
Non-Modularity in Aspect-Oriented Languages:
Integration as a Crosscutting Concern for AspectJ

Kevin Sullivan
University of Virginia

Department of Computer Science
151 Engineer's Way

P.O. Box 400740
Charlottesville, VA 29903, USA

+1 804 982 2206
sull ivan@virginia.edu

Lin Gu Yuanfang Cai
University of Virginia University of Virginia

Department of Computer Science Department of Computer Science
151 Engineer's Way 151 Engineer's Way

P.O. Box 400740 P.O. Box 400740
Chadottesvi]le, VA 29903, USA Charlottesville, VA 29903, USA

+1 804 982 2200 +1 804 982 2200
Ig6e@virginia.edu yc7a@virgin ia .edu

A B S T R A C T
Aspect-oriented (AO) methods and languages seek to enable the
preservation of design modularity through mappings to program
structures, especially where common (object-oriented) langqcaSes
fail to do so. The general claim is made that AO approaches enable
the modularization of crosscutting concerns. The problem that we
address is that it is unclear to what extent such claims are valid. We
argue that there are meaningfid bounds on the abilities of past,
present, and future languages to succeed in this regard---bounds
that we need to understand better. To make this idea concrete we
exhibit a significant bound: Component integration (Sullivan &
Notldn 1992, 1994) is not adequately modularizable in Aspec~

Keywords
Aspect, non-modularity, integration

I. I N T R O D U C T I O N
Aspect-oriented languages aim explicitly to enable the preservalion
of modularity in design where existing programming languages
and methods fall. The problem we address in this paper is that we
don't yet understand the bounds of the validity of rids claim. For
what modular design structures, i f any, do prominent
aspect-oriented languages still have no modular representations?
We show one interesting bound by example. We also present a
critical analysis of some basic terms of AO programming. In a
nutshell, we find that aspects are relative: Whether a module is an
aspect in one language depends on whether the concern it
represents has no modular representation in another. Our analysis
put AO languages in a broader context of edvances, dating to 1972
[10], concerned with preserving novel modular designs structures
in corresponding program representations. Finally, we suggest that
the intentional search for non-modularity-preserving properties of
prevailing languages and program design methods is a 8ood way to
make progress. This paper illustrates the application of this
approach to intentionally modularity-preserving AO languages.

Pmni~ion to m._~,g digital or lund ~mpiee of all or part of this work for
personal or c ~ u s e i s granted withom fee provided that copies eve
not made or dis~buted for profit or conenm-cial advantage and that copies
bear this notice mud the full citation on the fult page. To copy otherwise, to
republish, to post on servers or to redisWibme to lists, tequila prior specific
permission end/or a f¢¢.
AOSD 2002, En.w, hede, Thu Netherl~mda
Copyright 2002 ACM 1-58113-469-X/02/0004...$S.00

The rest of this paper is organized as follows. Section 2 addresses
modulmity in design; its preservation----or not----4hrough mappings
of designs to programs; how mapping problems have driven
innovation; and what aspects really are. Section 3 discusses
behavioral relationship= *.he protocols that integrate objects into
systems---as aspects for OO standard languages and methods.
S e ~ o n 4 presents the language of abstract behavioral types as one
that is modular for behavioral relationships. Section 5 shows that
Aspect.)" is not modular for such integration concerns. Section 6
concludes.

2. WHAT ARE ASPECTS?
The task of a software architect is, for given requirements, to devise
a design sU-uetore having the required runtime properties and a
modular structure that maximizes the value of the design in the
assumed environment [14]. Modularity can add value to a system
in the form of reduced cost of comprehension, real options to vary
end change the system, improved time to .market through
parallelism in development, component reusability, and so forth.

Devising a design structure involves the selection of design
parameters, the sWucturing ofdependencos among their values, and
the choice of a value for each. In a modular design, dependences
are such that the values of key parameters can be chosen--that is,
key design decisions made or changed---independently of others.

The task of aprogram designer, by contrast, is to represent a given
design structure in a corresponding program slructure. A program
structure, expressed in a programming language, is subject to the
constraints and poss~flities inherent in the language, and to
additional conslraints, e.g., as imposed by style rules.

For the benefits ofmodulerity in design to be realized, the program
that represents a design must preserve its modular sm~nre. A
program pr~erveJ modularity if independent parameters in the
design are represented by independent constructs in the program.
When modularity is not preserved, apparently independent design
parameters become coupled though their coup]ed representations.

There are many ways in which a program can fail to preserve
modularity. One special case ocenm when each of a set of
apparently independent design parameters is represented by a
corresponding program construct, but where the representation of
some other design parameter is disuibuted (cuts) across and is
merged into the previous program consU'ucts.

19

The representation o f the latter parameter is said to crosscut the
other representations. The design parameters are coupled
indirectly in the code and the corresponding design decisions can
no longer be made or changed independently.

In structuring a design, a good architect seeks to represent the key
dimensions (design parameters) in which it is worthwhile to be able
to vary or change a system independently. This is Pamas's
information hiding criterion [I0]. A key goal e r a programmer then
is to select a program structure that preserves the modular structure
o f the abstract design.

