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A B S T R A C T  
Aspect-oriented (AO) methods and languages seek to enable the 
preservation of design modularity through mappings to program 
structures, especially where common (object-oriented) langqcaSes 
fail to do so. The general claim is made that AO approaches enable 
the modularization of crosscutting concerns. The problem that we 
address is that it is unclear to what extent such claims are valid. We 
argue that there are meaningfid bounds on the abilities of past, 
present, and future languages to succeed in this regard---bounds 
that we need to understand better. To make this idea concrete we 
exhibit a significant bound: Component integration (Sullivan & 
Notldn 1992, 1994) is not adequately modularizable in Aspec~ 
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I. I N T R O D U C T I O N  
Aspect-oriented languages aim explicitly to enable the preservalion 
of modularity in design where existing programming languages 
and methods fall. The problem we address in this paper is that we 
don't yet understand the bounds of the validity of rids claim. For 
what modular design structures, i f  any, do prominent 
aspect-oriented languages still have no modular representations? 
We show one interesting bound by example. We also present a 
critical analysis of some basic terms of AO programming. In a 
nutshell, we find that aspects are relative: Whether a module is an 
aspect in one language depends on whether the concern it 
represents has no modular representation in another. Our analysis 
put AO languages in a broader context of edvances, dating to 1972 
[10], concerned with preserving novel modular designs structures 
in corresponding program representations. Finally, we suggest that 
the intentional search for non-modularity-preserving properties of 
prevailing languages and program design methods is a 8ood way to 
make progress. This paper illustrates the application of this 
approach to intentionally modularity-preserving AO languages. 
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The rest of this paper is organized as follows. Section 2 addresses 
modulmity in design; its preservation----or not----4hrough mappings 
of designs to programs; how mapping problems have driven 
innovation; and what aspects really are. Section 3 discusses 
behavioral relationship= *.he protocols that integrate objects into 
systems---as aspects for OO standard languages and methods. 
S e ~ o n  4 presents the language of abstract behavioral types as one 
that is modular for behavioral relationships. Section 5 shows that 
Aspect.)" is not modular for such integration concerns. Section 6 
concludes. 

2. WHAT ARE ASPECTS? 
The task of a software architect is, for given requirements, to devise 
a design sU-uetore having the required runtime properties and a 
modular structure that maximizes the value of the design in the 
assumed environment [14]. Modularity can add value to a system 
in the form of reduced cost of comprehension, real options to vary 
end change the system, improved time to .market through 
parallelism in development, component reusability, and so forth. 

Devising a design structure involves the selection of design 
parameters, the sWucturing ofdependencos among their values, and 
the choice of a value for each. In a modular design, dependences 
are such that the values of key parameters can be chosen--that is, 
key design decisions made or changed---independently of others. 

The task of aprogram designer, by contrast, is to represent a given 
design structure in a corresponding program slructure. A program 
structure, expressed in a programming language, is subject to the 
constraints and poss~flities inherent in the language, and to 
additional conslraints, e.g., as imposed by style rules. 

For the benefits ofmodulerity in design to be realized, the program 
that represents a design must preserve its modular sm~nre.  A 
program pr~erveJ modularity if  independent parameters in the 
design are represented by independent constructs in the program. 
When modularity is not preserved, apparently independent design 
parameters become coupled though their coup]ed representations. 

There are many ways in which a program can fail to preserve 
modularity. One special case ocenm when each of a set of  
apparently independent design parameters is represented by a 
corresponding program construct, but where the representation of 
some other design parameter is disuibuted (cuts) across and is 
merged into the previous program consU'ucts. 
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The representation o f  the latter parameter is said to crosscut the 
other representations. The design parameters are coupled 
indirectly in the code and the corresponding design decisions can 
no longer be made or changed independently. 

In structuring a design, a good architect seeks to represent the key 
dimensions (design parameters) in which it is worthwhile to be able 
to vary or change a system independently. This is Pamas's  
information hiding criterion [I0]. A key goal e r a  programmer then 
is to select a program structure that preserves the modular structure 
o f  the abstract design. 

Yet there are bounds on the abilities o f  programming languages, 
subject to the additional constraints of  design methods, styles, and 
conventions, t to preserve such modular structures. I f  a design 
exceeds the bounds e r a  language, we will say that the design is not 
modularizable in the language, and that the language is not 
modular f o r  the design. In this case, any program representation of  
the design in the language will exhibit undesirable coupling, such 
as crosscutting implementation artifacts, that complicate sof~vam 
design and evolution, increasing costs and complexity, reducing 
dependability, and so forth. 

A problem arises when, for one reason or another, a programmer 
decides to use a language that is not modular for otherwise valuable 
design slructures. An even worse problem arises when architects 
think in the terms of  such languages. Then they might not even 
conceive o f  adequately modular designs. These phenomena rise to 
the level of  major problems in practice and theory when prevailing 
language paradigms are non-modular for important classes of  well 
modularized designs. Such pareditnns can effectively enforce 
inadequate choices of  programming languages and methods. 

What is needed in this case is a new language in a new paradigm. 
One desirable property o f  such a language is that it be modular for 
valuable designs that were modular in the old language: Nothing 
should be lost. The new language should also be modular for 
valuable but previously non-modularizable designs. 

