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Computer games have been around for almost as long as computers. Most of these games, 
however, have been designed in a rather ad hoc manner because many of their basic 
components have never been adequately defined. In this paper some deficiencies in the 
standard model of computer games, the minimax model, are pointed out and the issues 
that a general theory must address are outlined. Most of the discussion is done in the 
context of control strategies, or sets of criteria for move selection. A survey of control 
strategies brings together results from two fields: implementations of real games and 
theoretical predictions derived on simplified game-trees. The interplay between these 
results suggests a series of open problems that have arisen during the course of both 
analytic experimentation and practical experience as the basis for a formal theory. 
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INTRODUCTION: 
COMPUTER GAMES, WHY AND HOW? 

In 1950, when computer science was still in 
its infancy and the term “artificial intel- 
ligence” had yet to be coined, Claude 
Shannon published a paper called 
“Programming a Computer for Playing 
Chess” [Shannon 19501. He justified the 
study of chess programming by claiming 
that, aside from being an interesting prob- 
lem in its own right, chess bears a close 
resemblance to a wide variety of more sig- 
nificant problems, including translation, 
logical deduction, symbolic computation, 
military decision making, and musical com- 
position. Skillful performance in any of 

these fields is generally considered to re- 
quire thought, and satisfactory solutions, 
although usually attainable, are rarely triv- 
ial. Chess has certain attractive features 
that these more complex tasks do not: The 
available options (moves) and goal (check- 
mate) are sharply defined, and the discrete 
model of chess fits well into a modern dig- 
ital computer. Shannon then went on to 
outline the basics of this model and de- 
scribe a method by which chess could be 
implemented on a computer. 

The discrete model to which Shannon 
referred is called a game-tree, and it is the 
general mathematical model on which the 
theory of two-player zero-sum games of 
perfect information is based [von Neumann 
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and Morgenstern 19441. Chess belongs to 
this class of games; it is perfect information 
because all legal moves are known to both 
players at all times, and it is zero sum 
because one player’s loss equals the other’s 
gain. At the top of the chess tree is a single 
root node, which represents the initial setup 
of the board. For each legal opening move, 
there is an arc leading to another node, 
corresponding to the board after that move 
has been made. There is one arc leaving the 
root for each legal opening, and the nodes 
that they lead to define the setups possible 
after one move has been made. More gen- 
erally, a game-tree is a recursively defined 
structure that consists of a root node rep- 
resenting the current state and a finite set 
of arcs representing legal moves. The arcs 
point to the potential next states, each of 
which, in turn, is a smaller game-tree. The 
number of arcs leaving a node is referred to 
as its branching factor, and the distance of 
a node from the root is its depth. If b and d 
are the average branching factor and depth 
of a tree, respectively, the tree contains 
approximately bd nodes. A node with no 
outgoing arcs is a leaf, or terminal node, 
and represents a position from which no 
legal moves can be made. When the current 
state of the game is a leaf, the game ter- 
minates. Each leaf has a value associated 
with it, corresponding to the payoff of that 

particular outcome. Technically, a game 
can have any payoff (say a dollar value 
associated with each outcome), but for most 
standard parlor games, the values are re- 
stricted to WIN and LOSS (and sometimes 
DRAW). 

In two-player games, the players take 
turns moving, or alternate choosing next 
moves from among the children of the cur- 
rent state. In addition, if the game is zero 
sum, one player attempts to choose the 
move of maximum value, and the other that 
of minimum value. A procedure that tells a 
player which move to choose is a strategy 
for controlling the flow of the game, or a 
control strategy. In principle, the decision 
of which choice to make is a simple one. 
Any state one move away from a leaf can 
be assigned the value of its best child, where 
best is either the maximum or the mini- 
mum, depending on whose turn it is. States 
two moves away from the leaves then take 
on the value of their best children, and so 
on, until each child of the current state is 
assigned a value. The best move is then 
chosen. This method of assigning values 
and choosing moves is called the minimax 
algorithm, and it defines the optimal move 
to be made from each state in the game. An 
example of the minimax algorithm is shown 
in Figure 1 on the tree of Nim, a simple 
game that plays an important role in the 
mathematical theory of games [Berlekamp 
et al. 19821. Unlike Nim, however, most 
interesting games generate trees that are 
too large to be searched in their entirety, 
and thus an alternative control strategy 
must be adopted. The checkers tree, for 
example, contains roughly 104’ moves, and 
the chess tree in the neighborhood of 10”’ 
[Nilsson 19801. In these games, the tree is 
searched to some limit, and domain-specific 
heuristic information is applied to tip nodes 
(nonleaf nodes at the search frontier that 
cannot be expanded due to computational 
constraints) to return an estimated value 
as calculated by a static evaluation function. 
The control strategy must base its decisions 
on these estimates, rather than on the 
actual values. 

When the tip values are exact, the tree is 
complete. Otherwise, the tips are internal 
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Figure 1. The game of Nim is played with five stones. The players 
take turns removing one, two, or three stones from play. The player 
removing the last stone loses. Thus, a circle containing a 0 is a win 
for circle (Max), and a square with a 0 is a win for square (Min). 
Max wins are denoted by +l, Min wins by -1, and the minimax 
value of each node is drawn to the right of the node. Since the root 
has a minimax value of -1, Nim is a forced win for the player 
moving second (Min). 

nodes, and the tree is partial.’ Complete 
trees are well understood but rarely appli- 
cable. Applications must rely on partial 
trees, which are invariably implemented in 
an ad hoc manner. Partial game-trees have 
appeared primarily in two subfields of ar- 
tificial intelligence, game programming and 
the analysis of heuristic search methods. 
The emphases of these fields are quite dif- 
ferent. Game programming is concerned 
with the development of computer pro- 
grams that play specific games well, it is 
hoped at or beyond the level of a human 
expert. Thus, the models that have been 
studied are “real” games (typically chess), 
and the metric for success is performance 
versus machine or human opponents. Heu- 
ristic analysis, on the other hand, is con- 
cerned with investigating the accuracy of 
heuristic techniques, as compared to some 

’ Technically, it is possible to have internal nodes with 
exact values, as well. However, once the outcome of a 
game is known, the game is effectively over. Thus, any 
node with a known exact value can be treated like a 
leaf, and the distinction between complete and partial 
trees remains valid. 

ideal. Since the trees generated by interest- 
ing games tend to be both too large for 
the ideal to be calculated, and too complex 
to be dealt with analytically, simplified 
models and “artificial” games have been 
defined. Both fields have contributed inter- 
esting results about control strategies. 
Nevertheless, the interplay between them 
has been minimal; games that have actually 
been implemented have not been analyzed, 
and theoretical predictions have not been 
considered when the implementations were 
designed. Because of this, very little about 
the general theory of partial game-trees is 
known. 

The various control strategies that have 
been used for two-player games are sur- 
veyed in this paper. Some basic game-tree 
search procedures are described in Sec- 
tion 1. Strategies that have been imple- 
mented or proposed in the context of real 
games are discussed in Section 2, while 
some theoretical results derived on simple 
models and strategies motivated by these 
results are outlined in Section 3. Areas in 
which interaction between the applied and 
theoretical aspects of the field could be 
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beneficial to both are discussed in Section 
4, and some directions for future research 
are suggested in Section 5. 

1. BACKGROUND: BASIC GAME-TREE 
SEARCHING PROCEDURES 

Shannon’s analysis included the descrip- 
tion of two families of control strategies for 
the chess tree, type A and type B. A type- 
A strategy behaves as if the tip nodes are 
leaves, and applies minimax to the esti- 
mates calculated by the static evaluator. 
This involves a full-width, fixed-depth 
search (consideration of all possibilities up 
to a set distance away from the root), and 
uses heuristics only in assigning the values 
to the tips. Because the values it minimaxes 
are estimates, this technique does not al- 
ways make the optimal move, and thus 
should be distinguished from minimax on 
complete trees, which does. For the sake of 
clarity, throughout the rest of this paper, 
minimax on partial trees will be referred to 
as partial minimax. The underlying as- 
sumption behind the use of partial minimax 
is that the estimates are reasonably accu- 
rate; the success of the strategy depends on 
the validity of this assumption. Type-B 
strategies, on the other hand, only consider 
reasonable moves. Heuristics are used not 
only to calculate tip values, but also to 
decide which moves are worth considering. 
Throughout most of the early history of 
chess programming, the general feeling was 
that whereas type-A strategies are easier to 
implement, type-B reasoning is necessary 
for expert performance [Berliner 1973; 
Shannon 19501. The current state of the 
art, however, involves extremely powerful 
special-purpose architectures devoted pri- 
marily to playing type-A chess [Berliner 
and Ebeling 1986; Condon and Thompson 
19831. The level of expertise that some of 
these machines have attained (bordering on 
grandmaster as of early 1988 [Berliner 
1988]), seems to disprove this earlier belief. 