Yet there are bounds on the abilities o f programming languages,
subject to the additional constraints of design methods, styles, and
conventions, t to preserve such modular structures. I f a design
exceeds the bounds e r a language, we will say that the design is not
modularizable in the language, and that the language is not
modular f o r the design. In this case, any program representation of
the design in the language will exhibit undesirable coupling, such
as crosscutting implementation artifacts, that complicate sof~vam
design and evolution, increasing costs and complexity, reducing
dependability, and so forth.

A problem arises when, for one reason or another, a programmer
decides to use a language that is not modular for otherwise valuable
design slructures. An even worse problem arises when architects
think in the terms of such languages. Then they might not even
conceive o f adequately modular designs. These phenomena rise to
the level of major problems in practice and theory when prevailing
language paradigms are non-modular for important classes of well
modularized designs. Such pareditnns can effectively enforce
inadequate choices of programming languages and methods.

What is needed in this case is a new language in a new paradigm.
One desirable property o f such a language is that it be modular for
valuable designs that were modular in the old language: Nothing
should be lost. The new language should also be modular for
valuable but previously non-modularizable designs.

One key driver ofthis kind o f evolution is the discovery of valuable
new ways o f structuring designs. Prevailing languages are
sometimes found to be non-modular for such designs. Languages
are then developed that are modular for such designs.

For example, Pamas recognized a valuable new class o f designs in
which data-structure-valued design parameten am independent
He argued that the prevailing top-down, structured programming
approach was not modular for such designs: it called for prucedums
to communicate through data s ~ , coupling the choices of
data stroetums to the implementations of client procedures. He
then showed how the introduction and proper use o f abstract data
type interfaces could preserve the modularity of such designs. His
work thus helped to establish the next paradigm: object-orientetion.

Subsequent experience has taught that object-orientation is not
ideal. There am valuable design semctures for which standard
object-oriented languages and design method are non-modular.
New languages and mechanisms are emerging to accommodate
these structures. The discovery of non-modularity properties o f
prevailing langus~e paradigms for important design semctures
continues to drive such innovation.

s Henceforth, for brevity, we will simply say/anguages.

Such languages are sometimes called aspect-oriented [2]. These
Iangunges, such as' Azpect./[i]and HyperJ [9], are often described
using new terms: notably aspect and crosscutiing implementation.
The preceding discussion positions us to analyze these terms to
better understand what they mean. What we will find, in a nutshell,
is that aspects are relative. We now explain what we mean by this
statement.

Kiczales et al. [6] define an aspect to be "a modular unit of
crosscutting implementation." We try to make this idea precise in
the following terms, distinguishing between two separs~ ideas:
when a pmgrmn structure can be said to be an aspect, and when a
design parameter can be said to be an aspect

Suppose D is design structure, I an independent design parameter
in D, and New and Old are two languages. I is an aspect relative to
New and Oldi fand only i f Oldis not modular for/, and New is. A
weaker but also useful definition is that I is an aspect relative to
Old i f Old is non-modular for / . At the program level, a program
representation P o f l in New is said to be an aspect relative to New
and Old i f and only i f I is an aspect relative to New and O/d, and P
is actually an independent module in the New language.

An example will help. A design pmmneter whose value states how
to traze program execution is an aspect for a simple OO language
because its representation (code) has to be included in that of the
procedures to be trazed. Adding the right new mechanisms to an
otherwise simple OO language, such as object-oriented reflection
[7], can make it modular for this kind o f design parameter. In such
a language a Iraning policy can be expmased by a module. Such a
tracing module can be called an aspect---"a modular unit of
crosscutting implementation," where the term crosscutting tacitly
assumes the old OO language. Moreover, the tracing design
parameter that was an aspect for the old language no longer is one!

3. F O R OO I N T E G R A T I O N IS AN A S P E C T
In earlier work [11][13] Sullivan and Notkin identified a class o f
design structures for integrat-d systems in which the objects to be
integrated and the behavioral relatior~chips that inte~ate them are
conceived and ~ t u r e d as independent design pa,,a,eters. They
showed that slandard OO languages and methods are not modular
for such structures. They unavoidable tangle object and integration
concerns, causing major problems for the design, development, and
evolution o f integrated s y ~ m s . In other words, they showed that
integration is aspect for standard OO languages.

To address this problem, they developed the abstract behavioral
type (ABT) as a language mechanism, and showed that ABT-hased
languages are modular for such designs. They coined the term
mediator for modular, ABT-based representations o f otherwise
crosscutting behavioral relationships. In an experimental systems
style they tested the hypothesis that stmzUmng designs this way
and preserving their structures in programs would ease the design,
development, and evolution o f integrated systems.

In this section, we present the ideas that integration is an aspect for
OO in more detail, in terms of an archetypal scenario for the design,
programming representation, and evolution o f integrated systems.
In the next section, we show that ABT's am modular for integration
concerns. Thereafter we exploit the example that we develop here
to test whether integration remains an aspect for OO languages
extended with the novel aspent-oriented constructs o f Aspectl.