One key driver ofthis kind o f  evolution is the discovery of  valuable 
new ways o f  structuring designs. Prevailing languages are 
sometimes found to be non-modular for such designs. Languages 
are then developed that are modular for such designs. 

For example, Pamas recognized a valuable new class o f  designs in 
which data-structure-valued design parameten am independent 
He argued that the prevailing top-down, structured programming 
approach was not modular for such designs: it called for prucedums 
to communicate through data s ~ ,  coupling the choices of  
data stroetums to the implementations of  client procedures. He 
then showed how the introduction and proper use o f  abstract data 
type interfaces could preserve the modularity of  such designs. His 
work thus helped to establish the next paradigm: object-orientetion. 

Subsequent experience has taught that object-orientation is not 
ideal. There am valuable design semctures for which standard 
object-oriented languages and design method are non-modular. 
New languages and mechanisms are emerging to accommodate 
these structures. The discovery of  non-modularity properties o f  
prevailing langus~e paradigms for important design semctures 
continues to drive such innovation. 

s Henceforth, for brevity, we will simply say/anguages.  

Such languages are sometimes called aspect-oriented [2]. These 
Iangunges, such as' Azpect./[i]and HyperJ [9], are often described 
using new terms: notably aspect and crosscutiing implementation. 
The preceding discussion positions us to analyze these terms to 
better understand what they mean. What we will find, in a nutshell, 
is that aspects are relative. We now explain what we mean by this 
statement. 

Kiczales et al. [6] define an aspect to be "a modular unit of  
crosscutting implementation." We try to make this idea precise in 
the following terms, distinguishing between two separs~ ideas: 
when a pmgrmn structure can be said to be an aspect, and when a 
design parameter can be said to be an aspect  

Suppose D is design structure, I an independent design parameter 
in D, and New and Old are two languages. I is an aspect relative to 
New and Oldi fand only i f  Oldis  not modular for/,  and New is. A 
weaker but also useful definition is that I is an aspect relative to 
Old i f  Old is non-modular for / .  At  the program level, a program 
representation P o f l  in New is said to be an aspect relative to New 
and Old i f  and only i f  I is an aspect relative to New and O/d, and P 
is actually an independent module in the New language. 

An example will help. A design pmmneter whose value states how 
to traze program execution is an aspect for a simple OO language 
because its representation (code) has to be included in that of  the 
procedures to be trazed. Adding the right new mechanisms to an 
otherwise simple OO language, such as object-oriented reflection 
[7], can make it modular for this kind o f  design parameter. In such 
a language a Iraning policy can be expmased by a module. Such a 
tracing module can be called an aspect---"a modular unit of  
crosscutting implementation," where the term crosscutting tacitly 
assumes the old OO language. Moreover, the tracing design 
parameter that was an aspect for the old language no longer is one! 

3. F O R  OO I N T E G R A T I O N  IS AN A S P E C T  
In earlier work [11][13] Sullivan and Notkin identified a class o f  
design structures for integrat-d systems in which the objects to be 
integrated and the behavioral relatior~chips that inte~ate them are 
conceived and ~ t u r e d  as independent design pa,,a,eters. They 
showed that slandard OO languages and methods are not modular 
for such structures. They unavoidable tangle object and integration 
concerns, causing major problems for the design, development, and 
evolution o f  integrated s y ~ m s .  In other words, they showed that 
integration is aspect for standard OO languages. 

To address this problem, they developed the abstract behavioral 
type (ABT) as a language mechanism, and showed that ABT-hased 
languages are modular for such designs. They coined the term 
mediator for modular, ABT-based representations o f  otherwise 
crosscutting behavioral relationships. In an experimental systems 
style they tested the hypothesis that stmzUmng designs this way 
and preserving their structures in programs would ease the design, 
development, and evolution o f  integrated systems. 

In this section, we present the ideas that integration is an aspect for 
OO in more detail, in terms of  an archetypal scenario for the design, 
programming representation, and evolution o f  integrated systems. 
In the next section, we show that ABT's  am modular for integration 
concerns. Thereafter we exploit the example that we develop here 
to test whether integration remains an aspect for OO languages 
extended with the novel aspent-oriented constructs o f  Aspectl.  

Suppose that you are asked to construct a system that integrates the 
behaviors o f  several binary digit, or Bit, objects. The initial system 
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configuration has two Bits, b l  and b2, each of  which can be viewed 
and manipulated directly by clients of  the system. The state space 
ofaBi t  is a single Boolean digit. The applicable operations include 
Set end Clear, which set the state of a Bit respectively to I and 0. 
The Get operation returns the current state of  Bit. A standard O 0  
approach would be to define a Bit class and to create the running 
system in part by instentiating two objects o f  this class, bl  and b2. 

Suppose now that the integration requirements of  the system call 
for b l  end b2 to work together as follows: i f  any client Set's 
(respectively Clears) either Bit, the other must be Set (C/eared). In 
other words the behaviors of  the Bits have to be integrated by a 
behavioral relationship, which we will call Equality, that maintoins 
an equality constraint. The diagram in Figure I illustrates a design 
structure in which the behavioral relationship is conceived as an 
independent design parameter. Sullivan and Nolkin called this kind 
of  design sh'ucture a behavioral entity-relationship model 

Figure 1: Design with two objec~ and a behavioral relationship. 

