We have
shown that, as opposed to the case in which the full-data vector Yi is
observed for all subjects, the GLS and OLS estimators can be less efficient
than the semiparametric efficient estimator of ;t . We have noted that the
efficiency loss of the GLS estimator of ;t is related to the degree of non-
linearity of the conditional means E(Yit | Y� it , Xi) as functions of Y� it . We
also observed that, as opposed to the full-data case, the OLS estimator of
;t is inefficient since it only uses Xi and the outcomes Yit recorded at the
tth occasion, and with monotone missing data, the outcomes Y� it recorded
prior to time t carry information about ;t .

Finally, the results of Lemma 1 are valid also when model (3) is replaced
by E(Yit | Xi)= gt(Xi , ;0), where gt(Xi ; ;0) is a, possibly nonlinear,
function of Xi and ;0 . When gt(Xi ; ;0) depends on ;0 only through the
occasion-specific parameters ;0t , but gt(Xi ; ;0) is not a linear function of
;0t , then ;� OLS and ;� G are no longer equal, even when no Yit 's are missing.
Thus, with full-data and nonlinear conditional mean models, data on Yij ,
j{t, provide information about the occasion-specific parameters indexing
the conditional mean of Yit given Xi .
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APPENDIX

Proof of Lemma 1. Part (a) is exactly Lemma 1 of Robins and
Rotnitzky [9]. To prove part (b) we will show that ;� GEE=;� lin(C:*) and
then argue that since ;� GEE is asymptotically equivalent to ;� GEE then ;� GEE

and ;� lin(C:*) must have the same asymptotic distribution. The estimator
;� GEE solves

:
n

i=1

(I�Xi) C:*(Xi)
&1 2i =i (;)=0, (39)

where 2i=diag(Rij) is the T_T diagonal matrix with diagonal elements
Rij , j=1, ..., T. Robins and Rotnitzky [9] showed that when Cov(Yi | Xi)=
C:*(Xi),

(I�Xi) C:*(Xi)
&1 2i=i=Ui (dC

lin , ,C
lin ; ;0), (40)

where dC
lin and ,C

lin are defined in Section 4. By definition, Ui (dC
lin , ,C

lin ; ;0)
is a linear function of =i . Thus, Ui (dC

lin , ,C
lin ; ;0)=a(Xi , Ri) =i for some

a(Xi , Ri). Let b(Xi , Ri)#(I�Xi) C:*(Xi)
&1 2i and h(Xi , Ri)#a(Xi , Ri)&

b(Xi , Ri). By (40), h(Xi , Ri) =i=0 when Cov(Yi | Xi)=C:*(Xi). Thus,
by the MCAR assumption (1), Cov[h(Xi , Ri) =i | Xi , Ri]=h(Xi , Ri)_
C:*(Xi) h(Xi , Ri)

T=0 which, by C(Xi) a positive definite matrix, implies
that h(Xi , Ri)=0 almost everywhere. Hence, a(Xi , Ri)=b(Xi , Ri) a.e. and
Eq. (40) is true even when Cov(Yi | Xi){C(Xi) which ends the proof of
part (b). Part (c) follows immediately from part (b) by noting that ;� OLS

solves (39) with C:*(Xi)=I.

Proof that E [Varlin ( Y2 | Y1 )] = E [ Var ( Y2 | Y1 ) ] is equivalent to
E(Y2 | Y1) is linear in Y1 . Suppose first that E(Y2 | Y1) is linear in Y1 ,
then E(Y2 | Y1)=E(Y2)+Cov(Y1 , Y2) Var(Y1)&1 =1 and Var[E(Y2 | Y1)]
= Cov( Y1 , Y2 ) 2 Var ( Y1 ) &1. Thus E [ Var( Y2 | Y1 )] = Var( Y2) &
Var[ E(Y2 | Y1)] implies E [ Var ( Y2 | Y1 )]=Var ( Y2)&Cov ( Y1 , Y2 ) 2_
Var( Y1 ) &1 which proves that E [ Var ( Y2 | Y1 ) ] = E [ Varlin ( Y2 | Y1 )] .
Suppose now that E[Var(Y2 | Y1)]=Var(Y2)&Cov(Y1 , Y2)2 Var(Y1)&1,
then Var[E(Y2 | Y1)]=Cov(Y1 , Y2)2 Var(Y1)&1. Thus, Var[E(Y2 | Y1)]
=Var[Cov(Y1 , Y2) Var( Y1)&1 =1]. Now, Var[E(Y2 | Y1)&Cov( Y1 , Y2 )
_Var(Y1)&1 =1]= Var[E(Y2 | Y1 ) + Var[ Cov( Y1 , Y2) Var(Y1)&1 =1]&
2 Cov[E(Y2 | Y1) Cov ( Y1 , Y2 ) Var( Y1 ) &1 =1 ]. But Cov[ E ( Y2 | Y1 )_
Cov(Y1 , Y2) Var(Y1)&1 =1]=E[Y2=1] Cov(Y1 , Y2)_Var(Y1)&1=Cov(Y1 ,
Y2)2 Var(Y1)&1. Thus Var[E(Y2 | Y1)&Cov(Y1 , Y2) Var(Y1)&1 =1]=0
which proves the assertion.

Proof that Varlin(Y2 | Y1)=Var(Y2) is equivalent to Cov(Y1 , Y2)=0.
By definition Varlin ( Y2 | Y1 ) = Var( Y2 ) & Cov(Y1 , Y2)2 Var(Y1)&1; thus
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Varlin(Y2 | Y1)=Var(Y2) � Cov(Y1 , Y2)2 Var(Y1)&1=0 which is equiv-
alent to Cov(Y1 , Y2)=0.