In the years since 1950, two important 
observations have led to innovative tech- 
niques that are now standard: There is an 
easily recognizable class of moves that will 
not be selected by minimax, and a preset 
search depth may not fully exploit the 

computational resources available. These 
observations led, respectively, to the devel- 
opment of a--/3 pruning and iterative deep- 
ening search. The exact origins of ~$3 are 
disputed, but the earliest papers in which 
it was discussed in detail were probably 
Edwards and Hart [1963] and Brudno 
[1963]. The W-P algorithm prunes by re- 
cording boundaries within which the mini- 
max value of a node may fall. The 
parameter (Y represents a lower bound on 
the value that will be assigned to a maxi- 
mizing node, and /3 an upper bound on the 
value of a minimizing node. Descendants 
whose minimax values fall outside the 
range are pruned, and their subtrees can be 
ignored. To ensure that the correct (mini- 
max) choice is not missed, (Y and 0 start at 
minus and plus infinity, respectively, and 
are updated as the tree is traversed. Fig- 
ure 2 shows an example of a-p pruning. 
The sensitivity of a-p to the order in which 
nodes are examined was first pointed out 
by Slagle and Dixon [1969]. The algo- 
rithm’s behavior under several different or- 
ders was analyzed by Fuller et al. [1973], 
Knuth and Moore [ 19731, Newborn [ 19771, 
and Baudet [ 19781, where it was shown that 
in the best case, (Y and p cutoffs can actually 
double the search depth. On the average, 
however, a-/3 cuts the effective branching 
factor from b to approximately b”“‘, and 
allows the search depth to be extended by 
25 percent. The relative efficiency of sev- 
eral of the algorithm’s variations was dis- 
cussed by Marsland [1983], while the 
asymptotic optimality of Q-P over the class 
of all game searching algorithms, in terms 
of the average branching factor (i.e., aver- 
aged over all possible node orderings) was 
proved by Pearl [ 19821. 

In addition to oc-p, there are two other 
pruning algorithms worth mentioning, 
SSS* [Stockman 19791 and SCOUT [Pearl 
19801, both of which have been shown to 
occasionally expand fewer nodes than .a-@ 
[Campbell and Marsland 1983; Ibaraki 
1986; Roizen and Pearl 19831. SSS*, first 
introduced by Stockman [1979], is a prun- 
ing algorithm that operates under the basic 
principles of a best-first search. Best-first 
strategies consider one of the issues that 
minimax completely failed to address: node 
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Figure 2. Minimax Search with al-p pruning: Static values are drawn inside the 
nodes, minimax values outside and to the right. Branches with X’s through them 
have been pruned. To understand how a branch is pruned, consider nodes A, B, 
C, and D. D is a leaf, statically evaluated at 4. Since D is the only child 
of C, C gets a minimax value of 4. This means that B 
(a Min node) must have a value no greater than 4. Since A (a Max node) already 
has a child valued at 5. B will not be chosen, and its remaining children can be 
pruned. 

expansion order. The order in which nodes 
are expanded is crucial to achieving optimal 
efficiency; node ordering is the sole deter- 
mining factor as to whether CU-$ will attain 
either its best-case or its worst-case effi- 
ciency. In SSS*, tip node values are used 
for ordering nodes for further expansion- 
the one that appears to have the greatest 
merit is expanded first. As a result, SSS* 
will prune effectively even on trees in which 
the natural (left-to-right) ordering would 
render a-/3 useless. For a detailed descrip- 
tion of SSS*, and an example of the algo- 
rithm at work see Pearl [1984]. Although 
SSS*, on the average, expands between 
one-third and one-half of the nodes that 01- 
p does, the speedup is not sufficient to 
offset the additional bookkeeping and stor- 
age costs incurred. For these reasons, SSS* 
has yet to be used in a successful perfor- 
mance-oriented game program. Recent in- 
novations in (relatively) space efficient 
versions of the algorithm [Bhattacharya 
and Bagchi 1986; Marsland et al. 19871, 
however, may eventually lead to a compet- 
itive program that uses SSS*. 

The newest of these pruning algorithms, 
SCOUT [Pearl 19801, was motivated by the 
desire to reduce search effort by testing 

node values rather than by evaluating 
nodes. Although the difference between 
these approaches may not be immediately 
clear, full evaluation of a node involves 
generating all of its successors, while a node 
value may easily fail a test after only one 
(or a few) of its children have been gener- 
ated. For a detailed explanation of SCOUT 
and an example of how it works see Pearl 
[1984]. Unlike SSS*, SCOUT has already 
proved itself useful to game programmers. 
Although pure SCOUT offers little in the 
way of speedup over a-P, some minor 
modifications to the algorithm can provide 
additional cutoffs [Reinefeld 19831. Fur- 
thermore, SCOUT can be combined with 
another idea, principal variation splitting 
[Campbell 19811, to decompose game-trees 
in a manner that leads to efficient paral- 
lel minimax searches [Marsland 1986; 
Marsland and Campbell 19821. The result- 
ant algorithm, known as PVS (for principal 
variation search), maximizes the portion of 
the game-tree that can be pruned by at- 
tempting to rapidly determine the best 
value of cy (and p). Since N and p define a 
window within which the (partial) minimax 
value must lie, the smaller the window, the 
greater the pruning power. PVS refines a 
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(or /3) by searching several ply along the 
principal variation (i.e., the path that ap- 
pears most promising), before searching the 
rest of the tree. PVS, which is basically a 
window management scheme that is 
equally applicable to sequential and parallel 
machines, is frequently implemented on 
parallel chess machines via its companion 
processor allocation algorithm, PV-split. 
The benefit of PVS is that the best possible 
01 values are used during the search of all 
nonprincipal variations; its major draw- 
back lies in the increased amount of idle 
processor time. (In a parallel implementa- 
tion of PVS, processors dedicated to 
searching nonprincipal variations remain 
idle while waiting to be notified of a good 
value for LY [Marsland and Campbell 19821.) 

PVS makes use of ideas that were first 
investigated in the context of several 
different algorithms, including d4 
SCOUT, and aspiration search (discussed 
in Section 2.2.1), to develop a powerful 
parallel search strategy [Marsland 1986; 
Marsland and Campbell 19821. Parallel al- 
gorithms for game-tree pruning, with a par- 
ticular emphasis on their applicability to 
chess, have been surveyed by Marsland 
[ 19861, Marsland and Campbell [ 19821, and 
Marsland and Popowich [1985]. Issues re- 
lated to interprocessor communication 
[Newborn 19851, speedups due to parallel 
pruning [ Schaeffer 19861, limitations on 
the number of processors that can be effec- 
tively used to speed up pruning algorithms, 
and some interesting uses for processors 
beyond that limit [Schaeffer 19871 have all 
been discussed in the context of chess pro- 
grams. Despite the many recent develop- 
ments in pruning algorithms, parallel 
computing, and clever table lookup 
schemes [Marsland 1986; Marsland and 
Campbell 19821, however, the basic control 
strategy underlying these programs re- 
mains the same: partial minimax. The 
major benefit accrued by speedup has been 
the extension of the depth of minimax 
searches by several ply (and, of course, the 
corresponding increase in the strength of 
chess programs). 

Unlike the pruning algorithms, which are 
unique to two-player games, iterative deep- 
ening is a completely general search para- 

digm. Iterative deepening allows the search 
to proceed until a preset time, rather than 
a preset depth, is reached. This is accom- 
plished by first performing a full-width (or 
a+) search to depth 1, then to depth 2, 
then to depth 3, etc. When the procedure 
times out, it makes the move that was 
singled out as best by the deepest search 
completed. The advantage of using iterative 
deepening in games was first demonstrated 
by Chess 4.5 [Slate and Atkin 19771, one of 
the most powerful chess programs of the 
1970s. Although the technique quickly be- 
came a standard component of chess pro- 
grams, it was in the context of one-player 
games that it was first analyzed. This 
analysis, which proved that iterative deep- 
ening is a time (number of nodes expanded) 
and space (amount of bookkeeping re- 
quired) optimal tree search [Korf 19851, 
provided the first formal explanation of the 
algorithm’s power. 

The importance of these refinements to 
minimax is twofold. In their pure form, they 
have become part of the standard imple- 
mentation of type-A strategies, crucial to 
the development of some very powerful pro- 
grams discussed in Section 2.1. In this con- 
text, they address the issue of search 
efficiency; by increasing the efficiency of 
partial minimax, they allow larger portions 
of the tree to be searched, and more accu- 
rate decisions to be made. In addition, var- 
ious modifications to a-p have formed the 
basis of many of the type-B strategies dis- 
cussed in Section 2.2. These modifications 
generally are not guaranteed to return the 
same value as would a minimax search, and 
raise some interesting questions related to 
decision quality. 