Suppose that you are asked to construct a system that integrates the
behaviors o f several binary digit, or Bit, objects. The initial system

2 0

configuration has two Bits, b l and b2, each of which can be viewed
and manipulated directly by clients of the system. The state space
ofaBi t is a single Boolean digit. The applicable operations include
Set end Clear, which set the state of a Bit respectively to I and 0.
The Get operation returns the current state of Bit. A standard O 0
approach would be to define a Bit class and to create the running
system in part by instentiating two objects o f this class, bl and b2.

Suppose now that the integration requirements of the system call
for b l end b2 to work together as follows: i f any client Set's
(respectively Clears) either Bit, the other must be Set (C/eared). In
other words the behaviors of the Bits have to be integrated by a
behavioral relationship, which we will call Equality, that maintoins
an equality constraint. The diagram in Figure I illustrates a design
structure in which the behavioral relationship is conceived as an
independent design parameter. Sullivan and Nolkin called this kind
of design sh'ucture a behavioral entity-relationship model

Figure 1: Design with two objec~ and a behavioral relationship.

Consider a step in the evolution of the design an augmentation
step. Two more Bit objects, b3 and b4j are added to the system. Bit
b3 is required to work with b2 in a second instance of the Equality
behavioral relationship. Thus, i f any of the first three bits are Set or
Cleared, the others will be, too.

Bit b4 is required to work with/,3 in a different relationship, which
we call Trigger. If any client Sets b3, then b4 must be Set, too. In
the resulting system,/74 can be Set and Cleared with. no effect on
the other Bits. I f bJ is Cleared there is no effect on b40 but b2 will
have to be cleared and then hi. However, i f b3 is Set, the Trigger
relationship requires that b4 be Set, too.

One reason that structuring designs this way is valuable is that such
structures are easy to extend locally with system-wide effects---just
the property we want in integrated system implementations. The
augmented design structure is illustrated in Figure 2:

Figure 2: The augmented design structure.

When we Ixy to map these design slructures into object-oriented
prosrmns in standard ways we find that the behavioral relationships
are crosscutting aspects. Standard OO languages and methods are
thus not modular for designs in which behavioral relationships are
independent design parameters. We now make this point concrete.

A slralghfforward OO approach would start by mapping Bit objects
to instances of a Bit class, and the relationships to code merged into
the methods of the Bit clas.~ Within the implementation of Set, for
example, might appear code to find and update related Bit objects.

Consider, for example, the design in which bl end b2 are integrated

by Equality. The Bit class would have instance variables, to
represent the value of the bit and the identity of the related B/t
object. The code implementing Set end Clear would a l so
implement the propagation of effects to related Bits. The
representation o f the relationship is tangled with (crosscuts) the
representations o f the objects that are related, and these object
representations are polluted with elements of the representation of
the relationship. Standard OO approaches do not preserve the
modularity o f even simple integrated system designs in this style.

The consequences o f the loss of modularity are significant_ First,
the lack o f an abstract representation o f the Equalifyrelationship
makes the system unnecessarily hard to understand. Second, we
cannot easily remove the behavioral relationship from the system
because it is hardwired into the B/t code. Third, we cannot easily
reuse the Bit class because each object assumes a corresponding
object and an Equality relationship with it. Fourth, we cannot
develop the programming code for the B/t and Equality
abstractions independently. Fifth, we cannot test and debug their
implemenlationa independently. Sixth, we cannot tmlso the
relationship code independently; and so on. In other words, all of
the well known cost~ of a serious loss of modularity end abslra~tion
are incurred by the standard OO representation in this case.

More sophisticated OO methods do not adequately resolve these
problems. One idea is be to use Gamma's med~ttor design pattern
[3] to represent the Equality relationship as a separate object. 2 In
this design, Equal/ty is abstracted as a class Equality contahfing the
code for updating one bit when the other changes. The problem is
that BU objects have to call this mediator, directly or indirectly; so
the Bit class still ends up coupled either directly to the definition o f
the Gamma-style mediator.

This design is improved. The relationship now has a first-class
abstract representation, making the code easier to understand; but
several representations are unduly coupled. That coupling makes it
unnecessarily hard to accommodate in the code the removal of the
behavioral relationship from the design: relationship-related calls
are hardwired into the Bit code. Reusing Bit is precluded because
its objects assume the presence of external mediators. Nor can we
develop the programming code for the Bit independently of that for
the Equality abstraction because the Bit code uses the Equality code
substantively. We caunot test and debug the Hit implementation
independently. We cannot reuse the relationship code
independently because it assumes the presence of two Bit objects;
and so on. This solution is an improvement but not truly modular.

Nor does using implicit invocation (event nolification, or the
Gamma-sl'yle Obseroer pattern [3]) by itself solve these problems.
It is little better for each Bit to register with the other to receive
updates than for each Bit to call the other. We see this problem in
the Model-View-O0ntmller pattern (see [3]). Here, views register
with models to be notified of relevant changes end implement the
"update" code. The code to manage model-view relationships thus
crosscuts the code for the views.

2 Gamma's Mediator pattern is relsted to but not the same as ours.
In addition to representing relationships as separate objects, as in
Gamma's pattern, our mediators employ implicit invocation (also
known as the Obsert, er pattern) to decouple the representations o f
the objects related from the mediator r e p ~ - n t i n g the relationship.

