Concurrency and Distribution in Object-Oriented Programming
JEAN-PIERRE BRIOT

Laboratoire d’Informatique de Paris 6, UPMC—Case 169, 4 place Jussieu, 75252 Paris Cedex 05,
France; email: (Jean-Pierre.Briot@lip6.[r).

RACHID GUERRAOUI

Département d’Informatique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne,
Switzerland; email: (rachid.guerraoui@epfl.ch).

AND
KLAUS-PETER LOHR

Institut fiir Informatik, Freie Universitdt Berlin, D-14195 Berlin, Germany; email:
(lohr@inf.fu-berlin.de).

This paper aims at discussing and classifying the various ways in which the object
paradigm is used in concurrent and distributed contexts. We distinguish among the
library approach, the integrative approach, and the reflective approach. The library
approach applies object-oriented concepts, as they are, to structure concurrent and
distributed systems through class libraries. The integrative approach consists of
merging concepts such as object and activity, message passing, and transaction,
etc. The reflective approach integrates class libraries intimately within an object-
based programming language. We discuss and illustrate each of these and point
out their complementary levels and goals.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures; C.2.4 [Computer-Communication Networks]:
Distributed Systems; D.1 [Software]: Programming Techniques; D.3.2
[Programming Languages]: Language Classifications; D.4.1 [Operating
Systems]: Process Management; D.4.4 [Operating Systems]|: Communications
Management; D.4.5 [Operating Systems]: Reliability; 1.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence; H.2.4 [Database Management]:
Systems

General Terms: Languages, Reliability, Performance

Additional Key Words and Phrases: Concurrency, distribution, integration,
libraries, message passing, object, reflection

1. INTRODUCTION strong enough to structure and encap-
. . sulate modules of computation and flex-
It is now well accepted that the object jple enough to match various granulari-
paradigm provides good foundations for ties of software and hardware
the new challenges of concurrent and architectures.
distributed computing. Object notions, Most object-based programming lan-
rooted in the data-abstraction principle guages do have some concurrent or dis-
and the message-passing metaphor, are tributed extension(s), and almost every

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1998 ACM 0360-0300/98/0300-0291 $5.00

ACM Computing Surveys, Vol. 30, No. 3, September 1998



292 ° J.-P. Briot et al.
CONTENTS
1. INTRODUCTION
1.1 A Coarse Classification in Three Approaches
1.2 Complementarity of the Approaches
1.3 Concurrency and Distribution
1.4 Previous Work
2. THE LIBRARY APPROACH
2.1 Modularity and Structuring Needs
2.2 Smalltalk Libraries
2.3 C++ Libraries
2.4 In Search of Standard Abstractions
3. THE INTEGRATIVE APPROACH
3.1 Unification Needs
3.2 Dimensions of Integration
3.3 Active Objects
3.4 Synchronised Objects
3.5 Distributed Objects
3.6 Limitations of the Integrative Approach
4. THE REFLECTIVE APPROACH
4.1 Combining Flexibility and Transparency
4.2 Reflection
4.3 Reflection and Objects
4.4 Examples of Meta Object Protocols (MOPs)
4.5 Examples of Applications
4.6 Other Examples of Reflective Architectures
4.7 Related Models
5. PERSPECTIVES
5.1 The Library Approach
5.2 The Integrative Approach
5.3 The Reflective Approach
5.4 Integrating the Approaches
6. SUMMARY

new architectural development in the
distributed system community is, to
some extent, object-based. For instance,
both the Open Distributed Processing
(ODP) and the Object Management
Group (OMG), recent standardization
initiatives for heterogeneous distributed
computing, are based on object concepts
[Nicol et al. 1993; OMG 1995; Mowbray
et al. 1995.

As a result, many object-based con-
current, parallel, or distributed models,
languages, or system architectures have
been proposed and described in the lit-
erature. Towards a better understand-
ing and evaluation of these proposals,
this paper discusses how object concepts
are articulated (applied, customized, in-
tegrated, expanded, and so on) with con-
currency and distribution challenges
and current technology. Rather than an
exhaustive study of various object-ori-
ented concurrent and distributed pro-
gramming systems, this paper aims at

ACM Computing Surveys, Vol. 30, No. 3, September 1998

classifying and discussing the various
ways in which the object paradigm is
used in concurrent and distributed con-
texts.

1.1 A Coarse Classification in Three
Approaches

By analyzing current experience and
trends (as for instance reported in
[Meyer 1993]), we have distinguished
three main approaches in object-based
concurrent and distributed program-
ming: the library approach, the integra-
tive approach and the reflective ap-
proach. This paper discusses and
illustrates these three approaches.

The library approach (Section 2) ap-
plies object-oriented concepts, as they
are, to structure concurrent and distrib-
uted systems through class libraries.
Various components, such as processes,
synchronization means, files, and name
servers, are represented by various ob-
ject classes (services). This approach
provides genericity of the software ar-
chitectures. Programming remains
mostly standard (sequential) object-ori-
ented programming. Roughly speaking,
the basic idea is to extend the library
rather than the language.

The integrative approach (Section 3)
consists in unifying concurrent and dis-
tributed system concepts with object-
oriented ones. For example, merging the
notions of process and object gives rise
to the notion of active object, and merg-
ing the notions of transaction and object
invocation gives rise to the notion of
atomic invocation. However, integration
is not always that smooth. We will see
that concepts may be in conflict, notably
inheritance with synchronization and
replication with communication (see
Section 3.6).

The reflective approach (Section 4) in-
tegrates protocol libraries within an ob-
ject-based programming language. The
idea is to separate the application pro-
gram from the various aspects of its
implementation and computation con-
texts (models of computation, communi-
cation, distribution, etc.), which are de-



Concurrency and Distribution o

scribed in terms of metaprograms. This
makes possible (dynamic) system cus-
tomization with minimal impact on the
application programs.

1.2 Complementarity of the Approaches

Although these approaches may at first
glance appear in conflict, in fact they
are not. More precisely, research di-
rected along these approaches has com-
plementary goals.

The library approach is oriented to-
wards system builders and aims at
identifying basic concurrent and distrib-
uted abstractions. This approach pro-
vides services and constructs for build-
ing an object-based concurrent or
distributed model.

The integrative approach is oriented
towards application builders, and aims
at defining a high-level programming
language with few wunified concepts.
This approach assumes an object-based
concurrent or distributed model that de-
scribes how the services interact.

The reflective approach is oriented to-
wards both application builders and
system builders. It may be considered a
“bridge” between the two previous ap-
proaches as it helps to integrate trans-
parently various computing protocol li-
braries within a programming language/
system. Moreover, it helps in combining
the two other approaches by making
explicit the separation of and interface
between their respective levels (i.e., the
integrative approach for the end user
and the library approach for developing
and customizing the system). The suc-
cess of a reflective system relies both on
a high level programming language and
on a rich library of concurrent and dis-
tributed programming abstractions.

It is important to notice that the
three approaches do not correspond to
disjoint categories of languages and sys-
tems. As we point out, for example, in
Section 5.4, some languages and sys-
tems are built following more than one
approach.

293

1.3 Concurrency and Distribution

Before presenting our classification in
more detail, we first briefly clarify our
use of the terms concurrency and distri-
bution.

There are different ways of running a
concurrent program on an execution
platform. The program may be executed
on a uniprocessor, for example, using a
threading system, or on a parallel com-
puter. Thus, while concurrency is a se-
mantic property of a program, parallel-
ism pertains to its implementation as
determined by the compiler and other
systems software.

In contrast to parallelism, which may
usually be seen as the implementation
of concurrency, distribution is more an
independent notion. First, distribution
does not necessarily imply concurrency:
a purely sequential program may be
executed across machine boundaries us-
ing remote procedure calls (i.e., in a
distributed fashion). The situation with
client/server systems is similar: while a
server may or may not be concurrent,
its clients rarely are; only when we view
a server and its clients as one system do
we see a concurrent system operating in
a distributed fashion. Second, distribu-
tion intrinsically implies independent
failures; that is, part of a program
might stop running (because of a crash
failure), whereas the rest of the pro-
gram might still be running. In a con-
current but not distributed context, it is
usually assumed that programs have
total failure semantics: either the com-
plete program is running or none of it is.

1.4 Previous Work

The reader is assumed to be familiar
with traditional concurrency and distri-
bution concepts, such as described in
Andrews [1991]. It should also be kept
in mind that object-based concurrent
and distributed programming are well-
established disciplines that are sup-
ported by many languages. On the one
hand, Ada [1983] is a well-known exam-
ple of a concurrent object-based lan-

ACM Computing Surveys, Vol. 30, No. 3, September 1998



294 ° J.-P. Briot et al.

guage and SR [Andrews et al. 1993],
although less known, features versatile
and powerful concurrency constructs.
Argus [Liskov and Sheifler 1983] and
Emerald [Black et al. 1987] have be-
come known for their distribution sup-
port.

Combining concurrency and distribu-
tion with object orientation proper, that
is, including inheritance, has been the
subject of many research projects since
1985. Several new language designs
representing the integrative approach
are discussed and compared in Papatho-
mas [1989; 1995]. An early book featur-
ing different articles on concurrent ob-
ject-oriented  programming is by
Yonezawa and Tokoro [1987]; a more
recent one is by Agha et al. [1993].
Furthermore, several workshops have
been devoted to object-based concur-
rency and distribution: see Agha [1989];
Agha et al. [1991]; Briot et al. [1995];
Guerraoui et al. [1994]; and Tokoro et
al. [1992].

2. THE LIBRARY APPROACH

2.1 Modularity and Structuring Needs

The basic idea of the library approach is
to apply encapsulation and abstraction,
and possibly also class and inheritance
mechanisms, as a structuring tool to
design and build concurrent and distrib-
uted computing systems. In other
words, the issue is to build and program
a concurrent or distributed system with
a given object-oriented methodology and
a given object-oriented programming
language. The main motivation is to
increase modularity by decomposing
systems into various components with
clear interfaces. This improves structur-
ing of concurrent and distributed sys-
tems, as opposed to UNIX-style sys-
tems, in which the different levels of
abstraction are difficult to distinguish
and understand.

Applied to distributed operating sys-
tems, the library approach has led to a
new generation of systems, such as Cho-
rus [Rozier 1992] and Choices [Camp-

ACM Computing Surveys, Vol. 30, No. 3, September 1998

bell et al. 1993], based on the concept of
the microkernel. The architecture of the
(generic) distributed operating system
is organized along abstract notions of
class components, which may then be
specialized for a given instantiation/
porting of the (virtual) system. Such
systems are easier to understand, main-
tain and extend, and should also ulti-
mately be more efficient as only the
required modules have to be used for a
given computation.

To illustrate the library approach, we
survey examples of libraries for concur-
rent and for distributed programming in
two different well-known object-ori-
ented languages: (1) the Smalltalk-80
programming language and environ-
ment, where a basic and simple object
concept is uniformly applied to model
and structure the whole system through
class libraries, including concurrency
and distribution aspects; and (2) C++,
whose widespread use has resulted in a
proliferation of concurrency libraries
[Wilson and Liu 1996].

2.2 Smalltalk Libraries

Smalltalk is often considered as one of
the purest examples of object-oriented
languages [Goldberg and Robson 1989].
This is because its credo is to have only
a few concepts (object, message passing,
class, inheritance) and to apply them
uniformly to any aspect of the language
and environment. One consequence is
that the language is actually very sim-
ple. The richness of Smalltalk comes
from its set of class libraries, which
describe and implement various pro-
gramming constructs (control struc-
tures, data structures, and so on), inter-
nal resources (messages, processes,
compiler, and so on), and a sophisti-
cated programming environment with
integrated tools (browser, inspector, de-
bugger, and so on).

Actually, even basic control struc-
tures, such as loop and conditional, are
not primitive language constructs, but
just standard methods of standard
classes that make use of the generic



Concurrency and Distribution o

295

SimulationObject

TN

PassiveSimulationObject

ActiveSimulationObject

._%
inherits from

e N

HoareMonitor

Figure 1.

invocation of message passing. They are
based on booleans and execution clo-
sures (blocks). Blocks, represented as
instances of class BlockClosure , are
essential for building various control
structures that the user may extend at
his wish.

2.2.1 Libraries for Concurrent Programming

In Smalltalk, blocks are also the basis
for multithreaded concurrency through
processes. The standard class Process
describes their representation and its
associated methods implement process
management (suspend, resume, adjust
priority, and so on). The behavior of the
process scheduler is itself described by
the class ProcessorScheduler . The
basic synchronization primitive is the
semaphore, represented by the class
Semaphore . Standard libraries also in-
clude higher abstractions: class Shared-
Queue to manage communication be-
tween processes, and class Promise for
representing the eager evaluation of a
value computed by a concurrently exe-
cuting process.

Thanks to this uniform approach, con-
currency concepts and mechanisms are
well encapsulated and organized in a
class hierarchy. Thus, they are much
more understandable and extensible
than if they were just simple primitives
of a programming language. Further-
more, it is relatively easy to build up on
the basic standard library of concur-
rency classes to construct more sophisti-
cated abstractions, as for example in the

KesselsMonitor PathExpression

Hierarchy of concurrency classes in Simtalk.

Simtalk [Bézivin 1989] or Actalk [Briot
1989] platforms. The Simtalk platform
implements and classifies various syn-
chronization and simulation abstrac-
tions (pessimistic or optimistic simula-
tion objects, Hoare monitors, Kessels
monitors, etc.) on top of Smalltalk stan-
dard abstractions/classes. A sample of
the hierarchy of Simtalk classes is
shown in Figure 1. Within the Actalk
project for instance, the standard sched-
uler was extended to parametrize and
classify various scheduling policies.

2.2.2 Libraries for Distributed Pro-
gramming. Smalltalk offers libraries
for remote communication, such as
Sockets and RPC, as well as standard
libraries for storage and exchange of
object structures for persistence, trans-
actions, and marshaling. The standard
Smalltalk Binary Object Streaming Ser-
vice (BOSS) library provides basic
support for building distribution mech-
anisms, e.g., marshaling and transac-
tions. The HP Distributed Smalltalk
product provides a set of distributed
services following the OMG (CORBA)
standard [OMG 1995], themselves im-
plemented as Smalltalk-80 class li-
braries.

Projects like GARF [Garbinato et al.
1994; 1995] and BAST [Garbinato et al.
1996; Garbinato and Guerraoui 1997] go
a step further in providing abstractions
for reliable distributed programming. In
GARF, two complementary class hierar-
chies have been developed for various
communication models (point-to-point,

ACM Computing Surveys, Vol. 30, No. 3, September 1998



296 . J.-P. Briot et al.