Consider a step in the evolution of  the design an augmentation 
step. Two more Bit objects, b3 and b4j are added to the system. Bit 
b3 is required to work with b2 in a second instance of  the Equality 
behavioral relationship. Thus, i f  any of the first three bits are Set or 
Cleared, the others will be, too. 

Bit b4 is required to work with/,3 in a different relationship, which 
we call Trigger. If  any client Sets b3, then b4 must be Set, too. In 
the resulting system,/74 can be Set and Cleared with. no effect on 
the other Bits. I f  bJ is Cleared there is no effect on b40 but b2 will 
have to be cleared and then hi.  However, i f  b3 is Set, the Trigger 
relationship requires that b4 be Set, too. 

One reason that structuring designs this way is valuable is that such 
structures are easy to extend locally with system-wide effects---just 
the property we want in integrated system implementations. The 
augmented design structure is illustrated in Figure 2: 

Figure 2: The augmented design structure. 

When we Ixy to map these design slructures into object-oriented 
prosrmns in standard ways we find that the behavioral relationships 
are crosscutting aspects. Standard OO languages and methods are 
thus not modular for designs in which behavioral relationships are 
independent design parameters. We now make this point concrete. 

A slralghfforward OO approach would start by mapping Bit objects 
to instances of a Bit class, and the relationships to code merged into 
the methods of  the Bit clas.~ Within the implementation of  Set, for 
example, might appear code to find and update related Bit objects. 

Consider, for example, the design in which bl  end b2 are integrated 

by Equality. The Bit class would have instance variables, to 
represent the value of  the bit and the identity of  the related B/t 
object. The code implementing Set end Clear would a l so  
implement the propagation of  effects to related Bits. The 
representation o f  the relationship is tangled with (crosscuts) the 
representations o f  the objects that are related, and these object 
representations are polluted with elements of  the representation of  
the relationship. Standard OO approaches do not preserve the 
modularity o f  even simple integrated system designs in this style. 

The consequences o f  the loss of  modularity are significant_ First, 
the lack o f  an abstract representation o f  the Equalifyrelationship 
makes the system unnecessarily hard to understand. Second, we 
cannot easily remove the behavioral relationship from the system 
because it is hardwired into the B/t code. Third, we cannot easily 
reuse the Bit class because each object assumes a corresponding 
object and an Equality relationship with it. Fourth, we cannot 
develop the programming code for the B/t and Equality 
abstractions independently. Fifth, we cannot test and debug their 
implemenlationa independently. Sixth, we cannot tmlso the 
relationship code independently; and so on. In other words, all of  
the well known cost~ of  a serious loss of  modularity end abslra~tion 
are incurred by the standard OO representation in this case. 

More sophisticated OO methods do not adequately resolve these 
problems. One idea is be to use Gamma's med~ttor design pattern 
[3] to represent the Equality relationship as a separate object. 2 In 
this design, Equal/ty is abstracted as a class Equality contahfing the 
code for updating one bit when the other changes. The problem is 
that BU objects have to call this mediator, directly or indirectly; so 
the Bit class still ends up coupled either directly to the definition o f  
the Gamma-style mediator. 

This design is improved. The relationship now has a first-class 
abstract representation, making the code easier to understand; but 
several representations are unduly coupled. That coupling makes it 
unnecessarily hard to accommodate in the code the removal of  the 
behavioral relationship from the design: relationship-related calls 
are hardwired into the Bit code. Reusing Bit is precluded because 
its objects assume the presence of  external mediators. Nor can we 
develop the programming code for the Bit independently of  that for 
the Equality abstraction because the Bit code uses the Equality code 
substantively. We caunot test and debug the Hit implementation 
independently. We cannot reuse the relationship code 
independently because it assumes the presence of  two Bit objects; 
and so on. This solution is an improvement but not truly modular. 

Nor does using implicit invocation (event nolification, or the 
Gamma-sl'yle Obseroer pattern [3]) by itself solve these problems. 
It is little better for each Bit to register with the other to receive 
updates than for each Bit to call the other. We see this problem in 
the Model-View-O0ntmller pattern (see [3]). Here, views register 
with models to be notified of  relevant changes end implement the 
"update" code. The code to manage model-view relationships thus 
crosscuts the code for the views. 

2 Gamma's Mediator pattern is relsted to but not the same as ours. 
In addition to representing relationships as separate objects, as in 
Gamma's pattern, our mediators employ implicit invocation (also 
known as the Obsert, er pattern) to decouple the representations o f  
the objects related from the mediator r e p ~ - n t i n g  the relationship. 
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All of  these problems are vastly complicated when designs start to 
evolve. Consider what happens when we augment the design with 
b3 and the Equality relationship linlang it to b2. To represent this 
design change in the program, we might complicate the B/t class to 
enable Bits to participate in multiple relationships (e.g., b2 with b l  
and b3). Alternatively, we might produce two different Bit classes, 
the first designed for objects that participate in one Equality 
relationship, such as bl  and b3, and the second for objects that 
participate in two (b2). Code implementing the pair of  Equality 
relationships is now merged into the code for the second Bit class. 