Proof that ;� G, 2 and ;� IMP, 2 are asymptotically equivalent. Since ;� G=
;� lin(7), then by definition of ;� lin, 2(7),

- n(;� G, 2&;0)=n&1�2

_ :
n

i=1
{Ri2

*i2
=i2&

Ri2&*i2

*i2
Cov(Yi1 , Yi2) Var(Yi1)&1 =i1= . (41)

Also, by definition of ;� IMP, 2 ,

- n(;� IMP, 2&;0)

=n&1�2 :
n

i=1
{Ri2=i2+(1&Ri2) _Y� 2, obs+

Cov@(Y1 , Y2)

Var@(Y1)
=̂i1&;2&= ,

where Cov@(Y1 , Y2) and Var@(Y1) are the sample covariance of Yi1 and Yi2

and the sample variance of Yi1 among subjects with Ri2=1, =̂i1=
Yi1&Y� 1, obs and Y� j, obs , j=1, 2, is the sample average of Yij from subjects
with Ri2=1. Now,

:
n

i=1

[Ri2=i2+(1&Ri2)(Y� 2, obs&;2)]=
n �n

i=1 Ri2 =i2

�n
i=1 Ri2

and

:
n

i=1

(1&Ri2)
Cov@(Y1 , Y2)

Var@(Y1)
=̂i1=n {�n

i=1 =i1

n
&

�n
i=1 Ri2 =i1

�n
i=1 Ri2 = Cov@(Y1 , Y2)

Var@(Y1)
.

Thus,

- n(;� IMP, 2&;0)

=- n {�n
i=1 Ri2=i2

�n
i=1 Ri2

+
Cov@(Y1 , Y2)

Var@(Y1) _�n
i=1 =i1

n
&

�n
i=1 Ri2=i1

�n
i=1 Ri2 &=

=- n {�n
i=1 Ri2=i2

n*2

+
Cov(Y1 , Y2)

Var(Y1) _�n
i=1 =i1

n
&

�n
i=1 Ri2=i1

n*2 &=+op(1)

=n&1�2 { :
n

i=1

Ri2=i2

*2

&
Cov(Y1 , Y2)

Var(Y1)
:
n

i=1

Ri2&*2

*2

=i1 =+op(1), (42)
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where the second equality follows by Slutsky's theorem. Thus, by (41) and
(42) and the central limit theorem, ;� IMP, 2 and ;� G, 2 are asymptotically
equivalent.

Proof of Eqs. 25 and 26. Let

MC(=i)=
RiT

?iT
=i& :

T

t=1

[Rit&*it Ri(t&1)]
?it

CovC(=i , =� it) VarC(=� it)&1 =� it ,

where CovC and VarC are calculated under the assumption that Cov(Yi | Xi*)
=C(Xi*). The generalized least squares estimator ;� G is asymptotically
equivalent to ;� lin(C) that solves

:
n

i=1

(I�Xi) K&1(Xi) MC[=i (;)]=0, (43)

where Xi=(1, Xi*)T, K(Xi)=Var[MC(=i) | Xi*] and C(Xi)=Var(Yi | Xi*).
When Xi* is a binary variable (43) is equivalent to

:
Xi*=0

\I�\1
0++ K &1

0 MC[= (0)
i (;)]+ :

Xi*=1
\I�\1

1++ K &1
1 MC[= (1)

i (;)]=0,

(44)

where K &1
j =K&1(Xi*= j), = (0)

i (;) is the T_1 vector with the jth element
equal to (Yij&B0j) and = (1)

i (;) is the T_1 vector with the jth element
equal to (Yij&B0j&B1j). The system (44) consists of 2T equations. Rearrang-
ing these equations so that the equations occupying odd numbered places
in (44) come first, we have

:
Xi*=0

IK &1
0 MC[= (0)

i (;)]+ :
X i*=1

IK &1
1 MC[= (1)

i (;)]=0 (45)

:
Xi*=1

IK &1
1 MC[= (1)

i (;)]=0. (46)

Thus, ;� 0j , j=1, ..., T solves

:
Xi*=0

MC[= (0)
i (;)]=0, (47)

and it is therefore equal to the generalized least squares estimator of ;0, 0

based on subjects with Xi*=0. Similarly, @;0j+;0j , j=1, ..., T, solves

:
Xi*=1

MC[= (1)
i (;)]=0, (48)
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which is the generalized least squares estimator of the mean vector among
subjects with Xi*=1. Thus it follows that ;� 1j=@;0j+;1j&;0j is the
difference between the generalized least squares estimator of the mean
vector among subjects with Xi*=1 and the GLS estimator of the mean
vector among subjects with Xi*=0. That relationships (47) and (48) hold
also for the GEE, OLS, and semiparametric efficient estimators follows by
an analogous argument by considering the appropriate functions
MC[=i (;)] in each case.

Proof of Eq. (20). E(Yi1)=0 since: (1) Yi1=Z7�3
i1 , (2) the function

h(Z)=Z7�3 is odd, and (3) Z has a symmetric distribution with zero mean.
Thus, Var(Yi1)=E(Y 2

i1)=E(Z14�3
i1 ). Also, Cov(Yi1 , Yi2)=E(Yi1 , =i2) and

E(Yi1=i2)=E[Yi1E(=i2 | Yi1)]. But E(=i2 | Yi1)=E(=i2 | Zi1) because h(Z)
=Z7�3 is a one-to-one function. Thus, E[Yi1E(=i2 | Yi1)]=E(Yi1 \Zi1)=
\E(Z10�3

i ). Finally, Corr(Yi1 , Yi2)#Cov(Yi1 , Yi2)�[Var(Yi1) Var(Yi2)]1�2

=\E(Z10�3
i )�- E(Z14�3

i1 ) because Var(Yi2)=1.
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