Mailer

|

Bcast

1

Rbcast Cbcast abcast

%
inherits from

Arpc

Figure 2. Communication in GARF.

multicast, atomic multicast . . .) and ob-
ject models (monitor, persistent, repli-
cated ...). For instance, class Mailer
implements remote message passing.
Class Abcast (a subclass of Mailer )
broadcasts an invocation to a set of rep-
licated objects, and ensures that the
messages are totally ordered (ensure
the consistency of the replicas). These
classes constitute adequate support for
the development of fault-tolerant appli-
cations where critical components are
replicated on several nodes of a net-
work. A sample of the hierarchy of
GARF classes is shown in Figure 2.

The BAST project aims at building
abstractions at a lower level. Roughly
speaking, BAST provides distributed
protocols, such as total-order multicast
and atomic commitment, that are used
in the implementation of GARF classes.
For instance, BAST supports classes
UMPObject for wunreliable message
passing and subclasses RMPObject and
RMPObject, respectively, for reliable
multicast communication [Garbinato et
al. 1996; Garbinato and Guerraoui,
1997].

2.3 C++ Libraries

As opposed to Smalltalk, C++ is not
genuinely object-oriented [Stroustrup
1993]: it is an object-oriented extension
of C, a language originally designed for
systems programming. Thus, C++ is
not the ideal vehicle for building object-
oriented applications. Nevertheless, it
has become the most widely used object-
oriented language, and it is the lan-

ACM Computing Surveys, Vol. 30, No. 3, September 1998

guage for object-oriented systems pro-
gramming. As a consequence, building
concurrency and distribution libraries
in C++ has been more than a marriage
of convenience. As explained in Section
1.2, the systems programmer needs flex-
ibility and therefore prefers libraries to
built-in features. She also likes to ex-
ploit the low-level mechanisms and ser-
vices offered by the underlying execu-
tion platform. As the library approach
allows any functionality of a given plat-
form to be wrapped in C++ functions or
classes, it is not surprising that a wide
variety of concurrency and distribution
mechanisms are cast in C++ libraries.
In fact, any programmer can readily
build wrappers for concurrency and dis-
tribution mechanisms from her favorite
platform.

2.3.1 Libraries for Concurrent Pro-
gramming. Class libraries can be built
for all kinds of process concepts, heavy-
weight or lightweight, and for their cor-
responding synchronization mecha-
nisms. Many concurrent programs are
conveniently implemented using a
threading system (e.g., network servers,
interactive programs, parallel pro-
grams). We look first into object-ori-
ented threading libraries.

Representation of threads. Although
defining classes for synchronization ob-
jects such as semaphores is a straight-
forward exercise, it is not obvious how
to cast a thread abstraction into a class.
There are at least three different ways,



Concurrency and Distribution o

297

class producer: public task {

public:
producer ()
{.....
results(x);
}
}

int main()

{ producer p;

// compute y

// compute x

cout << "Results are " << p.result() << " and " << y;

return 0;

Figure 3. Customized Sun C++ task object.

depending on how the activity of a
thread object is described:

(1) A thread is an instance of a subclass
of some class Thread , and the activ-
ity of the thread is described by the
constructor of the subclass. This is
akin to the Simula approach to co-
routines [Birtwistle et al. 1973]: the
body of a coroutine class describes
both initialization and activity of a
coroutine object.

A thread is an instance of a subclass
of class Thread , but its activity is
described by overriding a special
method.

A thread is an instance of class
Thread , and its activity is described
by a function that is passed as a
parameter to the constructor or a
special method.

(2)

(3)

In all these approaches, creating a
thread object spawns a new thread.

Note that the lifetime of its activity may
be shorter than its own lifetime (as an
object).

An example of the first approach is
the coroutine part of Sun’s C++ library
[Sun 1995]. The library offers a class
task (i.e., this plays the role of the class
Thread in the preceding classification).
A task object is implemented as a co-
routine with nonpreemptive scheduling.

There is also a class Inter-
rupt_handler that allows catching
UNIX software interrupts (signals).

Typical operations on tasks are re-
sult() (wait for termination), rd-
state()  (get state), and the like. Syn-
chronization is supported by low-level
wait operations and by object queues.
Figure 3 shows a fragment of a simple
program using the coroutine library.
The main program, by declaring the ob-
ject p, creates a task which executes the
producer() constructor. There is no

ACM Computing Surveys, Vol. 30, No. 3, September 1998



298 o J.-P. Briot et al.
Task
OO concurrency
Thread Mutex Semaphore
Unified threading API
0S
Different threading APIs
POSIX Solaris2 Win32

Figure 4. Architecture of the ACE concurrency library.

interaction between parent and child
task, except that the child terminates
producing a result, which is picked up
by the parent.

An example of the third approach is
found in PRESTO, a system for parallel
programming on a multiprocessor [Ber-
shad et al. 1988]. A newly created
thread is idle until explicitly started.
The function to be executed (and its
parameters) are passed as parameters
to the start operation. For synchroni-
zation, PRESTO features atomic inte-
gers and lock, monitor and condition
classes.

An alternative is found in DC++,
where the function to be executed is
passed to the constructor. DC++ [Schill
and Mock 1993] is a system for distrib-
uted execution of C++ programs on top
of DCE, the OSF Distributed Comput-
ing Environment [OSF 1994]. While
DC++ focuses on distribution, it also
offers a few classes for concurrent pro-
gramming. Concurrency is implemented
using the DCE threading subsystem.
Thus, DC++ is readily ported to any
system that is equipped with the DCE
platform. The DC++ library includes a
class Thread as described above, plus a
few classes for synchronization. Param-
eters of the Thread constructor allow
the user to choose among different
scheduling policies.

The ACE library. ACE stands for
Adaptive Communications Environment
[Schmid 1995]; it is a toolkit for devel-
oping communication-oriented software.
One of the goals of the ACE threading
library is to present abstractions that

ACM Computing Surveys, Vol. 30, No. 3, September 1998

subsume the threading mechanisms of
different platforms (POSIX, Solaris 2,
Win32), thus enhancing portability.

Figure 4 shows part of the layered
architecture of the ACE concurrency
class library. Portability of the concur-
rency classes is achieved through a
class OS that just packages threading-
related functions, hiding the peculiari-
ties of different native threading sys-
tems.

ACE has classes Mutex , Semaphore ,
RW_Mutex, and others for synchroniza-
tion. A class template Guard is parame-
terized with a lock class (e.g., Mutex ). A
guard object acquires and releases a
lock upon initialization and finalization,
respectively, similarly to a PRESTO
monitor object; thus, declaring a guard
in a block turns this block into a critical
region. (Note that ACE guards have
nothing to do with the Boolean expres-
sion guards used in genuinely concur-
rent languages.)

Threads are handled on a very low
level of abstraction in ACE. There does
exist a class Thread (see Figure 5), but
this is just a package of static functions
such as spawn, join , yield , and the
like, abstracting from the idiosyncrasies
of the threading functions of POSIX,
Solaris, and Win32. Another class,
Thread_Manager , serves the purpose of
creating and using thread manager ob-
jects; they are responsible for managing
groups of threads, spawning new mem-
bers, disposing of a thread when it ter-
minates, and so on. But there is no class
resembling Smalltalk’s Process or the
task from Figure 3.



Concurrency and Distribution .

typedef void *(*THR_FUNC) (void *);

class Thread {

public:

static int spawn(THR_FUNC fun,
void *arg,
long flags,
thread_t * = 0,
void *stack = 0,

size_t stack_size =

hthread_t *t_handle =

static int suspend(hthread_t);

static void exit(void *status);

299

// create thread to execute fun

// with argument arg

0;

0); // to be referred to by t_handle

// suspend thread

// terminate current thread

// more routines

Figure 5. Class Thread in ACE.

A relatively high-level concept in ACE
is the Task class. This class must not be
confused with Sun’s task class men-
tioned previously. Task is an abstract
class whose interface is designed for use
according to the stream/module concept
for layered communication. Subclass ob-
jects of Task can participate in a batch
of modules implementing a stream.
Each task must provide a put operation
to be invoked from an adjacent module
in a stream and an svc operation (“ser-
vice”) for asynchronous execution of the
invoked service in the case of an active
task object.

The AVTL library. The challenge of
object-oriented programming for paral-
lel computing systems is to find an ob-
ject model that fits in with the preferred
models for parallel computation. For a
library-based solution there is no
choice—the object model is given by the
sequential language. Here, the most
straightforward path to parallel pro-
cessing is just executing concurrent pro-
grams with threads on a shared-mem-
ory multiprocessor, as mentioned for
PRESTO. This produces functional par-
allelism, but no data parallelism.

The Amelia Vector Template Library

ACM Computing Surveys, Vol. 30, No. 3, September 1998



300 o J.-P. Briot et al.

(AVTL) [Sheffler 1996] is an example of
library support for parallel processing of
vectors. Although an approach like
AVTL is tailored towards a specific
class of applications, it has the advan-
tage of hiding communication from the
programmer. If we are willing to pay
the price of low-level message-based
programming, unlimited flexibility is
achieved by libraries that connect to a
communication platform, for example,
MPI [Skjellum et al. 1996]. Libraries of
this kind can be seen as the “parallel”
equivalent to threading libraries as de-
scribed previously.

2.3.2 Libraries for Distributed Pro-
gramming. We have seen that for
C++, the library approach tends to mir-
ror the functionality of the underlying
execution platform. This is true not only
for concurrency but also for distribu-
tion. So we often find library classes
that encapsulate remote communication
mechanisms such as ports or sockets
(e.g., ACE supports UNIX socket ob-
jects).

DC++. The DC++ system men-
tioned previously supports remote ob-
ject invocation. Note, however, that dis-
tribution and concurrency are not
strictly orthogonal in DC++. Remote
invocation comes in two flavors: syn-
chronous and asynchronous (where
asynchrony leads to truly parallel exe-
cution of client and server). Asynchro-
nous invocation of local objects, how-
ever, is mnot directly supported.
Ironically, this implies that it is easier
in DC++ to write a distributed program
than to write a centralized one.

Choices. Choices [Campbell et al.
1993] is a generic operating system, of
which the objective is not only to be
easily ported onto various machines,
but also to be able to adjust various
characteristics of both hardware, re-
sources, and application interfaces such
as: file format, communication network,
and memory model (shared or distrib-
uted). An object-oriented methodology
is presented together with the system,

ACM Computing Surveys, Vol. 30, No. 3, September 1998

for the design both of distributed appli-
cations and of new extensions to the
Choices kernel.

A specific C++ class library has been
developed. For instance, class Object-
Proxy implements remote communica-
tions between objects, classes Memo-
ryObject and FileStream  represent
memory management, and class Ob-
jectStar provides some generalized
notion of pointer. Class ObjectStar
provides transparency for remote com-
munications without the need for a pre-
compilation step. This class is also used
by the automatic garbage collector.
Class Disk abstracts and encapsulates
a physical storage device that may be
instantiated, for example, in class
SPARCstationDisk when  porting
Choices onto a SPARC station.

The experience of the Choices projects
shows that a distributed operating sys-
tem, developed with an object-oriented
methodology and programming lan-
guage (C++ in this case), helps in
achieving better genericity and extensi-
bility.

Peace. Similar in spirit to Choices,
the Peace parallel operating system
[Schroder-Preikschat 1994] has as its
target distributed memory multicom-
puters. Like Choices, Peace is actually a
family of object-oriented operating sys-
tems. Its components, implemented in
C++, can be configured in different
ways in order to fit different hardware
platforms and offer varying functional-
ity.

Peace makes heavy use of inheritance
in implementing the system family con-
cept. A stepwise bottom-up design of
minimal extensions using subclasses re-
sults in a fine-grain inheritance hierar-
chy. Exploiting this scheme, application
programs interface to the operating sys-
tem simply by extending certain system
classes.

The basic unit of concurrent execu-
tion, the thread, is introduced through a
series of abstractions. Most threads are
made up from two objects of classes
native and thread , respectively. The



Concurrency and Distribution o

class native describes the kernel-level
part of the thread and class thread
refers to the user-level part. An applica-
tion program can declare a subclass of
thread , say custom , redefining the
method action() inherited from class
thread Creating a custom object
causes the creation of a thread that
executes the redefined action()

2.4 In Search of Standard Abstractions

The main issue underlying the library
approach is the design and implementa-
tion of adequate abstractions on top of
which various higher-level concurrency
abstractions can be built in a conve-
nient way.

One of the most significant examples
for concurrent programming is the
semaphore abstraction, which, through
a well-defined interface (wait and sig-
nal operations) and a known behavior
(metaphor of the train semaphores),
represents one standard of synchroniza-
tion for concurrent programming. Such
a basic abstraction may be used as a
foundation to build various higher-level
synchronization mechanisms (e.g., the
Guard class of ACE). Classification and
specialization mechanisms, as offered
by object-oriented programming, are
then appropriate for organizing such a
library/hierarchy of abstractions, as for
instance in the Simtalk platform (Sec-
tion 2.2). Peace is a typical example of
an extremely careful design of a hierar-
chy of thread abstractions.

An example of developing concurrency
abstractions complementary to program
abstractions can be found in the Deme-
ter environment [Lopes and Lieberherr
1994]. The abstract specification of a
program is decomposed into two loosely
coupled dimensions: the “structural
block,” which represents relations be-
tween classes, and the “behavioral
block,” which describes the operations.
A third dimension has recently been
added: the “concurrency block,” which
describes the abstract synchronization
patterns between processes. The ab-
stract specifications and the relative in-

301

dependence of these three components
are intended to help with the develop-
ment of generic and reusable programs.

An example of developing standard
libraries for the basic support of distrib-
uted programming may be found
[Brandt and Lehrmann-Madsen 1994]
in the Beta programming language [Le-
hrmann-Madsen et al. 1993]. For in-
stance, class NameServer represents a
name server that maps textual object
names to physical references. Class Er-
rorHandler manages partial errors/
faults of a distributed system. This ap-
proach enables the programmer to add
distributed features to a given sequen-
tial/centralized program without chang-
ing the program logic, that is, through
additions rather than changes [Brandt
and Lehrmann-Madsen 1994, p. 199].