When we add b4 and a Trigger relationship linking b4 to b3, things 
go from bad to worse. Although we can make b4 an instance of  the 
Bit class, we need a new class for b3: one that implements B/ta that 
participate in both the Equality and Trigger relationships. The 
representations o f  multiple design parameters are truly tangled in 
the representation of  b3. It jumbles code for the Bit abstraction, and 
for the Equality and Trigger relationships. 

4. ABTS:  M O D U L A R  FOR INTEGRATION 
The problems in our example scale into to major difficulties in the 
design and evolution o f  real systems, such as integrated software 
engineering and other kinds of  environments. As the number of  
relationships in a design increases, the stmcturo o f  any standard 
O 0  program representation degrades rapidly. The upshot is that 
standard O 0  methods are not scalable for integrated system design. 

Sullivan and Hotkin [11][13] introduced mediator-based design as 
a partial solution. The challenge was to extend standard O 0  
methods to make them modular for designs in the form of  
behavioral entity relationship models. We give an example of  what 
this would mean. 

In our design example, the Bit parameters would be represented in a 
program by objects o f  a self-con~dned class, Bit, with simple Get, 
Set, and Clear methods. The Equality and Trigger relationships 
would be represented as objects o f  corresponding Equality and 
Trigger classes. These objects (mediators) would be connected to 
Bit objects at rtmtime to make them work togefl~-. The initial 
design would be mapped to a program that creates Bits bl  and b2 
and Equality object e(b Lb2). Any cad] to b l.~et would activate e, 
which would call b2.Set in turn--with ,, preventing recursion. 

One simple approach for preventing unbounded recursion is to 
have the mediator maintain state that encodes whether it is already 
in the midst o f  updating one Bit as a result o f  an action o f  the other. 
In this case, Any call to hi.Set would activate e, which would check 
its busy bit, return i f  it indicates an update is already in progress; 
and otherwise set it, call b2.Set, and then clear it before returning. 

The approach preserves the modularity o f  the design, realizing its 
potential. When the desisn is extended, for example, the required 
program changes am localized; The program is extended to create 
two more Bits, b$ and tM, Equality mediator e2(b2,b3), and Trigger 
mediator t(b3,b4). Now b3.Ser aclives beth t and e2; t calls ~IS~," 
e.2 calls b2.Set; that call activates el, and e l  calls bl.Set. 

Sullivan's and Notkin's  aim was to ease the design and evolution o f  
integrated systems,--a broad class, given that objects always have 
to work together to achieve system objectives. The solution had 
two parts: structure designs as behav/oral entity relationship 
models; and preserve the resulting modularity in programs. 
Learning to design in terms o f  behavioral ER models took effort. 
Figuring out how to preserve their moduIarity in practical programs 
required novel programming constructs and methods. 

The programming solution, in turn, involved a combination of  two 
ideas. The first idea wes to represent entities and relationships not 
in terms of  absh'act dam types, as in OO languages, but in terms of  
so-called abstract behavioral types (ABT's). The second idea was 
to map entities and relationships to corresponding ABT-bnsed 
objects in a way that would avoid crosscutting implementation. We 
now explain these two ideas. 

An ABT defines a class of  objects not just  in terms of  operations 
that can be applied to an object o f  the class but also in terms of  
events that such an object cam announce. Announcing an event 
invokes (meta-level) operations implemented by  other objects that 
have registered to receive such events from a given object. 

Figure 3 illustrates a Bit A B T  with Get Set, and Clear operations 
and JustSet and JustCleared events. Mechanisms are provided for 
objects to register for such events. The implementations of  the 
operations are responsible for announcing the events. 

d 
Figure 3: A Bit ABT 

The key observation is that the "language" of  ABT's  is modular for 
designs in the form ofbehaviond entity-relationship models. There 
axe modularity preserving mappings f i~n  such designs to modular 
pmgrarn structures. Each behavioral relationship is represented as 
mediator ABT without ©ros~utting the representations o f  the 
objects to be integrated or those of  other relationships. 

The only problem is to ensure that relevant mediator operations are 
invoked when integration actions need to be taken. Events serve 
this function. A mediator implements relationship-maintsining 
operations and registem these operations so that they are invoked 
when objects signal possible needs t'or integration actions. 

No mediator-specific code need be embedded in the objects to be 
integrated. The representations o f  the objects are deenupled (for 
compile-time, link-time, and, in general, run-time dependencies) 
from the representatiions of  the mediators that integrate them. Each 
relationship in the design structure also has its own modular 
represenlation in the program. The bottom line is that entity and 
relationship representations no longer have to crosscut each other. 