21

All of these problems are vastly complicated when designs start to
evolve. Consider what happens when we augment the design with
b3 and the Equality relationship linlang it to b2. To represent this
design change in the program, we might complicate the B/t class to
enable Bits to participate in multiple relationships (e.g., b2 with b l
and b3). Alternatively, we might produce two different Bit classes,
the first designed for objects that participate in one Equality
relationship, such as bl and b3, and the second for objects that
participate in two (b2). Code implementing the pair of Equality
relationships is now merged into the code for the second Bit class.

When we add b4 and a Trigger relationship linking b4 to b3, things
go from bad to worse. Although we can make b4 an instance of the
Bit class, we need a new class for b3: one that implements B/ta that
participate in both the Equality and Trigger relationships. The
representations o f multiple design parameters are truly tangled in
the representation of b3. It jumbles code for the Bit abstraction, and
for the Equality and Trigger relationships.

4. ABTS: M O D U L A R FOR INTEGRATION
The problems in our example scale into to major difficulties in the
design and evolution o f real systems, such as integrated software
engineering and other kinds of environments. As the number of
relationships in a design increases, the stmcturo o f any standard
O 0 program representation degrades rapidly. The upshot is that
standard O 0 methods are not scalable for integrated system design.

Sullivan and Hotkin [11][13] introduced mediator-based design as
a partial solution. The challenge was to extend standard O 0
methods to make them modular for designs in the form of
behavioral entity relationship models. We give an example of what
this would mean.

In our design example, the Bit parameters would be represented in a
program by objects o f a self-con~dned class, Bit, with simple Get,
Set, and Clear methods. The Equality and Trigger relationships
would be represented as objects o f corresponding Equality and
Trigger classes. These objects (mediators) would be connected to
Bit objects at rtmtime to make them work togefl~-. The initial
design would be mapped to a program that creates Bits bl and b2
and Equality object e(b Lb2). Any cad] to b l.~et would activate e,
which would call b2.Set in turn--with ,, preventing recursion.

One simple approach for preventing unbounded recursion is to
have the mediator maintain state that encodes whether it is already
in the midst o f updating one Bit as a result o f an action o f the other.
In this case, Any call to hi.Set would activate e, which would check
its busy bit, return i f it indicates an update is already in progress;
and otherwise set it, call b2.Set, and then clear it before returning.

The approach preserves the modularity o f the design, realizing its
potential. When the desisn is extended, for example, the required
program changes am localized; The program is extended to create
two more Bits, b$ and tM, Equality mediator e2(b2,b3), and Trigger
mediator t(b3,b4). Now b3.Ser aclives beth t and e2; t calls ~IS~,"
e.2 calls b2.Set; that call activates el, and e l calls bl.Set.

Sullivan's and Notkin's aim was to ease the design and evolution o f
integrated systems,--a broad class, given that objects always have
to work together to achieve system objectives. The solution had
two parts: structure designs as behav/oral entity relationship
models; and preserve the resulting modularity in programs.
Learning to design in terms o f behavioral ER models took effort.
Figuring out how to preserve their moduIarity in practical programs
required novel programming constructs and methods.

The programming solution, in turn, involved a combination of two
ideas. The first idea wes to represent entities and relationships not
in terms of absh'act dam types, as in OO languages, but in terms of
so-called abstract behavioral types (ABT's). The second idea was
to map entities and relationships to corresponding ABT-bnsed
objects in a way that would avoid crosscutting implementation. We
now explain these two ideas.

An ABT defines a class of objects not just in terms of operations
that can be applied to an object o f the class but also in terms of
events that such an object cam announce. Announcing an event
invokes (meta-level) operations implemented by other objects that
have registered to receive such events from a given object.

Figure 3 illustrates a Bit A B T with Get Set, and Clear operations
and JustSet and JustCleared events. Mechanisms are provided for
objects to register for such events. The implementations of the
operations are responsible for announcing the events.

d
Figure 3: A Bit ABT

The key observation is that the "language" of ABT's is modular for
designs in the form ofbehaviond entity-relationship models. There
axe modularity preserving mappings f i~n such designs to modular
pmgrarn structures. Each behavioral relationship is represented as
mediator ABT without ©ros~utting the representations o f the
objects to be integrated or those of other relationships.

The only problem is to ensure that relevant mediator operations are
invoked when integration actions need to be taken. Events serve
this function. A mediator implements relationship-maintsining
operations and registem these operations so that they are invoked
when objects signal possible needs t'or integration actions.

No mediator-specific code need be embedded in the objects to be
integrated. The representations o f the objects are deenupled (for
compile-time, link-time, and, in general, run-time dependencies)
from the representatiions of the mediators that integrate them. Each
relationship in the design structure also has its own modular
represenlation in the program. The bottom line is that entity and
relationship representations no longer have to crosscut each other.