A fundamental study of abstractions
for distributed programming has been
proposed by Black [1991], where decom-
posing the concept of transaction into a
set of abstractions is suggested. The
goal is to represent concepts such as
lock, recovery, and persistence through a
set of objects that must be provided by a
system in order to support transactions.
The modularity of this approach would
help in defining various transaction
models adapted to specific kinds of ap-
plications. For instance, a computer-
supported cooperative application does
not need concurrency-control con-
straints as strong as those required for
a banking application.! The BAST
project [Garbinato and Guerraoui 1997]
aims at defining reliable distributed
protocols from a set of minimal abstrac-
tions. One of these abstractions, the
consensus, plays the role of the sema-
phore in a distributed context.

3. AN INTEGRATIVE APPROACH

3.1 Unification Needs

The number of issues and concepts re-
quired is one of the major difficulties of

1 The former application requires strict serializa-
tion of transactions through a locking mechanism,
whereas the latter does not.

ACM Computing Surveys, Vol. 30, No. 3, September 1998



302 ° J.-P. Briot et al.
concurrent and distributed program-
ming. In addition to classical constructs
of sequential programming, concurrent
and distributed computation introduces
concepts such as process, semaphore,
monitor, and transaction. The library
approach helps in structuring concur-
rency and distribution concepts and
mechanisms, but keeps them disjoint
from the objects structuring the applica-
tion programs. In other words, the pro-
grammer still faces at least two differ-
ent major issues: programming with
objects and managing concurrency and
distribution of the program, also with
objects but not the same objects!

Furthermore, when using libraries,
the programming style may become a
little cumbersome, as the concurrency
and distribution aspects (and more spe-
cifically the manipulation of the objects
implementing them) add to the stan-
dard programming style. For instance, a
library implementing asynchronous and
remote communication in Eiffel will
force the programmer to do some
amount of explicit message manipula-
tion (see Karaorman and Bruno [1993,
pp. 109-111]), as opposed to standard
implicit message passing. One may then
choose to integrate such constructs di-
rectly into the programming language
as the extension of a standard language,
for example, Eiffel// [Caromel 1990], or
to define a brand-new language contain-
ing that construct.

Rather than leaving the object pro-
grams and the management of concur-
rency and distribution orthogonal, the
integrative approach aims to merge
them by integrating concepts and offer-
ing the programmer a unified object
model.

3.2 Dimensions of Integration

There are various possible levels of inte-
gration between object-oriented pro-
gramming concepts and concurrency
and distribution concepts. Here we dis-
tinguish three main levels. Note that
they are relatively independent of each
other. Thus, as we show, a given lan-

ACM Computing Surveys, Vol. 30, No. 3, September 1998

guage or system may follow one dimen-
sion of integration but not another.

(1) A first level of integration between
the concept of an object and the
concept of a process (more generally
speaking, the concept of an autono-
mous activity) leads to the concept
of an active object. Indeed, an object
and a process may both be consid-
ered as communicating encapsu-
lated wunits (as noted in Meyer
[1993]). Actor languages [Lieberman
1987; Agha 1986] are typical exam-
ples of programming languages
based on the notion of an active
object. Objects that are not active
are sometimes called passive.

A second level of integration associ-
ates synchronization with object ac-
tivation, leading to the notion of a
synchronized object. Message pass-
ing is then considered an implicit
synchronization between the sender
and the receiver. Furthermore, one
often associates mechanisms for
controlling the activation of invoca-
tions at the level of an object, for
example, by attaching a guard to
each method. Note that the concept
of an active object already implies
some form of synchronized object, as
the existence of a (single) activity
private to the object actually en-
forces the serialization of invoca-
tions. However, some languages or
systems, such as Guide [Balter et al.
1994] or Arjuna [Parrington and
Shrivastava 1988], associate syn-
chronization with objects although
they distinguish the notions of ob-
ject and autonomous activity. An-
other more recent example is Java
[Lea 1997], where a new private
lock is implicitly associated with
each newly created object.

A third level of integration considers
the object as the unit of distribution,
leading to the notion of a distributed
object. Objects are seen as entities
that may be distributed and repli-
cated on several processors. The
message-passing metaphor is seen

(2)

(3)



Concurrency and Distribution o

as a transparent way of invoking
either local or remote objects. Emer-
ald [Black et al. 1987] is an example
of a distributed programming lan-
guage based on the notion of distrib-
uted object. One can also further
integrate message passing with the
transaction concept, so as to support
interobject synchronization and
fault tolerance [Liskov and Sheifler
1983; Guerraoui et al. 1992].

3.3 Active Objects

The basic idea leading to the concept of
an active object is to consider an object
having its own computing resource, that
is, its own private activity. This ap-
proach, simple and natural, is quite in-
fluential [Yonezawa and Tokoro 1987],
following the course of actor languages
[Lieberman 1987; Agha 1986].

3.3.1 Levels of Object Concurrency.
The independence of object activities
provides what is usually called interob-
ject concurrency. Some languages (e.g.,
POOL [America and van der Linden
1990]) provide only this level of concur-
rency. In several computation models,
however (e.g., Actors [Agha 1986]), an
active object is allowed to process sev-
eral requests simultaneously, thus own-
ing more than one internal activity: this
is called intraobject concurrency.

More generally, one may consider dif-
ferent levels of object concurrency. Our
classification extends that of Wegner
[1990]. An active object may be:

—Serial or atomic. Only one message is
computed at a time. Examples of lan-
guages offering serial active objects
are POOL [America 1987] and Eiffel//
[Caromel 1990].

—Quasiconcurrent. Several method ac-
tivations may coexist, but at most one
of them is not suspended. (This is
similar to a monitor using event vari-
ables to suspend processes.) Examples
of languages are ABCL/1 [Yonezawa
et al. 1986] and ConcurrentSmalltalk
[Yokote and Tokoro 1987].

303

—Concurrent. There is true intraobject
concurrency but some degree of con-
trol (i.e., restrictions) applies, as spec-
ified by the programmer. Example
languages are actor languages such
as ACT++ [Kafura and Lee 1990]
and also CEiffel [Lohr 1993].

—Fully concurrent. Concurrency within
the object is not restricted. This usu-
ally means that such objects are func-
tional (they have no state or at least
no changing state). Actor languages
support such fully concurrent objects,
where they are called unserialized ac-
tors.

Setting the possible level (or levels) of
object-internal concurrency for a pro-
gramming language is a design deci-
sion, and an important one. Some re-
searchers have argued that intraobject
concurrency should be banished alto-
gether because reasoning about pro-
grams that contain only serial objects is
much easier [Meyer 1993]. But single-
threaded active objects are prone to the
same pitfalls as nested monitors, al-
though the problem is mitigated when
using asynchronous invocation. Allow-
ing intraobject concurrency increases
the expressive power as well as the
overall concurrency, but requires some
additional concurrency control in order
to ensure object state consistency, and
some careful management of resources
in order to maintain efficient implemen-
tations.

Last, note that for efficiency reasons,
fully concurrent objects are usually im-
plemented as passive objects (i.e., stan-
dard objects without any activity) with-
out any synchronization, and are
replicated on every processor. Thus ev-
ery invocation from an active object is
immediately processed in the resource
(process) of the sender.

3.3.2 Reactivity Versus Autonomy.
One of the important characteristics of
object-oriented programming is the re-
activity principle (as stated by Kay in
the late ’60s [Kay 1969]). An object is
said to be reactive in the sense that it

ACM Computing Surveys, Vol. 30, No. 3, September 1998



304 ° J.-P. Briot et al.

reacts to an event (when receiving a
message). Moreover, the only way to
activate an object is by sending a mes-
sage to it. This is opposed to the idea of
a process, which starts processing as
soon as created.

The integration of object with process
(the concept of active object) raises the
issue of whether reactivity will be pre-
served or shadowed by the autonomous
behavior of the process. We may distin-
guish two families of active objects:

—Reactive active object. It adheres to
the reactivity principle, and thus can
be activated only through message
passing. Example languages are ac-
tors, as in ACT++ and also CEiffel.

—Autonomous active object. It may com-
pute before being sent a message. Ex-
ample languages are POOL and
Eiffel//.

Although the models are opposite,
please note that they can very easily
simulate each other. A reactive active
object having a method whose body is
an endless loop will turn into an auton-
omous active object after receiving a
corresponding message. An autonomous
active object whose activity is to keep
accepting incoming messages actually
models a reactive active object. (See the
example of POOL in Section 3.3.4,
where this is actually the default case.)

3.3.3 Implicit Versus Explicit Accep-
tance of Messages. Another issue re-
lated to the reactivity of active objects is
whether there should be implicit or ex-
plicit acceptance of messages (or even
both). Implicit acceptance means that a
message is automatically accepted after
it is received (the actual processing may
be delayed after receipt of the message
because of synchronization require-
ments). Explicit acceptance means that
the object explicitly states that it is
willing to accept a certain pattern of
message. This is analogous to the task
entry statement in Ada.

In looking at the relation between the
reactivity versus autonomy issue and
the implicit versus explicit acceptance

ACM Computing Surveys, Vol. 30, No. 3, September 1998

issue, one’s first impression could be
that reactivity always implies implicit
acceptance and that autonomy always
implies explicit acceptance. This is often
the case, but not always.

—ABCL/1 is a programming language
based on the concept of reactive active
object that offers explicit message ac-
ceptance from within a method.

—CEiffel supports autonomous objects.
But methods are activated implicitly,
independently of any explicit message
acceptance (see Section 3.3.5).

—The synchronization scheme, abstract
states, (described in Section 3.4.3)
combines implicit acceptance with
some explicit matching of a message.

3.3.4 The Concept of a Body. Most
languages following the model of an au-
tonomous active object are based on the
concept of a body: some distinguished
centralized operation that explicitly de-
scribes the types and sequence of re-
quests the object will accept during its
activity. This concept is actually a di-
rect offspring of the Simula-67
[Birtwistle et al. 1973] concept of body,
which included support for coroutines.
This initial potential of objects for con-
currency was, however, abandoned, for
both technological and cultural reasons,
by most Simula-67 followers.

The concept of body and explicit ac-
ceptance is close to the Ada tasking
model. The body of an Ada task encap-
sulates state variables and a statement
sequence that begins executing as soon
as the task is created. A set of entries,
comparable to operation signatures, is
associated with a task. A remote invoca-
tion—looking like a procedure call—re-
fers to one of these entries. A task uses
explicit accept statements for accepting
invocations and executing the requested
service.

POOL? and Eiffel/ [Caromel 1993]
are typical representatives of the body
concept. A POOL class for active Queue

2 Actually, there are three different versions of
Pool: POOL-T, POOLZ2, and POOL-I.



Concurrency and Distribution o

CLASS Queue

305

:= (front+1)MOD size END deq

ANSWER ANY FI 0D YDOB

METHOD enqg(item: T)
BEGIN cell!put(rear,item);
rear := (rear+1)MOD size END enq
METHOD deq(): T
BEGIN RESULT cell!get(front);
front
BODY DO IF empty THEN ANSWER(enq)
ELSIF full() THEN ANSWER(deq)
ELSE
END Queue

Figure 6. Active queue in POOL.

objects is shown in Figure 6. The declar-
ative part for local data is omitted. Op-
erations such as METHOD enqare de-
clared just as for passive objects. A
Queue object has a single thread of con-
trol. Its activity is described by the
statements enclosed in the BODY/YDOB
keywords (DO/ODis an infinite loop). As
opposed to Ada, the accept statements,
starting with the keyword ANSWERjust
refer to one or more operation names
(ANY meaning all operation names).

A queue is in fact usually imple-
mented as a passive object. It is only for
demonstration purposes that we present
an “active queue.” And it should be kept
in mind that the body of a POOL class
can of course be of arbitrary complexity.
Notice that a missing body defaults to
DO ANSWER ANY QO~bvhich actually
models a reactive active object.

In a very similar spirit, Eiffel// has a
predefined class PROCESSInstances of

a (direct or indirect) subclass of PRO-
CESSare active objects. The object body
is represented by a routine Live , which
has a default implementation in PRO-
CESS and is usually redefined in sub-
classes of PROCESS (comparable to
POOL’s BODY. Several other routines
inherited from PROCESSenable an ac-
tive object to control the acceptance of
invocations in its Live routine, much as
is done with ANSWERn the POOL lan-
guage.

3.3.5 Autonomy Without Body.
Although most autonomous active ob-
jects models are based on the concept of
body with explicit acceptance state-
ments, there may be some alternatives.
In CEiffel, operations can be specified
as autonomous using the autonomy an-
notation -- >-- . Note that a CEiffel
annotation always starts with the char-
acters -- , just like an Eiffel comment,

ACM Computing Surveys, Vol. 30, No. 3, September 1998



306 . J.-P. Briot et al.

CLASS Moving CREATION init
FEATURE -- interface

position: Vector;

setVelocity(v: Vector) IS

DO velocity.set(v.x,v.y) END;

FEATURE {} -- hidden
velocity: Vector;

stepTime: Real;

step IS -->--

DO position.set(position.x + velocity.x*stepTime,

position.y + velocity.y*stepTime) END;

init(startingPoint: Vector; timeUnit: Real) IS

DO position :=

stepTime :=

END -- Moving

startingPoint;

timeUnit END

Figure 7. Modeling autonomous moving objects in CEiffel.

but is identified as an annotation by the
next character. Being comments, anno-
tations are not interpreted by a stan-
dard Eiffel compiler, but only by a spe-
cific CEiffel precompiler (and associated
runtime) [Lohr 1993].

An autonomous operation is executed
repeatedly, without being invoked. More
precisely, when an autonomous opera-
tion finishes, it is implicitly invoked
anew. The scheduling mechanism does
not distinguish between explicit and im-
plicit invocations. Note that the degree
of intraobject concurrency is controlled

ACM Computing Surveys, Vol. 30, No. 3, September 1998

in CEiffel by other kind of annotations,
namely compatibility annotations (see
Section 3.4.3).

Figure 7 shows the example of class
Moving , which models objects moving
autonomously in the plane.

3.4 Synchronized Objects

The presence of concurrent activities re-
quires some degree of synchronization,
that is, constraints, in order to ensure
correct program execution. Synchroni-
zation may be associated with objects



Concurrency and Distribution o

server: ActiveServer;
result: R;
result :=

result.op

307

server.service(args);
-- client continues immediately

-~ synchronisation is implicit

Figure 8. Synchronization by need in Eiffel//.

and with their communication means
(i.e., message passing) through various
(sub-)levels of identification.

3.4.1 Synchronization at the Message-
Passing  Level. A  straightforward
transposition of the message-passing
mechanism from a sequential comput-
ing context to a concurrent one leads to
the implicit synchronization of the
sender (caller) to the receiver (callee).
This is called synchronous transmission:
to resume its own execution, the sender
object waits for (1) completion by the
receiver of the invoked method execu-
tion and then (2) the return of the reply.