We now illustrate these ideas in terms of  our running example. 
Consider how mediators provide a modularity-preserving 
representation o f  our integrated system of  Bit& To represent the 
Equality relationship, we define a mediator ABT Equality. The 
ABT defines operations BitlJustSeto Bit2JustSet, BitlJustCleared, 
and Bit2JuatCleared that implement responses to the first and 
second Bit respectively being Set or Cleared. The mediator is 
given references to the Bit objects, Bitl and Bit2, it is to integrate. It 
uses these references to manipulate each B/t in response to the 
event announcements o f  the other. BitlJustSet, for example, calls 
Bit2.$et. A mediator constructor or initialization operation takes 
the references to two B/t objects and registers the mediator's 
response operations with the events o f  these Bit objects. 
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Figure 4 illustrates the mapping for the two-Bit case. The design 
structure is depicted above; the mapping to the program structure, 
in the middle; and the program structure, below. The program 
preserves the modularity of  the design. Among other things, the 
mediator is defined to reference Bgt objects (to register with their 
events and to call their operations), but the def'mition of  B/t remains 
independent Thus, the modular extensibility properties of  the 
design are maintained: design extensions map to local program 
extensions without loss of  modularity. 

i ' I 
I I 
I I I 
I I i 

I, ÷ 

v 

r 

Figure 4: A modular representation of  an integrated system design. 

ABT's  treat events in object interfeces at the same level as 
operations. It is poss~le  to emulate multiple-event inteffa,~es in a 
range of  languages [8]. In Java, for example, each logical event to 
be exposed can be represented by three operations implernented by 
an underlying event-valued instance variable of  the object. The 
three operations allow clients to Register and Unregister for event 
notifications, and for the object itsolf te Announce the event. Each 
underlying event object implements the Obxer~r pattern. This 
approach makes the kinds of  events that an object can announce 
explicit in its advertised interface, rather than implicit in the 
parameter values sent on a single Subject-to-Observer channel. 

5. IN TEGR A TION:  A S P E C T  F O R  A S P E C T J  
We can now reformulate and give a somewhat surprising answer to 
the question at the beginning o f  the paper. Aspect-oriented 
programming languages appear provide new possibilities for the 
modular representation of important kinds of  design sUmctums. 
Yet, we don't  understand for what valuable design structures they 
languages remain non-modular. What are the bounds? 

We now show one somewhat surprising bound. ,4spectJ is not fully 
modular for behavioral relationships---the intm-aztion protocols 
that integrate objects into desired systems. We believe, but do not 
argue in this paper, that other prominent aspect-oriented languages, 
including HyperJ~ share this non-modularity property. 

We refine the question further. Are there design structures (1) that 
are known to be valuable in practice, (2) that are not modularizable 
in standard OO lengnagns, (3) that conceivably or demonstrably are 
modularizable in some practical programming language, (4) for 
which one can reasonably expect OO languages extended with 
prominent AO mechanisms to be modular, (5) but that can be 
shown to be non-raodularizable in these langnagns7 If  we can 
exhibit such cases, then we have discovered interesting bounds on 
the claimed modularity properties of  the languages. Discovering 
these bounds can help show the way to future progress. 

We have shown that the integrated systems design slructtwes 
discussed now satisfy properties (1)-(3): Designs with independent 
behavioral relationships have value; they are not modularizable in 
standard O 0  languages; and they are modularizable, using 
mediators, in a practical extension to OO, the language of  ABT's.  

In this section, we identify AspectJ as a language satisfying 
conditions (4) and (5). We might reasonably expect that the 
powerful AO extensions provided by AxpectY would make it 
modular for integration concerns; but they don ' t  The problem, it 
turns out, is in AspectJ's limited model of  aspect instances. 

Starting with point (4), we might reasonably expect ~S.spect./to be 
modular for integration concerns because a mediator, as a modular 
representation of  an integration concern, can clearly be seen as a 
special and precursor case of  the more general aspect conslruct o f  
the Aspect./language. It would be surprising for a language that is 
intended to address the general case not to be able to address an 
important special case. We now argue that mediators are special 
case of  aspect modules as defined by Aspect/. 

First, mediators meet the definition of  aspect: they are modular 
units of  crosscutting implementation (relative to OO languages). 
This point is reinforced by the clear mapping of  mediator-related 
constructs to fundamental elements of  an aspect-oriented language. 
An event is a join point----a point in program execution to which 
meta-level actions can be attached. Meta-level mediator methods 
that are registered to be invoked when events are announced are 
advice constructs. A mediator is a special case aspect module. 

Second, at first glance, the ABT language is strictly less expressive 
than Aspect]. AspecLI implicitly defines a very broad range of  join 
points, relieving the program designer o f  having to declare them 
explicitly (as with events). AspectJ also provides the powerfully 
expressive mechanism of  the pointcut for concisely identifying sets 
o f  join points o f  interest, and for attaching advice to all join points 
in a given pointcut. Finally, AxpectJhas other mechanisms with no 
analogs in the language of  ABTs, including mechanisms to add 
state to class definitions end for short-circuit parameter passing. 

Thus, we might reasonably expect that AspectJis strictly better for 
representing behavioral relationships as aspects. We hypothesized 
that we could use XspectIjoin points and pointeuts to avoid having 
to explicitly define and announce events and to register for all 
events in given pointvut equivalents. We tested this hypothesis by 
exploring a number of  approaches to representing mediators as 
aspects in Aspect.I. 

We now turn to point (5). Our exploration led us to reject the 
hypothesis. AspectJ aspects cannot fully emulate ABT mediators. 
We trace the problem to limitations of  the AxpectJ model of  aspect 
instances. This result mggests that future Aspect./versions might 
profitably incorporate a more flexible model of  aspect instances. 