2. GAME PROGRAMMING 

Even partial game-trees have their limits- 
programs that play backgammon [Berliner 
19801, Go, Scrabble, and poker [Bramer 
19831 have used significantly different 
models. Their practical applicability seems 
to be restricted to perfect information 
games with “manageable” branching fac- 
tors, such as chess, checkers, kalah, and 
Othello. Although some interesting ma- 
chine learning experiments have been run 
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using checkers as the example domain 
[Griffith 1974; Samuel 1959, 19671, the 
game that has generated the most interest, 
from Shannon’s article on, is chess. In 1975, 
Newborn wrote that “all the chess pro- 
grams that have ever been written and that 
are of any significance today are based on 
Shannon’s ideas,” and “improvements in 
programs are due primarily to advances in 
computer hardware, software, and pro- 
gramming efforts, rather than fundamental 
breakthroughs in how to program com- 
puters to play better” [Newborn 1975, 
p. 111. To a great extent, this is still true in 
1988. Nearly all control strategies contain 
an element of partial minimax; the major 
distinction between them is whether all 
paths are searched to the same depth (type 
A) or not (type B), and if not, what the 
criterion for expanding nodes is. 

At the heart of every type-A strategy lies 
a fixed-depth, full-width (partial) minimax 
search. In addition to cr-p and iterative 
deepening, many powerful modern chess 
programs (such as Hitech [Berliner and 
Ebeling 19861 and Chiptest [Ananthara- 
man et al. 19881) augment their basic 
searches with a secondary, or staged search 
[Campbell and Marsland 1983; Kaindl 
1983b; Marsland 19861. A secondary search 
is exactly what it sounds like: a second 
search started at a point other than the 
root, generally conducted to validate the 
quality of the move that appears best 
[Greenblatt et al. 1967; Levy 19761. A va- 
riety of different heuristics have been pro- 
posed as bases of secondary searches. The 
one that seems to be enjoying the greatest 
degree of current popularity, however, is 
probably the null move, which allows a 
player to pass (i.e., not move) [Beal 19871; 
a line of play in which a player given two 
consecutive moves still cannot do anything 
useful can generally be cut off without sac- 
rificing much in the way of accuracy.’ Ex- 
periments with the null-move heuristic 
have shown it to be useful at tactical chess 
[Beal 1987; Goetsch and Campbell 1988; 
Schaeffer 19871, and thus a powerful tech- 

” In chess, a position in which all moves are disadvan- 
tageous to the player moving is known as a zugzuxzng 
position. 

nique for augmenting brute-force searches; 
it can verify that the move believed to be 
(strategically) optimal at the search hori- 
zon remains (tactically) sound several ply 
deeper in the tree. Although secondary 
searches technically violate the fixed-depth 
characterization, strategies that use, them 
can still be classified as type A. Fixed- 
depth, full-width minimax is comparatively 
easy to implement and conceptually simple 
to justify-as the estimates approach exact, 
the procedure approaches optimal perform- 
ance. Errors occur only in static evaluation. 
The major drawback to type-A strategies is 
the amount of computation required for a 
full-width search; even with the help of a 
pruning algorithm, the large branching fac- 
tor in most games limits the search to a 
relatively small portion of the tree. 

Type-B strategies, on the other hand, 
constitute a rather large and diverse family. 
Their common feature is that they expand 
only the most promising lines of play. Node 
expansion is defined as the generation of a 
node’s children. In a full-width search, first 
the root is expanded by generating all of its 
children. Then all nodes at depth 1 are 
expanded, generating all depth-2 nodes, etc. 
In chess, a variety of domain-specific tech- 
niques like transposition tables and the 
killer heuristic have been used to generate 
moves in an efficient order; moves that, in 
the past, have resulted in cutoffs are gen- 
erated first [Marsland and Campbell 19821. 
This approach maximizes the likelihood 
that a line of play which will eventually be 
cut off is cut off quickly, thereby saving a 
great deal of wasted search effort. When 
used in conjunction with a type-A strategy, 
transposition tables and the killer heuristic 
help order nodes in a manner that maxi- 
mizes the pruning power of CU-/~. When they 
are combined with type-B strategies, how- 
ever, they result in incremental move gen- 
eration and searches along only promising 
lines of play: an approach that leads to 
deep, focused searches-a highly desirable 
combination in a secondary search. 

One of the first computer chess matches, 
designed in part to compare the perfor- 
mances of the two strategy types, pitted the 
Kotok-McCarthy type-B program against 
the ITEP type-A program in four games. 
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When ITEP searched three ply, both games 
were draws. When it searched five ply, it 
won both [Newborn 19751. The problem 
with the Kotok-McCarthy program was 
that it was not sufficiently selective in its 
choice of nodes to forward prune. In the 
words of former world chess champion 
Mikhail Botvinnik, “The rule for rejecting 
moves was so constituted that the machine 
threw the baby out with the bath water” 
[Botvinnik 1970, p. 31. Thus, the domina- 
tion of a type-A program over a type-B 
program does not necessarily indicate that 
selective strategies are inferior to those re- 
lying on brute force; it simply highlights 
the relative difficulty in implementing 
them. 

2.1 Type-A Strategies: 
Full-Width Minimax Searches 

Many of the earliest chess programs used 
type-A strategies and were able to achieve 
modest performance [Berliner 1978; New- 
born 19751. The major difficulty these 
programs faced was that practical compu- 
tational limits were reached while search 
was still shallow. The standard measure of 
search depth is ply, or the number of con- 
secutive moves considered. In an average 
chess game, each player has between 40 and 
50 moves. A complete search, then, would 
have to exceed 80-100 ply. In most of these 
early programs, only three or four ply were 
searched. In addition, artificial termination 
of search at a uniform depth implies that 
anything not detectable at the search fron- 
tier is effectively nonexistent. Thus, these 
programs generally failed to realize when 
they were in the midst of a complex tactical 
maneuver, such as a material trade in chess. 
This problem is known as the horizon ef- 
fect, and is a necessary consequence of 
the decision to terminate search uniformly 
[Berliner 19731. The first method pro- 
posed to alleviate the effect was a second- 
ary search, with the selected tip as root 
[Greenblatt et al. 19671. This approach, 
however, does not remove the horizon; it 
merely extends it. 

Positions that are not affected by the 
horizon are called quiescent, or quiet, be- 
cause there is no imminent threat that will 

radically shift the game from what was 
anticipated at the horizon. The importance 
of applying the static evaluator only to 
quiescent positions was pointed out by 
Shannon; the issue of how to determine 
which positions are quiescent, however, is 
still largely open. Some attempts to resolve 
the problem are discussed by Kaindl 
[1983a]. Beal proposed consistency as a 
means for detecting quiescence. A node is 
consistent if its static value is the same as 
its backed-up value from a one-ply search 
[Beal 19801. He later modified this consis- 
tency search to locked-value search [Beal 
19821. A value is locked if it has two chil- 
dren with the same best value. If this value 
is not correct, both of the children must 
have been evaluated incorrectly. Although 
there is no guarantee that this approach 
helps detect quiescence, it is generally safe 
to assume that single errors are more likely 
to occur than double errors. Thus, a locked 
value is less likely to be an anomaly brought 
about by the horizon effect than a non- 
locked value. (An idea similar to locked 
values led to an interesting type-B strategy, 
conspiracy search [McAllester 19851, which 
is discussed in Section 2.2.1.) A more com- 
mon approach to quiescence detection and 
correction is to perform some sort of sec- 
ondary search beyond the frontier for po- 
sitions that include captures, checks, or 
move promotions, and to consider all other 
positions quiescent. Many programs, in- 
cluding Chess 4.5, used this method [Slate 
and Atkin 19771. 

Despite these difficulties, many success- 
ful programs have used type-A strategies. 
One of the general assumptions underlying 
them all is that the deeper the search, the 
better the performance. Although it was 
believed at one point that the limits of brute 
force search would be reached long before 
a computer could play master level chess 
[Berliner 1973; Botvinnik 19841, state-of- 
the-art technology has resulted in special- 
purpose architectures that have done just 
that. The first such machine, Belle, relied 
almost totally on speed to become the first 
computer to achieve master rating [ Condon 
and Thompson 1982, 19831. Speed allowed 
Belle to search to a previously unachievable 
eight ply, make more accurate decisions, 
and apparently avoid the horizon effect 
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[Berliner 19811. IAGO, an Othello program 
that plays at about world championship 
level, also used a standard full-width, ol-p 
search with iterative deepening. The devel- 
opment of IAGO stressed analysis of posi- 
tions, and resulted in a very strong static 
evaluation function. This function, com- 
bined with the relatively small tree of 
Othello (relative to chess, that is), accounts 
for the program’s success [Rosenbloom 
19821. Chess 4.5, which introduced iterative 
deepening, also included a hash table to 
avoid redundant searches [Slate and Atkin 
19771. When a node is encountered, its 
value is entered in the table. If it is reached 
a second time, the subtree beneath it need 
not be searched. The avoidance of redun- 
dancy allows deeper searches to be per- 
formed without requiring additional time. 