In the case of active objects, the
sender and the receiver own indepen-
dent activities. It is therefore useful to
introduce some asynchronous type of
transmission by which the sender re-
sumes its execution as soon it has sent
the message, that is, without waiting
for completion of the invoked method by
the receiver. This type of transmission
introduces further concurrency through
communication. It is well suited for a
distributed architecture, because if the
receiver (the server) is located on a dis-
tant processor, the addition of the com-
munication latency to the processing
time may be significant. Note that this
implies associating with an active object
a mail queue that will buffer incoming
messages (usually in the ordering of
their arrival) before the active object is
ready to compute them.

Finally, some languages (e.g., ABCL/1
and ACT++) introduce some mixed

kind of transmission that immediately
returns an eager promise for (i.e., a
handle to) a future reply, without wait-
ing for the actual completion of the in-
vocation. It is thus possible to decouple
invocation and waiting for a result.
Only when the caller really needs the
result—that is, is going to operate on
it—is synchronization with the service
provider required. Integration of fu-
tures into the invocation mechanism
has the effect that the strict synchroni-
zation inherent in synchronous invoca-
tion is replaced with synchronization by
need, also sometimes called lazy syn-
chronization. The concept of future orig-
inated in the actor languages. It was
included as a specific type of message
transmission in early object-oriented
concurrent languages, notably ABCL/1,3
and was later integrated into some ex-
tensions of existing languages, like
Eiffel// [Caromel 1990] where it is
known as wait-by-necessity.

Service execution is always asynchro-
nous in Eiffel//. If there is a result, lazy
synchronization takes effect. In Figure
8, the calling client may proceed imme-
diately after the invocation, becoming
blocked only when it tries prematurely
to invoke the result object.

3.4.2 Synchronization at the Object(s)
Level. The identification of synchroni-

3 ABCL/1 actually offers three types of message
transmission: synchronous (called now type),
asynchronous (called past type), and with eager-
reply (called future type).

ACM Computing Surveys, Vol. 30, No. 3, September 1998



308 ° J.-P. Briot et al.

zation with message passing has the
advantage of transparently ensuring
some significant part of the synchroni-
zation concerns. Indeed, synchroniza-
tion of requests is transparent to the
client object, being managed by the ob-
ject serving requests.

In the case of serialized active objects,
requests are processed one at a time,
according to their order of arrival. Some
finer-grain or rather more global con-
currency control may, however, be nec-
essary for objects. We distinguish three
different levels of synchronization at
the object(s) level, which correspond re-
spectively to the internal processing of
an object, its interface, and the coordi-
nation between several objects.

Intraobject Synchronization. In in-
traobject concurrency (i.e., an object si-
multaneously computing several re-
quests), it is necessary to include some
concurrency control in order to ensure
the consistency of the object state. Usu-
ally, the control is expressed in terms of
exclusions between operations.* The
typical example is the readers and writ-
ers problem, where several readers are
free to access simultaneously a shared
book but the presence of one writer ex-
cludes all others (writers and readers).
Note that intraobject synchronization is
the equivalent at the object level of
what is called (mutual) exclusion syn-
chronization at the data level.

Behavioral Synchronization. It is
possible that an object may temporarily
be unable to process a certain kind of
request that is nevertheless part of its
interface. The typical example is the
bounded buffer example, which may not
accept some insertion request while it is
full. Rather than signaling an error, it
may delay the acceptance of that re-
quest until it is no longer full. This
makes synchronization of services be-
tween objects fully transparent. Behav-
ioral synchronization is the equivalent

4 Note that the case of a mutual exclusion be-
tween all methods subsumes the case of a serial-
ized object (as defined in Section 3.3.1).

ACM Computing Surveys, Vol. 30, No. 3, September 1998

at the object level of what is called
condition synchronization at the data
level. (Andrews [1991] is an excellent
book on synchronization principles and
terminology.)

Interobject Synchronization. Finally,
it may be necessary to ensure some
consistency, not just individual but also
global (coordination) between mutually
interacting objects. Consider a money
transfer between two bank accounts.
The issue is ensuring the invisibility of
possible transient and inconsistent
global states while the transfer takes
place. Intraobject or behavioral synchro-
nization are not sufficient, and a notion
such as an atomic transaction [Bern-
stein et al. 1987] is needed to coordinate
the different invocations.

3.4.3 Synchronization Schemes. Vari-
ous synchronization schemes have been
proposed to address these different lev-
els of concurrency control. Many of
them are actual derivations from gen-
eral concurrent programming and have
been more or less integrated within an
object-oriented concurrent program-
ming framework.

We may make a general distinction
with regard to whether synchronization
specifications are centralized.

—Centralized schemes, such as path ex-
pressions, specify in an abstract and
centralized way the synchronization
of the object. As they are centralized,
they tend to be naturally associated
and then integrated with the class.

—Decentralized schemes, such as
guards, specify at the program-area
level the synchronization of the ob-
ject. As they are decentralized, they
tend to be naturally associated and
then integrated with a method.

There has been considerable debate
about the pros and cons of various
schemes in these two general catego-
ries. Important issues are: expressivity,
reusability, provability, and efficiency.
Several variations are described in the
following, always with a focus on how



Concurrency and Distribution o

message queue

309

ml m2

<]

behaviour

Message

replacement
behaviour

Figure 9. Behavior replacement of an actor.

they can be integrated with the object
concepts (for a more detailed and ex-
haustive presentation, please see An-
drews [1991]). Note that most activity,
synchronization, and communication
models described in these sections have
been implemented as various compo-
nent libraries in a common framework
for object-oriented concurrent program-
ming called Actalk [Briot 1996]. This
framework provides a relatively neutral
foundation and platform to study, com-
pare, and experiment with various mod-
els of activity (reactivity, body, etc.),
communication (synchronous, asynchro-
nous, etc.) and synchronization.

Path Expressions. A first example of
a centralized scheme is the concept of
path expressions, which specifies in a
compact notation the possible interleav-
ing of invocations. The Procol language
[van den Bos and Laffra 1991] is an
example of integration of path expres-
sions (called protocols in Procol) with
objects.

The Body Revisited. Another cen-
tralized scheme is the concept of body,
described Section 3.3.4. An important
observation is that in complex cases the
body may describe both application-spe-
cific behavior and the logic for accepting
invocations. The missing distinction
among these very different issues, their
centralized handling in the body plus its
imperative nature, are the source of
several problems when specializing ob-
ject behaviors. In most cases the body

needs to be rewritten from scratch. The
general problem of reusing synchroniza-
tion specifications is addressed in Sec-
tion 3.6.1.

Behavior Replacement. The Actor
model of computation [Agha 1986] is
based on three main concepts: active
object, asynchronous message passing,
and behavior replacement. This last
concept is both simple and very expres-
sive. When created, an actor is com-
posed of an address—with which is as-
sociated a mail queue buffering
incoming messages—and an initial be-
havior. The behavior may be described
as a set of variables/data and a set of
methods, just as a standard object. The
behavior computes the first incoming
message® and specifies the replacement
behavior, that is, the behavior that will
compute the next message (see Figure
9). As one may imagine, once triggered
by an incoming message, the replace-
ment behavior will specify in turn its
own replacement behavior, and so on.

Note that as soon as the replacement
behavior is specified, the computation of
the next message may start. This im-
plies intraobject concurrency. Con-
versely, as long as the replacement be-
havior is not specified, the computation
of the next message will not proceed.
This implies synchronization, to be

5In a similar way to objects, the message will
select a method to be evaluated in the environ-
ment of the behavior.

ACM Computing Surveys, Vol. 30, No. 3, September 1998



310 ° J.-P. Briot et al.
more precise, intraobject synchroniza-
tion.

Abstract States. The concept of re-
placement behavior encompasses the
notion of a possibly changing behavior.
If we combine that concept with the
requirements for behavioral synchroni-
zation described previously (i.e., to de-
lay the acceptance of a request until a
service is available; see Section 3.4.2°),
and if we assume that the active object
is serial, we obtain the concept of ab-
stract states.

The idea is the following: an object
conforms to some abstract state repre-
senting a set of enabled methods (see,
e.g., Matsuoka and Yonezawa [1993] for
a more detailed description). In the ex-
ample of the bounded buffer, three ab-
stract states are needed: empty, full
and partial . The abstract state par-
tial is expressed as the union of empty
and full , and consequently is the only
one to enable both insertion and extrac-
tion methods. After completing the pro-
cessing of an invocation, the next ab-
stract state is computed to possibly
update the state and services availabil-
ity of the object.

The corresponding program in
ACT++, which is based on this idea, is
shown in Figure 10.

Guards. The notion of guard is a
major example of a decentralized syn-
chronization scheme. A guard is basi-
cally a Boolean activation condition that
is associated with a procedure. The inte-
gration with objects is easy and natural:
each method has one associated guard.
Guards achieve a good integration be-
cause they do not require any synchro-
nization statements in the implementa-
tion of the object’s operations. Activities
are blocked or awakened implicitly. The
price that must be paid for this auto-
matic scheme is performance; explicit

8 This is realized by adding some degree of explicit
message acceptance. Current behavior selects and
computes, not the first pending message but the
first pending message that matches one of its
methods.

ACM Computing Surveys, Vol. 30, No. 3, September 1998

operations such as signaling a monitor
event or a semaphore are more efficient.

In the distributed programming lan-
guage Guide, the guards are gathered in
a central location of the class called the
control clause (keyword CONTROL see
Figure 11, lower part).

Synchronization counters are counters
recording the invocation status for each
method, that is, the number of received,
started, and completed invocations. As-
sociated with guards, they provide very
fine-grained control of intraobject syn-
chronization. Referring to counters has
the advantage of representation-inde-
pendence.

Note that, although integration of
synchronization schemes with object
models is usually straightforward, this
integration has an impact on the reuse
of synchronization specifications (see
Section 3.6.1).

Locks. The concept of a lock is one of
the basic synchronization abstractions.
It is very natural to associate a lock
with each object (or two locks, in order
to distinguish between readers and
writers methods) in order to make it a
synchronized object. This is the ap-
proach followed by the Java program-
ming language. Like Guide, Java is par-
tially integrated in that it follows a
model of synchronized objects, but not a
model of active objects (object and
thread are kept separate). A private
lock is implicitly associated with each
Java object at its creation. Although
this basic synchronization abstraction is
centralized in the object, the interface
for the programmer is decentralized.
Qualifying a method with the synchro-
nized keyword indicates that this
method is mutually exclusive with other
qualified methods of the same class (or
superclass). Actually, the synchro-
nized keyword can also be used for
establishing arbitrary critical regions.
Condition synchronization is handled
using events, another indication that
Java favors a low degree of integration.

A language that allows specifying
reader/writer exclusion is Distributed



Concurrency and Distribution .

class bounded_buffer : Actor {
int_array buf[MAX]; int in,out;
behavior:
empty_buffer = {put()}; full_buffer =
public:
buffer() {
in=0; out=0; become empty_buffer;
}
void put(int item) {
buf [in++]=item; in %= MAX;
if (in==(out+1)%MAX)
become full_buffer;
else
become partial_buffer;
}
int get() {
reply buf [out++]; out %= MAX;
if (in==out)
become empty_buffer;

else

become partial_buffer;

311

{get(0}; partial_buffer = {get(),put()};

Figure 10. Bounded buffer in ACT++.

Eiffel [Gunaseelan and LeBlanc 1992],
designed as a modified Eiffel for pro-
gramming distributed applications on
top of the Clouds distributed operating
system. An operation can be qualified as
ACCESSESor MODIFIES), meaning that
it has to acquire a read lock (or a write
lock) on the object before it can execute.

If neither qualification is present, no
lock is acquired.

Annotations. This approach is gen-
eralized in another Eiffel extension,
CEiffel [Lohr 1993]: using annotations
to the operations, a binary, symmetric
compatibility relation among the opera-

ACM Computing Surveys, Vol. 30, No. 3, September 1998



312 . J.-P. Briot et al.

CLASS Queue;

VAR length: Natural;
OPERATION remove: Item;
WHEN length>0

METHOD remove(OUT i: Item);

BEGIN

END remove;

CONTROL remove: completed(append) > completed(remove);

END Queue.
Figure 11.

tions of an object can be specified. If
operation opl is declared compatible
with operation op2, both can be exe-
cuted in an overlapping fashion. Incom-
patible operations are mutually exclu-
sive. This approach can be traced back
to Andrews [1991], where a centralized
parallel clause is used to specify com-
patibility in a precursor of the SR pro-
gramming language. Note that declar-
ing compatibilities is safer than
declaring exclusion requirements.

(1) When a given sequential class with-
out any annotations is used as a
template for shared objects, these
objects are serial by default, thus
keeping their sequential semantics.

ACM Computing Surveys, Vol. 30, No. 3, September 1998

Guarded remove operation in Guide class Queue.

(2) When a subclass extends the set of
operations of the superclass, a new
operation is incompatible with all
the inherited operations, unless ex-
plicitly stated otherwise.

Figure 12 shows the example of read-
ers and writers in Distributed Eiffel.
Figure 13 shows the equivalent pro-
gram in CEiffel.

3.5 Distributed Objects

An object represents an independent
unit of execution, encapsulating data,
procedures, and possibly private re-
sources (activity) for processing the re-
quests. Therefore a natural option is to



Concurrency and Distribution o

CLASS Book
EXPORT number, read, write

FEATURE number: Integer IS

END -- Book

Figure 12. Reader/writer exclusion using Dis-
tributed Eiffel.

consider an object as the unit of distri-
bution and possible replication. Fur-
thermore, self-containedness of objects
(data plus procedures, plus possible in-
ternal activity) eases the issue of mov-
ing and migrating them around. Also,
note that message passing not only en-
sures the separation between services
offered by an object and its internal
representation but also provides the in-
dependence of its physical location.
Thus, message passing may subsume
both local and remote invocation
(whether sender and receiver are on the
same or distinct processors is transpar-
ent to the programmer) as well as possi-
ble inaccessibility of an object/service.

3.5.1 Data-Parallelism for Distrib-
uted Machines. If the concurrent activ-
ities of a program are to run in a truly
parallel fashion, the program has to be
mapped to a multiprocessor, a multi-
computer, or a computer network, giv-
ing rise to what is known as functional
or task parallelism. For massive paral-
lelism, however, there is more potential
in data parallelism of the SPMD type
(single-program, multiple-data), which

313

is well suited for distributed-memory
architectures.”