Our idea was to represent behavioral relationships as aspects using 
join points, rather than as mediators using event notification. To 
make this idea concrete and to show that it works in a simple case, 
we present an Aspect./pregrmns for the case of  two Bit's integrated 
in an Equality relationship. This program starts with the B/t class 
presented in Figure 5. 
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Program 1 
public class Bit ( 

boolean value; 
public Bit(){value=false;} 
public void Set(){value=true;} 
public void Clear(){value=false;} 
public boolean Get(){return value;} 

} 

Figure 5: A simple Bit class in Java. 

The aspect in Figure 6 implements an Equality relationship for two 
Bits. It stores references to two Bit objects. The map function 
expects a reference to one of the Bits as an argument, and it returns 
the other. When the aspect advice is activated by one of the Bits 
being Set or Cleared the aspect calls map to get a reference to the 
other Bit and then updates it. The pointcut specifications enable 
attachment of advice to the appropriate points in program 
execution: where calls to Bit.Set and Bit. Clear occur. 

The first advice runs after Bit.Set is called. To prevent unbounded 
recursion, as in the mediator solution, the code checks a guard bit 
and does nothing if  it is set. Otherwise the code obtains the BU to 
be updated, sets the guard bit, updates the other Bit, clears the guard 
bit, and returns. The second advice does the same for Clear. 

The attractiveness of AxpectJ for the design and evolution of 
integrated system implementations using a mediator-like approach 
is clear. We have succ__eeded in integrating two Bit's in a behavioral 
relationship without having to compromise modularity. The B/t 
code remains unadulterated and we have a modular representation 
for the otherwise crosscutting Equality relationship. This design 
also c r e a ~  the-options to add, remove or change the behavior of 
the relationship independently. 

Unfommately, although this simple case works, it does not scale. 
This program is limited to integrating two Bits with a single global 
instance of the Equality aspect. To accommodate the addition of a 
third end fourth Bit and the Trigger relationship requires merging 
their code and data into this single aspect module. Independent 
concerns in the design thus crosscut each other in the program. 

Figure 7 presents a flawed attempt at a better solution. The fault in 
the program points to the problem with the idea of implementing 
mediatorJ as aspects. We discuss the flaw momentarily. 

This program ~ t s  in a single aspect zero or more pairs of  Bits 
related by Equality. The aspect uses introduction declarations to 
cause state and behavior needed to represent Equality on a per 
Bit-psir basis to be appended to the Bit class. Each Bit object is thus 
imbued with the means to participate in one Equality relationship. 

A program can now create two Bits and place them in an Equality 
relationship by calling Bit.relate (inlroduced by the aspect into the 
Bit class) with the identity of the other B/t as a parameter. The 
introduced inRelation variable is set to true in each B/t, and the 
value of each Bii 'speer is set to refer to the other, Aspect advice 
that runs after Bit.Set and Bit.Clear checks whether the invoking 
Bit is in a relationship (inRelation is true), and, if  so, updates the 
otherBit as appropriate. The aspect uses the same busy construct to 
terminate the otherwise unbounded recursion. 

The fault in this program has to do with rids busy variable. Before 
we address that problem, however, we note that a more obvious 
problem with this design is that each B/t is limited to being in at 

most one Equa/ity relationship. An improvement is to inject into 
the Bit class an instance variable storing a List o f  Bits: to hold 
references to the zero or more Bits to which a given B/t is related. 
The advice would Iraverse this list, updating peers, taking 
appropriate measures to avoid unbounded recursion. 

ProGram 2 
aspect Equality { 

static boolean busy; 
Bit bl; 
Bit b2; 

Equality(Bit bitl, 
bl = bit1; 
b2 = bit2; 

} 

Bit bit2) { 

Bit map(Bit b){ 
if (b == bl) return b2 
else return bl; 

} 

pointcut callSet(): 
call(void Bit. Set()); 

pointcut callClear() : 
call(void Bit. Clear()) ; 

after() : callSet() { 
if ('busy) { 

Bit peer = map( 
(Bit) thisJolnPoint, getTarget ( ) ) ; 

busy = true; 
peer. Set() ; 
busy = false; 

} 

after() : callClear[) { 
if ([busy) { 

Bit peer = map[ 
(Bit} thisJoinPoint .getTarget ( ) ) ; 

busy = true; 
peer. Clear ( ) ; 
busy ffi false; 

) 

Figure 6: A mediator-like aspect for Equality. 

Finally, we note that yet another solution is available. The lists of  
Bits could be t~moved from individual Bit o b i e ~  to be unified in a 
single relational table maintained by the aspect. This table would 
contain an entry for each pair of Bits related by Equality. The 
aspect would provide a function for putting pairs of Bits in or 
remove them from the relation. The map function would look up 
the set of Bits misted to a given Bit, namely this (the Bit that caused 
the advice to be run). In response to a Be.set, for example, the 
advice would use map to compute the image of the Bit, and iterate 
over all the related Bits, updating their states as necessary. 