We now illustrate these ideas in terms of our running example.
Consider how mediators provide a modularity-preserving
representation o f our integrated system of Bit& To represent the
Equality relationship, we define a mediator ABT Equality. The
ABT defines operations BitlJustSeto Bit2JustSet, BitlJustCleared,
and Bit2JuatCleared that implement responses to the first and
second Bit respectively being Set or Cleared. The mediator is
given references to the Bit objects, Bitl and Bit2, it is to integrate. It
uses these references to manipulate each B/t in response to the
event announcements o f the other. BitlJustSet, for example, calls
Bit2.$et. A mediator constructor or initialization operation takes
the references to two B/t objects and registers the mediator's
response operations with the events o f these Bit objects.

2 2

Figure 4 illustrates the mapping for the two-Bit case. The design
structure is depicted above; the mapping to the program structure,
in the middle; and the program structure, below. The program
preserves the modularity of the design. Among other things, the
mediator is defined to reference Bgt objects (to register with their
events and to call their operations), but the def'mition of B/t remains
independent Thus, the modular extensibility properties of the
design are maintained: design extensions map to local program
extensions without loss of modularity.

i ' I
I I
I I I
I I i

I, ÷

v

r

Figure 4: A modular representation of an integrated system design.

ABT's treat events in object interfeces at the same level as
operations. It is poss~le to emulate multiple-event inteffa,~es in a
range of languages [8]. In Java, for example, each logical event to
be exposed can be represented by three operations implernented by
an underlying event-valued instance variable of the object. The
three operations allow clients to Register and Unregister for event
notifications, and for the object itsolf te Announce the event. Each
underlying event object implements the Obxer~r pattern. This
approach makes the kinds of events that an object can announce
explicit in its advertised interface, rather than implicit in the
parameter values sent on a single Subject-to-Observer channel.

5. IN TEGR A TION: A S P E C T F O R A S P E C T J
We can now reformulate and give a somewhat surprising answer to
the question at the beginning o f the paper. Aspect-oriented
programming languages appear provide new possibilities for the
modular representation of important kinds of design sUmctums.
Yet, we don't understand for what valuable design structures they
languages remain non-modular. What are the bounds?

We now show one somewhat surprising bound. ,4spectJ is not fully
modular for behavioral relationships---the intm-aztion protocols
that integrate objects into desired systems. We believe, but do not
argue in this paper, that other prominent aspect-oriented languages,
including HyperJ~ share this non-modularity property.

We refine the question further. Are there design structures (1) that
are known to be valuable in practice, (2) that are not modularizable
in standard OO lengnagns, (3) that conceivably or demonstrably are
modularizable in some practical programming language, (4) for
which one can reasonably expect OO languages extended with
prominent AO mechanisms to be modular, (5) but that can be
shown to be non-raodularizable in these langnagns7 If we can
exhibit such cases, then we have discovered interesting bounds on
the claimed modularity properties of the languages. Discovering
these bounds can help show the way to future progress.

We have shown that the integrated systems design slructtwes
discussed now satisfy properties (1)-(3): Designs with independent
behavioral relationships have value; they are not modularizable in
standard O 0 languages; and they are modularizable, using
mediators, in a practical extension to OO, the language of ABT's.

In this section, we identify AspectJ as a language satisfying
conditions (4) and (5). We might reasonably expect that the
powerful AO extensions provided by AxpectY would make it
modular for integration concerns; but they don ' t The problem, it
turns out, is in AspectJ's limited model of aspect instances.

Starting with point (4), we might reasonably expect ~S.spect./to be
modular for integration concerns because a mediator, as a modular
representation of an integration concern, can clearly be seen as a
special and precursor case of the more general aspect conslruct o f
the Aspect./language. It would be surprising for a language that is
intended to address the general case not to be able to address an
important special case. We now argue that mediators are special
case of aspect modules as defined by Aspect/.

First, mediators meet the definition of aspect: they are modular
units of crosscutting implementation (relative to OO languages).
This point is reinforced by the clear mapping of mediator-related
constructs to fundamental elements of an aspect-oriented language.
An event is a join point----a point in program execution to which
meta-level actions can be attached. Meta-level mediator methods
that are registered to be invoked when events are announced are
advice constructs. A mediator is a special case aspect module.

Second, at first glance, the ABT language is strictly less expressive
than Aspect]. AspecLI implicitly defines a very broad range of join
points, relieving the program designer o f having to declare them
explicitly (as with events). AspectJ also provides the powerfully
expressive mechanism of the pointcut for concisely identifying sets
o f join points o f interest, and for attaching advice to all join points
in a given pointcut. Finally, AxpectJhas other mechanisms with no
analogs in the language of ABTs, including mechanisms to add
state to class definitions end for short-circuit parameter passing.

Thus, we might reasonably expect that AspectJis strictly better for
representing behavioral relationships as aspects. We hypothesized
that we could use XspectIjoin points and pointeuts to avoid having
to explicitly define and announce events and to register for all
events in given pointvut equivalents. We tested this hypothesis by
exploring a number of approaches to representing mediators as
aspects in Aspect.I.

We now turn to point (5). Our exploration led us to reject the
hypothesis. AspectJ aspects cannot fully emulate ABT mediators.
We trace the problem to limitations of the AxpectJ model of aspect
instances. This result mggests that future Aspect./versions might
profitably incorporate a more flexible model of aspect instances.