The M & N procedure attempts to im- 
prove performance by making better use of 
the information gathered at the tips, rather 
than by speedup. This is done by finding 
the minimax value and adding a bonus 
function to it, where the bonus is an exper- 
imentally derived function of the M maxi- 
mum or N minimum values. Thus, the 
backed-up value contains information 
about the best several choices, not only the 
single best. Using the game of kalah as their 
example domain, Slagle and Dixon showed 
that this procedure improves play to about 
the level that would be achieved by extend- 
ing partial minimax an additional ply. Its 
major drawback is that pruning techniques 
become more complicated and less helpful 
[Slagle and Dixon 19701. The notion of 
saving multiple nodes was also used by 
Harris [1974] to devise bandwidth search. 
The idea underlying this search is that 
making the optimal choice is not always 
necessary, as long as one that is not too far 
from optimal is guaranteed. If an evalua- 
tion function with constant bounded error 
can be found, any node whose value is 
within those bounds of the currently most 
promising one may, in fact, be best. The 
original domain of bandwidth search was 
one-player games, where the idea of a con- 
stant bounded error was considered a weak- 
ening of the admissibility requirement. 
Whereas an admissible function never 
overestimates the true value, a function 
with constant bounded error never overes- 

timates by more than e or underestimates 
by more than d. This scheme has the ad- 
vantage of not discarding all moves right 
away, thereby allowing for occasional error 
recovery. Its disadvantage is that it does 
not search for the minimax value, but 
chooses the first node found within (e + d) 
of it. The algorithm fared well in Four Score 
(a three-dimensional, 4-by -4 tictactoe game) 
competition [Harris 19741, but holds little 
promise for more complex games because 
of the difficulty of finding heuristics that 
are guaranteed to satisfy the bandwidth 
conditions. 

The current state-of-the-art of chess pro- 
gramming lies in special-purpose architec- 
tures, such as Hitech [Berliner and Ebeling 
19861 and Chiptest [Anantharaman et al. 
19881. These machines use many of the 
techniques that have already been dis- 
cussed, including parallel PVS searches, 
transposition tables, the killer heuristic, 
staged searches, etc. The architecture upon 
which Hitech is based is called SUPREM, 
an acronym for Search Using Pattern Rec- 
ognition as the Evaluation Mechanism. 
SUPREM links two machines together, one 
smart but slow (the oracle), and one very 
fast (the searcher). The oracle is the source 
of game-specific analyses, and is responsi- 
ble for downloading preprocessed pattern 
recognition data to the searcher, which 
then conducts a high-speed parallel search 
[Berliner and Ebeling 19861. At the heart 
of these chess machines, then, lies a very 
deep, very fast, type-A strategy, which is 
augmented with an incrementally growing 
number of chess-specific heuristics for eval- 
uation, move generation, node ordering, 
secondary searches, and handling of special 
cases in which the machine has shown a 
weakness [Anantharaman et al. 1988; Ber- 
liner 1988; Berliner and Ebeling 1986; 
Goetsch and Campbell 19881. These heuris- 
tics constitute the machines’ domain 
knowledge; as this knowledge increases, the 
number of incorrect moves made decreases, 
and the quality of play improves. The re- 
sultant combination of general search tech- 
niques and domain-specific information is 
quite powerful; Hitech is already close to 
grandmaster rating, and may reach that 
coveted level before this article appears in 
print [Berliner 19881. 
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In many respects, these dedicated chess 
machines constitute the culmination of sev- 
eral decades of research directed toward a 
specific goal: the development of grand- 
master (and eventually world champion) 
chess-playing machines. Although these 
machines are significant as demonstrations 
of the first nonnumeric domain in which 
computers can outperform (nearly all) hu- 
mans, much of the work currently being 
done to improve their performance is highly 
specific to chess; the domain-independent 
control strategy component appears to have 
been essentially solved. In my opinion, one 
of the unfortunate side effects of chess pro- 
grammers’ phenomenal success is that the 
field of computer chess in the 1980s has left 
the field of computer games behind. Al- 
though it is possible that some of the chess 
heuristics currently being considered as 
ways of improving machine performance 
will have implications to other games, wide 
applicability is clearly no longer the field’s 
emphasis. Nevertheless, there are many 
things that the work on computer chess has 
taught, and continues to teach, researchers 
interested not only in other games, but in 
other areas of decision making, as well. 

2.2 Type-B Strategies: Selective Searches 

One of the features common to all type-B 
strategies is the use of domain-specific in- 
formation to select promising nodes and 
lines of play. This approach is believed to 
be the method used by human experts [Ber- 
liner 1973, 1977b; Botvinnik 1970, 19841. 
In addition, it muffles the combinatorial 
explosion by drastically reducing the effec- 
tive branching factor, hopefully leading 
to improved performance. The domain- 
specific knowledge required to make 
type-B strategies work can be infused in 
various forms. Michie identified three types 
of knowledge that are useful in game pro- 
grams: rote memory (dictionary entries of 
board positions), “theorems,“3 and pattern 
knowledge [Michie 19771. Hash tables of 

“The term “theorems” is confusing, because the 
knowledge used is generally not a theorem in the 
mathematical sense. In my opinion, the term “heuris- 
tics” is more accurate, and will be used throughout the 
rest of the paper. 

the type used by Chess 4.5 [Slate and Atkin 
19771, the inclusion of standard book open- 
ings in Belle and other programs [Condon 
and Thompson 1982, 1983; Thompson 
19821, and the endgame library of PI- 
ONEER [Botvinnik 19841 are all examples 
of successful uses of rote memory. In addi- 
tion, large tables have proved very useful 
in machine learning experiments that de- 
velop better static evaluation functions for 
checkers [Griffith 1974; Samuel 19671. In 
terms of the design of search strategies that 
attempt to mimic human approaches to 
problem solving, however, rote memory 
is not particularly helpful. Heuristics and 
pattern recognition, on the other hand, 
have each led to the development of some 
interesting strategies. 

2.2.1 Forward-Pruning Strategies 

Heuristics are general guidelines built into 
a program. Bratko and Michie [ 19801 wrote 
a program to play the chess endgame of 
KRKN (King and Rook vs. King and 
kNight), which included an advice table, or 
a list of general heuristics like “avoid 
mate.” This is a rather nonstandard use of 
heuristics, however. Typically, they are in- 
cluded in the evaluation function and the 
forward pruning criteria [Berliner 1977a, 
1977b], not in separate data structures. 
Forward pruning is a technique used by 
many type-B strategies. Unlike cr-p, which 
only prunes nodes that will not be chosen, 
forward pruning techniques ignore all 
nodes that do not look very promising, 
thereby running the risk of missing the 
correct choice. 

One heuristic that has been used to de- 
fine a type-B strategy is to expand only 
nodes that look at least as good as the 
current best. This heuristic defines a tech- 
nique called razoring [Birmingham and 
Kent 19771, a procedure that, at first 
glance, looks strikingly similar to oc-p. In 
fact, the only difference between them lies 
in the criteria used for determining the 
promise of a node. ol-/3 relies on backed up 
minimax values, razoring on the static eval- 
uation. Thus, while razoring prunes nodes 
that do not look good, a-p only eliminates 
nodes that are not good. Unlike ol-& then, 
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razoring cannot guarantee that it will find 
the minimax value.4 Razoring should be 
used in addition to a-/3, not instead of it. 
In the worst case, then, razoring will prune 
the same nodes as c-u-p, with only the added 
cost of some extra evaluations. In the av- 
erage case, however, razoring will prune 
nodes earlier than a-0, narrow the branch- 
ing factor more rapidly, and deepen search, 
all in exchange for occasionally missing the 
best choice. The preliminary experiments 
described by Birmingham and Kent [ 19771 
showed that in the exchange, razoring 
gained, on the average, an order of magni- 
tude over (Y-P in a four-ply tree, in terms 
of the number of nodes expanded. Since no 
further experimentation has been reported, 
the utility of razoring to state-of-the-art 
programs, which search to depths in excess 
of eight ply, is unknown. Razoring is illus- 
trated in Figure 3. 

Another idea that has been considered is 
to start the search with an idea about the 
true value of the root. This rule of thumb 
has already been discussed in the context 
of PVS, but its initial implementation was 
in a procedure called aspiration search, 
which was discussed and analyzed by 
Brudno [1963], Marsland [1983], and 
Marsland and Campbell [1982]. Its devel- 
opment was motivated by the observation 
that ol-p works best if the node that will 
eventually be returned by minimax is 
among the first nodes examined [ Slagle and 
Dixon 19691. The reason for this is rather 
straightforward: If the best alternative is 
considered first, the LY and p values are 
quickly set to define a narrow range around 
the minimax value of the root, thereby 
resulting in a great deal of pruning. The 
predetermined upper and lower bounds, 
then, can serve the roles of a and 0. If the 
procedure used to determine these bounds 
is fairly accurate, the search tree can be 
narrowed quickly. However, because the 
bounds do not start at plus and minus 

4 Two points about razoring are probably worth not- 
ing. First, if razored nodes were restricted to those on 
the search horizon, speedups would not be as pro- 
nounced as those reported by Birmingham and Kent 
(19771, but fewer good nodes would be discarded. 
Second, even at the horizon, razoring fails at chess 
zugzwang positions [Birmingham and Kent 19771. 

infinity, it is possible that the initial esti- 
mate was wrong. Once again, the guarantee 
of returning the minimax value is lost. The 
use of this heuristic as a means of pruning 
absurd moves was discussed by Adelson- 
Velskiy et al. [1975]. Figure 4 shows how 
aspiration search can be used to augment 
a-p. 