24 



Program 3 
aspect Equality { 

static boolean busy; 
public boolean Bit.inRelation = 
public Bit Bit.peer; 
public void Bit.relate(Bit b)( 

this.inRelation = true; 
this.peer= b; 
this.peer.inRelation = true; 
this.peer.peer = this; 

pointcut callSet(Bit b): 
target(b) && call(vold Set()); 

pointcut callClear(Bit b): 
target(b) && call(void Clear{)); 

after(Bit b) : callSet(b) { 
if (b.inRelation == true)[ 

if (!busy) { 
busy = true; 
b.peer. Set(); 
busy = false; 

) 
) 

after{Bit b): callClear(b) { 
if (b.inRelation == true} ( 

if (!busy) { 
busy = true; 
b.peer.Clear(); 
busy = false; 

] 

} 

false; 

Figure 7: A (faulty) aspect solution using introduction. 

Each of  these solutions has problems. The first is limited to one 
relationship instance for the whole system, and it does not scale as 
more entities and relationships am added to the design. The second 
limits each Bit to participating in one Equally, relationship. That is 
not adequate to support our design scenario, in which b2 eventually 
participates in two such relationships, with b l  and b3. The third 
and fourth solutions solve this problem by allowing each Bit to be 
related to any number of  other peer Bits in equality relationships. 

The thud and fourth solutions are attractive, too, in providing a 
solution for representing the Tr/gger relationship. A second aspect 
is introduced for this purpose. It is closely modeled on theEquaBty 
aspect. We have thus succeeded in representing Bits without 
crosscutting relationship code, and in representing two kinds of  
relationships without crosscutting each other. What remains7 

The problem is highlighted by the fault involvin 8 buD,. In our third 
solution (Figure 7), the busy variable belongs to the aspect type. 
The problem is that we need a busy variable per relationship 
instance. Consider how the extended system with four Bits fails. 
Suppose bl is Set, The Equality advice afler-callget is invoked. It 
finds busy clear, sets it, and then Sets b2. The afler-callSet advice 
is invoked recursively for b2 (which is correct). It finds bra t  on, 
and so returns immediately. The setting of  b2 should have resulting 
in the subsequent setting of  b3. The second instance of the EqualiO, 
relationship, linking b2 to b2, was not handled properly. 

The basic pmblern that rids example reveais has two parts. First, 
each behaviore[ relationship insta.ce can have an arbitrar/ly 
complex and stateful behaviors. Our example exhibits this point in 
the simplest non-lrivial way: The one-bit busy variable represents 
the dynamic state of  a behavioral relationship instance. Second, by 
default, there is only one instance of  an aspect module per system. 

The correct mapping of behavioral relationships in design to 
aspects now becomes clear. An aspect represents a type of  
behavioral relationship, and has to emulate OO-like creation, 
manipulation, and deletion of  instances. 

The fourth and finai program, in which the aspect maintains a table 
of  Bit pairs, can be repaired to provide a workable solution in this 
style. Without details, the key is to associate per-instance state 
with each pair of B/is in an aspe~'s  table, and to provide means, 
e.g., in the form of  static a~pect methods, to get and set the state on 
a per-pair basis. One solution would be to reify each behavioral 
relationship as a record containing references to the objects it 
integrates and the required state components. The aspect would 
maintain a table o f  tbese tuples---a relation keyed by object pairs. 

We can now characterize the modularity properties of  AspectJwith 
respect to design structures containing behavioral relationships as 
independent parameters. Aspect, ris not fully modular insofar as the 
relationship instances of  a given type are not represented as abstract 
first-class objects in the program. Rather, their representations are 
merged together (a kind of  crosscutting implementation) and are 
implicit in the state of  a single aspect modulc. We have lost the 
mediator-like mapping of  behavioral relationships in design to 
corresponding first-class objects in the program structure. 

Second, a correct aspect-oriented solution could incur a significant 
performance overhead for the table Iookups requ/red to retrieve and 
manipulate the representations of  behavioral relationship instances. 
Using a hash table to store the relation would maintain constant 
lime in the number of  instances, but at s significant cost in space, 
and still a significant cost in time relative to direct access to objects. 

The root of  the problem is that the AspecLI model of aspect 
/n, vtances is too limited to fully preserve the abstract structure of  
our designs in terms of  the modular constructs of the programming 
language. This is the bound that we promised to exhibit. AxpecU 
remains not fully modular for component integration concerns that 
are abstracted as independent parameters in design. 

There is one final detail. Aspec~ does have a more general model 
of  aspect instantiation than we have discussed so far. The Aspect./ 
technical documentation states the following: 

If an aspect A is defined perthis (Pointcut), then one 
object of  type A is created for every object that is the executing 
object (i.e., "this") at any of  the join points picked out by 
PoinCcuC.  The advice defined in A may then run at any join 
point where the cunently executing object has been associated 
with an instance of  A .... Similarly, i f  an aspect A is defined 
pertarget(Pointcut), then one object of type A is 
created for every object that is the target object of  the join 
points picked out by P o i n  t c u t .  

In other words, it is possible to have more than one aspect instance 
of  a given type. Can we not use multiple instances in this way to 
implement mediators? The short answer is, no. There am two 
reasons. First, in our design an object can participate in several 
instances of  any given behavioral relationship type. Our b2 is 
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linked to both b l  and bJ by separate Equality relationships. The 
per  this and per  target conslructs of  AspecO, however, are limited 
to attaching at most one instance of  an aspect o f  a given type to any 
given object_ Second, these instances are limited to being attached 
to just one object, but what we need to represent are relational 
structures that coimect co-equai participants in a relationship. 