Our idea was to represent behavioral relationships as aspects using
join points, rather than as mediators using event notification. To
make this idea concrete and to show that it works in a simple case,
we present an Aspect./pregrmns for the case of two Bit's integrated
in an Equality relationship. This program starts with the B/t class
presented in Figure 5.

23

Program 1
public class Bit (

boolean value;
public Bit(){value=false;}
public void Set(){value=true;}
public void Clear(){value=false;}
public boolean Get(){return value;}

}

Figure 5: A simple Bit class in Java.

The aspect in Figure 6 implements an Equality relationship for two
Bits. It stores references to two Bit objects. The map function
expects a reference to one of the Bits as an argument, and it returns
the other. When the aspect advice is activated by one of the Bits
being Set or Cleared the aspect calls map to get a reference to the
other Bit and then updates it. The pointcut specifications enable
attachment of advice to the appropriate points in program
execution: where calls to Bit.Set and Bit. Clear occur.

The first advice runs after Bit.Set is called. To prevent unbounded
recursion, as in the mediator solution, the code checks a guard bit
and does nothing if it is set. Otherwise the code obtains the BU to
be updated, sets the guard bit, updates the other Bit, clears the guard
bit, and returns. The second advice does the same for Clear.

The attractiveness of AxpectJ for the design and evolution of
integrated system implementations using a mediator-like approach
is clear. We have succ__eeded in integrating two Bit's in a behavioral
relationship without having to compromise modularity. The B/t
code remains unadulterated and we have a modular representation
for the otherwise crosscutting Equality relationship. This design
also c r e a ~ the-options to add, remove or change the behavior of
the relationship independently.

Unfommately, although this simple case works, it does not scale.
This program is limited to integrating two Bits with a single global
instance of the Equality aspect. To accommodate the addition of a
third end fourth Bit and the Trigger relationship requires merging
their code and data into this single aspect module. Independent
concerns in the design thus crosscut each other in the program.

Figure 7 presents a flawed attempt at a better solution. The fault in
the program points to the problem with the idea of implementing
mediatorJ as aspects. We discuss the flaw momentarily.

This program ~ t s in a single aspect zero or more pairs of Bits
related by Equality. The aspect uses introduction declarations to
cause state and behavior needed to represent Equality on a per
Bit-psir basis to be appended to the Bit class. Each Bit object is thus
imbued with the means to participate in one Equality relationship.

A program can now create two Bits and place them in an Equality
relationship by calling Bit.relate (inlroduced by the aspect into the
Bit class) with the identity of the other B/t as a parameter. The
introduced inRelation variable is set to true in each B/t, and the
value of each Bii 'speer is set to refer to the other, Aspect advice
that runs after Bit.Set and Bit.Clear checks whether the invoking
Bit is in a relationship (inRelation is true), and, if so, updates the
otherBit as appropriate. The aspect uses the same busy construct to
terminate the otherwise unbounded recursion.

The fault in this program has to do with rids busy variable. Before
we address that problem, however, we note that a more obvious
problem with this design is that each B/t is limited to being in at

most one Equa/ity relationship. An improvement is to inject into
the Bit class an instance variable storing a List o f Bits: to hold
references to the zero or more Bits to which a given B/t is related.
The advice would Iraverse this list, updating peers, taking
appropriate measures to avoid unbounded recursion.

ProGram 2
aspect Equality {

static boolean busy;
Bit bl;
Bit b2;

Equality(Bit bitl,
bl = bit1;
b2 = bit2;

}

Bit bit2) {

Bit map(Bit b){
if (b == bl) return b2
else return bl;

}

pointcut callSet():
call(void Bit. Set());

pointcut callClear() :
call(void Bit. Clear()) ;

after() : callSet() {
if ('busy) {

Bit peer = map(
(Bit) thisJolnPoint, getTarget ()) ;

busy = true;
peer. Set() ;
busy = false;

}

after() : callClear[) {
if ([busy) {

Bit peer = map[
(Bit} thisJoinPoint .getTarget ()) ;

busy = true;
peer. Clear () ;
busy ffi false;

)

Figure 6: A mediator-like aspect for Equality.

Finally, we note that yet another solution is available. The lists of
Bits could be t~moved from individual Bit o b i e ~ to be unified in a
single relational table maintained by the aspect. This table would
contain an entry for each pair of Bits related by Equality. The
aspect would provide a function for putting pairs of Bits in or
remove them from the relation. The map function would look up
the set of Bits misted to a given Bit, namely this (the Bit that caused
the advice to be run). In response to a Be.set, for example, the
advice would use map to compute the image of the Bit, and iterate
over all the related Bits, updating their states as necessary.

24

Program 3
aspect Equality {

static boolean busy;
public boolean Bit.inRelation =
public Bit Bit.peer;
public void Bit.relate(Bit b)(

this.inRelation = true;
this.peer= b;
this.peer.inRelation = true;
this.peer.peer = this;

pointcut callSet(Bit b):
target(b) && call(vold Set());

pointcut callClear(Bit b):
target(b) && call(void Clear{));

after(Bit b) : callSet(b) {
if (b.inRelation == true)[

if (!busy) {
busy = true;
b.peer. Set();
busy = false;

)
)

after{Bit b): callClear(b) {
if (b.inRelation == true} (

if (!busy) {
busy = true;
b.peer.Clear();
busy = false;

]

}

false;

Figure 7: A (faulty) aspect solution using introduction.