The B* algorithm [Berliner 19791 uses a 
simple heuristic of a very different nature, 
“terminate the search when an intelligent 
move can be made.” This algorithm was 
motivated by the desire to avoid the horizon 
effect by defining natural criteria for ter- 
minating search. The search proceeds in a 
best-first manner, and attempts to prove 
that one of the potential next moves is, in 
fact, the best. By concentrating only on the 
part of the tree that appears to be most 
promising, B* (and best-first searches in 
general) avoids wasting time searching the 
rest of the tree. Berliner’s adaptation of 
best-first searches to game-trees included 
the first modification to Shannon’s original 
model. Instead of associating a single value 
with each node, B* uses two evaluation 
functions, one to determine an optimistic 
value, or upper bound, and one for a pessi- 
mistic value, or lower bound. The search is 
conducted with two proof procedures, 
PROVEBEST, which attempts to raise the 
lower bound of the most promising node 
above the upper bounds of its siblings, and 
DISPROVEREST, which tries to lower the 
upper bounds of the siblings beneath its 
lower bound. The search terminates when 
the most promising choice has been proven 
best. Figure 5 illustrates the use of these 
procedures. Although B* sounds particu- 
larly appealing from both the speedup and 
cognitive modeling viewpoints, it does have 
its dark side. Like all best-first searches, a 
good deal of storage space is needed to keep 
track of the promise of each node on the 
generated-not-expanded (open) list, so that 
the focus of the search can shift as neces- 
sary. More significantly, though, is that B* 
is not guaranteed to terminate before time 
runs out, and thus, like SSS*, is probably 
inapplicable to computer chess. If this OC- 

curs, it loses the edge of making intelligent 
decisions, and has to choose whatever looks 
best at the time. The success of B* lies, to 
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Figure3. This is what happens when razoring is added to the pruning in 
Example 2. Node E’s static evaluation was 3, which is worse than node F’s backed 
up value of 5. Thus, it was pruned. The same is true for node J, whose static 
value is 2. 

Figure4. The cy-/3 pruning of Figure 2 is now augmented with an aspiration 
search. The precomputed range of possible values for the root is [7, lo]. When 
node G is expanded, it becomes clear that the value of node E will not exceed 6. 
Since this falls outside the range of possible values, nodes H and I can be pruned. 

a great extent, in its ability to correctly 
select the most promising node and most 
efficient proof procedure. Several varia- 
tions that focused on proof procedure 
selection have been studied [Berliner 1979; 
Palay 19821, and a scheme that selected 
them probabilistically was shown to be 
somewhat stronger than one that made de- 
terministic choices. 

The advantage of ranges, of course, is 
that they contain more information than 
point probabilities. Palay extended this 

reasoning one step farther, and devised the 
idea of passing entire probability distribu- 
tions. A distribution contains complete in- 
formation about the likely location of a 
node’s value, and thus retains considerably 
more information than just a range. He 
combined this idea with the control aspects 
of the B* algorithm to yield a powerful best- 
first search strategy, PSVB* [Palay 19851, 
and showed that by using distributions, an 
increase in efficiency of 91 percent over the 
use of ranges is possible. 
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(b) 

Figure5. The proof procedures of B*: (a) PROVEBEST; 
(b) DISPROVEREST. Node A has the highest upper bound, 
aid is thus the most promising node. In ?a), A Is expanded 
until its lower bound is greater than the upper bounds of 
nodes B, C, and D. In (b), the upper bounds of B, C, and D 
are pushed below the lower bound of A. 

An interesting idea that has recently restricted to the interval [ Vrnin, V,,,,,], 
been suggested as a selection criterion is where Vmin and V,,,,, are the values of its 
“attempt to stabilize the value of the root.” minimum and maximum accessible de- 
This heuristic was used to develop a pro- scendants at the search frontier, respec- 
cedure called conspiracy search [McAllester tively. To update the range, either prove 
19851. The value of a node is stable if deeper that the minimizing player can avoid V,,,,,, 
searches are unlikely to have any major or that the maximizing player can avoid 
effect on it. In a conspiracy search, the Vmin. The decision of which to prove at 
root’s stability is measured in terms of con- each point can be made with the help of 
spiracy numbers, the number of leaves the conspiracy numbers. Unlike B*, there 
whose values must change to affect its (the is no need to change the evaluation func- 
root’s) value. If the number of conspirators tion (or to use multiple functions) to derive 
required to change the root value is above the interval; a single function will suffice. 
a certain threshold, the value is assumed to An example of conspiracy search is given 
be accurate. At any given point during the in Figure 6. Alone among the procedures 
search, the possible values of the root are discussed in this section, conspiracy search 
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Figure6. Conspiracy search. In this example, a node is 
considered stable if at least three leaves must change to affect 
it. When the tree is built out to depth 1, the range of possible 
values is [5, lo]. When built out another level, all three of 
the root’s children get backed up values of 10. In order for 
the root value not to be 10, then three leaves must change 
(one grandchild from each child). Thus, the root is considered 
stable at 10. 

has been neither analyzed nor imple- 
mented. This is not due to any fundamental 
flaws in the procedure, but rather to the 
fact that it was only recently proposed. 
However, the heuristic on which it is based 
sounds reasonable, and studies aimed at 
determining its value as a control strategy 
are expected to appear shortly. 

Perhaps the newest of the type-B strat- 
egies is Rivest’s use of generalized p-means 
to approximate minimax values [Rivest 
19871. Briefly stated, a p-mean is defined 
as follows: 

Let a = (aI, . . . . a,) be a vector of n 
positive real numbers. 

Let p be a nonzero real number. 
Then a generalized p-mean of a, M,(a), 

is given by 
/, n \ l/P 

The two points that make M,(a) ideal for 
estimating minimax values are 

lim,,, Mp(a) = MAX(a,, . . . , a,) 

and 

limp,-, Mp(a) = MIN(a,, . . . , a,). 

Unlike MAX or MIN, Mp has derivatives 
that are continuous everywhere. This 
makes A4, ideal for a formal sensitivity 
analysis, similar in spirit to the informal 
(or less formal) analyses of locked-value 

search [Beal 19821 and conspiracy search 
[McAllester 19851. The partial derivative 
of a root node’s p-mean with respect to a 
given tip node indicates the sensitivity of 
the root’s value to a change in the value of 
that tip. Thus, a strategy that expands the 
most sensitive tip node should quickly re- 
fine a good estimate of the root’s minimax 
value. In addition to guiding the growth of 
search trees along the most sensitive gra- 
dient, p-means also suggest a way of break- 
ing ties among nodes with identical 
minimax values: Select the one with the 
greatest degree of stability. Rivest also 
reported some preliminary experiments on 
the game of Connect Four, in which a pro- 
gram using generalized p-means to approx- 
imate minimax values was pitted against a 
standard CU-@ program. In this tournament, 
a-0 was shown to be superior if the pro- 
grams were given equivalent amounts of 
time. If, however, the programs were al- 
lowed to examine an equal number of 
moves (in unequal time), the minimax ap- 
proximation scheme emerged victorious 
[Rivest 19871. No further experiments have 
been reported, although the idea of p-means 
and Rivest’s Connect Four results do sug- 
gest several interesting questions. 

2.2.2 Plan-Based Strategies 

Although pattern knowledge has not been 
used as extensively as heuristic knowledge 
in the design of type-B strategies, several 
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interesting systems have used patterns 
to plan in game domains. For example, 
Bramer described an optimal program for 
the chess endgame KPK (King and Pawn 
vs. King) that used pattern knowledge 
[Bramer 19801. The PARADISE chess pro- 
gram (PAttern Recognition Applied to 
Directing SEarch) [Wilkins 1977, 1980, 
19821 relies almost completely on pattern 
recognition to direct search. Like the B* 
algorithm, PARADISE expresses node val- 
ues as ranges, attempts to prove that one 
move is the best, and terminates search 
based on knowledge, not parameters (such 
as depth or time). Unlike B*, however, 
PARADISE uses a large collection of plans, 
or sequences of moves to be made from 
various positions, to avoid the errors caused 
by the horizon effect. To compensate for 
the expense of maintaining the knowledge 
base, a small tree is searched. This is pos- 
sible because the use of plans drastically 
reduces the branching factor by relying on 
complete sequences of moves, rather than 
on individual nodes. Information is com- 
municated from one part of the tree to 
another using a “hodgepodge” collection of 
cutoffs that control the search and indicate 
when searches along abandoned lines 
should be resumed. Because of the rather 
ad hoc nature of these criteria, PARADISE 
does not make a major contribution to the 
theory of control strategies; its major con- 
tributions are to the fields of planning and 
pattern recognition. 