EPEE. EPEE [Jézéquel 1993] fol-
lows the SPMD approach to data paral-
lelism: large data aggregates of Eiffel
code (such as matrices) are divided into
fragments. The fragments are distrib-
uted, together with replicated code, over
the CPUs of a multicomputer; each CPU
operates on its data fragment, commu-
nicating with the other CPUs as neces-
sary. EPEE provides abstract structures
that may be placed on several proces-
sors, without any addition to the Eiffel
language.

The essentials of EPEE are as follows.

(1) A data aggregate is an Eiffel [Meyer
1991] object. Its interface is given by
an Eiffel class. The class, however,
describes the implementation of a
fragment, not that of the complete
aggregate.

Such a class for distributed aggre-
gates must be designed as a sub-
class of a given nondistributed class,
say Matrix , and the class DISTAGG

The original operations of Matrix
must be redefined. Their implemen-
tation has to be modified in such a
way that update operations in the
code are applied to the local frag-
ment only. DISTAGG manages the
required interfragment data ex-
change on remote read operations
and provides various support func-
tions such as fragment-specific in-
dex mapping.

There is no explicit process creation
or any visible message passing. The
fragments of a distributed object op-
erate concurrently, each with its
own thread of control. If each frag-
ment is placed on a CPU of its own,
invoking the object causes all the

(2)

(3)

(4)

7 Note that the SPMD data-parallelism model is
opposed to the MIMD (multiple program/data)
activation/control-parallelism model. Examples of
the latter are languages based on the concept of
active object (see Section 3.3). Indeed, objects rep-
resent duality (and unification) between data and
procedures (potential activation).

ACM Computing Surveys, Vol. 30, No. 3, September 1998



314 . J.-P. Briot et al.

CLASS Book

FEATURE number: Integer IS

write(s: String) IS

END -- Book

-~|| number --

--|| number, read --

--|| number --

Figure 13. Reader/writer exclusion using CEiffel.

fragments to start operating in par-
allel.

Note that EPEE, although integrating
object and distribution through its con-
cept of data aggregates, relies for its
implementation on class libraries with-
out changing the underlying language
(namely, Eiffel).

Charm++. The Charm++ language
supports both the MIMD and SPMD
style. Classes defined with the starting
keywords chare class  implement re-
active active objects, similar to actors.
But there exists a variant of the chare
class concept called the branched chare
class (instances of which are called
branched chares). The code of a
branched chare is replicated among the
nodes of a computer network and each
node works on one fragment of the ob-
ject.

Although they look similar at first
glance, there is a big difference between
the object models of EPEE and
Charm++: the interface of a branched
chare class reflects the fragmentation in
that it describes the messages it can
accept from other fragments, in addition
to messages from other (outside) ob-
jects. Thus, although EPEE has the ad-

ACM Computing Surveys, Vol. 30, No. 3, September 1998

vantage of hiding the explicit operations
for interfragment message passing from
the clients of an object, programming in
Charm++ is less cumbersome because
message passing is built into the lan-
guage—as chare invocation. In sum-
mary, Charm++ achieves a better inte-
gration, at the cost of extending its
underlying language (namely, C++).

3.5.2 Accessibility and Fault Recov-
ery. In order to handle inaccessibility
of objects, in the Argus distributed oper-
ating system [Liskov and Sheifler 1983]
the programmer may associate an ex-
ception with an invocation. If an object
is located on a processor that is inacces-
sible because of a network or processor
fault, an exception is raised, for exam-
ple, to invoke another object. A transac-
tion is implicitly associated with each
invocation (synchronous invocation in
Argus) to ensure atomicity properties.
For instance, if the invocation fails (e.g.,
if the server object becomes inaccessi-
ble), the effects of the invocation are
canceled. The Karos distributed pro-
gramming language [Guerraoui et al.
1992] extends the Argus approach by
allowing the association of nested trans-
actions to asynchronous invocations.



Concurrency and Distribution o

3.5.3 Migration. In order to improve
the accessibility of objects, and also to
support load balancing, some languages
or systems provide mechanisms for ob-
ject migration. In the Emerald distrib-
uted programming language [Jul et al.
1988], and the COOL generic run-time
layer [Lea et al. 1993], the programmer
may decide to migrate an object from
one processor. In Emerald, this may be
expressed at the message-passing level
as the migration of a parameter when
the invocation is distant. This could be a
permanent move (“called-by move”), or
temporary (“call-by-visit”). The pro-
grammer may control (in terms of at-
tachments) which other related objects
should also migrate together. Similar
concepts have also been included in a
more recent, and truly object-oriented,
system named Dowl [Achauer 1993], a
distributed extension of the Trellis/Owl
language [Moss et al. 1987].

3.5.4 Replication. As for migration,
a first motivation of replication is to
increase the accessibility of an object by
replicating it onto the processors of its
(remote) clients. A second motivation is
fault tolerance: by replicating an object
on several processors, its services be-
come robust against possible processor
failure. In both cases, a fundamental
issue is to maintain the consistency of
the replicas, that is, to ensure that all
replicas hold the same values. In the
Electra [Maffeis 1995] distributed sys-
tem, the concept of remote invocation
has been extended in the following fash-
ion. Invoking an object leads to the in-
vocation of all its replicas while ensur-
ing that concurrent invocations are
ordered along the same (total) order for
all replicas. Black and Immel [1993]
also introduced a general mechanism
for group invocation well suited for rep-
licated objects.

3.6 Limitations of the Integrative
Approach

The integrative approach attempts to
unify object mechanisms with concur-

315

rency and distribution mechanisms.
This integration leads, however, to some
conflicts that we discuss in the follow-
ing.

3.6.1 Inheritance Anomaly. Inher-
itance is one of the key mechanisms for
achieving reuse of object-oriented pro-
grams. It is therefore natural to use
inheritance to specialize synchroniza-
tion specifications associated with a
class of objects. Unfortunately, experi-
ence shows that: (1) synchronization is
difficult to specify and moreover to re-
use because of the high interdependency
among the synchronization conditions
for different methods, (2) various uses of
inheritance (to inherit variables, meth-
ods, and synchronizations) may conflict
with each other, as noted in McHale
[1994] and Baquero et al. [1995]. In
some cases, defining a new subclass,
even only with one additional method,
may force the redefinition of all syn-
chronization specifications. This limita-
tion has been named the inheritance
anomaly phenomenon [Matsuoka and
Yonezawa 1993].

Specifications along  centralized
schemes (see Section 3.4.3) turn out to
be very difficult to reuse and often must
be completely redefined. This is, for in-
stance, the case in POOL with the con-
cept of body. The body is imperative
rather than declarative, lacking the
structure achieved by associating
guards with operations. Figure 14
shows the definition in POOL of a sub-
class of class Queue (defined in Figure
6) named ExtendedQueue . A new oper-
ation delete for deleting the last ele-
ment has been added. Note that there is
no way of reusing the body of the super-
class; a complete redefinition is re-
quired. Recognizing this, POOL re-
quires that every class provide its own
body. Thus, inheritance anomaly is the
rule rather than the exception, except
for the special case of empty bodies in
both superclass(es) and subclass.

Decentralized schemes, being modu-
lar by essence, are better suited for se-
lective specialization. However, this

ACM Computing Surveys, Vol. 30, No. 3, September 1998



316 . J.-P. Briot et al.

CLASS ClearableQueue INHERIT Queue

METHOD clear()

BEGIN fromnt :=

BODY DO IF

rear END clear

empty THEN ANSWER(enq,clear)

ELSIF full() THEN ANSWER(deq,clear)

ELSE

END ClearableQueue

ANSWER ANY FI 0D YDOB

Figure 14. Class ClearableQueue in POOL—Dbody needs to be completely rewritten.

fine-grained decomposition, down at the
level of each method, is only partially
successful. This is because synchroniza-
tion specifications, even if decomposed
for each method, still remain more or
less interdependent. As, for instance, in
the case of intraobject synchronization
with synchronization counters, adding a
new write method in a subclass may
force redefinition of other methods’
guards in order to take into account the
new mutual-exclusion constraint.

The fact that intraobject concurrency
(exclusion synchronization) is imple-
mentation-dependent and therefore
conceptually different from behavioral
synchronization (condition synchroniza-
tion) is recognized by some, though not
all, languages. Guide employs counters
not only for condition synchronization,
as mentioned previously, but also for
exclusion synchronization. Unfortunately,
this approach makes specifications more
difficult to reuse. Figure 15 shows the
definition in Guide of the same subclass
ClearableQueue (see the original defi-
nition of Queue in Guide in Figure 11).
Note that it does not suffice to add a
new guard for clear to the control
clause. Annoyingly, we have to redefine
the remove guard although remove it-
self is not redefined.

The various cases of inheritance

ACM Computing Surveys, Vol. 30, No. 3, September 1998

anomaly have been carefully studied
and classified in Matsuoka and Yon-
ezawa [1993].

Among the recent directions proposed
for minimizing the problem, we may
cite:

(1) specifying and specializing indepen-
dently behavioral synchronization
and intraobject synchronization
[Thomas 1992] as well as autonomy/
asynchrony [Lohr 1993];

specifying disabled methods rather
than enabled methods, as usually
disabled methods remain disabled
in subclasses [Frglund 1992];

allowing the programmer to select
among several schemes [Matsuoka
and Yonezawa 1993];

offering a framework to help in de-
signing, customizing, and combining
between various synchronization
schemes [Briot 1996]; and

instantiating abstract specifications
as an alternative to inheritance for
reusing synchronization specifica-
tions [McHale 1994]. Another exam-
ple of a high-level approach is the
coordination patterns proposed by
Frolund [1996], with a specific focus
on interobjects synchronization.
These abstractions are specified in-

(2)

(3)

(4)

(5)



Concurrency and Distribution o

CLASS ClearableQueue INHERIT Queue
OPERATION clear;

WHEN length>0

317

CLASS ClearableQueue SUBCLASS OF Queue IMPLEMENTS ClearableQueueType IS

METHOD clear;

BEGIN END clear;

CONTROL remove: completed(append) > completed(remove) + completed(clear);

clear:

END ClearableQueue.

completed(append) > completed(remove) + completed(clear);

Figure 15. Class ClearableQueue in Guide—major redefinition is necessary.

dependently of how an implementa-
tion can be (automatically) derived
in order to help in reusing them.

3.6.2 Compatibility of Transaction
Protocols. 1t is tempting to integrate
transaction concurrency control proto-
cols into objects so that one could locally
define, for a given object, the optimal
concurrency control or recovery proto-
col. For instance, commutativity of oper-
ations makes possible the interleaving
(without blocking) of transactions on a
given object. Unfortunately, the gain in
modularity and specialization may lead
to incompatibility problems [Weihl
1989]. Broadly speaking, if objects use
different transaction serialization proto-
cols (i.e., serialize the transactions
along different orders), global execu-
tions of transactions may become incon-
sistent, that is, nonserializable. A pro-

posed approach to that problem is to
define local conditions, to be verified by
objects, in order to ensure their compat-
ibility [Weihl 1989; Guerraoui 1995].

3.6.3 Replication of Objects and Com-
munications. The communication pro-
tocols that have been designed for fault-
tolerant distributed computing (see
Section 3.5.4) consider a standard cli-
ent/server model. The straightforward
transposition of such protocols to the
object model leads to unexpected dupli-
cation of invocations. Indeed, an object
usually acts conversely as a client and
as a server. Thus an object that has
been replicated as a server may itself in
turn invoke other objects (as a client).
As a result, all replicas of the object will
invoke these other objects several times.
This unexpected duplication of invoca-
tions may lead in the best case to ineffi-

ACM Computing Surveys, Vol. 30, No. 3, September 1998



318 ° J.-P. Briot et al.

ciency, and in the worst case to incon-
sistencies (by invoking the same
operation several times). A solution pro-
posed in Mazouni et al. [1995] is based
on prefiltering and postfiltering. Prefil-
tering consists of coordinating process-
ing by the replicas (when considered as
a client) in order to generate a single
invocation. Postfiltering is the dual op-
eration for the replicas (when consid-
ered as servers) in order to discard re-
dundant invocations.

3.6.4 Factorization Versus Distribu-
tion. A more general limitation (i.e.,
less specific to the integrative approach)
comes from standard implementation
frameworks for object factorization
mechanisms, which usually rely on
strong assumptions about centralized
(single memory) architectures.

The concept of class variables, sup-
ported by several object-oriented pro-
gramming languages (e.g., Smalltalk),
is difficult and expensive to implement
for a distributed system. Unless com-
plex and costly transaction mechanisms
are introduced, their consistency is hard
to maintain once instances of a same
class can be distributed among proces-
sors. Note that this problem is general
for any kind of shared variable. Stan-
dard object-oriented methodology tends
to forbid the use of shared variables, but
may advocate using class variables in-
stead.

In a related problem, implementing
inheritance on a distributed system
leads to the problem of accessing remote
code for superclasses, unless all class
code is replicated to all processors,
which has obvious scalability limita-
tions. A semi-automatic approach con-
sists of grouping classes into autono-
mous modules so as to help partition
the class code among processors.

A radical approach replaces the inher-
itance mechanism between classes by
the concept/mechanism of delegation be-
tween objects. This mechanism was ac-
tually introduced in the Actor concur-
rent programming language Act 1
[Lieberman 1987]. Intuitively, an object

ACM Computing Surveys, Vol. 30, No. 3, September 1998

that may not understand a message will
then delegate it (i.e., forward it) to an-
other object called its proxy. (Note that,
in order to handle recursion properly,
the delegated message will include the
initial receiver.) The proxy will process
the message in place of the initial re-
ceiver, or it can also delegate it itself
further to its own designated proxy.
This alternative to inheritance is very
appealing as it relies only on message
passing and hence fits well with a dis-
tributed implementation. Meanwhile,
the delegation mechanism needs some
nontrivial synchronization mechanism
to ensure the proper handling (ordering)
of recursive messages, prior to other
incoming messages. Thus, it may not
offer a general and complete alternative
solution [Briot and Yonezawa 1987].