Each of these solutions has problems. The first is limited to one
relationship instance for the whole system, and it does not scale as
more entities and relationships am added to the design. The second
limits each Bit to participating in one Equally, relationship. That is
not adequate to support our design scenario, in which b2 eventually
participates in two such relationships, with b l and b3. The third
and fourth solutions solve this problem by allowing each Bit to be
related to any number of other peer Bits in equality relationships.

The thud and fourth solutions are attractive, too, in providing a
solution for representing the Tr/gger relationship. A second aspect
is introduced for this purpose. It is closely modeled on theEquaBty
aspect. We have thus succeeded in representing Bits without
crosscutting relationship code, and in representing two kinds of
relationships without crosscutting each other. What remains7

The problem is highlighted by the fault involvin 8 buD,. In our third
solution (Figure 7), the busy variable belongs to the aspect type.
The problem is that we need a busy variable per relationship
instance. Consider how the extended system with four Bits fails.
Suppose bl is Set, The Equality advice afler-callget is invoked. It
finds busy clear, sets it, and then Sets b2. The afler-callSet advice
is invoked recursively for b2 (which is correct). It finds bra t on,
and so returns immediately. The setting of b2 should have resulting
in the subsequent setting of b3. The second instance of the EqualiO,
relationship, linking b2 to b2, was not handled properly.

The basic pmblern that rids example reveais has two parts. First,
each behaviore[relationship insta.ce can have an arbitrar/ly
complex and stateful behaviors. Our example exhibits this point in
the simplest non-lrivial way: The one-bit busy variable represents
the dynamic state of a behavioral relationship instance. Second, by
default, there is only one instance of an aspect module per system.

The correct mapping of behavioral relationships in design to
aspects now becomes clear. An aspect represents a type of
behavioral relationship, and has to emulate OO-like creation,
manipulation, and deletion of instances.

The fourth and finai program, in which the aspect maintains a table
of Bit pairs, can be repaired to provide a workable solution in this
style. Without details, the key is to associate per-instance state
with each pair of B/is in an aspe~'s table, and to provide means,
e.g., in the form of static a~pect methods, to get and set the state on
a per-pair basis. One solution would be to reify each behavioral
relationship as a record containing references to the objects it
integrates and the required state components. The aspect would
maintain a table o f tbese tuples---a relation keyed by object pairs.

We can now characterize the modularity properties of AspectJwith
respect to design structures containing behavioral relationships as
independent parameters. Aspect, ris not fully modular insofar as the
relationship instances of a given type are not represented as abstract
first-class objects in the program. Rather, their representations are
merged together (a kind of crosscutting implementation) and are
implicit in the state of a single aspect modulc. We have lost the
mediator-like mapping of behavioral relationships in design to
corresponding first-class objects in the program structure.

Second, a correct aspect-oriented solution could incur a significant
performance overhead for the table Iookups requ/red to retrieve and
manipulate the representations of behavioral relationship instances.
Using a hash table to store the relation would maintain constant
lime in the number of instances, but at s significant cost in space,
and still a significant cost in time relative to direct access to objects.

The root of the problem is that the AspecLI model of aspect
/n, vtances is too limited to fully preserve the abstract structure of
our designs in terms of the modular constructs of the programming
language. This is the bound that we promised to exhibit. AxpecU
remains not fully modular for component integration concerns that
are abstracted as independent parameters in design.

There is one final detail. Aspec~ does have a more general model
of aspect instantiation than we have discussed so far. The Aspect./
technical documentation states the following:

If an aspect A is defined perthis (Pointcut), then one
object of type A is created for every object that is the executing
object (i.e., "this") at any of the join points picked out by
PoinCcuC. The advice defined in A may then run at any join
point where the cunently executing object has been associated
with an instance of A Similarly, i f an aspect A is defined
pertarget(Pointcut), then one object of type A is
created for every object that is the target object of the join
points picked out by P o i n t c u t .

In other words, it is possible to have more than one aspect instance
of a given type. Can we not use multiple instances in this way to
implement mediators? The short answer is, no. There am two
reasons. First, in our design an object can participate in several
instances of any given behavioral relationship type. Our b2 is

2 5

linked to both b l and bJ by separate Equality relationships. The
per this and per target conslructs of AspecO, however, are limited
to attaching at most one instance of an aspect o f a given type to any
given object_ Second, these instances are limited to being attached
to just one object, but what we need to represent are relational
structures that coimect co-equai participants in a relationship.

A final possible "hack " that we haven' t yet evaluated adequately is
to abuse theper consemcts as follows. Define a p r o ~ Java class in
Aspec£l and an aspect as being per this for each proxy instance.
Proxy objects serve no purpose other than to circumvent the intent
o f the designers o f AspectJ's to deny the programmer access to the
runtime system for aspect instantiatiou.

We leave open the question o f whether this "hack" can be exploited
to emulate mediators with aspect instances. In any case, it so
violates the intended style consWaint~ that we consider it to be not
properly in the realm o f the AspectJ language and style. Our
conclusions appear to stand for the inlended usage o f the language.