A final possible "hack " that we haven' t yet evaluated adequately is 
to abuse theper  consemcts as follows. Define a p r o ~  Java class in 
Aspec£l and an aspect as being per  this for each proxy instance. 
Proxy objects serve no purpose other than to circumvent the intent 
o f  the designers o f  AspectJ's to deny the programmer access to the 
runtime system for aspect instantiatiou. 

We leave open the question o f  whether this "hack" can be exploited 
to emulate mediators with aspect instances. In any case, it so 
violates the intended style consWaint~ that we consider it to be not 
properly in the realm o f  the AspectJ language and style. Our 
conclusions appear to stand for the inlended usage o f  the language. 

6. C O N C L U S I O N  
Significant advances in programming l ang~ges  and design 
methods have been driven by the discovery ofpotenfiaily valuable 
design sU'uctures for which existing approaches axe not modular. 
The emergence o f  aspect-oriented progrmnming is an example: it 
responds to the problem that OO languages, in particular, cannot 
preserve the modular structures ofvaiuable, feasibly modularizable 
designs----that O 0  p.-presentetions of  such structures cannot avoid 
crosscutting representations of  independent design parameters. 

This perspective sheds some new light on some o f tbe  terminology 
being used to describe AO. In particular, an aspect at the pregram 
representatien level is defined as a modular unit of  crosscuteng 
implementatien. We can now rephrase this: An aspect is amodular  
representation o f  an independent design parameter in a "new" 
language, for which there is no modular representetion in some 
other, often tazitly assumed, "old" language or language paradigm. 

Looking back, we find tha~ by this definition, new languages have 
been aspect-orionted all along. In this paper, we have seen just  two 
examples. Parna~ found a new kind of  design structure in which 
valuable dimensions of  change and variation are represented as 
independent parameters in design. In his seminal paper he focused 
on variation of  data stru~are choices in particular. He showed that 
the p~vai l ing  structured languages and related design methods 
were not modular for such design structures: procedure 
implementations were crosscut by assumptions about concrete data 
sWuctares. He then inWoducaut an information hiding style based 
on the use o f  ADT interfaces. In 1972, these were aspects: modular 
unit~ o f  previously crosscutting implementation. 

Similarly, Sullivan and Notldn saw that behavioral relationships, 
interactions protocols by which object behaviors are composed into 
systems, can profitably be abstracted as independent parameters in 
design. They then showed that such protocols are not 
modularizable in standard OO languages, but that they are 
modularizable in some practical languages: e.g., using ABTs to 
represent behaviond relationships as mediators. In this paper, we 
have shown that mediators are aspects not only in being modular 
units ofotherwise crosscutting implementation, but also in having a 
direct mapping to the terms o f  modem AO language design: join 
points and advice. Axpect-Oriented languages are the latest (and 
perhaps the gzeatesO in a line of "aspect.oriented" languages 
stretching back more than thirty years. 

Looking back, at each turning point someone had an insight that 
there is some kind of  important design parameter that remains an 
aspect: for which the prevailing best language remains 
non-modular. With such an insight in hand, the task o f  inventing 
the next mechanism for preserving design modularity in programs 
can begin in earnest, and a new kind of  modular pmgrsm structure 
can be developed that can reasonably called an aspect relative to 
the previous language. When such mechanisms become common, 
what at flint was seen as special, an aspect, becomes the new 
baseline against which new non-modularity properties are found. 

Looking forward, then, the question for today is the old one: What  
kinds of  design parameters remain aspects for today's  best 
languages? For  what important kinds o f  design parameters do the 
languages remain non-modular7 In this paper, we ask the question, 
what remains an aspect for AspecU?. We showed one such bound: 
that integral-ion remains an aspect, to some degree, forAspectJ. 

We do not suggest in this paper how to solve rids problem. It is 
clear from earlier work on mediators and OO reflection that 
"weaving aspects dynamiadly"  to modularize integration concerns 
is feasible. The real question is what are the tradenffs? AspectJ is 
one a number o f  languages, including HyperJ, in which reflective 
behaviors are set up statically. These languages reap advantages 
from this constraint. One example is the pointcut language o f  
Aspect./?. Another is the performance gain of  being able to compile 
away meta-level indirec~on. To what extent can the pointvut 
language and performance be preserved, while permitting rantime 
creation and binding ofaspoct  instances? It is not clear. 

Finally, we end with a bigger question----really the one we asked at 
the beginning. Brooks has distinguished between accidental and 
essential difficulties in software development. Each advance in 
aspect-oriented design shows that some previously intractable 
difficulty with crosscut'ring implementation was accidental: an 
artifact o f  a now evidently solvable problem in language design. 
Some bounds on the abilities o f  languages to preserve modularity 
in design ere accidental. The question is, What are the assent/a/ 
bounds, i f  any?- For  what kinds of  concerns, abstracted as 
independent parameters, can no practical programming language 
be modular? Are there maly essent/aJ aspects? For  example, are 
hard-to-achieve properties of  programs, such as dependability, 
inherently espec[ual? What realistically ca~ we hope for? What 
are the bounds7 
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