One major issue raised by PARADISE, 
though, is how to generate plans to store in 
a data base. PARADISE’s plans generally 
lead to a goal other than winning the game. 
Pitrat [1977, 19801 devised a general 
scheme for generating plans, and showed a 
few examples of its application to a simpli- 
fied chess domain. His program is given a 
description of the initial state, and told to 
find a combination of moves that will lead 
to a specific goal. In order to succeed, the 
program must be given a less ambitious goal 
than “win the game.” If the goal cannot be 
met as given, the program fails. Thus, it 
seems that the successful implementation 
of pattern recognition knowledge is directly 
related to the definition of inexact, or ap- 
proximate tasks, which it is hoped corre- 

spond to the ultimate goal of winning. 
Evidently, guiding plans toward a most 
promising node is considerably harder than 
guiding searches toward one. Whereas 
many search programs have performed rea- 
sonably well without defining specific goals, 
plans need them to succeed. 

Botvinnik [ 1970, 19841 identified the de- 
velopment of inexact goals to guide inexact 
search as one of the most important prob- 
lems in the design of intelligent systems. 
This points out a fundamental flaw in the 
original definition of partial game trees: 
There is no clear understanding of what a 
static evaluator is attempting to estimate. 
Ostensibly, it should approximate the ac- 
tual value of the node (the value that would 
be returned by the minimax algorithm on 
the complete tree), although when a multi- 
valued function is used to estimate a 
binary-valued one, it is unclear precisely 
what is being estimated. One precise, 
domain-independent model of static eval- 
uation, which I have proposed in several 
articles, is the expected value of the leaves 
beneath the node being evaluated, or the 
expected-outcome model of two-player eval- 
uators [Abramson 1987, 1988; Abramson 
and Korf 19871. In general, two-player eval- 
uators are described as domain-specific 
measures of a position’s “worth” [Nilsson 
19801, “merit,” “strength” [Pearl 19841, 
“quality” [Winston 19771, or “promise” 
[Rich 19831; evaluator design usually in- 
volves obtaining an expert assessment of 
significant domain features and their rela- 
tive importance to the ultimate goal of win- 
ning the game. In Othello, for example, 
significant features often include equiva- 
lence classes of squares, mobility, and sta- 
bility [Abramson 1987; Maggs 1979; 
Rosenbloom 19821, while chess evaluators 
frequently include material, pawn forma- 
tion, mobility, and King safety [Hartmann 
1987a, 1987b; Levy 1976; Shannon 19501. 

The problem of developing static evalu- 
ators and that of determining inexact goals 
are strongly related; in the domain of chess, 
for example, Botvinnik identified material 
advantage-one of the most popular simple 
chess evaluators-as the inexact goal [Bot- 
vinnik 19841. Botvinnik’s analysis of chess 
is significant, because as a long-standing 
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world champion and a trained computer 
expert, he is among the few individuals who 
have combined domain knowledge with 
knowledge engineering skills. His discus- 
sion of inexact goals led to his development 
of the chess master’s method, an ambi- 
tious control strategy that made heavy 
use of both heuristic and pattern knowl- 
edge [Botvinnik 19821. The pattern 
knowledge component appears in the form 
of a game-specific action tree, which aug- 
ments and directs the search tree. As the 
search tree grows, the action tree records 
purposeful moves, or goals that can be at- 
tained without exhausting resources. Heu- 
ristic knowledge is available through three 
general limitation principles: (1) if im- 
provement is possible, it is contained in the 
tree; (2) new possibilities should be consid- 
ered only if they promise an improvement; 
(3) only goals that do not exhaust the time 
limits should be considered. Botvinnik’s 
scheme incorporates many of the ideas 
found in other control strategies. The lim- 
itation principles indicate a best-first ap- 
proach to node expansion, and the action 
tree is similar to a dynamically constructed 
knowledge base of plans. Despite Botvin- 
nik’s prowess as a chess player, the result- 
ant system, PIONEER, was never able to 
play competitive chess. It was, however, 
quite successful in the realm of planning 
maintenance repair schedules for power 
stations in the Soviet Union [Botvinnik 
19841. 

The communication between the (game- 
specific) action tree and (general) search 
tree parallels the relationship between the 
oracle and searcher in Hitech [Berliner and 
Ebeling 19861. The difference between 
them, which may, in part, account for PI- 
ONEER’s failure and Hitech’s success, lies 
in the role of knowledge. PIONEER uses it 
for strategic purposes, Hitech for evalua- 
tion. In either case, the lesson is the same: 
A functioning intelligent system needs both 
a general methodology and domain-specific 
knowledge. 

3. THE ANALYSIS OF HEURISTIC SEARCH 

Throughout most of the 1950s 1960s and 
1970s all of the analytic work done on 

game-trees dealt with determining the ef- 
ficiency of node ordering and IX+. During 
this period, a near-universal assumption 
was that partial minimax, although fallible, 
was the strongest conceivable control strat- 
egy, and its performance would improve 
directly with the length of lookahead and 
accuracy of the static evaluator. Alterna- 
tive, or modified strategies, of the type dis- 
cussed in Section 2.2 were motivated by the 
desire to either model cognitive activities 
[Newell et al. 19631 or improve perfor- 
mance faster than search depth could be 
extended [Berliner 19731. The perception 
of partial minimax has undergone a radical 
change in the 1980s. The advent of parallel 
algorithms like PV-split and specialized 
chess architectures allowed lookahead to be 
lengthened, the effect of the horizon to be 
largely overcome, and computers to play 
master-level chess. By 1985, there were 
even commercially available chess ma- 
chines playing at or near the master level 
[Kopec 19851. At about the same time that 
these machines were convincing game pro- 
grammers of the inherent power of full- 
width a+ minimax search, analyses of the 
procedure began questioning its theoretical 
accuracy [Nau 1983a]. 

One of the reasons that these analyses 
were so long in the coming is the complexity 
of the models. Games like chess were cho- 
sen as abstractions of the real world that 
were simple enough to allow computer sim- 
ulation and experimentation. They are 
nowhere near simple enough to allow math- 
ematical analysis. Thus, a new model had 
to be defined that was an abstraction of the 
game-tree. The most frequently studied 
model to date is the (d, b, F)-tree [Pearl 
1980, 19841. A (d, b, F)-tree has a uniform 
leaf depth d, a uniform branching factor b, 
and leaf values assigned by a set of identi- 
cally distributed random variables drawn 
from a common distribution function, F. 
With the definition of the model and a 
family of “artificial” games that embody 
the simplifications, studies of (and chal- 
lenges to) the accuracy of partial minimax 
became possible. In the 1980s then, the 
primary motivation behind defining alter- 
native strategies to minimax has become 
the discovery of a procedure that is correct 
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in some theoretical sense. This section is 
divided into two parts. In the first the re- 
sults that caused minimax to fall into dis- 
favor with theoreticians are outlined, and 
in the second some control strategies for 
partial game-trees that avoid these theoret- 
ical difficulties are described. 

3.1 The Benefits of Lookahead 

The aspect of partial minimax that has 
come under fire in the 1980s is lookahead. 
Lookahead is generally assumed to be help- 
ful because it results in the proper move 
being chosen more often. Over the years, 
an impressive body of empirical evidence 
has been amassed to support the validity of 
this claim, all in the form of successful 
programs that rely on it. Nevertheless, 
recent analyses have uncovered some 
surprising results. 

The potential futility of looking ahead 
was addressed by Pearl, who derived the 
minimax convergence theorem [Pearl 1980, 
19841. This theorem states that in a deep 
enough (d, b, F)-tree, the root value is es- 
sentially predetermined; the value is a func- 
tion of b, and the variance a function of d. 
Specifically, as d -+ ~0, if F is continuous 
(and assuming the same player always 
makes the last move), the minimax value 
of the root converges to the (1 - &,)-quantile 
of F, where &, is the solution of x6 + x - 1 
= 0. If, on the other hand, F is discrete with 
values 

u, < lJ.J < * * * < u,+,, and 1 - &, # F(u;) 

for all i, the root’s value converges to the 
smallest i satisfying 

F(u;-1) c 1 - [r, c F(u;). 