6. C O N C L U S I O N
Significant advances in programming l ang~ges and design
methods have been driven by the discovery ofpotenfiaily valuable
design sU'uctures for which existing approaches axe not modular.
The emergence o f aspect-oriented progrmnming is an example: it
responds to the problem that OO languages, in particular, cannot
preserve the modular structures ofvaiuable, feasibly modularizable
designs----that O 0 p.-presentetions of such structures cannot avoid
crosscutting representations of independent design parameters.

This perspective sheds some new light on some o f tbe terminology
being used to describe AO. In particular, an aspect at the pregram
representatien level is defined as a modular unit of crosscuteng
implementatien. We can now rephrase this: An aspect is amodular
representation o f an independent design parameter in a "new"
language, for which there is no modular representetion in some
other, often tazitly assumed, "old" language or language paradigm.

Looking back, we find tha~ by this definition, new languages have
been aspect-orionted all along. In this paper, we have seen just two
examples. Parna~ found a new kind of design structure in which
valuable dimensions of change and variation are represented as
independent parameters in design. In his seminal paper he focused
on variation of data stru~are choices in particular. He showed that
the p~vai l ing structured languages and related design methods
were not modular for such design structures: procedure
implementations were crosscut by assumptions about concrete data
sWuctares. He then inWoducaut an information hiding style based
on the use o f ADT interfaces. In 1972, these were aspects: modular
unit~ o f previously crosscutting implementation.

Similarly, Sullivan and Notldn saw that behavioral relationships,
interactions protocols by which object behaviors are composed into
systems, can profitably be abstracted as independent parameters in
design. They then showed that such protocols are not
modularizable in standard OO languages, but that they are
modularizable in some practical languages: e.g., using ABTs to
represent behaviond relationships as mediators. In this paper, we
have shown that mediators are aspects not only in being modular
units ofotherwise crosscutting implementation, but also in having a
direct mapping to the terms o f modem AO language design: join
points and advice. Axpect-Oriented languages are the latest (and
perhaps the gzeatesO in a line of "aspect.oriented" languages
stretching back more than thirty years.

Looking back, at each turning point someone had an insight that
there is some kind of important design parameter that remains an
aspect: for which the prevailing best language remains
non-modular. With such an insight in hand, the task o f inventing
the next mechanism for preserving design modularity in programs
can begin in earnest, and a new kind of modular pmgrsm structure
can be developed that can reasonably called an aspect relative to
the previous language. When such mechanisms become common,
what at flint was seen as special, an aspect, becomes the new
baseline against which new non-modularity properties are found.

Looking forward, then, the question for today is the old one: What
kinds of design parameters remain aspects for today's best
languages? For what important kinds o f design parameters do the
languages remain non-modular7 In this paper, we ask the question,
what remains an aspect for AspecU?. We showed one such bound:
that integral-ion remains an aspect, to some degree, forAspectJ.

We do not suggest in this paper how to solve rids problem. It is
clear from earlier work on mediators and OO reflection that
"weaving aspects dynamiadly" to modularize integration concerns
is feasible. The real question is what are the tradenffs? AspectJ is
one a number o f languages, including HyperJ, in which reflective
behaviors are set up statically. These languages reap advantages
from this constraint. One example is the pointcut language o f
Aspect./?. Another is the performance gain of being able to compile
away meta-level indirec~on. To what extent can the pointvut
language and performance be preserved, while permitting rantime
creation and binding ofaspoct instances? It is not clear.

Finally, we end with a bigger question----really the one we asked at
the beginning. Brooks has distinguished between accidental and
essential difficulties in software development. Each advance in
aspect-oriented design shows that some previously intractable
difficulty with crosscut'ring implementation was accidental: an
artifact o f a now evidently solvable problem in language design.
Some bounds on the abilities o f languages to preserve modularity
in design ere accidental. The question is, What are the assent/a/
bounds, i f any?- For what kinds of concerns, abstracted as
independent parameters, can no practical programming language
be modular? Are there maly essent/aJ aspects? For example, are
hard-to-achieve properties of programs, such as dependability,
inherently espec[ual? What realistically ca~ we hope for? What
are the bounds7

A C K N O W L E D G M E N T S
This work was supported by the National Science Foundation
under grants CCR-9804078 and ITR-0086003.

R E F E R E N C E S
[1] Xerox Corporation, A s p e ~ Team, The

Programming Guide, 2001, available at
htta://www.asvecti.orT./as of this writing.

[2]

AspectJ
URL

Elred, T., R.E. Filman and A. Bader, guest editors,
Communications o f the A C M 44, 10, Special Issue on
Aspect-Oriented Prngrammins, October 2001.

[3] Gamma, Helm, Johnson and Vlissides, D e i g n Patterns:
Elements o f Reusable Object-Oriented So3~4~re,
Addison-Wesley, 1994.

[4] Kalet, l.J., J.P. Jack-y, M.M Austin-Seymour, S.M. Hummel,
K.J. Sullivan and J.M. Unger, "'Prism: a New Approach to

2 6