4. THE REFLECTIVE APPROACH

4.1 Combining Flexibility and
Transparency

As discussed earlier, the library ap-
proach (library-based approach) helps
in structuring concurrent and distrib-
uted programming concepts and mecha-
nisms, thanks to encapsulation, generic-
ity, class, and inheritance concepts. The
integrative approach minimizes the
number of concepts to be mastered by
the programmer and makes mecha-
nisms more transparent, but at the cost
of possibly reducing the flexibility and
the efficiency of mechanisms offered. In-
deed, programming languages or sys-
tems built from libraries are often more
extensible than languages designed
with an integrative approach. In other
words, libraries help structure and sim-
ulate various solutions and thus usually
bring good flexibility, whereas brand-
new languages may freeze their compu-
tation and communication models too
early. It would thus be interesting to
keep the unification and simplification
advantages of the integrative approach,
while retaining the flexibility of the li-
brary approach.

One important observation is that the



Concurrency and Distribution o

library approach and the integrative ap-
proach actually address different levels
of concerns and use: the integrated ap-
proach is for the application program-
mer and the library approach is for the
system programmer. The end user pro-
grams applications with an integrative
(simple and unified) approach in mind.
The system programmer, or the more
expert user, builds or customizes the
system, through the design of libraries
of protocol components, along a library
approach.

Therefore—and as opposed to what
one may think at first glance—the li-
brary approach and the integrative ap-
proach are not in competition but rather
complementary. The issue is then: how
can we actually combine these two lev-
els of programming? To be more precise:
how do we interface them? It turns out
that a general methodology for adapting
the behavior of computing systems
called reflection offers such a glue.

4.2 Reflection

Reflection is a general methodology for
describing, controling, and adapting the
behavior of a computational system.
The basic idea is to provide a represen-
tation of the important characteristics/
parameters of the system in terms of
the system itself. Static representation
characteristics as well as dynamic exe-
cution characteristics of application pro-
grams are made concrete in one (or
more) program(s) that represent the de-
fault computational behavior (interpret-
er, compiler, execution monitor, and so
on). Such a description/control program
is called a metaprogram. Specializing
such programs enables us to customize
the execution of the application pro-
gram, by possibly changing data repre-
sentation, execution strategies, mecha-
nisms, and protocols. Note that the
same language is used both for writing
application programs and for metapro-
grams controlling their execution. How-
ever, the complete separation between
the application program and the corre-

319

sponding metaprograms is strictly en-
forced.

Reflection helps in decorrelating li-
braries specifying implementation and
execution models (execution strategies,
concurrency control, object distribution)
from the application programs. This in-
creases modularity, readability, and re-
usability of programs. Reflection also
provides a methodology for opening up
and making adaptable, through a meta-
interface,® implementation decisions
and resource management that are of-
ten hard-wired and fixed or delegated
by the programming language to the
underlying operating system.

In summary, reflection helps inte-
grate protocol libraries intimately
within a programming language or sys-
tem, thus providing the interfacing
framework (the glue) between the li-
brary and the integrative approaches/
levels.

4.3 Reflection and Objects

Reflection fits especially well with ob-
ject concepts, which enforce good encap-
sulation of levels and modularity of ef-
fects. It is therefore natural to organize
the control of the behavior of an object-
oriented computational system (its
meta-interface) through a set of objects.
This organization is named a meta-ob-
ject protocol (MOP) [Kiczales et al.
1991], and its components are called
meta-objects [Maes 1987], as metapro-
grams are represented by objects. They
may represent various characteristics of
the execution context such as: represen-
tation, implementation, execution, com-
munication, and location. Specializing
meta-objects may extend and modify,
locally, the execution context of some
specific objects of the application pro-
gram.

Reflection may also help in expressing

8 This meta-interface enables the client program-
mer to adapt and tune the behavior of a software
module independently of its functionalities, which
are accessed through the standard (base) inter-
face. This has been termed the concept of open
implementation by Kiczales [1994].

ACM Computing Surveys, Vol. 30, No. 3, September 1998



320 . J.-P. Briot et al.

—

Base Level Application Object

—L

Message

Message

Figure 16. Metacomponents in CodA.

and controlling resource management,
not only at the level of an individual
object but also on a broader level such
as scheduler, processor, name space, ob-
ject group, and the like, such resources
being also represented by meta-objects.
This helps with the very fine-grained
control (e.g., for scheduling and load
balancing) with the whole expressive
power of a full programming language
[Okamura and Ishikawa 1994], as op-
posed to some global and fixed algo-
rithm (which is usually optimized for a
specific kind of application or an aver-
age case).

4.4 Examples of Meta-Object Protocols
(MOPs)

Smalltalk. Depending on the actual
goals and the balance expected among
flexibility, generality, simplicity, and ef-
ficiency, design decisions will dictate
the amount and scope of the mecha-
nisms to be opened up to the metalevel.
Therefore, some mechanisms may be
represented as reflective methods but
belong to standard object classes, that
is, without explicit and complete meta-
objects.

Smalltalk is a representative example
of that latter category. In addition to
the (meta-)representation of the pro-
gram structures and mechanisms as

ACM Computing Surveys, Vol. 30, No. 3, September 1998

first-class objects (see Section 2.2), a
few very powerful reflective mecha-
nisms offer some control over program
execution, such as redefinition of error-
handling messages, reference to current
context, references swap, and changing
the class of an object. Such facilities
actually help in building and integrat-
ing various platforms for concurrent
and distributed programming, such as
CodA, Actalk, and GARF.

CodA. The CodA architecture [McAf-
fer 1995] is a representative example of
a general object-based reflective archi-
tecture (i.e., a MOP) based on meta-
components. (Note that metacompo-
nents are indeed meta-objects. In the
following, we prefer the term metacom-
ponent to emphasize the pluggability as-
pects of a reflective architecture (MOP)
such as CodA. Also, for simplificity, we
often use the term component in place of
metacomponent.) CodA considers by de-
fault seven metacomponents associated
with each object (see Figure 16), corre-
sponding to: message sending, receiv-
ing, buffering, selection, method lookup,
execution, and state accessing. An ob-
ject with default metacomponents be-
haves as a standard (sequential and
passive) object (to be more precise, as a
standard Smalltalk object, as CodA is
currently implemented in Smalltalk).



Concurrency and Distribution o

Attaching specific (specialized) meta-
components allows selectively changing
a specific aspect of the representation or
execution model for a single object. A
standard interface between metacompo-
nents helps in composing metacompo-
nents from different origins.

Actalk and GARF. Some other re-
flective architectures may be more spe-
cialized and may offer a more reduced
(and abstract) set of metacomponents.
Examples are the Actalk and GARF
platforms, where fewer metacompo-
nents may be in practice sufficient to
express a large variety of schemes and
application problems.

The Actalk platform [Briot 1989;
1996] helps in experimenting with vari-
ous synchronization and communication
models for a given program by changing
and specializing various models/compo-
nents of: (1) activity (implicit or explicit
acceptance of requests, intraobject con-
currency, etc.) and synchronization
(abstract behaviors, guards, etc.), (2)
communication (synchronous, asynchro-
nous, etc.), and (3) invocation (time
stamp, priority, etc.). The GARF plat-
form [Garbinato et al. 1994] for distrib-
uted and fault-tolerant programming of-
fers a variety of mechanisms along two
dimensions/components: (1) object con-
trol (persistence, replication, etc.) and
(2) communication (multicast, atomic,
etc.).

4.5 Examples of Applications

To illustrate how reflection may help in
mapping various computation models
and protocols onto user programs, we
quickly survey some examples of exper-
iments with a specific reflective archi-
tecture. (We chose CodA; see McAffer
[1995] for a more detailed description of
its architecture and libraries of compo-
nents.)

Note that, in the CodA system, as
well as almost all other reflective sys-
tems described, the basic programming
model is integrative, whereas reflection
makes possible the customization of

321

concurrency and distribution aspects
and protocols by specializing libraries of
metacomponents.

4.5.1 Concurrency Models. In order
to introduce concurrency for a given ob-
ject (by making it into an active object,
in an integrated approach), two meta-
components are specialized: the special-
ized message-buffering component® is a
queue to buffer incoming messages, and
the specialized execution component as-
sociates an independent activity
(thread) with the object. This thread
processes an endless loop for selecting
and performing the next message from
the buffering component.

4.5.2 Distribution Models. In order
to introduce distribution, a new meta-
component is added for marshaling
messages to be sent remotely. In addi-
tion, two new specific objects are intro-
duced that represent the notion of a
remote reference (to a remote object)
and the notion of a (memory/name)
space. The remote reference object has a
specialized message-receiving compo-
nent that marshals the message into a
stream of bytes and sends it through
the network to the actual remote object,
which has another specialized message-
receiving component that reconstructs
and actually receives the message. Mar-
shaling decisions, for example, which
argument should be passed by refer-
ence, by value (i.e., a copy), up to which
level, may be specialized by a marshal-
ing descriptor supplied by the marshal-
ing component.

4.5.3 Migration and Replication Mod-
els. Migration is introduced by a new
metacomponent describing the form and
the policies (i.e., when it should occur)
for migration. Replication is managed
by adding two new dual metacompo-
nents: the first is in charge of control-
ling access to the state of the original
object, and the other controls access to

9 The default buffering component actually passes
on incoming messages directly to the execution
component.

ACM Computing Surveys, Vol. 30, No. 3, September 1998



322 ° J.-P. Briot et al.

each of its replicas. Again, marshaling
decisions, such as which argument
should be passed by reference, by value,
by move (i.e., migrated, as in Emerald
[Black et al. 1987]), with attachments,
may be specialized through the mar-
shaling descriptors supplied by the cor-
responding component. One may also
specialize such aspects as which parts of
the object should be replicated, and var-
ious management policies for enforcing
consistency between the original object
and its replicas.

4.6 Other Examples of Reflective
Architectures

Other examples of representative reflec-
tive architectures and their applications
are mentioned in the following. Note
that this is by no means an exhaustive
study.

4.6.1 Dynamic Installation and Com-
position of Protocols. The general
MAUD methodology [Agha et al. 1993]
focuses on fault-tolerance protocols,
such as server replication and check
point. Its strength is in offering a
framework for dynamic installation and
composition of specialized metacompo-
nents. The dynamic installation of
metacomponents makes possible the in-
stallation of a given protocol only when
needed and without stopping program
execution. The possibility of associating
metacomponents not only to objects but
also to other metacomponents (which
are first-class objects) makes possible
the layered composition of protocols. A
higher-level layer for specification of de-
pendability protocols (called DIL [Stur-
man and Agha 1994]) has been designed
that makes wuse of the wunderlying
MAUD reflective architecture.

4.6.2 Control of Migration. The au-
tonomy and self-containedness of ob-
jects, further reinforced in the case of
active objects, makes them easier to mi-
grate as a single piece. Nevertheless,
the decision to migrate an object is an
important issue that often remains the
programmer’s responsibility (e.g., in

ACM Computing Surveys, Vol. 30, No. 3, September 1998

Emerald [Black et al. 1987]). It may be
interesting to semi-automate such deci-
sions using various considerations such
as processor load and ratio of remote
communications. Reflection helps in in-
tegrating such statistical data (residing
for physical and shared resources) and
in using them by various migration al-
gorithms described at the metalevel
[Okamura and Ishikawa 1994].

4.6.3 Customizing System Policies.
The Apertos distributed operating sys-
tem [Yokote 1992] is a significant and
innovative example of a distributed op-
erating system completely designed
along an object-based reflective archi-
tecture (MOP). Supplementary to the
modularity and the genericity of the
architecture gained by using a library
(object-oriented) approach (as for
Choices, already discussed in Section
2.3.2), reflection brings the (possibly dy-
namic) customization of the system to-
wards application requirements; for in-
stance, one may easily specialize the
scheduling policy in order to support
various kinds of schedulers, such as a
real-time scheduler. Another gain is in
the size of the microkernel obtained,
which is particularly small, as it is re-
duced to supporting the basic reflective
operations and the basic resource ab-
stractions. This helps in both under-
standing and porting the system.

4.6.4 Reflective Extension of an Exist-
ing Commercial System. A reflective
methodology has recently been used in
order to incorporate extended (i.e., re-
laxing some of the standard (ACID)
transaction properties) transaction
models into an existing commercial
transaction processing system. It ex-
tends a standard transaction processing
monitor in a minimal and disciplined
way (based on upcalls) to expose fea-
tures such as: lock delegation, depen-
dency tracking between transactions,
and definition of conflicts, and to repre-
sent them as reflective operations
[Barga and Pu 1995]. These reflective
primitives are then used to implement



Concurrency and Distribution o

various extended transaction models,
such as: split/join, cooperative groups,
and the like.

4.7 Related Models

We finally mention two models for cus-
tomizing computational behaviors that
are closely related to reflection.

4.7.1 The Composition-Filters Model.
The SINA language is based on the no-
tion of a filter, a way to specify arbitrary
manipulation and actions for messages
sent to (or from) an object [Aksit et al.
1994]. In other words, filters represent
some reification of the communication
and interpretation mechanism between
objects. By combining various filters for
a given object, one may construct com-
plex interaction mechanisms in a com-
posable way.

4.7.2 Generic Run-Time as a Dual
Approach. The frontier between pro-
gramming languages and operating sys-
tems is getting thinner. Reflective pro-
gramming languages have some high-
level representation of the underlying
execution model. Conversely, and dual
to reflection, several distributed operat-
ing systems provide a generic run-time
layer such as the COOL layer in the
Chorus operating system [Lea et al.
1993]. These generic run-time layers
are designed to be used by various pro-
gramming languages, thanks to some
upcalls that delegate specific represen-
tation decisions to the programming
language.

5. PERSPECTIVES

5.1 The Library Approach

The library approach aims at increasing
the flexibility, yet reducing the complex-
ity, of concurrent and distributed com-
puting systems by structuring them as
class libraries. Each aspect or service is
represented by an object. Such modular-
ity and abstraction objectives are very
important because concurrent and dis-
tributed computing systems are com-

323

plex systems that ultimately use very
low-level mechanisms, for example, net-
work communication. Furthermore,
such systems are often developed by
teams of programmers, and in such a
context, having separate modules with
well-defined interfaces is of primary im-
portance. The difficulty in maintaining
and extending UNIX-like systems
comes mainly from their low modularity
and insufficient level of abstraction.

Although progress is being made in
that direction, it is still too early to
exhibit a standard class library for con-
current and distributed programming.
We need both a good knowledge of the
minimal mechanisms required and a
consensus on a set of such mechanisms
involving different technical communi-
ties, notably programming languages,
operating systems, distributed systems,
and databases. The fact that the sema-
phore abstraction became a standard
primitive for synchronization leads us
to think, however, that other abstrac-
tions for concurrent and distributed pro-
gramming can also be identified and
adopted.