In a binary (b = 2) tree, for example, 
1 - &, = 1 - (& - 1)/2 = 0.382. Thus, if F 
is continuously distributed between 0 and 
1, the root converges to 0.382. If F is re- 
stricted to the integers between 0 and 100, 
then F(38) < 0.382 < F(39), and the root 
converges to 39. Perhaps the most interest- 
ing case occurs when F is a binary function, 
in which each leaf is a win (VW = 1) with 
probability P, and a loss (UT. = 0) with 
probability 1 - P. The convergence theo- 
rem for discrete distributions indicates that 

if P > &,, the root will converge to 1, and if 
P < &,, it will converge to 0. The only 
condition under which .a fair game (one in 
which either player may win) is possible, 
then, is when the root fails to converge, or 
P = &,. Nau pointed out that the minimax 
convergence theorem does not account for 
a widely observed phenomenon known as 
biasing (this can be observed in real games, 
not only (d, b, F)-trees)-the tendency for 
the player searching to perceive himself as 
winning if the search depth is odd, and 
losing if it is even [Nau 1982131. He showed 
that this results from errors in the static 
evaluator, and derived the last player theo- 
rem, which states that the value returned 
by partial minimax on a (d, b, F)-tree ap- 
proaches &, if one player moved at the bot- 
tom level of the search, but 1 - &, if the 
last move belonged to the other. This theo- 
rem makes an important statement about 
the way lookahead values should be inter- 
preted: Values returned from alternating 
depths form two distinct sequences, and 
must be considered separately. 

Minimax convergence indicates that 
there are instances in which lookahead is 
not helpful. The theorem can be viewed as 
an outcome of the weak law of large num- 
bers: As the number of events in the sample 
space increases, the deviation of the ob- 
served outcome from the expected outcome 
decreases. In the case of (d, b, F)-trees, an 
event is the assignment of a leaf value, the 
observed outcome is the minimax value, 
and the expected outcome is 1 - &,. As 
d += 03, the number of leaves grows expo- 
nentially, indicating that the observed min- 
imax value will always converge to the 
predicted value. Since the degree to which 
a node may deviate from 1 - &, depends 
only on its height (distance from the 
leaves), lookahead is more or less worthless 
in the portion of the tree high above the 
leaves; all choices are roughly equivalent 
because the children of the root all con- 
verged to the same value. When that oc- 
curs, random play (on (d, b, F)-trees) is just 
as effective as lookahead. On the other 
hand, when play approaches the end of the 
game, there are too few leaves for the weak 
law of large numbers of apply, and the 
values may vary greatly from 1 - &,. At this 
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stage of the game, lookahead may help de- 
termine these values more accurately. 

An even stronger statement about look- 
ahead is made by another recent discovery, 
minimaxpathology, a phenomenon whereby 
the decisions made by partial minimax may 
become less reliable as lookahead length 
increases. Nau (and independently, Beal 
[1980]) performed an error analysis on 
(d, b, F)-trees in which F was a uniform 
random distribution of binary values, and 
discovered that for an infinite class of 
game-trees, as search depth increases, so 
does the probability that an incorrect move 
will be made [Nau 1983a]. 

Pathology was first demonstrated on a 
family of board-splitting games developed 
by Pearl [1984] as simple games with all 
the properties of (d, b, F)-trees. In board 
splitting, a square bd-by-bd board is covered 
with l’s and 0’s. The first player splits the 
board vertically into b sections, keeps one 
in play, and discards the rest. The second 
player splits the remaining portion hori- 
zontally, doing the same. After d rounds (a 
depth of 2d ply), only one square remains. 
If that square contains a 1, the horizontal 
splitter wins. Otherwise, the vertical split- 
ter wins. A board-splitting game with a 
uniform random distribution of terminal 
values is called a P-game. A game with a 
clustering of similar values among neigh- 
boring leaves is called an N-game.” In all of 
these games, the board shrinks as play pro- 
ceeds, making it possible to devise evalua- 
tion functions whose accuracy improves as 
the tree is descended. Nau used one such 
function, the percentage of l’s on a board, 
to show that P-games are pathological 
while N-games are not. This led him to 
conclude that the cause of pathology lay in 
the uniform random distribution of leaf 
values. When leaf values are distributed 
uniformly, the values of sibling nodes 
throughout the tree are mutually indepen- 
dent. Since naturally occurring sibling 
nodes tend to have highly related values, 

“An N-game board is set up by randomly assigning 
l’s and -1’s to each branch in the game-tree. If the 
sum of the branches leading from the root to a leaf is 
positive, a 1 is placed in the square corresponding to 
that leaf. Otherwise, the square gets a 0. 

pathology has never been observed in real 
games [Nau 1982a]. Similar conclusions 
about trees with clustering among their 
terminal values were reached by Beal 
[1982] and Bratko and Gams [1982]. 

Pearl [1983] pointed out that minimax 
pathology is not simply a statistical aber- 
ration. Partial minimax involves propagat- 
ing functions of estimates. In general, this 
is not the same as calculating the estimate 
of a function. The anomaly is not that P- 
games are pathological, but rather that 
chess is not! He performed an in-depth 
error analysis of minimax, and discovered 
that if, as is frequently claimed, the power 
of lookahead lies in increased visibility 
(more accurate static evaluations deeper in 
the tree), this increase must be at least 50 
percent for each additional ply. Since this 
is almost never true in real games, he con- 
cluded that the 50 percent must be taken 
over all nodes found at the deeper level. In 
most games, certain positions qualify as 
traps, terminal positions that are located 
high in the tree (thus called because they 
trap one player into an early loss). The 
presence of terminal nodes in the vicinity 
of the search frontier drastically increases 
the accuracy of their ancestors, and results 
in the necessary improvement. If the (d, b, 
F)-tree is modified by making every inter- 
nal node a trap with probability q exceeding 
a certain threshold, 

q ~ 1 _ (1 + B)l--(l’H) 
B ’ 

this improvement is reached, and pathology 
should be avoided [Pearl 19841. In an ear- 
lier paper, I extended the idea of traps to 
any node whose W/L value could be deter- 
mined exactly, or f-wins [Abramson 19861. 
I demonstrated experimentally that if 
f-wins occur when increasing densities at 
deeper levels in the tree, pathology can be 
avoided with an overall density consider- 
ably below the predicted threshold. 

Michon [ 19831 suggested a more realistic 
model than the (d, b, F)-tree, the recursive 
random game (RRG). From every position 
in an RRG, there are n legal moves (n = 0, 
1, 2, . . .), with probability f,,. The value f,, 
indicates the probability that a node is a 
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leaf, in which case it is randomly assigned 
either W or L. He used RRGs to analyze 
both pathology and quiescence. In terms of 
quiescence, nonquiescent positions in most 
games were shown to correspond to posi- 
tions with relatively few options, or small 
branching factors. In terms of pathology, 
he showed that games with uniform 
branching factors are bound to be patho- 
logical, while games whose branching fac- 
tors follow a geometric distribution are not. 
The various remedies to pathological be- 
havior combine to give a solid explanation 
of the phenomenon: Pathology occurred be- 
cause of oversimplifications in the original 
(d, b, F)-tree model. The removal of any 
single uniformity assumption resulted in a 
nonpathological tree: N-games targeted the 
uniform distribution, traps the uniform 
depth, and RRGs the uniform branching 
factor. When f-wins removed the uniform 
terminal density as well, pathology became 
even easier to avoid. 

Pathology, minimax convergence, and 
the last player theorem all contribute to the 
understanding of partial minimax in gen- 
eral, and lookahead in particular. Because 
these results were all derived on simplified 
models, it is unclear exactly how applicable 
their direct mathematical implications are 
to real games. Nevertheless, they do reveal 
some important points that might be as 
true for chess and checkers as they are for 
board splitting: 

Lookahead is not always beneficial. 
Improved visibility, in and of itself, is not 
a sufficient explanation of why lookahead 
is helpful (when it is). 
Values returned by lookahead to different 
depths should only be compared if the 
same player moved last in both cases. 
The more uniform the tree, the more 
likely it is that partial minimax is not the 
proper control strategy to be using. 

3.2 Alternatives to Minimax 

Perhaps the most significant outcome of 
the phenomena discussed in the previous 
section is that for the first time, the sanc- 
tity of minimax was taken to task. These 
challenges to the accepted standard have 

motivated the design of several nonmini- 
max control strategies. To understand 
these strategies, it is important to recall 
two of the basic assumptions underlying 
the optimality of minimax: perfect play by 
both players, and accurate information 
(e.g., accurately evaluated tips). Since, for 
the most part, neither of these conditions 
ever holds, alternative control strategies 
may lead to better performance. These in- 
accuracies are particularly relevant in light 
of game programming’s original objective: 
the understanding of decisions. Although 
an assumption of presumed perfection may 
actually simplify a discussion of games, it 
is meaningless beyond fairly contrived set- 
tings. Thus, dropping these assumptions 
may have an impact not only on game 
programming per se but on the relationship 
between games and decisions, as well. 

Pearl [1981] suggested the method of 
productpropagation. This strategy assumes 
that the static evaluator returns the prob- 
ability that a node is a forced win. If an 
internal node is a forced win for player 1, 
all of its children must be forced losses for 
player 2, and vice versa. In other words, 

Pr[h is a win node] 
= II(1 - Pr[h’ is a win node ] 

h’ is a child of h]). 

These alternating products propagate the 
probabilities back up the tree. Nau [1983b] 
showed that when this control strategy is 
used instead of minimax, pathology disap- 
pears. Tzeng proved that given a (d, b, F)- 
tree with independent sibling values and 
an evaluation function that does, in fact, 
return the probability of forcing a win, 
product propagation will outperform any 
equally informed algorithm. Among the as- 
sumptions inherent to product propaga- 
tion, however, is the independence of 
sibling nodes. Since this is clearly not true 
in real games, there is no reason to assume 
that this strategy is even reasonable in most 
interesting domains. Nevertheless, Nau et 
al. [1983; Tzeng and Purdom 19831 ran 
some Monte Carlo experiments that dem- 
onstrated that even on N-games (which 
have interdependent sibling values), prod- 
uct propagation played well against partial 

ACM Computing Surveys, Vol. 21, No. 2, June 1989 



156 . Bruce Abramson 

minimax. A strategy that averaged the val- fully developed nor tested, and is thus 
ues returned by product propagation and of unknown value. 
partial minimax (by simply adding them 
and dividing by 2) outperformed- either 
strategy alone. In a similar set of experi- 

4. DISCUSSION: 

ments, Chi and Nau ran a tournament on 
RELATING THEORY TO PRACTICE 

some variants of kalah, in which product 
propagation (and the averaging scheme) 
beat partial minimax [Chi and Nau 1986, 
19871. Although these results should be 
enough to indicate that partial minimax is 
not always the strongest possible strategy, 
and to stress the need for further analyses, 
their outcomes were frequently not signifi- 
cant enough (in terms of statistical hypoth- 
esis testing) to reveal anything conclusive. 

Ballard [ 19831 developed a control strat- 
egy for searching game-trees with chance 
nodes, *-minimax, which assigns each 
chance node the average of its children’s 
values. He and Reibman contended that 
the problem with partial minimax is that 
it, erroneously assumes perfect play on the 
part of the opponent. They modified 
*-minimax to minimax in the presence of 
error. In this system, each player assigns 
his opponent an expected strength. This 
strength is used to determine subjective 
probabilities indicating the likelihood that 
a given move will be chosen. Minimax cor- 
responds to a strength of 1 (perfect play), 
and *-minimax chance nodes to a strength 
of 0 (random play). Imperfect play should 
lie somewhere between the two, and can be 
modeled by calculating a weighted sum of 
the subjective probabilities [ Reibman and 
Ballard 19831. Empirical studies performed 
on (d, b, F)-trees with correlated sibling 
values showed that this strategy outper- 
formed the addition of a ply to minimax. 
Another alternative strategy is minimum 
variance pruning [Truscott 19791. In this 
strategy, nodes are assigned probability 
density functions (pdf ‘s) describing the 
likely location of the minimax value, and 
the subtree with the minimum variance is 
expanded first. The motivation underlying 
this procedure is similar to that behind 
conspiracy search and locked-value search: 
Stable values are likely to be accurate, and 
small variances indicate stable values. 
Although this strategy was proposed by 
Truscott in 1979, it has been neither 

To date, none of the strategies described 
in the previous section have been success- 
fully implemented in real games (i.e., 
competition-oriented programs). At the 
same time, none of the heuristics used to 
design type-B strategies have been success- 
fully analyzed. There are good reasons for 
both of these; the theoretical strategies 
tend to require a full-width search (pruning 
techniques have yet to be devised), and 
have generally been developed using as- 
sumptions that are not valid in real games. 
Determining the accuracy of a type-B strat- 
egy, on the other hand, would probably 
require a model too complex to be analyzed. 
Because of their different orientations, 
there has been minimal interplay between 
the results of heuristic analysts and game 
designers. This isolationist tendency has, 
in turn, allowed game programming to 
flourish without ever developing a firm the- 
oretical groundwork. There is overwhelm- 
ing evidence that partial minimax is a 
reasonable control strategy, that its perfor- 
mance will improve with greater program- 
ming innovations, and that programs using 
it will play excellent chess on fast enough 
machines (the performance of Belle [Con- 
don and Thompson 1982, 19831, Hitech 
[Berliner and Ebeling 19861, and Chiptest 
[Anantharaman et al. 19881 are cases in 
point). There is no evidence that it is in 
any sense correct. The discovery of pathol- 
ogy indicates that there are instances, al- 
beit specialized ones, in which the 
traditional assumptions of minimax are 
false. The subsequent resolution of the phe- 
nomenon through the imposition of non- 
uniformity implies very definite strengths 
and weaknesses of the procedure; the fewer 
distinguishing characteristics among the 
nodes, the worse is the performance of min- 
imax. Viewed in this way, pathology sug- 
gests a point that should be directly 
applicable to real games: Use partial mini- 
max when there is a clear choice (i.e., when 
the best available minimax value is sub- 
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stantially better than the second best). 
Otherwise, if all values are clustered around 
some intermediate range, use another strat- 
egy, perhaps a weighted sum of modified 
M & N. 

This split between theory and practice, 
although understandable, is somewhat dis- 
turbing. Experience dictates that the 
dismissal of unobserved theoretical predic- 
tions as irrelevant is unwise. In operations 
research, for example, the simplex method 
has long been used to efficiently solve linear 
programming applications. The proof of a 
worst-case exponential running time, and 
the artificial construction of examples that 
caused it to run poorly, motivated other 
models and approaches, to the point where 
one has been developed that not only ap- 
pears to be theoretically correct, but also 
promises to have serious commercial poten- 
tial as well [Karmakar 19841. 

The incorporation of probability distri- 
butions into B*-like algorithms by Palay 
[ 19851 is encouraging. Although probabili- 
ties were used in almost all the analytic 
studies, prior to this work they played a 
more or less inconsequential role in the 
implementations. The original motivation 
for Palay’s use of distributions was to more 
accurately assess the probable location of a 
node’s true (minimax) value than could be 
done with either single numbers or ranges. 
However, a radically different interpreta- 
tion of probability distributions is possible. 
Point values imply the existence of a true 
value that is being estimated. A range im- 
plies an unknown exact value, but one that 
can be bounded. In sharp contrast, the use 
of probability distributions may imply that 
there is no true value. Instead, the nodes 
are random variables that will be instan- 
tiated at different values with varying prob- 
abilities. The resultant model of partial 
game-trees is probabilistic, rather than de- 
terministic, in nature, and corresponds to 
the static evaluators designed under the 
expected-outcome model [Abramson 19871. 
In a probabilistic context, minimax is al- 
most certainly nonoptimal. The assump- 
tions that should go into devising a control 
strategy for probabilistic trees include im- 
perfect play and an unwillingness to com- 
mit to anything beyond the next move. 

Implicit in the minimax procedure is the 
statement that if play reaches node X, node 
Y (the best of X’s children) will be chosen. 
If node X is not the current node, this 
represents a premature commitment that 
may or may not make sense in a determin- 
istic domain, but certainly does not in a 
probabilistic one. 

5. AREAS FOR FUTURE INVESTIGATION 

Every component of partial game-trees 
leaves many problems open. The trees rep- 
resent a mathematical model that has been 
extensively used, but rarely studied. 
Throughout the course of this survey, vir- 
tually every definition in the model was 
shown to be vague, and every assumption 
was questioned at least once. The areas of 
difficulty that relate most directly to the 
design of control.strategies (in no particular 
order) are: 

l The static evaluator: Is an inexact goal 
necessary, or can search truly be guided 
effectively toward a number whose mean- 
ing is vague? Are there features of the 
tree that can serve as inexact goals, or 
must the information be game specific? 

l The role of knowledge: How much game- 
specific information is really required to 
design a successful program? Should con- 
trol strategies be defined for trees (the 
general model) or for games (the spe- 
cific)? Can planning be used effectively 
to play games at expert levels, or only to 
augment more standard search tech- 
niques? Could the idea of an advice table 
be extended to include human interac- 
tion? Would a domain like chess lend 
itself to a rule-based expert system, in 
which strategy decisions were based on 
responses learned from experts? 

l The limitations of minimax: Does the 
leap of type-A chess machines beyond the 
master level indicate that there are no 
limits to the strategy’s power? 

l The mathematical model: What is the 
correct model for two-player, zero-sum 
games of perfect information? Is it prob- 
abilistic or deterministic in nature? What 
is the optimal control strategy for making 
decisions in this model? How closely does 
this model approximate real games? 
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. 

What is the relationship between partial 
and complete game-trees? 
The role of lookahead: Why is lookahead 
advantageous? Under what conditions 
will it not help? What is the correct cri- 
terion for the termination of search? How 
can quiescent nodes on the search fron- 
tier be recognized? Can the horizon effect 
be avoided completely, and if so, how? 

It is hoped that, within the next few 
years, a new general theory of partial game 
trees will begin to answer some of these 
questions. This type of theoretical ground- 
work will have profound ramifications in 
both the analysis of heuristics and the de- 
sign of games, and should be actively pur- 
sued by practitioners of both fields. 
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