5.2 The Integrative Approach

The integrative approach is very ap-
pealing in its merging of concepts from
object-oriented programming and those
from concurrent and distributed pro-
gramming. It thus provides a minimal
number of concepts and a single concep-
tual framework to the programmer.
Nevertheless, this approach unfortu-
nately has limitations in some aspects
of the integration (e.g., inheritance
anomaly and duplication anomaly).
Another potential weakness is that a
too systematic unification/integration
may lead to a too restrictive model—
“too much uniformity kills variety!”—
and may also lead to inefficiencies. For
instance, stating that every object is
active and/or every message transmis-
sion is a transaction may be inappropri-
ate for some applications not necessar-
ily requiring such protocols, and their
associated computational load. A last

ACM Computing Surveys, Vol. 30, No. 3, September 1998



324 o J.-P. Briot et al.
important limitation is the legacy prob-
lem, that is, the possible difficulty of
reusing standard sequential programs.
A straightforward way of handling this
is the encapsulation of sequential pro-
grams into active objects. However, co-
habitation of active objects and stan-
dard ones (i.e., passive objects), is
nonhomogeneous and requires specific
methodological rules for distinction be-
tween active objects and passive objects
[Caromel 1993].

5.3 The Reflective Approach

Reflection provides a general frame-
work for customizing concurrency and
distribution aspects and protocols, by
specializing and integrating (meta-)li-
braries intimately within a language or
system while separating them from the
application program.

Many reflective architectures are cur-
rently being proposed and evaluated. It
is too early yet to validate some general
and optimal reflective architecture for
concurrent and distributed program-
ming (although we believe that CodA
[McAffer 1995] is a promising step in
that direction). Note that there is cur-
rently a large effort in designing reflec-
tive architectures (MOPs) for the C++
programming language. The goal is to
offer some generic framework in order
to express various models and protocols
of parallel and distributed program-
ming. Two significant examples of such
efforts are OpenC++ [Chiba 1995] and
C++// [Caromel et al. 1996].

Meanwhile, we still need more experi-
ence in the practical use of reflection in
order to find good tradeoffs among the
flexibility required, the architecture
complexity, and the resulting efficiency.
One possible (and currently justified)
complaint concerns the actual relative
complexity of reflective architectures.
Nevertheless, and independently of the
required cultural change, we believe
that this is the price to be paid for the
increased, albeit disciplined, flexibility
that they offer. Another significant cur-
rent limitation concerns efficiency, as a

ACM Computing Surveys, Vol. 30, No. 3, September 1998

consequence of extra indirections and
interpretations. Some alternative direc-
tions are: (1) to reduce the scope of
reflection at compile-time as shown by
the evolution of the initial reflective
OpenC++ architecture into a compile-
time reflective architecture, thus get-
ting closer to metacompilers [Chiba
1995], or (2) to use program transforma-
tion techniques, notably partial evalua-
tion (also called program specializa-
tion), to minimize metainterpretation
overheads [Masuhara et al. 1995].

5.4 Integrating the Approaches

As remarked in Section 1.2, the library,
integrative, and reflective approaches
are not in conflict but are complemen-
tary. This complementarity extends to
their relationship to language: the li-
brary approach does not change the un-
derlying language but either defines a
new language or adds new concepts to
the language; and the reflective ap-
proach requires the use of a specific
type of language.

Among the examples of languages and
systems given in the article, some have
been built following more than one ap-
proach. This is the case, for instance, of
the EPEE [Jézéquel 1993a] parallel sys-
tem (see Section 3.5.1), which is based
on the integration of object with distri-
bution, and is also implemented with
libraries. Other examples are Actalk
[Briot 1989] and GARF [Garbinato et al.
1994] (see Section 2.2), which offer li-
braries of abstractions for concurrent
and distributed programming that can
be transparently applied to programs
thanks to the reflective facilities of
Smalltalk.

We believe that future developments
in object-based concurrent and distrib-
uted systems will integrate aspects of
the three approaches. A very good ex-
ample is the current development
around the Common Object Request
Broker Architecture (CORBA) of the
OMG [Mowbray and Zahavi 1995].
CORBA integrates object and distribu-
tion concepts through an object request



Concurrency and Distribution o

broker (which provides remote commu-
nication facilities). In that sense,
CORBA follows the integrative ap-
proach. CORBA also specifies a set of
services to support more advanced dis-
tributed features such as transactions.
The CORBA object transaction service
(named OTS) is specified and imple-
mented in the form of a class library of
distributed protocols, such as locking
and atomic commitment. In that sense,
CORBA follows the library approach.
Finally, most CORBA implementations
provide facilities for message reification
(messages can be considered as first-
class entities), and hence support cus-
tomization of concurrency and distribu-
tion protocols. In that sense, CORBA
implementations follow (to some extent)
the reflective approach.

6. SUMMARY

In order to understand and evaluate
various object-based concurrent and dis-
tributed developments, we have pro-
posed a classification of the different
ways in which the object paradigm is
used in concurrent and distributed con-
texts. The three approaches we have
identified convey different yet comple-
mentary research streams in the object-
based concurrent and distributed sys-
tem community.

The library approach (library-based
approach) helps in structuring concur-
rent and distributed-programming con-
cepts and mechanisms through encapsu-
lation, genericity, class, and inheritance
concepts. The principal limitation of the
approach is that the programming of
the application and that of the concur-
rent and distribution architecture, is
represented by unrelated sets of con-
cepts and objects. The library approach
can be viewed as a bottom-up approach
and is directed towards system-builders.

The integrative approach minimizes
the concepts to be mastered by the pro-
grammer and makes mechanisms more
transparent by providing a unified con-
current and distributed high-level ob-
ject model. However, this has the cost of

325

possibly reducing the flexibility and ef-
ficiency of the mechanisms. The inte-
grative approach can be viewed as a
top-down approach and is directed to-
wards application-builders.

By providing a framework for inte-
grating protocol libraries intimately
within a programming language or sys-
tem, the reflective approach provides
the interfacing framework (the glue) be-
tween the library and the integrative
approaches/levels. Meanwhile, it en-
forces the separation of their respective
levels. In other words, reflection pro-
vides the meta-interface through which
the system designer may install system
customizations and thus change the ex-
ecution context (concurrent, distributed,
fault-tolerant, real-time, adaptive, and
so on) with minimal changes in the ap-
plication programs.

The reflective approach contributes to
blurring the distinction between pro-
gramming language, operating system,
and database, and at easing the devel-
opment, adaptation, and optimization of
a minimal dynamically extensible com-
puting system. Nevertheless, we stress
that this does not free us from the ne-
cessity of having a good basic design
and finding a good set of foundational
abstractions [Guerraoui et al. 1996].

ACKNOWLEDGMENT

The comments of the reviewers have greatly con-
tributed to improving the quality of this article.

REFERENCES

ACHAUER, B. 1993. The Dowl distributed object-
oriented language. Commun. ACM 36, 9.

ApA 1983. The Programming Language Ada
Reference Manual. In Lecture Notes in Com-
puter Science, vol. 155. Springer-Verlag, New
York.

AGHA, G. 1986. Actors: A Model of Concurrent
Computation in Distributed Systems. Series in
Artificial Intelligence, MIT Press, Cambridge,
MA.

AGHA, G. A., FROLUND, S., PANWAR, R., AND STUR-
MAN, D. 1993. A linguistic framework for
dynamic composition of dependability proto-
cols. In Dependable Computing for Critical
Applications III (DCCA-3). IFIP Transactions,

ACM Computing Surveys, Vol. 30, No. 3, September 1998



326 ° J.-P. Briot et al.

Elsevier-North Holland, Amsterdam, The
Netherlands, 197-207.

AcHA, G. A., HEwiTT, C., WEGNER, P., AND YON-
EZAWA, A., EDS. 1991. Proceedings of the
OOPSLA/ECOOP 90 Workshop on Object-
Based Concurrent Programming, ACM OOPS
Mess. 2, 2.

AcHA, G. A., WEGNER, P., AND YONEzZAWA, A.,
EDS. 1989. Proceedings of the ACM SIG-
PLAN Workshop on Object-Based Concurrent
Programming, ACM SIGPLAN Not. 24, 4.

AcHA, G. A., WEGNER, P., AND YONEZAWA, A.,
EDS. 1993. Research Directions in Concur-
rent Object-Oriented Programming, MIT
Press, Cambridge, MA.

AxsiT, M., WakiTa, K., BoscH, J., BERGMANS, L.,
AND YONEZAWA, A. 1994. Abstracting object
interactions using composition filters. In Pro-
ceedings of the ECOOP 93 Workshop on Ob-
Ject-Based Distributed Programming,
Guerraoui et al., Eds. Lecture Notes in Com-
puter Science, vol. 791. Springer-Verlag, New
York, pp. 152-184.

AMERICA, P. H. M. 1987. Pool-T: A parallel ob-
ject-oriented language. In Object-Oriented
Concurrent Programming, A. Yonezawa and
M. Tokoro, Eds. Computer Systems Series,
MIT Press, Cambridge, MA.

AMERICA, P. H. M. 1988. Definition of Pool2, a
parallel object-oriented language. ESPRIT
project 415-A, Tech. Rep. 364, Philips Re-
search Laboratories.

AMERICA, P. H. M. 1989. Issues in the design of
a parallel object-oriented language. Formal
Aspects Comput. 1, 366—411.

AMERICA, P. H. M. AND VAN DER LINDEN, F. 1990.
A parallel object-oriented language with in-
heritance and subtyping. In Proceedings of
OOPSLA/ECOOP °90, ACM SIGPLAN Not.

25, 10.

ANDREWS, G. R. 1991. Concurrent Program-
ming—~Principles and Practice. Benjamin/
Cummings, Redwood City, CA.

ANDREWS, G. R. AND OLsSSON, R. A. 1993. The

SR Programming Language. Benjamin/Cum-
mings, Redwood City, CA.

BALTER, R., LACOURTE, S., AND RIVEILL, M. 1994.
The Guide language. Comput. J. 37, 6, 519—
530.

BaQuEro, C., OLIVEIRA, R., AND MoOURA, F.
1995. Integration of concurrency control in a
language with subtyping and subclassing. In
Proceedings of the USENIX COOTS Confer-
ence (COOTS ’95) (Monterey, CA).

Barga, R. aAnD Pu, C. 1995. A practical and
modular implementation of extended transac-
tion models. Tech. Rep. 95-004, CSE, Oregon
Graduate Institute of Science & Technology,
Portland, Ore.

BERNSTEIN, P., HaADzILACOS, V., AND GOODMAN,
N. 1987. Concurrency Control and Recov-

ACM Computing Surveys, Vol. 30, No. 3, September 1998

ery in Database Systems. Addison-Wesley,
Reading, MA.

BERrRsHAD, B. N., Lazowska, E. D., AND LEVY,
H. M. 1988. PRESTO: A system for object-
oriented parallel programming. Softw. Pract.
Exper. 18, 8, 713-732.

BEzIvIN, J. 1987. Some experiments in object-
oriented simulation. In Proceedings of the
ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications
(OOPSLA ’87), 394—405.

BirTwISTLE, G. M., DAHL, O.-J., MYHRHAUG, B.,
AND NYGAARD, K. 1973. Simula Begin. Pet-
rocelli Charter.

Brack, A. P. 1991. Understanding transactions
in the operating system context. Oper. Syst.
Rev. 25, 73-1T17.

Brack, A. P. anp ImMmEL, M. P. 1993. Encapsu-
lating plurality. In Proceedings of the Euro-
pean Conference on Object-Oriented Program-
ming (ECOOP °93). Lecture Notes in
Computer Science, vol. 707. Springer-Verlag,
New York, 57-79.

Brack, A. P., HurcHinson, N., Jur, E., Levy, H.,
AND CARTER, L. 1987. Distribution and ab-
stract types in Emerald. IEEE Trans. Softw.
Eng. 13, 1.

VAN DEN Bos, J. AND LAFFRA, C. 1991. Procol—A
concurrent object-oriented language with pro-
tocols, delegation and constraints. Acta Inf.
28, 511-538.

BRANDT, S. AND LEHRMANN MADSEN, O. 1994.
Object-oriented distributed programming in
BETA. In Proceedings of the ECOOP ’93
Workshop on Object-Based Distributed Pro-
gramming, R. Guerraoui et al. Eds. Lecture
Notes in Computer Science, vol. 791. Spring-
er-Verlag, New York, 185-212.

Brior, J.-P.  1989. Actalk: A testbed for classify-
ing and designing actor languages in the
Smalltalk-80 environment. In Proceedings
European Conference on Object-Oriented Pro-
gramming (ECOOP °89). Cambridge Univer-
sity Press, New York, 109-129.

Brior, J.-P. 1996. An experiment in classifica-
tion and specialization of synchronisation
schemes. In Proceedings of the Second Inter-
national Symposium on Object Technologies
for Advanced Software (ISOTAS °96). Lecture
Notes in Computer Science, Springer-Verlag,
New York.

Brior, J.-P. AND YonEzAwaA, A. 1987. Inheri-
tance and synchronisation in concurrent OOP.
In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP °87).
Lecture Notes in Computer Science, vol. 276.
Springer-Verlag, New York, 32—40.

Briot, J.-P., GEIB, J.-M., AND YONEZAWA, A.,
EDS. 1995. In Proceedings of the France—
Japan Workshop on Object-Based Parallel
and Distributed Computation. Lecture Notes



Concurrency and Distribution o

in Computer Science, vol. 1107. Springer-Ver-
lag, New York.

CAMPBELL, R., IsLaM, N., RAiLA, D., AND MADANY,
P. 1993. Designing and implementing
Choices: An object-oriented system in C++.
Commun. ACM 36, 9, 117-126.

CAaMPBELL, R. H. AND HABERMANN, A. N. 1974.
The specification of process synchronisation
by path expressions. In Operating Systems, E.
Gelenbe and C. Kaiser, Eds.

CAROMEL, D. 1989. Service, asynchrony and
wait-by-necessity. J. Object-Oriented Pro-
gram. 2, 4.

CAROMEL, D. 1990. Concurrency and reusabil-
ity: From sequential to parallel. J. Object-
Oriented Program. 3, 3.

CAROMEL, D. 1993. Towards a method of object-
oriented concurrent programming. Commun.
ACM 36, 9, 90-102.

CAROMEL, D., BELLONCLE, F., AND ROUDIER, Y.
1996. The C++// System. In Parallel Pro-
gramming Using C++, G. V. Wilson and P.
Lu, Eds., MIT Press, Cambridge, MA, 257—
296.

CHIBA, S. 1995. A metaobject protocol for C++.
In Proceedings of the ACM Conference on Ob-
Jject-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA °95), Spe-
cial Issue of SIGPLAN Not. 30, 10 (Oct.),
285-299.

FINKE, S., JAHN, P., LANGMACK, O., LOHR, K.-P.,
PiENs, 1., AND WoOLFF, T. 1993. Distribution
and inheritance in the HERON approach to
heterogeneous computing. In Proceedings of
the Thirteenth International Conference on
Distributed Computing Systems.

FroLunND, S. 1992. Inheritance of synchronisa-
tion constraints in concurrent object-oriented
programming languages. In Proceedings of the
European Conference on Object-Oriented Pro-
gramming (ECOOP °92). Lecture Notes in
Computer Science, vol. 615. Springer-Verlag,
New York.

FroLunD, S. 1996. Coordinating Distributed
Objects. MIT Press, Cambridge, MA.

GARBINATO, B. AND GUERRAOUI, R. 1997. Using
the strategy design pattern to compose reli-
able distributed protocols. In Proceedings of
the Usenix Conference on Object-Oriented
Technologies and Systems (COOTS ’97)
(June), S. Vinoski, Ed., Usenix.

GARBINATO, B., FELBER, P., AND GUERRAOUI, R.
1996. Protocol classes for designing reliable
designing reliable distributed environments.
In Proceedings of the European Conference on
Object Oriented Programming (ECOOP °96),
(June) P. Cointe, Ed. Lecture Notes in Com-
puter Science, vol. 1098. Springer-Verlag,
New York, 316-343.

GARBINATO, B., GUERRAOUI,
K. R.

R., AND MAZOUNI,
1994. Distributed programming in

327

GARF. In Proceedings of the ECOOP 93
Workshop on Object-Based Distributed Pro-
gramming, LNCS 791, Springer-Verlag, 225—
239.

GARBINATO, B., GUERRAOUI, R., AND MAZOUNI,
K. R. 1995. Implementation of the GARF
Replicated Objects Platform. Distrib. Syst.
Eng. J. (Feb.), 14-27.

GOLDBERG, A. AND ROBSON, D. 1989. Smalltalk-
80. The Language. Addison-Wesley, Reading,
MA.

GUERRAOUI, R. 1995. Modular atomic objects.
Theor. Pract. Object Syst. 1, 2, 89-99.

GUERRAOUI, R., CAPOBIANCHI, R., LANUSSE, A., AND
Roux, P. 1992. Nesting actions through
asynchronous message passing: The ACS pro-
tocol. In Proceedings of the European Confer-
ence on  Object-Oriented  Programming
(ECOOP °92). Lecture Notes in Computer Sci-
ence, vol. 615. Springer-Verlag, New York,
170-184.

GUERRAOUI, R., NIERSTRASZ, O., AND RIVEILL, M.,
EDS. 1994. Proceedings of the ECOOP ’93
Workshop on Object-Based Distributed Pro-
gramming. Lecture Notes in Computer Sci-
ence, vol. 791. Springer-Verlag, New York.

GUERRAOUI, R., ET AL. 1996. Strategic research
directions in object oriented programming.
ACM Comput. Surv. 28, 4, 691-700.

GUNASEELAN, L. AND LeEBLANC, R. J. 1992.
Distributed Eiffel: A language for program-
ming multi-granular distributed objects. In
Proceedings of the Fourth International Con-
ference on Computer Languages. IEEE Com-
puter Science Press, Los Alamitos, Calif.

HavLsTtEaD, R. H. 1985. Multilisp: A language
for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst. 7, 4.

JEzEQUEL, J.-M. 1993. EPEE: An Eiffel envi-
ronment to program distributed-memory par-
allel computers. J. Object-Oriented Program.
6, 2.

JuL, E., LEvy, H. M., HurcHINSON, N. C., AND
Brack, A. P. 1988. Fine-grained mobility in
the Emerald system. ACM Trans. Comput.
Syst. 6, 1.

KArura, D. G. AND LEg, K. H. 1990. ACT++:
Building a concurrent C++ with actors. oJ.
Object-Oriented Program. 3, 1.

KALE, L. V. AND KRISHNAN, S. 1993. Charm++:
A portable concurrent object-oriented system
based on C++. In Proceedings of the ACM
Conference on Object-Oriented Systems, Lan-
guages and Applications (OOPSLA '93), ACM
SIGPLAN Not. 28.

KARAORMAN, M. AND Bruno, J. 1993. Intro-
ducing concurrency to a sequential language.
Commun. ACM 36, 9, 103-116.

Kay, A. 1969. The reactive engine. Ph.D. The-
sis, University of Utah.

KiczALEs, G., ED. 1994. Foil for the workshop on

ACM Computing Surveys, Vol. 30, No. 3, September 1998



328 ° J.-P. Briot et al.

open implementation. Available at http:
/lwww.parc.xerox.com/PARC/spl/eca/
oi/workshop-94/foil/main.html.

KiczaLEs, G., DES RIVIERES, J., AND BoBrow, D.
1991. The Art of the Meta-Object Protocol,
MIT Press, Cambridge, MA.

, D. 1997. Concurrent Programming in
Java. Addison-Wesley, Reading, MA.

LEA, R., JACQUEMOT, C., AND PILLEVESSE, E. 1993.
COOL: System support for distributed pro-
gramming. Commun. ACM 36, 9, 37-47.

LEHRMANN MADSEN, O., M@LLER-PEDERSEN, B., AND
NyGaarp, K. 1993. Object-Oriented Pro-
gramming in the BETA Programming Lan-
guage. Addison-Wesley, Reading, MA.

LieBERMAN, H. 1987. Concurrent object-ori-
ented programming in Act 1. In Object-Ori-
ented Concurrent Programming, A. Yonezawa
and M. Tokoro, Eds., Computer Systems Se-
ries, MIT Press, Cambridge, MA, 9-36.

Liskov, B. AND SHEIFLER, R. 1983. Guardians
and actions: Linguistic support for robust,
distributed programs. ACM Trans. Program.
Lang. Syst. 5, 3.

LOHR, K.-P. 1992. Concurrency annotations. In
Proceedings of the ACM Conference on Object-
Oriented Systems, Languages and Applica-
tions (OOPSLA ’92), ACM SIGPLAN Not. 27,
10.

LOHR, K.-P. 1993. Concurrency annotations for
reusable software. Commun. ACM 36, 9, 81—
89.

LopeEs, C. V. AND LIEBERHERR, K. J. 1994.
Abstracting process-to-function relations in
concurrent object-oriented applications. In
Proceedings of the European Conference on
Object-Oriented Programming (ECOOP °94).
Lecture Notes in Computer Science, vol. 821.
Springer-Verlag, New York, 81-99.

Mags, P. 1987. Concepts and experiments in
computational reflection. In Proceedings of
the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA '87), ACM SIGPLAN Not. 22,
12, 147-155.

MAFFEIS, S. 1995. Run-time support for object-
oriented distributed programming. Ph.D. Dis-
sertation, Universitit Ziirich.

MASUHARA, H., MATSUOKA, S., Asal, K., AND YON-
EZAWA, A. 1995. Compiling away the meta-
level in object-oriented concurrent reflective
languages using partial evaluation. In Pro-
ceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages
and Applications (OOPSLA °95), ACM SIG-
PLAN Not. 30, 10, 300-315.

MATSUOKA, S. AND YONEZAWA, A. 1993. Analysis
of inheritance anomaly in object-oriented con-
current programming languages. In Research
Directions in Concurrent Object-Oriented Pro-

LEA

ACM Computing Surveys, Vol. 30, No. 3, September 1998

gramming, G. A. Agha et al., Eds., MIT Press,
Cambridge, MA, 107-150.

MazounNi, K., GARBINATO, B., AND GUERRAOUI,
R. 1995. Building reliable client-server
software using actively replicated objects. In
Proceedings of TOOLS Europe 95, Prentice-
Hall, Englewood Cliffs, NJ, 37-53.

MCAFFER, J. 1995. Meta-level programming
with CodA. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP °95). Lecture Notes in Computer Sci-
ence, vol. 952. Springer-Verlag, New York,
190-214.

McHALE, C. 1994. Synchronisation in concur-
rent, object-oriented languages: Expressive
power, genericity and inheritance. Ph.D. dis-
sertation. Dept. of Computer Science, Trinity
College, Dublin, Ireland.

MEYER, B. 1991. Eiffel: The Language, Pren-
tice-Hall, Englewood Cliffs, NJ.

MEYER, B. 1993. Systematic concurrent object-
oriented programming. Commun. ACM 36, 9,
56-80.

Moss, J. E. B. anpD KOHLER, W. H. 1987.
Concurrency features for the Trellis/Owl lan-
guage. In Proceedings of the European Confer-
ence on  Object-Oriented  Programming
(ECOOP °87). Lecture Notes in Computer Sci-
ence, vol. 276. Springer-Verlag, New York.

MowsrAy, T. J. AND ZAHAVI, R. 1995. The Es-
sential CORBA: System Integration Using
Distributed Objects. John Wiley & Sons and
The Object Management Group, New York.

Nicor, J., WILKES, T., AND MaNora, F. 1993.
Object-orientation in heterogeneous distrib-
uted computing systems. IEEE Comput. 26, 6,
57-617.

OKAMURA, H. AND IsHIKAWA, Y. 1994. Object lo-
cation control using metalevel programming.
In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP °94).
Lecture Notes in Computer Science, vol. 821.
Springer-Verlag, New York, 299-319.

OMG 1995. The Common Object Request Bro-
ker: Architecture and Specification (Revision
2.0). Object Management Group, Framing-
ham, MA.

OSF 1994. DCE  Application  Development
Guide (Revision 1.0.2). Open Software Foun-
dation, Cambridge, MA.

PapatHoMAS, M. 1989. Concurrency issues in
object-oriented programming languages. In
Object-Oriented Development, D. C. Tsichritzis,
ed. Centre Universitaire d’Informatique, Uni-
versité de Geneve, Geneva, Switzerland.

PapaTHOMAS, M. 1995. Concurrency in object-
oriented programming languages. In Object-
Oriented Software Composition, O. Nierstrasz
and D. Tsichritzis, Eds. Prentice-Hall, Engle-
wood Cliffs, NJ, 31-68.

PARRINGTON, G. D. AND SHRIVASTAVA, S. K. 1988.



Concurrency and Distribution o

Implementing concurrency control in reliable
distributed object-oriented systems. In Pro-
ceedings of the European Conference on Ob-
Jject-Oriented Programming (ECOOP ’88). Lec-
ture Notes in Computer Science, vol. 322.
Springer-Verlag, New York, 234-249.

Rozier, M. 1992. Chorus. In Proceedings of the
Usenix International Conference on Micro-
Kernels and Other Kernel Architectures, 27—
28.

ScCHILL, A. AND Mock, M. 1993. DC+ +: Distrib-
uted object-oriented system support on top of
OSF DCE. Distrib. Syst. Eng. 1, 2, 112-125.

ScuMip, D. C. 1995. An OO encapsulation of
lightweight OS concurrency mechanisms in
the ACE toolkit. Tech. Rep. TR WUCS-95-31,
Dept. of Computer Science, Washington Uni-
versity, St. Louis, Mo.

SCHRODER-PREIKSCHAT, W. 1994. The Logical
Design of Parallel Operating Systems. Pren-
tice-Hall, Englewood Cliffs, NJ.

SHEFFLER, T. J. 1996. The Amelia vector tem-
plate library. In Parallel Programming Using
C++, G. V. Wilson and P. Lu, eds. MIT Press,
Cambridge, MA, 43-90.

SKJELLUM, A., LU, Z., BANGALORE, P. V., AND Doss,
N. 1996. MPI++. In Parallel Program-
ming Using C++, G. V. Wilson and P. Lu,
eds. MIT Press, Cambridge, MA, 465-506.

StrousTRUP, B. 1993. The C++ Programming
Language. Addison-Wesley, Reading, MA.

STURMAN, D. AND AGHA, G. 1994. A protocol de-
scription language for customizing failure
semantics. In Proceedings of the Thirteenth
International Symposium on Reliable Distrib-
uted Systems, 148-157.

SuN 1995. C++4.1 Library Reference Manual,
Section 2. Part No. 802-3045-10, Nov., Sun
Microsystems, Inc.

THOMAS, L. 1992. Extensibility and reuse of ob-
ject-oriented synchronisation components. In
Proceedings of the International Conference on
Parallel Languages and  Environments

329

(PARLE ’92). Lecture Notes in Computer Sci-
ence, vol. 605. Springer-Verlag, New York,
261-275.

Tokoro, M., NIERSTRASZ, O. M., AND WEGNER, P.,
EDS. 1992. Proceedings ECOOP °91 Work-
shop on Object-Based Concurrent Computing.
Lecture Notes in Computer Science, vol. 612.
Springer-Verlag, New York.

WEGNER, P. 1990. Concepts and paradigms of
object-oriented programming. ACM OOPS
Manager 1, 1.

WEIHL, W. 1989. Local atomicity properties:
Modular concurrency control for abstract data
types. ACM Trans. Program. Lang. Syst. 11, 2.

WILsON, G. V. AND Lu, P., EpS. 1996. Parallel
Programming Using C++. MIT Press, Cam-
bridge, MA.

YOKOTE, Y. 1992. The Apertos reflective operat-
ing system: The concept and its implementa-
tion. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA '92). ACM
SIGPLAN Not. 27, 10, 414—-434.

YOKOTE, Y. AND TOKORO, M. 1987. Experience
and evolution of Concurrent Smalltalk. In
Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages
and Applications (OOPSLA °87). ACM SIG-
PLAN Not. 22, 12.

YoNEZAWA, A. AND ToKORO, M., EDS. 1987.
Object-Oriented Concurrent Programming.
Computer Systems Series, MIT Press, Cam-
bridge, MA.

YoNEzAWA, A., Brior, J.-P., AND SHIBAYAMA,
E. 1986. Object-oriented concurrent pro-
gramming in ABCL/1. In Proceedings of the
ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications
(OOPSLA ’86). ACM SIGPLAN Not. 21, 11.

YoNEzAwWA, A., MATSUOKA, S., YAsuaci, M., AND
Taura, K. 1993. Implementing concurrent
object-oriented languages on multicomputers.
IEEE Parallel Distrib. Technol. (May).

Received August 1996; revised August 1997; accepted January 1998

ACM Computing Surveys, Vol. 30, No. 3, September 1998



